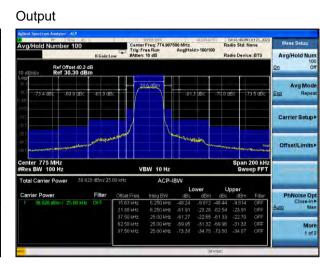


Report No.: SZCR210302000601 Page: 83 of 109

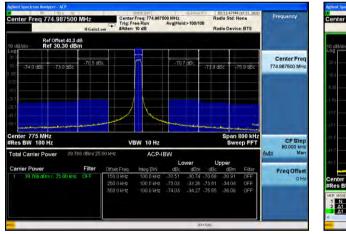
Output

Frequency	HOLE I PM Oct 31, 2020 TRACE 2245 TYPE A MONTH OCT STORY IN TO	g Type: Log-Pwr g Hold>100/100	rig: Free Run Atten: 10 dB	0 MHz	req 776.500000	Center Fr
Auto Tu	.000 0 MHz -99.706 dB	∆Mkr2			Ref Offset 40.3 dE Ref 36.30 dBm	10 dB/div
Center Fra 776.500000 Mil						26.8
Start Fre 748.000000 Mil						630 570
Stop Fro 805 000000 Mi						(37 287
CF Ste 5.700000 Mi <u>Auto</u> Mi						45.7
Freq Offs 01	an 57.00 MHz ns (10001 pts)	3∆1 Sweep 191	kHz	VBW 9	'6.50 MHz 30 KHz	Center 77 #Res BW
	FUNCTION VALUE	FUNCTION WIDTH	9.706 dBm -99.706 dB -98.545 dB	× 66.502 2 MHz 12.000 0 MHz (Δ) 21.500 0 MHz (Δ)	f 76 f (Δ)	MRR MODE TF 1 N 1 2 A1 1 3 A1 1
		STATUS	-			sg.

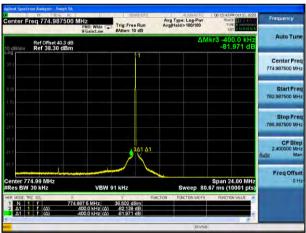
Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>http://www.sgs.com/en/Terms-and-Conditions/Terms-enDocument.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Cillent's instructions, if any. The Company's sole responsibility is to its Cilent and this document does not exconerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) test dand such sample(s) are retained for 30 days only. Attention. To check the authenticity of testing inspection report a certificate, please contact us at telephone: (86-755) 8307 1443,



Report No.: SZCR210302000601 Page: 84 of 109

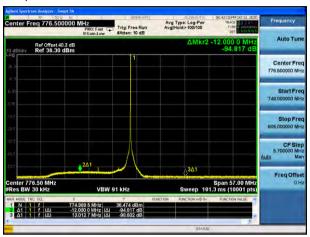

1.3.5 Pre-AGC_ Highest frequency

Input


Center Freq 774,987500 MHz	Center Trig:F	Pres Ent Freq: 774.987 ree Run : 10 dB	500 MHz Avg Hol	d>100/10	Ra	dio Std: N dio Devic		Frequency
0 dB/div Ref -13.00 dBm				_				
Log 730 33082.3 dBc82.4 dBc80.4 d		5.8 dBm	-81	TdBc	-82 A d	BC R	32.2 0Bc	Center Fred 774 987500 MHz
43.0 595								
790								
	June		-				Peak	
Center 775 MHz #Res BW 100 Hz	v	BW 10 Hz					200 kHz ep FFT	CF Step 20.000 KH
Total Carrier Power 5762 dBm/ 2	5.00 kHz	ACP-I						<u>Auto</u> Mar
Carrier Power Filter	Offset Freq	Integ BVV	dBc	dBm	U	dBm	Filter	
1 -5.762 dBm / 25.00 kHz OFT	15.63 kHz	6.250 kHz	-52.79		-54.26	-60.03	OFF	Freq Offsel
	21.88 kHz	6.250 kHz	-79.59		81.60	.87 36	OFF	0 Ha
	37.50 kHz	25.00 kHz			-81 06		OFF	
	62.50 kHz	25 00 kHz					OFE	
	87.50 kHz	25.00 kHz					OFF	
	~				TATUS			

Output

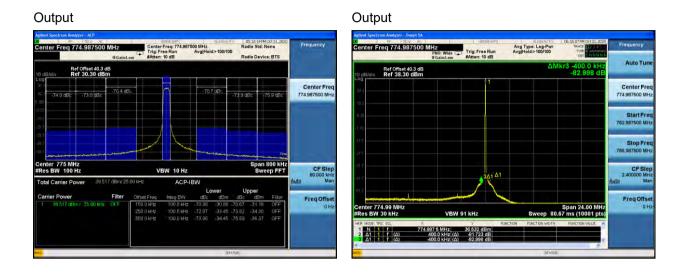
Output



Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>http://www.sgs.com/en/Terms-and-Conditions/Terms-enDocument.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Cillent's instructions, if any. The Company's sole responsibility is to its Cilent and this document does not exconerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) test dand such sample(s) are retained for 30 days only. Attention. To check the authenticity of testing inspection report a certificate, please contact us at telephone: (86-755) 8307 1443,

Report No.: SZCR210302000601 Page: 85 of 109

Output


1.3.6 3dB above AGC_ Highest frequency

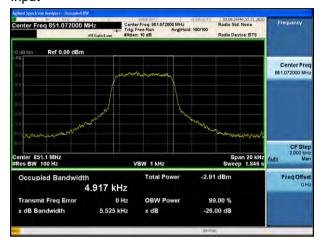
Agilent Spectrum Analyzer - ACP								Agilent Spectrum Analyze	PT- ACP									
Center Freq 774.987500 MHz	Center Trig:Fr	Prop Ent Freq: 774.98750 ree Run 10 dB		100/100	03:56:2194 Radio Std: M Radio Devic		Frequency		1.987500 M	FGain:Low		req:774.9875 e Run 0 dB		al Shart 100/100	Radio	42:24 PM Oct o Std: Non o Device: I	ne	Frequency
10 dB/div Ref -13.00 dBm									0ffset 40.3 dB 30.30 dBm									
-0g 730 280 -82,6 dBc -82,8 dBc -79,3 (430		SHORE THE	-81.3 d	18c -82,6	dBc 4	82.6 dBc	Center Freq 774.987500 MHz	Log 20.3 (0.3 -73.3 dBc 0.30	-70 2 dBc -	63.5 dBc	7		-63.7	dBc	-70,0 dBc	: 737	A dBc	Center Fre 774.987500 MH
90								-19/72)										
73 0 1335 1390	m					_		-317			1		- Come		white		Feat	
	VE	BW 10 Hz	No.	Anna anna Anna		200 kHz ep FFT	CF Step	-37 -07 -37 Center 775 MHz #Res BW 100 Hz			VB	W 10 Hz	- Marine	-	er den en e	Span 20 Sweep		
400 400 400 Center 775 MHz rRes BW 100 Hz Total Carrier Power -2.896 dBm/2		BW 10 Hz ACP-IB	 W	dae na financiadase		ep FFT	CF Step 20.000 kHz Auto Man		:	Bm(25.00 kł		W 10 Hz	BW			Sweep	p FFT	20.000 KH
enter 775 MHz Res BW 100 Hz otal Carrier Power -2.805 dBm/2	25.00 kHz	ACP-IB	Low		Swe Upper	ep FFT	20.000 kHz Auto Man	#Res BW 100 Hz Total Carrier Powe	er 38,448 (łz	ACP-II	Lo	wer	Upp	Sweep	p FFT	20.000 kH Auto Ma
enter 775 MHz Res BW 100 Hz otal Carrier Power -2.805 dBm/2	25.00 kHz	ACP-IB	Low dBc	er dBm_dB 5641-553	Swe Upper c dBm	ep FFT	20.000 kHz Auto Man Freq Offset	#Res BW 100 Hz Total Carrier Power Carrier Power	er 38,448 (ilter Off	łz		Lo dBc	dBm	Upp	Sweer oer dBm	p FFT	20.000 KF Auto Ma Freq Offse
enter 775 MHz Res BW 100 Hz Fotal Carrier Power -2.806 dBm/2 Carrier Power Filter	25.00 kHz Offset Freq	ACP-IB Integ EW 6 250 kHz	dBc	dBm dB	Swe Upper c dBm 4 -58.14	ep FFT	20.000 kHz Auto Man	#Res BW 100 Hz Total Carrier Power Carrier Power	er 38,448 (ilter Off	Hz set Freq	ACP-II	Lo dBc	dBm	Upp dBc 48.92 -	Sweer dBm 10.47	p FFT	20.000 KF Auto Ma Freq Offse
Res BW 100 Hz Res BW 100 Hz Total Carrier Power -2.806 dBm/2 Carrier Power Filter	25.00 kHz Offset Freq 15.63 kHz	ACP-IB Integ BVV 6 250 kHz 6 250 kHz	dBc -53.61 -	dBm dB 56.41 -55.3	Swe Upper c dBm 4 -58.14 5 -83.87	Filter	20.000 kHz Auto Man Freq Offset	#Res BW 100 Hz Total Carrier Power Carrier Power	er 38,448 (ilter Off	Hz set Frag 63 kHz	ACP-II Integ BW 6 250 kHz 6 250 kHz	48.05 -62.89 -63.47	dBm -9.605 -24.44 -25.03	Upp dBc 48.92 - 63.29 - 63.66 -	Sweer dBm 10.47 24.84	P FFT Filter OFF	20.000 KH Auto Ma Freq Offse
enter 775 MHz Res BW 100 Hz Fotal Carrier Power -2.806 dBm/2 Carrier Power Filter	25.00 kHz Offset Freq 15.63 kHz 21.88 kHz 37.50 kHz 62.50 kHz	ACP-IB Integ BW 6 250 kHz 6 250 kHz 25 00 kHz 25 00 kHz	dBc -53.61 = -77.55 = -79.26 = -82.82 =	dBm dB 56.41 -55.3 80.35 81.0 82.06 -81.3 85.62 -82.7	Swe Upper c dBm 4 -58.14 5 -83.87 0 -84.41 3 -85.58	Filter OFF OFF OFF OFF	20.000 kHz Auto Man Freq Offset	#Res BW 100 Hz Total Carrier Power Carrier Power	er 38,448 (-ilter Off 21 37 62	Hz set Freq 63 kHz 88 kHz 50 kHz 50 kHz	ACP-II Integ BVV 6 250 kHz 6 250 kHz 25 00 kHz 25 00 kHz	48.05 -48.05 -62.89 -63.47 -70.16	dBm -9.605 -24.44 -25.03 -31.71	Upp dEc 48 92 - 63 29 - 63 66 - 70 00 -	Sweer dBm 10.47 24.84 25.21 31.55	Fiter OFF OFF	20.000 KH Auto Ma Freq Offse
Center 775 MHz Res BW 100 Hz Total Carrier Power -2.806 dBm/2 Carrier Power Filter	25.00 kHz Offset Freq 15.63 kHz 21.88 kHz 37.50 kHz	ACP-IB Integ BW 6 250 kHz 6 250 kHz 25 00 kHz	dBc -53.61 = -77.55 = -79.26 = -82.82 =	dBm dB 56.41 -55.3 80.35 81.0 82.06 -81.3 85.62 -82.7	Swe Upper c dBm 4 -58.14 5 -83.87 0 -84.41 3 -85.58	Filter OFF OFF	20.000 kHz Auto Man Freq Offset	#Res BW 100 Hz Total Carrier Power Carrier Power	er 38,448 (-ilter Off 21 37 62	Hz set Freq 63 kHz 88 kHz 50 kHz	ACP-II Integ BVV 6 250 kHz 6 250 kHz 25 00 kHz	48.05 -48.05 -62.89 -63.47 -70.16	dBm -9.605 -24.44 -25.03 -31.71	Upp dEc 48 92 - 63 29 - 63 66 - 70 00 -	Sweer dBm 10.47 24.84 25.21 31.55	P FFT Filter OFF OFF	CFSte 20.000 kH Auto Ma FreqOffse 0 H

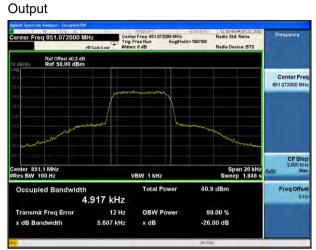
Report No.: SZCR210302000601 Page: 86 of 109

Output

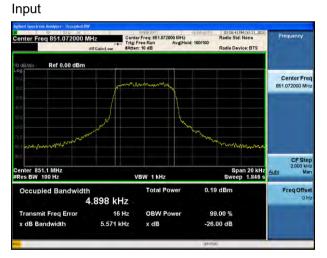
Center Freq 7	76.500000 MHz PNO: Fast IFGain:Low	Trig: Free Run #Atten: 10 dB	Avg Type: Log-Pwr Avg Held>100/100	06:42:55 PM Oct 31, 2020 TRACE 2 2 4 5 TYPE A VANAULT DET S N 1/14 1/1	Frequency
10 dB/div Ref	offset 40.3 dB 36.30 dBm		ΔMkr2 ·	-12.000 0 MHz -95.322 dB	Auto Tune
26.3		1			Center Fred 776.500000 MH:
6.30 -1.71					Start Free 748 000000 MH
.137					Stop Fre 805.000000 MH
437 	<u>Δ</u> 2Δ1				CF Ste 5.700000 MH <u>Auto</u> Ma
Center 776.50 I #Res BW 30 kH	WHZ	1 kHz	3∆1 Sweep 191	Span 57.00 MHz .3 ms (10001 pts)	Freq Offse 0 H
MKR MODE TRC SCL 1 N 1 Γ 2 Δ1 1 Γ 3 Δ1 1 Γ		9 36,416 dBm -95,322 dB -98,011 dB	NCTION FUNCTION VIDTH	FUNCTION VALUE	
80.			STATUS		-

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>http://www.sgs.com/en/Terms-and-Conditions/Terms-enDocument.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Cillent's instructions, if any. The Company's sole responsibility is to its Cilent and this document does not exconerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) test dand such sample(s) are retained for 30 days only. Attention. To check the authenticity of testing inspection report a certificate, please contact us at telephone: (86-755) 8307 1443,




Report No.: SZCR210302000601 Page: 87 of 109

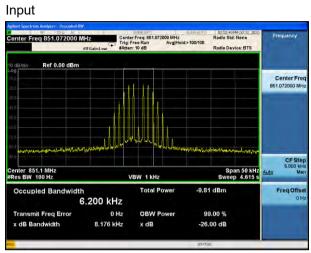
2.Downlink: 851MHz to 869MHz

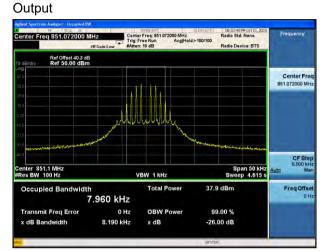

2.1 Occupied Bandwidth

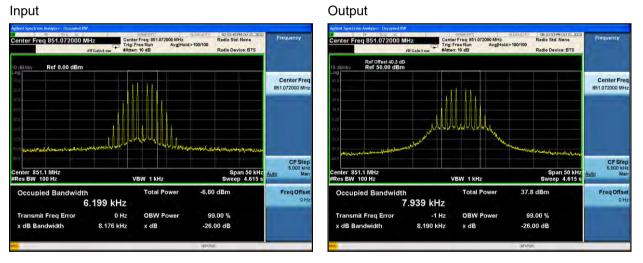
2.1.1 6.25kHz CQPSK Pre-AGC Input

2.1.2 6.25kHz CQPSK 3dB above AGC

Output

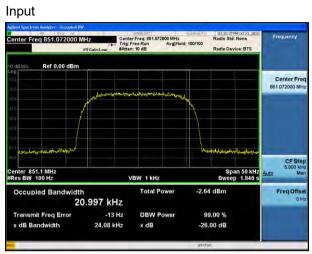


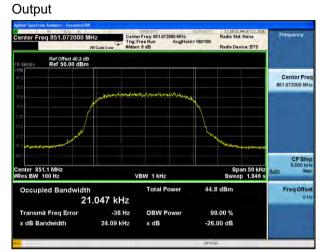

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e_Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Cilent's instructions, if any. The Company's sole responsibility is to its Cilent and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document is content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) test entation, forgery or faisification of the dawn in the itset report feer only to the sample(s) test entations and sole approare. Attention. To check the authenticity of testing inspection report a certificate, please contact us at telephone: (86-755) 8307 1443,

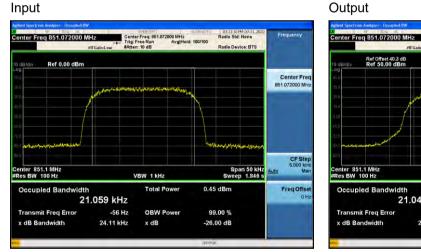

Report No.: SZCR210302000601 Page: 88 of 109

2.1.2 12.5kHz FM Pre-AGC

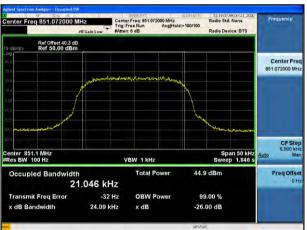
2.1.2 12.5kHz FM 3dB above AGC




Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e_Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Cilent's instructions, if any. The Company's sole responsibility is to its Cilent and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document is content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) test entation, forgery or faisification of the dawn in the itset report feer only to the sample(s) test entations and sole approare. Attention. To check the authenticity of testing inspection report a certificate, please contact us at telephone: (86-755) 8307 1443,


Report No.: SZCR210302000601 89 of 109 Page:

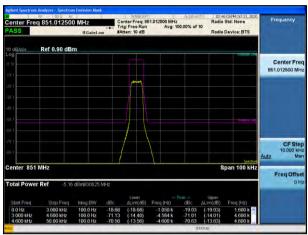
2.1.3 25kHz TETRA Pre-AGC



2.1.3 25kHz TETRA 3dB above AGC

Output

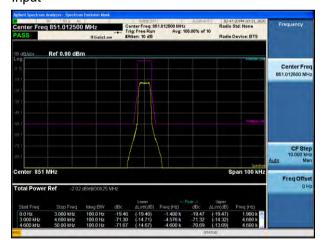
Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e_Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Cilent's instructions, if any. The Company's sole responsibility is to its Cilent and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document is content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) test entation, forgery or faisification of the dawn in the itset report feer only to the sample(s) test entations and sole approare. Attention. To check the authenticity of testing inspection report a certificate, please contact us at telephone: (86-755) 8307 1443,

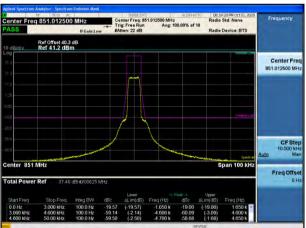


Report No.: SZCR210302000601 Page: 90 of 109

2.2 Emission masks (6.25kHz CQPSK MASK E)

2.2.1 Pre-AGC_ Lowest frequency

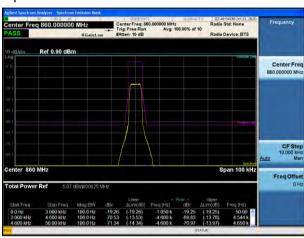

Input


08:17:36 PM Oct 2 Radio Std: None ter Freq 851.012500 M 00 MHz Avg: 100.00% of 10 Radio Device: BTS Ref Offset 40.3 df Ref 41.2 dBm Center Fre 851.012500 MH CF Ste 851 M Span 100 kH Freq Offs otal F

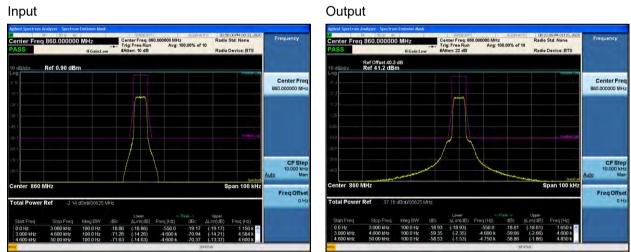
Output

2.2.2 3dB above AGC_ Lowest frequency Input

Output


Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>http://www.sgs.com/en/Terms-and-Conditions/Terms-enDocument.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Cillent's instructions, if any. The Company's sole responsibility is to its Cilent and this document does not exconerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) test dand such sample(s) are retained for 30 days only. Attention. To check the authenticity of testing inspection report a certificate, please contact us at telephone: (86-755) 8307 1443,

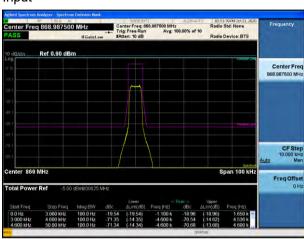
Report No.: SZCR210302000601 Page: 91 of 109


2.2.3 Pre-AGC_ Middle frequency

Input

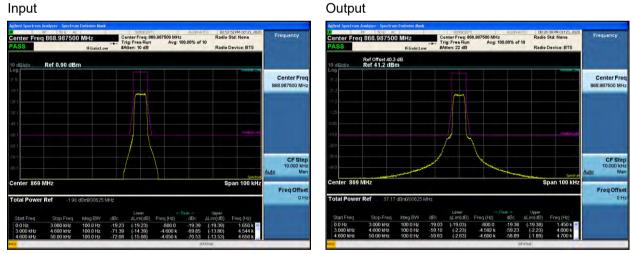
Output Center Free B60.000000 MHz Center Free B60.000000 MHz Center Free B60.00000 MHz Center Free B60.0000 MHz Center Free B60.00000 MHz Center Free B60.00000 MHz Center Free B60.00000 MHz Center Free B60.0000 MHz Cente

2.2.4 3dB above AGC_ Middle frequency


Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>http://www.sgs.com/en/Terms-and-Conditions/Terms-enDocument.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Cillent's instructions, if any. The Company's sole responsibility is to its Cilent and this document does not exconerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) test dand such sample(s) are retained for 30 days only. Attention. To check the authenticity of testing inspection report a certificate, please contact us at telephone: (86-755) 8307 1443,

Report No.: SZCR210302000601 Page: 92 of 109

2.2.5 Pre-AGC Highest frequency

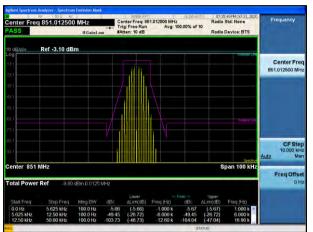

Input

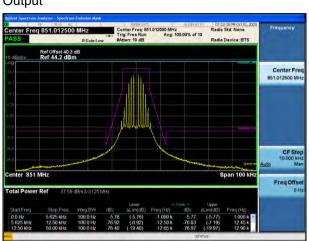
D8:24:56 PM Oct 2 ter Freq 868.987500 MH: 00 MHz Avg: 100.00% of 10 Center Freq: 868 Trig: Free Run Radio Device: BTS Ref Offset 40.3 dB Ref 41.2 dBm Center Fre CF St 869 MH Span 100 kH Freq Offs

Output

2.2.6 3dB above AGC_ Highest frequency

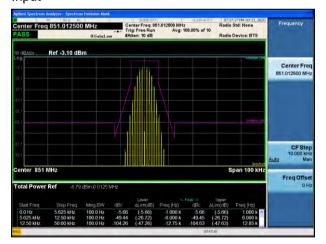
Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>http://www.sgs.com/en/Terms-and-Conditions/Terms-enDocument.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Cillent's instructions, if any. The Company's sole responsibility is to its Cilent and this document does not exconerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) test dand such sample(s) are retained for 30 days only. Attention. To check the authenticity of testing inspection report a certificate, please contact us at telephone: (86-755) 8307 1443,

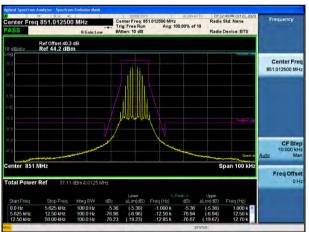



Report No.: SZCR210302000601 Page: 93 of 109

2.3 Emission masks (12.5kHz FM MASK D)

2.3.1 Pre-AGC_ Lowest frequency

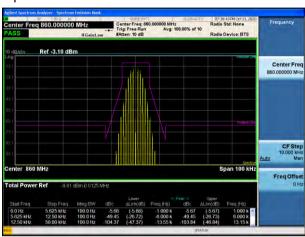

Input



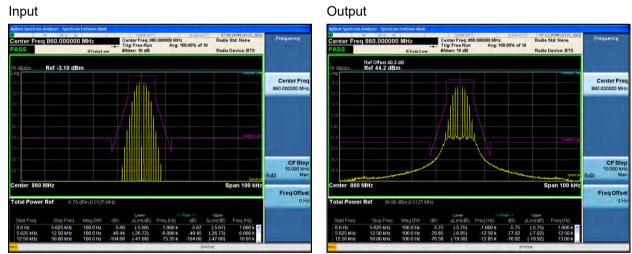
Output

2.3.2 3dB above AGC_ Lowest frequency Input

Output


Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e_Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Cilent's instructions, if any. The Company's sole responsibility is to its Cilent and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document is content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) test entation, forgery or faisification of the dawn in the itset report feer only to the sample(s) test entations and sole approare. Attention. To check the authenticity of testing inspection report a certificate, please contact us at telephone: (86-755) 8307 1443,

Report No.: SZCR210302000601 Page: 94 of 109


2.3.3 Pre-AGC_ Middle frequency

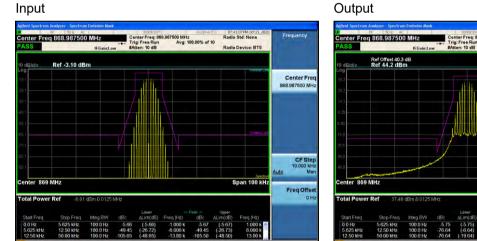
Input

Output Center Freq B60.000000 MHz Center Freq B60.00000 MHz Center Freq B60.000000 MHz Center Freq B60.00000 MHz Center B60 MHZ

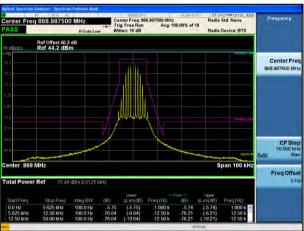
2.3.4 3dB above AGC_ Middle frequency

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>http://www.sgs.com/en/Terms-and-Conditions/Terms-enDocument.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Cillent's instructions, if any. The Company's sole responsibility is to its Cilent and this document does not exconerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) test dand such sample(s) are retained for 30 days only. Attention. To check the authenticity of testing inspection report a certificate, please contact us at telephone: (86-755) 8307 1443,

Report No.: SZCR210302000601 Page: 95 of 109


2.3.5 Pre-AGC Highest frequency

Input

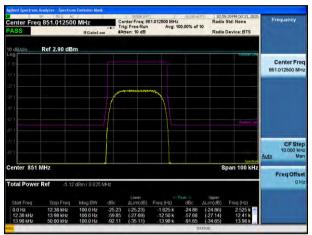


Output ter Freq 868.987500 MH: 07:14:02 PM Oct 2 Radio Std: None 00 MHz Avg: 100.00% of 10 Center Freq: 868 Trig: Free Run Radio Device: BTS Ref Offset 40.3 dE Ref 44.2 dBm Center Fre CES 869 MHz Span 100 kH FreqOffs

2.3.6 3dB above AGC Highest frequency

Output

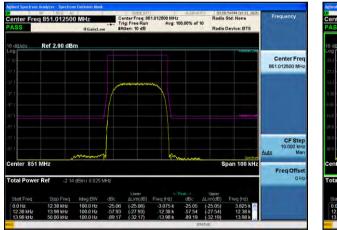
Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>http://www.sgs.com/en/Terms-and-Conditions/Terms-enDocument.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Cillent's instructions, if any. The Company's sole responsibility is to its Cilent and this document does not exconerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) test dand such sample(s) are retained for 30 days only. Attention. To check the authenticity of testing inspection report a certificate, please contact us at telephone: (86-755) 8307 1443,

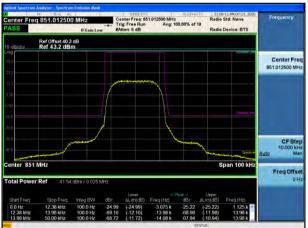


Report No.: SZCR210302000601 Page: 96 of 109

2.3 Emission masks (25kHz TETRA MASK Y)

2.3.1 Pre-AGC_ Lowest frequency

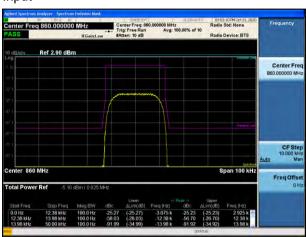

Input

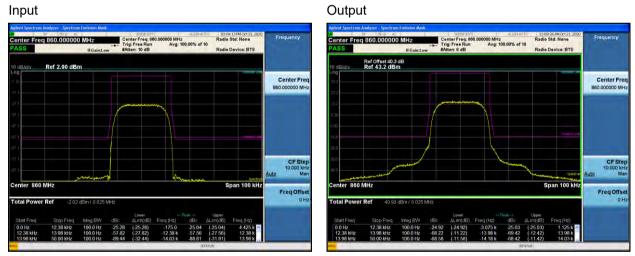

11:04:28 AMOct 2 Radio Std: None ter Freg 851,012500 Mi 00 MHz Avg: 100.00% of 10 Center Freq: 851.012 Trig: Free Run Ref Offset 40.3 di Ref 43.2 dBm Center Fre 851.012500 MH CF St 851 MH Span 100 kH Freq Offs atal Da or Def

Output

2.3.2 3dB above AGC_ Lowest frequency Input

Output

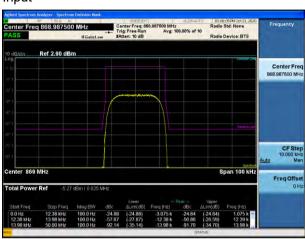

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e_Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Cilent's instructions, if any. The Company's sole responsibility is to its Cilent and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document is content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) test entation, forgery or faisification of the dawn in the itset report feer only to the sample(s) test entations and sole approare. Attention. To check the authenticity of testing inspection report a certificate, please contact us at telephone: (86-755) 8307 1443,


Report No.: SZCR210302000601 Page: 97 of 109

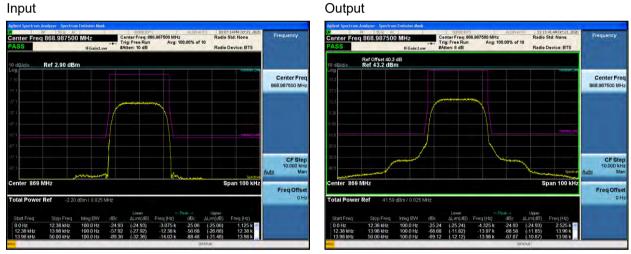
2.3.3 Pre-AGC_ Middle frequency

Input

2.3.4 3dB above AGC_ Middle frequency



Report No.: SZCR210302000601 Page: 98 of 109


2.3.5 Pre-AGC_ Highest frequency

Input

Output Center Freq 665.987500 MHz Center Ref 43.2 dBm C

2.3.6 3dB above AGC_ Highest frequency

Report No.: SZCR210302000601 99 of 109 Page:

7.2.6 Out of Band Rejection

Test Requirement:	/
Test Method:	KDB 935210 D05 Indus Booster Basic Meas v01r04
Limit:	Shall within the passband
EUT Operation:	
Status:	Drive the EUT to maximum output power
Conditions:	Normal conditions
Application:	RF output ports
Test Configuration:	
Signal	Generator
	RU
	Spectrum

Fig.5. Out of Band rejection test configuration a) Connect a signal generator to the input of the EUT.

Analyzer

Test Procedure:

b) Configure a swept CW signal with the following parameters:

1) Frequency range = ± 250 % of the manufacturer's specified pass band.

2) The CW amplitude shall be 3 dB below the AGC threshold (see 4.2), and shall not activate the AGC threshold throughout the test.

- 3) Dwell time = approximately 10 ms.
- 4) Frequency step = 50 kHz.

c) Connect a spectrum analyzer to the output of the EUT using appropriate attenuation.

d) Set the RBW of the spectrum analyzer to between 1 % and 5 % of the manufacturer's rated passband, and VBW = 3 × RBW.

Unless otherwise agreed in writing, this document overleaf, available on request or accessible at http:// subject to Terms and Conditions for Electronic Doo Attention is drawn to the limitation of liability, inder advised that information contained hereon reflects Client's instructions, if any. The Company's sole r transaction from exercising all their rights and obli- except in full, without prior written approval of the appearance of this document is unlawful and offend results shown in this test report refer only to the samp Attention. To check the subtenticity of testing (im or smail: CN.Doccheck@sea.com	/www.sgs.com/en/Te uments at http://ww nnification and jurisc the Company's findit esponsibility is to it gations under the tr Company. Any unait ers may be prosecut le(s) tested and suci	rms-and-Conditions. w.sgs.com/en/Terms. liftion issues define ngs at the time of its s Client and this do ansaction documen uthorized alteration, ed to the fullest exte n sample(s) are retai	aspx and, for electron -and-Conditions/Terr ad therein. Any holds s intervention only and ocument does not e: ts. This document c , forgery or falsificat ant of the law. Unless ined for 30 days only.	nic format documents, ns-e-Document.aspx, or of this document is nd within the limits of xonerate parties to a annot be reproduced tion of the content or s otherwise stated the	
No.1 Workshop, M-10, Middle Section, Science & Technology Park, She	nzhen, China 518057	t (86-755) 26012053	f (86-755) 26710594	www.sgsgroup.com.cn	
中国·深圳·科技园中区M-10栋一号厂房	邮编: 518057	t (86-755) 26012053	f (86-755) 26710594	sgs.china@sgs.com	

Member of the SGS Group (SGS SA)

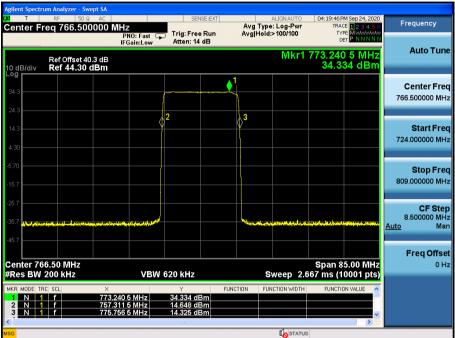
ATT

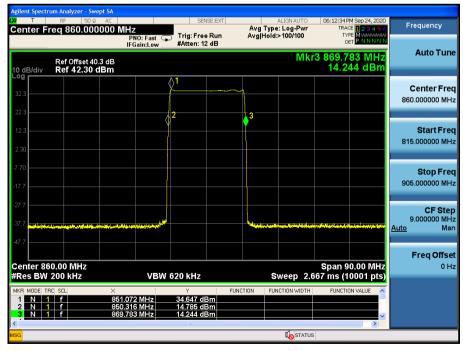
Report No.: SZCR210302000601 Page: 100 of 109

e) Set the detector to Peak and the trace to Max-Hold.

f) After the trace is completely filled, place a marker at the peak amplitude, which is designated as f0, and with two additional markers (use the markerdelta method) at the 20 dB bandwidth (i.e., at the points where the level has fallen by 20 dB).

g) Capture the frequency response plot for inclusion in the test report.


Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-enDocument.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exconserate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) test retained for 30 days only.


Report No.: SZCR210302000601 101 of 109 Page:

7.2.6.1 Measurement Record:

1. Downlink: 758MHz to 775MHz

2. Downlink: 851MHz to 869MHz

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-en-Document.aspx. Attention is drawn to the limitation on liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exconsate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) test retained on S0 days only. Attention: To check the authenticity of testing inspection report a certificate, please contact us at telephone: (86-755),8307 1443, or email: CND occheck@ess.com

Report No.: SZCR210302000601 Page: 102 of 109

7.2.7 Frequency Stability

Test Requirement:	For 758-775MHz: 47 CFR Part 90.539
	For 851-869MHz: 47 CFR Part 90.213
Test Method:	KDB 935210 D05 Indus Booster Basic Meas v01r04
Limit:	For band 700M BW=6.25kHz/12.5kHz/25kHz: +/- 0.1ppm
	For band 800M BW=6.25kHz: +/- 0.1ppm
	BW=12.5kHz: +/- 1.0ppm
	BW=25kHz: +/- 1.5ppm
Status:	Drive the EUT to maximum output power.
Conditions:	Temperature conditions, voltage conditions
Application:	Cellular Band RF output ports
Test Procedure:	1. Temperature conditions:
	 a) The RF output port of the EUT was connected to Frequency Meter;
	b) Set the working Frequency in the middle channel;
	c) record the 20°C and norminal voltage frequency value as reference point;
	d) vary the temperature from -40°C to 50℃ with step 10°C
	 e) when reach a temperature point, keep the temperature banlance at least 1 hour to make the product working in this status;
	f) read the frequency at the relative temperature.
	2. Voltage conditions:
	 record the 20°C and norminal voltage frequency value as reference point;
	b) vary the voltage from -15% norminal voltage to +15% voltage;
	c) read the frequency at the relative voltage.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e_Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Cillent's instructions, if any. The Company's sole responsibility is to its Cilent and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) test dand such sample(s) are retained for 30 days only. Attention. To check the authenticity of testing inspection report a certificate, please contact us at telephone: (86-755) 8307 1443, http://www.set.ast.com/en/testing/inspection.report a certificate, please contact us at telephone: (86-755) 8307 1443, http://www.set.ast.com/en/testing/inspection.report a certificate, please contact us at telephone: (86-755) 8307 1443, http://www.set.ast.com/en/testing/inspection.report a certificate, please contact us at telephone: (86-755) 8307 1443, http://www.set.ast.com/en/testing/inspection.com/en/testing/inspection.com/en/testing/inspection.com/en/testing/inspection.com/en/testing/inspection.com/en/testing/inspection.com/en/testing/inspection.com/en/testing/inspection.com/en/testing/inspection.com/en/testing/inspection.com/en/testing/inspection.com/en/testing/inspection.com/en/testing/inspection.com/en/testing/inspection.com/en/testing/inspection.com/en/

Report No.: SZCR210302000601 Page: 103 of 109

7.2.7.1 Measurement Record:

Frequency Stability vs temperature:

1. Test for Downlink: 758MHz to 775MHz (middle channel=766.5MHz)

Channel Bandwidth (kHz)	Temperature(°C)	Frequency Error (Hz)	Limit(ppm)	Results(ppm)
	50	1.3	0.1	0.002
	40	1.3	0.1	0.002
	30	1.3	0.1	0.002
	20	1.3	0.1	0.002
6.25kHz	10	1.3	0.1	0.002
0.20KHZ	0	1.3	0.1	0.002
	-10	1.3	0.1	0.002
	-20	1.3	0.1	0.002
	-30	1.3	0.1	0.002
	-40	1.3	0.1	0.002
	50	1.3	0.1	0.002
	40	1.3	0.1	0.002
	30	1.3	0.1	0.002
	20	1.3	0.1	0.002
	10	1.3	0.1	0.002
12.5kHz	0	1.3	0.1	0.002
	-10	1.3	0.1	0.002
	-20	1.3	0.1	0.002
	-30	1.3	0.1	0.002
	-40	1.3	0.1	0.002
	50	1.3	0.1	0.002
	40	1.3	0.1	0.002
	30	1.3	0.1	0.002
	20	1.3	0.1	0.002
	10	1.3	0.1	0.002
25kHz	0	1.3	0.1	0.002
	-10	1.3	0.1	0.002
	-20	1.3	0.1	0.002
	-30	1.3	0.1	0.002
	-40	1.3	0.1	0.002

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e_Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Cilent's instructions, if any. The Company's sole responsibility is to its Cilent and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document is content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) test entation, forgery or faisification of the dawn in this test report refer only to the sample(s) test centation at telephone: (86-755) 8307 1443,

Report No.: SZCR210302000601 Page: 104 of 109

2.Test for Downlink: 851MHz to 869MHz (mid	ddle channel=860MHz)
--	----------------------

Channel				
Bandwidth (kHz)	Temperature(°C)	Frequency Error (Hz)	Limit(ppm)	Results(ppm)
	50	1.1	0.1	0.001
	40	1.1	0.1	0.001
	30	1.1	0.1	0.001
	20	1.1	0.1	0.001
6.25kHz	10	1.1	0.1	0.001
0.23KHZ	0	1.1	0.1	0.001
	-10	1.1	0.1	0.001
	-20	1.1	0.1	0.001
	-30	1.1	0.1	0.001
	-40	1.1	0.1	0.001
	50	1.1	1.0	0.001
	40	1.1	1.0	0.001
	30	1.1	1.0	0.001
	20	1.1	1.0	0.001
	10	1.1	1.0	0.001
12.5kHz	0	1.1	1.0	0.001
	-10	1.1	1.0	0.001
	-20	1.1	1.0	0.001
	-30	1.1	1.0	0.001
	-40	1.1	1.0	0.001
	50	1.1	1.5	0.001
	40	1.1	1.5	0.001
	30	1.1	1.5	0.001
	20	1.1	1.5	0.001
05141-	10	1.1	1.5	0.001
25kHz	0	1.1	1.5	0.001
	-10	1.1	1.5	0.001
	-20	1.1	1.5	0.001
	-30	1.1	1.5	0.001
	-40	1.1	1.5	0.001

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e_Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Cillent's instructions, if any. The Company's sole responsibility is to its Cilent and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) test dand such sample(s) are retained for 30 days only. Attention. To check the authenticity of testing inspection report a certificate, please contact us at telephone: (86-755) 8307 1443, http://www.set.ast.com/en/testing/inspection.report a certificate, please contact us at telephone: (86-755) 8307 1443, http://www.set.ast.com/en/testing/inspection.report a certificate, please contact us at telephone: (86-755) 8307 1443, http://www.set.ast.com/en/testing/inspection.report a certificate, please contact us at telephone: (86-755) 8307 1443, http://www.set.ast.com/en/testing/inspection.com/en/testing/inspection.com/en/testing/inspection.com/en/testing/inspection.com/en/testing/inspection.com/en/testing/inspection.com/en/testing/inspection.com/en/testing/inspection.com/en/testing/inspection.com/en/testing/inspection.com/en/testing/inspection.com/en/testing/inspection.com/en/testing/inspection.com/en/testing/inspection.com/en/testing/inspection.com/en/

Report No.: SZCR210302000601 Page: 105 of 109

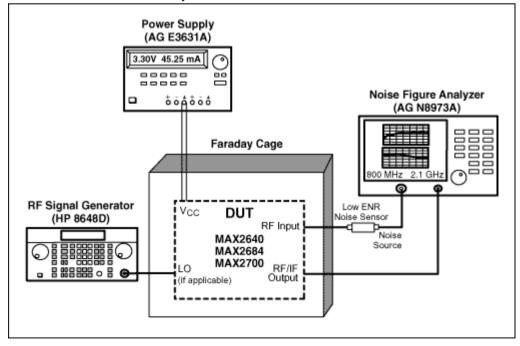
Frequency Stability vs voltage:

1.Test for Downlink: 758MHz to 775MHz (middle channel=766.5MHz)

Channel Bandwidth (kHz)	Voltage(V ac)	Frequency Error (Hz)	Limit(ppm)	Results(ppm)
	102	1.1	0.1	0.001
6.25kHz	120	1.1	0.1	0.001
	138	1.1	0.1	0.001
	102	1.1	0.1	0.001
12.5kHz	120	1.1	0.1	0.001
	138	1.1	0.1	0.001
	102	1.1	0.1	0.001
25kHz	120	1.1	0.1	0.001
	138	1.1	0.1	0.001

2.Test for Downlink: 851MHz to 869MHz (middle channel=860MHz)

Channel Bandwidth (kHz)	Voltage(V ac)	Frequency Error (Hz)	Limit(ppm)	Results(ppm)
	102	0.9	0.1	0.001
6.25kHz	120	0.9	0.1	0.001
	138	0.9	0.1	0.001
	102	0.9	1.0	0.001
12.5kHz	120	0.9	1.0	0.001
	138	0.9	1.0	0.001
	102	0.9	1.5	0.001
25kHz	120	0.9	1.5	0.001
	138	0.9	1.5	0.001


Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-en-Document.aspx. Attention is drawn to the limitation of liability, indemnification and urisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) test retainon, forgery or faisification of the sample(s) test retainted for 30 days only. Attention: To check the authenticity of testing inspection report & certificate, please contact us at telephone: (88-755)8307 1443, https://www.stest.advis

Report No.: SZCR210302000601 Page: 106 of 109

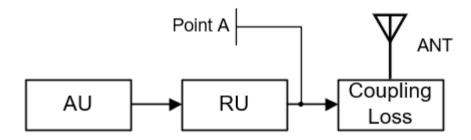
7.2.8 Noise

Test Requirement:	For 758-775MHz: 47 CFR Part 2.1051, 47 CFR Part 90.219(d)(6) For 851-869MHz: /
Test Method:	KDB 935210 D05 Indus Booster Basic Meas v01r04
Limit:	The ERP of noise within the passband should not exceed −43 dBm in a 10 kHz measurement bandwidth.
	The ERP of noise in spectrum more than 1 MHz outside of the passband should not exceed −70 dBm in a 10 kHz measurement bandwidth.
	The noise figure of a zone enhancer shall not exceed 9 dB in either direction.
Status:	Drive the EUT to maximum output power.
Conditions:	Temperature conditions, voltage conditions
Application:	RF output ports
Test Procedure:	Several widely recognized methods for performing noise figure measurements are available. Some require the use of specialized equipment, such as a noise figure analyzer and/or an excess noise ratio (ENR) calibrated noise source, while others involve the use of conventional measurement instrumentation such as a spectrum analyzer. Methods that require use of a noise figure analyzer are generally accepted as producing the most accurate results, and are considered to be the reference method within this document, while others are considered to be acceptable alternative methods. Consult the relevant instrumentation application notes for detailed guidance regarding the selection and application of an appropriate methodology for performing noise figure measurements. Note also that noise figure measurements require that any AGC circuitry be disabled over the duration of the measurement.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e_Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Cilent's instructions, if any. The Company's sole responsibility is to its Cilent and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document is content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) test entation, forgery or faisification of the dawn in the itset report feer only to the sample(s) test entations and sole approare. Attention. To check the authenticity of testing inspection report a certificate, please contact us at telephone: (86-755) 8307 1443,

Report No.: SZCR210302000601 Page: 107 of 109

7.2.8.1 Measurement Record:


1. Noise

Frequency range(MHz)	ERP noise in passband	The ERP noise more than 1MHz outside of passband
758MHz to 775MHz	-45.78dBm	-72.94dBm
851MHz to 869MHz	-43.22dBm	-70.54dBm

```
ERP noise = Test results at point A + Coupling Loss + Antenna Gain
```

Remark:

The noise test results in the table are measured from point A. The test results plus the coupling loss and antenna gain will meet the noise radiation requirements of the signal booster, which is that the ERP of noise should not exceed -43 dBm in 10 kHz within passband and -70 dBm in 10 kHz more than 1 MHz outside of passband. Therefore, the coupling loss in engineering practice must be greater than 20dB to eliminate the interference.

Setting details were declared by manufacture and stated in the user manual. The test screenshots below are only to record the case without engineering practice for reference.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation on ilability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exconserate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this ter report refer only to the sample(s) ters retained for 30 days only. Attention: To check the authenticity of testing inspection report a certificate, please contact us at telephone: (86-755) 8307 1443, or email: CN.Doccheck@ess.com

Report No.: SZCR210302000601 Page: 108 of 109

2.Noise Figure:

788MHz to 805MHz

VIHZ						
	jure - Noise Figure					
	RF 50 Ω AC		ENSE:INT		4 PM Sep 25, 2020	Freq / Channel
Center Freq	796.500000 N		nplifier		NTEXT FREQ-RF	i req i onamer
PR	EAMP	SNS 🗭 Atten: 0	dB		STATE ENR	Eren Mede
Noise Figure		0110		Billowd	700 8411-	Freq Mode
					788 MHz	Swept
1.0 dB/div	Ref 5.0 dB			3.	.1710 dB	
9.0						
8.0						Center Freq
7.0						796.500000 MHz
6.0						
5.0						
4.0 1						Start Freq
3.0						788.000000 MHz
2.0						
1.0					I	
	~					Stop Freq
Gain						805.000000 MHz
1.0 dB/div	Ref 44.0 dB	,				805.00000 MHZ
1.0 0.5/014	Kei 44.0 ub					
48.0						Points
47.0	~					
46.0				-		86
45.0						
44.0						
43.0						Fixed Freq
42.0						1.505000000 GHz
41.0						
40.0						
	~					Edit Frequency
Start Freq 7	88.00000 MH	z	Ste	op Freq 805.0	0000 MHz	List
BW 200.0 k		ld 305.40 K (SNS)	Noise Sour		Points 86	
				STATUS		

806MHz to 824MHz

Keysight Noise Figure - Noi					- 6
	50 Ω AC	SENSE:IN DUT: Amplifie		09:23:03 PM Sep 25, 2 CONTEXT	
enter Freq 815.	000000 MHZ	DOT. Ampline		CALSTATE CAL	
PREAMP	SNS	Atten: 0 dB		ENR STATE	Freq Mod
Noise Figure			M	1kr1 821.4 M	
	ef 5.0 dB			3.4584	
				0.4004	
9.0					Center F
8.0					
7.0					815.000000
6.0					
5.0				1	
4.0					Start F
2.0					806.000000
1.0					
1.0					
					Stop F
Gain					
	ef 44.0 dB				
.0 dB/div R	ef 44.0 dB				
0 dB/div R(ef 44.0 dB				824.0000001
.0 dB/div R(ef 44.0 dB				824.0000001
0 dB/div R(ef 44.0 dB				824.0000001
0 dB/div R(ef 44.0 dB				824.0000001
0 dB/div Ro	ef 44.0 dB				824.000000 I
0 dB/div R(16.0 17.0 16.0 15.0 14.0 13.0	ef 44.0 dB				Poi
0 dB/div R(ef 44.0 dB				Poi
0 dB/div R(18.0 7.0 16.0 5.0 1.0 11.0 0	ef 44.0 dB				Poi
.0 dB/div R(ef 44.0 dB				824.00000 Pol
0 dB/div Rd					824.000000 I Poi Fixed F 1.909000000
0 dB/div R(18.0 16.0 15.0			Stop Freq	1824.00000 M	824.000000
0 dB/div Rd	0000 MHz	5.40 K (SNS)	Stop Freq Noise Source: SN		B24.000000 I Pol Fixed F 1.506000000 Edit Frequen Li
0 dB/div R 18 0 17 0 16 0	0000 MHz	5.40 K (SNS)		S Points	

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e_Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Cillent's instructions, if any. The Company's sole responsibility is to its Cilent and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) test dand such sample(s) are retained for 30 days only. Attention. To check the authenticity of testing inspection report a certificate, please contact us at telephone: (86-755) 8307 1443, http://www.set.ast.com/en/testing/inspection.report a certificate, please contact us at telephone: (86-755) 8307 1443, http://www.set.ast.com/en/testing/inspection.report a certificate, please contact us at telephone: (86-755) 8307 1443, http://www.set.ast.com/en/testing/inspection.report a certificate, please contact us at telephone: (86-755) 8307 1443, http://www.set.ast.com/en/testing/inspection.com/en/testing/inspection.com/en/testing/inspection.com/en/testing/inspection.com/en/testing/inspection.com/en/testing/inspection.com/en/testing/inspection.com/en/testing/inspection.com/en/testing/inspection.com/en/testing/inspection.com/en/testing/inspection.com/en/testing/inspection.com/en/testing/inspection.com/en/testing/inspection.com/en/testing/inspection.com/en/

Report No.: SZCR210302000601 Page: 109 of 109

8 Photographs

8.1.1 Test Setup

Please refer to setup photos.

8.1.2 EUT Constructional Details

Please Refer to external and internal photos for details.

--The End of Report--

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e_Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Cilent's instructions, if any. The Company's sole responsibility is to its Cilent and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document is content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) test entation, forgery or faisification of the dawn in the itset report feer only to the sample(s) test contained to a day at telephone: (86-755) 8307 1443,