

CROSSFIRE

SUNWAVE'S GLOBAL CHANNEL

©Copyright Zenic8 Ltd.

Zenic8 Ltd.

YHC Tower, No. 1 Sheung Yuet Road, Kowloon, Hong Kong Tel: +85 2 8120 6234 Email: <u>Support@Zenic8.com</u>

This publication is issued to provide outline information and is not aimed to be part of any offer and contract. The Company has a policy of continuous product development and improvement and we therefore reserve the right to vary information quoted without prior notice.

Table of Contents

0. Preface				
	0.1.	Safe	ety Instructions	10
	0.2.	War	rning Marks	
	0.3.	Elec	trostatic Protection	14
	0.4.	Star	ndards	14
	0.5.	Abb	reviations	14
1.	System C	Dverv	iew	16
	1.1.	Ove	rview	16
	1.2.	Оре	erating Fundamentals	16
	1.3.	Tech	nnical Specifications	16
	1.4.	Syst	em Framework	16
	1.5.	Net	working Layout	
2.	Operatio	ons ar	nd Maintenance Terminal	
	2.1.	Intr	oduction to the OMT	
	2.2.	Acc	essing the OMT	19
	2.2.	1.	Wired Access to the OMT on the Master AU	19
	2.2.	2.	Wired Access to the OMT on the Slave AU, EU and RU	21
	2.2.	3.	Wireless Access (for AU and EU)	23
	2.2.	4.	USB Access	27
	2.3.	OM	T Display	28
	2.3.	1.	Login	28
	2.3.	2.	Homepage and Basic Functions	28
	2.3.	3.	Users Management	32
	2.3.	4.	Displaying the System Topology	34
3.	AU Instru	uctior	าร	
	3.1.	AU	Physical Appearance	
	3.2.	AU	Front Panel	
3.3. AU Back Panel		Back Panel		

	3.4.	AU	Active Combiner	. 38
	3.5.	Indi	cator Descriptions	. 38
	3.6.	Mas	ster / Slave AU Selection	. 39
	3.7.	ОМ	T Parameters, Alarms and Commands for the AU	. 40
	3	8.7.1.	AU User and Network Parameters	. 41
	3	3.7.2.	AU Alarms	. 43
	3	3.7.3.	AU System Info	. 43
	3	3.7.4.	AU Band Config	. 44
	3	8.7.5.	AU Digital Info	. 45
	3	8.7.6.	AU Combiner	. 45
	3	8.7.7.	AU Engineering Information	. 45
	3	8.7.8.	AU Command	. 46
4.	EU Ins	structior	ıs	. 47
	4.1.	EU	Physical Appearance	. 47
	4.2.	EU	Front Panel	. 47
	4.3.	EU	Back Panel	. 48
	4.4.	Indi	cator Description	. 48
	4.5.	ОМ	T Parameters, Alarms and Commands for the EU	. 49
	4	ł.5.1.	EU User Parameters	. 49
	4	1.5.2.	EU Alarms	. 49
	4	1.5.3.	EU System Info	. 50
	4	1.5.4.	EU Engineering Information	. 50
	4	1.5.5.	EU Digital Info	. 51
	4	1.5.6.	EU Command	. 51
5.	RU Ins	structio	าร	. 52
	5.1.	RU	Physical Appearance	. 52
	5.2.	RU	Front Panel	. 52
	5.3.	Indi	cator Description	. 53

	5.4. ON	MT Parameters, Alarms and Commands for the RU	
	5.4.1.	RU User Parameters	54
	5.4.2.	RU Alarms	54
	5.4.3.	RU System Info	
	5.4.4.	RU Band Config	
	5.4.5.	RU Digital Info	
	5.4.6.	RU Actual Gain	
	5.4.7.	RU Engineering Information	
	5.4.8.	RU Command	
6.	Installation a	and Connections	
	6.1. Ins	stallation Preparation	
	6.1.1.	Client Cooperation	
	6.1.2.	Site Investigation	
	6.1.3.	Installation Tools	
	6.2. Un	npacking and Inspecting the Device	
	6.2.1.	Inspecting the Packing Container	
	6.2.2.	Unpacking the Device	
	6.2.3.	Verifying the Contents	
	6.2.4.	Inspecting the Device	
	6.3. De	evice Installation	
	6.3.1.	Rack Installation (Only for AU and EU)	
	6.3.2.	Wall Mounting Installation (for AU and EU)	
	6.3.3.	Wall Mounting Installation (for RU)	
	6.3.4.	Suspension Installation (For AU and EU, Optional)	
	6.3.5.	Pole Mounting (Only for RU, Optional)	
	6.3.6.	Selecting the Installation Site	
	6.4. De	evice Connections	
	6.4.1.	Optical Interface Connection	

	6.4.	2. AU connections		73
	6.4.	3. EU connections		
	6.4.	4. RU connections		74
	6.4.	5. Standby battery co	onnection	
	6.5.	WLAN Access (Wi-Fi)		
7.	System I	Debugging Setup		
	7.1.	Network Management	System Setup for SNMP	
	7.2.	Channel Properties Cor	nfiguration	
	7.3.	Channel Gain Adjustme	ent	
	7.4.	Alarm Parameters Setu	ıp	
	7.4.	1. Alarm level	·	
	7.4.	2. External Alarms		
	7.5.	Configuring OMT User	Parameters	
8.	Software	e Upgrade		
	8.1	Local Ungrade		88
	8.2	Remote Ungrade		90
٩				
9.		Pogular Maintonanco		
	9.1.	Traublachasting		
10	9.2.			
10.	Арр		C'1	
	10.1.	Operators Located at Sa	ame Site	
	10.2.	Operators Located at Se	eparate Sites	
	10.3.	MIMO Application		
	10.4.	RU Cascade Application	۱	
	10.5.	WLAN Application		

Table of Figures

Figure 1-1 IDAS Operating Fundamentals	16
Figure 1-2 Typical System Framework for the IDAS	
Figure 1-3 Networking Layout	
Figure 2-1 Setting up a Wired Connection to the OMT on the Master AU	20
Figure 2-2 Web Browser OMT Connection for Wired Access	21
Figure 2-3 Wired access to WebOMT on Slave AU, EU and RU	22
Figure 2-4 Equipment Required for Wireless Access to the OMT	23
Figure 2-5 Wireless Network Connection Properties for OMT	24
Figure 2-6 Viewing the Available Wireless Networks	25
Figure 2-7 Choosing the Correct Wireless Network	
Figure 2-8 Checking the Wireless Network Status	27
Figure 2-9 Connecting to WebOMT	27
Figure 2-10 Login Page	
Figure 2-11 WebOMT Homepage	29
Figure 2-12 Screen Shot Capture Success Pop-up Window	
Figure 2-13 Screen Shot Download File	
Figure 2-14 Users Management	
Figure 2-15 Add User	
Figure 2-16 Delete User	
Figure 2-17 Change Password	
Figure 2-18 Displaying the System Topology	
Figure 3-1 Physical Appearance of the AU	
Figure 3-2 Front Panel of the AU	
Figure 3-3 Back Panel of the AU	
Figure 3-4 AU Active Combiner	
Figure 3-5 Optical Indicators	
Figure 3-6 Master / Slave AU Selection	

CrossFire – A revolution in RF Transport for In Building Wireless User Manual

Figure 4-1 Physical Appearance of the EU	47
Figure 4-2 Front Panel of the EU	47
Figure 4-3 Back Panel of the EU	48
Figure 5-1 Physical Appearance of the RU	52
Figure 5-2 Front Panel of the RU	53
Figure 6-1 Wall Mounting Installation of an EU	61
Figure 6-2 Schematic of RU Wall Front-mounting Installation	62
Figure 6-3 Exploded View of RU Front-mounting Installation	63
Figure 6-4 Schematic of RU Wall Side-mounting Installation	64
Figure 6-5 Exploded View of RU Side-mounting Installation	65
Figure 6-6 Step 1 of Suspension Installation	66
Figure 6-7 Step 2 of Suspension Installation	66
Figure 6-8 Step 3 of Suspension Installation	66
Figure 6-9 Step 4 of Suspension Installation	67
Figure 6-10 Schematic of RU Pall Installation	68
Figure 6-11 Exploded View of RU Pall Installation	69
Figure 6-12 System Connection Schematic	70
Figure 6-13 Single Optical Fibre Module	71
Figure 6-14 Optical Module Connection	72
Figure 6-15 Optical SYNC Status	73
Figure 6-16 WLAN Access	75
Figure 7-1 AU (left) and RU (right) Debugging Procedures	76
Figure 7-2 EU Debugging Procedures	77
Figure 7-3 NMS Setup	78
Figure 7-4 Setting Channel Properties	79
Figure 7-5 Gain Adjustment on AU Combiners	80
Figure 7-6 Downlink Input Power Adjustment after Combiner	81
Figure 7-7 Gain Adjustment on RU WebOMT	82

CrossFire – A revolution in RF Transport for In Building Wireless User Manual

Figure 7-8 Alarm Parameters Setup of AU	84
Figure 7-9 Alarm Level	85
Figure 7-10 External Level	85
Figure 7-11 Configuring User Parameters	87
Figure 7-12 Download and Load Configuration	87
Figure 8-1 Checking Software Package Version	88
Figure 8-2 Software Upgrade Step 1	89
Figure 8-3 Software Upgrade Step 2	89
Figure 8-4 Software Upgrade Step 3	89
Figure 8-5 Setting up Remote Upgrade via FTP	90
Figure 8-6 Remote Upgrade using an NMS	91
Figure 10-1 Example for Operators Located at Same Site	93
Figure 10-2 Example for Operators Located at Separate Sites	94
Figure 10-3 Example for MIMO Application	94
Figure 10-4 Example for Cascading RU Application	95
Figure 10-5 Example for WLAN Application	

High Power-iDAS User Guide

0. Preface

0.1. Safety Instructions

Before installing and operating the IDAS, read and comply with the following safety instructions:

- 1. Engineering design: The IDAS achieves signal amplification of the uplink and downlink through direct coupling of the 2G, 3G and LTE signals from the base station. The expansion unit accesses WLAN signals and combines the WLAN signal with the coupled signal for indoor coverage. Normal use of the system will not damage the base station; however, with the increase of RU during network coverage for indoor distribution, the uplink output noise level may affect the sensitivity of the base station, which should be considered during engineering design.
- Grounding: the shells of the access and expansion units of the device have protective ground terminals. During
 installation, connect the ground terminals securely to the protective building ground with yellow and green
 conductors or with braided ground wire. The aerial and feeder must be adequately grounded.
- 3. Power supply: The power source must be within the required range of the device. The rated voltage range for the AC power supply system is AC100V~240V and the rated frequency range is 50Hz / 60Hz. The rated power of the AU, EU and RU is 100W, 50W and 250W, respectively. The ground terminal of the three-core power socket used at the device installation site must be securely connected to the protective building ground.
- 4. Electric shock prevention: touching the internal power supply units is dangerous. To prevent electric shock, do not perform live-line work.
- 5. The optical module can support a hot plug, but do not turn the optical fibre head towards any human body part when plugging it in.
- 6. During device configuration, upgrading and plugging in units and parts, first disconnect the standby lithium battery and device power source.
- 7. When accessing the radio-frequency signal, confirm that the downlink signal is no greater than 10dBm, otherwise the device will not operate normally and damage may occur to the circuit.

- Natural cooling: Reserve at least 40mm of height above the radiation fins during the device installation, otherwise the device temperature may rise and affect the service life of the device.
- Replacing the Power Amplifier (PA) module and duplexer module onsite is permitted. Power off the device before replacing.

Note: Charged operation is not allowed to prevent damage to the devices.

- 10. Please use Shielded Twisted Pair (STP) for WLAN application.
- 11. Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

Note: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

WARNING: This is NOT a CONSUMER device. It is designed for installation by FCC LICENSEES and QUALIFIED INSTALLERS. You MUST have an FCC LICENSE or express consent of an FCC License to operate this device. Unauthorized use may result in significant forfeiture penalties, including penalties in excess of \$100,000 for each continuing violation.

WARNING: To comply with FCC RF exposure compliance requirements, each individual antenna used for this transmitter must be installed to provide a separation distance greater than 172cm or more from all persons during normal operation and must not be co-located with any other antenna for meeting RF exposure requirements.

Note: Only authorized person can enter the area where the antenna is installed. And the person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means. Awareness of the potential for RF exposure in a workplace or similar environment can be provided through specific training as part of a RF safety program

Note: Antennas, feeders and couplers are not included in the packing list. Solution provider should consider these accessories according to site conditions. The type of coaxial cable connected to the RU should be N-type, 4.3-10 type or Din-type with impedance as 500hm. The impedance of antenna port is 50 Ohm, and antenna gain should be no

more than 12.5dBi. And the EIRP of antenna won't exceed 56.5dBm (Output power 44dBm + antenna gain 12.5dBi)

when connecting coaxial cable, power splitter or coupler between RU and antenna.

WARNING: Antenna gain should not exceed 12.5 dBi.

0.2. Warning Marks

The warning marks on the IDAS shell should be kept clean, readable and identifiable.

ALWAYS disconnect all lines and power connections before servicing or

disassembling this equipment.

NEVER touch the surface after the devices power on.

For performance and safety reasons, NEVER disassemble and remodel

the devices.

CROSSFIRE

0.3. Electrostatic Protection

Keep clothes and hands off the PCB, elements and conductor surface. If any maintenance is required on the PCB, components, or conductors, take electrostatic prevention measures, such as wearing electrostatic prevention gloves and using electrostatic prevention bags, since static electricity may damage the devices.

0.4. Standards

All iDAS devices meet the 3GPP standards.

0.5. Abbreviations

Abbreviations used in this manual are listed below:

Abbreviation	Description
ADC/ DAC	Analog to digital converter/ Digital to analog converter
AP	Access Point
ARM	Advanced RISC Machines
AU	Access Unit
BS	Base Station
CPRI	The Common Public Radio Interface
DPLL	Digital phase lock loop
EU	Expansion Unit
FPGA	Field Programmable Gate Array
iDAS	Integrated Distributed Antenna System
GSM	Global System for Mobile Communication
LTE	Long Term Evolution
NMS	Network Management System
ОМС	Operations and Maintenance Center
OMT	Operations and Maintenance Terminal
OP	Optical Fiber
РА	Power Amplifier
POI	Point of interface

RF	Radio frequency
RU	Remote Unit
RX	Receiver
SFP	Small Form-factor Pluggable
SNMP	Simple network management protocol
STP	Shielded Twisted Pair
тх	Transmitter
USB	Universal Serial Bus
WCDMA	Wideband Code Division Multiple Access

1. System Overview

1.1. Overview

The IDAS system includes the Access Unit (AU), Expansion Unit (EU) and Remote Unit (RU).

Using digital processing and digital optical transmission technology, the AU frames radio-frequency signals from base stations of different operators, and of different standards and frequency bands, and transmits the composite signal to the EU via optical fiber. WLAN and small cell base station signals access the gigabit/megabit Ethernet port on the EU and are reframed with optical signals from the AU and then transmitted to the RU via optical fiber. The RU conducts digital-analog conversion and power amplification of the input signals and then achieves radio coverage through the antenna-feeder system for signals of all standards and frequency bands via 500hm coaxial cable.

1.2. Operating Fundamentals

Figure 1-1 shows the fundamentals of how the IDAS operates.

Figure 1-1 IDAS Operating Fundamentals

WARNING: The design of the antenna installation needs to be implemented in such a way so as to ensure RF radiation safety levels and non-environmental pollution during operation.

1.3. Technical Specifications

See the Technical Specifications Document for details.

1.4. System Framework

Figure 1-2 shows the typical IDAS system framework.

Figure 1-2 Typical System Framework for the IDAS

1.5. Networking Layout

The IDAS has a number of different networking layouts shown as Figure 1-3:

- The AU supports a star network. Note that the Master-AU can connect to a maximum of two Slave-AUs simultaneously.
- The EU supports a daisy-chained network (for EU—EU) and a star-type network (for EU—RU).
- In smaller systems, the AU and RU can be directly connected without the EU, as shown in Figure 1-3.
- For a direct AU—RU connection, an RU can cascade up to five RUs at different levels. For an AU—EU—RU connection, an RU can cascade up to four RUs at different levels.

Figure 1-3 Networking Layout

2. Operations and Maintenance Terminal

2.1. Introduction to the OMT

The Operations and Maintenance Terminal (OMT) software runs on all of the devices in the iDAS system. The interface to the OMT is WebOMT. WebOMT is based on a web browser and is compatible with most common browsers such as IE and Google Chrome. WebOMT is customized for the IDAS and is used for query, debugging and configuration.

An NMS can only connect to the Master AU, therefore the Master AU is known as the host. However, to maintain the IDAS system locally, a technician can access the whole system through any one of the devices in the IDAS system (Master or Slave AU, EU or RU). For example, the technician may connect a laptop to the RU, log into the WebOMT and query the DAS topology. The device name on the topology diagram is a URL link to the WebOMT on the selected device. Therefore, by clicking on the device's name, the technician can access any other device easily, regardless of which device's WebOMT they initially logged into.

2.2. Accessing the OMT

There are several methods for accessing the OMT:

- Wired access
- Wireless access
- USB access

Unless indicated otherwise, the examples use the Windows XP operating system and Internet Explorer 8 web browser.

2.2.1. Wired Access to the OMT on the Master AU

In the IDAS system, the Master AU is defined as the host, with the other AUs, EUs and RUs defined as slaves. See Section 3.6 for Master/Slave AU selection.

The default IP address of the AU is 10.7.3.200, while the slaves have no fixed IP address. The IP addresses of the slaves are assigned by the host automatically, based on the network topology.

To set up wired access to the OMT, use the following procedure:

- 1. Connect a PC to the **CONSOLE** port on the front panel of the Master AU with a network cable.
- 2. Change the TCP/IP properties (see Figure 2-1):

- a) Click Network Connections
- b) Click Local Area Connection Properties
 - a. Click TCP/IP Properties
 - b. Change the following parameters as indicated:

IP address: 10.7.3.1

Subnet mask: 255.0.0.0

Default Gateway: 10.7.3.200 (IP address of Master AU)

- 3. Check the status of the Local Area Connection and confirm the connection is connected.
- 4. Open a browser window and enter the default gateway in the navigation bar. This will access the WebOMT

page. Figure 2-2 shows an example using 10.7.3.200 as the default gateway.

S Network Connections							
Local Area Connection Properties							
	Internet Protocol (TCP/IP) Pro	perties ? 🔀					
	General						
	You can get IP settings assigned automatically if your network supports this capability. Otherwise, you need to ask your network administrator for the appropriate IP settings.						
	🔘 Obtain an IP address automatic	cally					
	O Use the following IP address:						
	IP address:	10 . 7 . 3 . 1					
	Subnet mask:	255.0.0.0					
	Default gateway:	10 . 7 . 3 .200					
	O Obtain DNS server address automatically						
	Use the following DNS server a	addresses:					
	Preferred DNS server:						
	Alternate DNS server:	· · ·					
		Advanced					
		OK Cancel					

Figure 2-1 Setting up a Wired Connection to the OMT on the Master AU

🥭 Blank Page - Windows Internet Explorer				
	10.7.3.200			
File Edit Vi Download Windows Search to improve history and favori				
🚖 Favorites	Go to '10.7.3.200'			
🏉 Blank Page				

Figure 2-2 Web Browser OMT Connection for Wired Access

2.2.2. Wired Access to the OMT on the Slave AU, EU and RU

In the IDAS system, EUs and RUs, as well as the Slave AUs, are defined as slaves. They have no fixed IP address. The IP

addresses are assigned by the host automatically, based on the network topology.

To set up wired access to the OMT, use the following procedure:

- 1. Connect a PC to the "CONSOLE" port on the front panel of the Slave device with a network cable.
- 2. Change the TCP/IP properties (see Figure 2-3):
 - a) Click Network Connections
 - b) Click Local Area Connection Properties
 - c) Click TCP/IP Properties
 - d) Select the General tab
 - e) Change the following parameters as indicated:
 - a. Enable Obtain an IP address automatically by clicking the check box
 - b. Enable Obtain DNS server address automatically by clicking the check box
- 3. Check the status of the Local Area Connection and confirm the connection is connected.
- 4. Open a browser window and enter the default gateway in the navigation bar. This will access the WebOMT page.

S Network Connections	
🕹 Local Area Connection Properties 🛛 ? 🔀	AT
General Authentication Advanced	
Internet Protocol (TCP/IP) Properties	💙 🄁 Go
General Alternate Configuration	
You can get IP settings assigned automatically if your network supports this capability. Otherwise, you need to ask your network administrator for the appropriate IP settings.	Local Area Connection Connected, Firewalled Broadcom NetXtreme 57xx Gig
Obtain an IP address automatically	tion
O Use the following IP address:	Mini
IP address:	
Subnet mask:	
Default gateway:	
Obtain DNS server address automatically	
Use the following DNS server addresses:	
Preferred DNS server:	
Alternate DNS server:	
Advanced	
OK Cancel	
Details	
Local Area Connection	

Figure 2-3 Wired access to WebOMT on Slave AU, EU and RU

2.2.3. Wireless Access (for AU and EU)

Figure 2-4 shows the equipment required for wireless access to the OMT.

WLAN Network Adapter (ZEN/IC8-specified only) PC with wireless connection function

Figure 2-4 Equipment Required for Wireless Access to the OMT

To set up wireless access to the OMT, use the following procedure:

- 1. Plug the WLAN Network Adapter into the "AP" port of the device.
- 2. Confirm that the adapter is working by checking that the green indicator is flashing.
- 3. Change the TCP/IP properties (see Figure 2-5):
 - a) Click Network Connections
 - b) Click Wireless Network Connection
 - c) Click **TCP/IP Properties**
 - d) Select the **General** tab
 - e) Change the following parameters as indicated:

a. Enable Obtain an IP address automatically by clicking the check box

- b. Enable Obtain DNS server address automatically by clicking the check box
- 4. Choose the correct wireless network and connect to it.
 - The naming rule for the network is IDAS-XX (device type)-XXX (Serial Number).
 - The default network key is 12345678.

- See Figure 2-6 and Figure 2-7 for details.
- 5. Check the wireless network status and obtain the default gateway. See Figure 2-8 for details.
- 6. Open a browser window and enter the assigned default gateway into the navigation bar. This will access the

WebOMT page. Figure 2-9 shows an example using 12.7.1.1 as the default gateway.

Setwork Connections	
s Advanced Help	🥂 🕺 🕹 🖉
Search 📂 Folders 🛄 🗸	
A LAN - US-L Cound Tolescol	🕹 Wireless Network Connection Properties 💦 🔀
LAN or High-Speed Internet	General Wireless Networks Advanced
1394 Connection Connected, Firewalled	Internet Protocol (TCP/IP) Properties
1394 Net Adapter	General Alternate Configuration
Wireless Network Connection Not connected, Firewalled () Dell Wireless 1397 WLAN Mini	You can get IP settings assigned automatically if your network supports this capability. Otherwise, you need to ask your network administrator for the appropriate IP settings.
	Obtain an IP address automatically
	Use the following IP address:
≣	IP address:
	Subnet mask:
	Default gateway:
	⊙ Obtain DNS server address automatically
	OUse the following DNS server addresses:
	Preferred DNS server:
	Alternate DNS server:
	Advanced
~	OK Cance

Figure 2-5 Wireless Network Connection Properties for OMT

Figure 2-6 Viewing the Available Wireless Networks

Figure 2-7 Choosing the Correct Wireless Network

⁽⁽ 1 ⁾⁾ Wireles	s Network Connection Stat	tus ? 🔀
General S	iupport	
Connect	tion status	
	Address Type:	Assigned by DHCP
	IP Address:	12.7.1.3
	Subnet Mask:	255.255.0.0
	Default Gateway:	12.7.1.1
	Details	
Windows connectio Repair.	did not detect problems with this on. If you cannot connect, click	Repair
		Close

Figure 2-8 Checking the Wireless Network Status

🖉 New Tab	Windows In	ternet Exp	olorer			
	2 12.7.1.1				~	→ ×
File Edit V	i Download V	Vindows S	earch to impr	ove hist	ory and favori	
🔶 Favorites	Go to ' 12.	7.1.1			Enter	
~			∇			
🖉 New Tab						- 🗇 -

Figure 2-9 Connecting to WebOMT

2.2.4. USB Access

To set up USB access to the OMT, use the following procedure:

Connect a PC to the "Debug" port on the front panel of the device with a USB-to-USB cable.
 Note: The USB-to-Ethernet drive should be installed in the connected PC. Contact *ZENIC8* if you have any

problems with this.

2. Check the status of the Local Area Connection and confirm the connection was successful.

3. Open a browser window and enter default gateway in the navigation bar. This will access the WebOMT page.

2.3. OMT Display

2.3.1. Login

Figure 2-10 shows the login page and default username & password.

See Section 2.3.3 for the details about user management.

Site Info		
Device ID:	0D150002	
Device Sub ID:	0	
lev Type:	MasterAU	
)ev Name:	DAS AU	Master AU
Online User		OP1 > Administrator Login
1	10.7.4.218	Please Enter Username and Password!
		💵 Default Username: admin
		Default Password: admin
		Password ×
		Sign in

Figure 2-10 Login Page

2.3.2. Homepage and Basic Functions

Figure 2-11 shows the OMT homepage. The buttons, tabs and fields are referenced by number and are described below the figure.

Figure 2-11 WebOMT Homepage

The OMT homepage includes the following buttons, tabs and fields (refer to corresponding numbers in Figure 2-11):

- 1. Site Info: Includes "Station ID", "Device ID", "Dev Type" and "Dev Name" information.
- ScreenShot: Used for saving the current parameter information and device operating status. When ZENIC8
 assistance is required to troubleshoot the system, send the "ScreenShot" file to the ZENIC8 technicians.

To use the **ScreenShot** function, follow the procedure below:

- a) Select the page that you want to save.
- b) Click the **ScreenShot** button. See **2** in Figure 2-11.

- c) Close the popup window after the screen shot has been successfully captured as shown in Figure 2-12.
- d) Click the **Configuration** button. See **6** in Figure 2-11.
- e) Click the **Download** shortcut icon to download the screen shot file. Check the filename and date to ensure that the correct file has been selected. See Figure 2-13 for details.

		ScreenShot
		Log out
Site Info		All Select Engineering
Device ID:	0D150002	Screen Shot
Device Sub ID:	0	Screen Shot Success! [pic_193305.html==compress==>screenshot0101], Saved in
Dev Type:	MasterAU	Configuration folder
Dev Name:	DAS AU	Detail
Online User		
1 1	10.7.4.218	

Figure 2-12 Screen Shot Capture Success Pop-up Window

Go Back					
	I	DAS AU			
Return to homepage	iDAS-	A201008317			
File Name		File Size	Date		Ŭ
screenshot0101.zip	Ē	959 KB	2000-1-1 19:33		
	Shortcut of delete	Shortcut of do	wnload	Select file	
UpLand 1		Delete	Download	Save Configuation	Load Configuation
		-		8	

Figure 2-13 Screen Shot Download File

- 3. **Logs**: Records the operating status of the devices. The logs can be downloaded and deleted from this page. To ensure that the correct log has been selected, check the filename and date before downloading the file.
- 4. **Upgrading**: Used to upgrade the software. See Section 8 for details.
- 5. **Register**: This function is not relevant for maintenance activities.
- 6. **Configuration**: See Section 7.5 for details.
- 7. Language: Switches language between English and Chinese. (Other languages are being developed.)
- 8. **Operation interface**: Queries status and sets parameters.
- 9. **Online User**: Shows the number of users that are currently connected to the OMT and the IP address of each user's device.
- 10. Parameters: Tabs that access pages that display and allow setting of device parameters.
- 11. **Parameter configuration field:** Buttons that show/hide the parameter ID number & checkbox and save configuration parameters. See Section 7.5 for details.
- 12. Log out: Button that used for logging out.
- 13. Users: See Section 2.3.3 for details.

2.3.3. Users Management

Figure 2-14 shows the page of user management by clicking **Users** button on the homepage.

- > Note: Users management should be operating on Master AU WebOMT only.
- Note: Only **admin** account has the authority to do users management.

urrent user :					
admin	^	<u>ي</u> ر	lsername	×	Add user
		P	assword	×	Delete
	~	A (onfirm	~	Password

Figure 2-14 Users Management

- 1) Add user account
 - a) Enter the new username. See **1** in the Figure 2-15.
 - b) Enter the password and confirm. See **2** in the Figure 2-15.
 - c) Click Add user button.

anagement X
minaDomotro
<u>sin</u> 3
Test 1 × Add user
operation!
A ··· × Password
OK PIL

Figure 2-15 Add User

- 2) Delete user
 - a) Choose the user need to delete. See **1** in the Figure 2-16.
 - b) Click **Delete** button. See **2** in the Figure 2-16.
 - c) Click **OK** button to confirm. See **3** in the Figure 2-16

Site Info		All Select Engineering	
Device ID:	0D150002	DAS > Users management	×
Device Sub ID:	0	Current user : admin	
Dev Type:	MasterAU	Test ∧ L Test ×	Add user
Dev Name:	DAS AU	Message from webpage	Delete
Online User			
1	E 10.7.4.218	Sure you want to delete this user?	Password
		3	
		OK Cancel	

Figure 2-16 Delete User

- 3) Change password
 - a) Choose the user need to change password. See **1** in the Figure 2-17.
 - b) Enter the new password and confirm. See **2** in the Figure 2-17.
 - c) Click **Password** button.

Site Info		All Select Engineering	
Device ID:	0D150002	DAS > Users management	×
Device Sub ID:	0	Current user : admin	
Dev Type:	MasterAU	I I I Test ∧ L Test ×	Add user
Dev Name:	DAS AU	Message from webpage	Delete
Online User		New Password	
1	IF 10.7.4.218	Successful operation!	Password
			3
		OK RU1	

Figure 2-17 Change Password

2.3.4. Displaying the System Topology

To display the system topology:

- 1. Log in to the WebOMT.
- 2. Select the main **Engineering** tab.
- 3. Select the **DAS Topo** tab.
- 4. Select Query all.

Figure 2-18 shows the system topology display. If networking is successful, arrows will be displayed for the six optical ports behind the Master AU (for example, see the green "EU1" icon in Figure 2-18), which means that there are connected devices corresponding to the optical port. Click the arrow to extend the topology for this port.

All Select E	Engineering						< ⊡
DAS Topo	User Para	Alarm Sys	stem Info Ban	d Config Digital	Info Combiners	Engineerin	g Command
						Dele	ete All
Ma	ster AU					Slave	-Devices
OP1	I OP:	2 OF	3 OP4	OP5	OP6 (OP7 SAU	OP8 SAU
_							_ <u>_</u>
	Í				1	Í	Ì
	HRU			HRU	1	1	
			1			l	
						1	
						1	
		Ì	1		1	1	i
	1					I.	
						1	1
		1	1	1	1	Į.	i i
_'==							==

Figure 2-18 Displaying the System Topology

Devices in the topology have two colors —green and red:

- Green indicates a connected device.
- Red indicates a device that was once connected but is currently disconnected. When a red device is
 displayed, check whether this device exists or not. If the device does not exist, delete this device on the
 topology page by right-clicking the frame indicating the device, and then clicking the Delete button.

Note: To use the **Delete All Slave-Devices** button, factory authorization is required. See Section 3.7.8 for details.

This symbol indicates the devices with alarms.

3. AU Instructions

3.1. AU Physical Appearance

Figure 3-1 shows a photograph of the AU component of the IDAS.

Figure 3-1 Physical Appearance of the AU

3.2. AU Front Panel

Figure 3-2 shows a schematic of the front panel of the AU and Table 1 lists the interfaces and their functionality.

Figure 3-2 Front Panel of the AU

SN	Interface Name	Description
1	AU1	Connects Slave AU1 via optical fiber
2	AU2	Connects Slave AU2 via optical fiber
3	OP1/AU	For Master AU: connects EU/RU via optical fiber
		For Slave AU: connects Master AU via optical fiber
4	OP2	Connects EU/RU via optical fiber
5	OP3	Connects EU/RU via optical fiber
6	OP4	Connects EU/RU via optical fiber
7	OP5	Connects EU/RU via optical fiber
8	OP6	Connects EU/RU via optical fiber
9	CONSOLE	Connects OMC or local PC through CAT-5 for local and remote monitoring
10	AP	Connects WLAN network adapters for monitoring device through Wi-Fi
11	STATUS	Indicates device operating status
12	DEBUG	Connects local debugging PC through USB connection
13	ALARM I/O	Connects external environment alarm interface for environment monitoring

Table 1AU Front Panel Interfaces

3.3. AU Back Panel

Figure 3-3 shows a schematic of the back panel of the AU and Table 2 lists the interfaces and their functionality.

Figure 3-3 Back Panel of the AU

Table 2	AU-Back	Panel	Interfaces

SN	Interface Name	Description
14	Channel 4 Duplexer Interface	BTS signal input via 500hm coaxial cable (SMA Female)
15	Channel 3 Duplexer Interface	BTS signal input via 500hm coaxial cable (SMA Female)
16	Channel 2 Duplexer Interface	BTS signal input via 500hm coaxial cable (SMA Female)
17	Channel 1 Duplexer Interface	BTS signal input via 500hm coaxial cable (SMA Female)
18	Modem Interface /Reserved	Reserved if no modem
19	Electric Power Line Interface	/
20	Grounding	/

3.4. AU Active Combiner

Figure 3-4 shows a schematic of the AU Active Combiner.

Figure 3-4 AU Active Combiner

3.5. Indicator Descriptions

Each pair of optical interface indicators shows the operating status of an optical module. See Figure 3-5.

Figure 3-5 Optical Indicators

Table 3Optical Interface Indicators

Optical Indicator Behavior	Description
Turns green and stays lit	Normal
Turns red and stays lit	Optical path is not synchronized or optical module has not been inserted

In Figure 3-2, "10" points to the STATUS indicator on the front panel of the AU. Table 4 lists the indicator's behaviors

and their meaning.

Table 4 STATUS Indicator

STATUS	Description
Flashes green	Device runs Normally
Turns green and stays lit	Software has crashed, but it can reboot automatically in 3mins
Flashes red	Device alarms, need check
Turns red and stays lit	Software has crashed, but it can reboot automatically in 3mins
Flashes yellow	Program is upgrading
Turns yellow and stays lit	Device is starting

3.6. Master / Slave AU Selection

Each AU is factory-set to be the Master AU. See Figure 3-6 and the procedure below to set or change an AU to

Master or Slave.

To change an AU to Slave:

1. Power on the AU which will be set to be the Slave AU.

Note: The selected AU cannot be connected to the IDAS system prior to being set to Slave.

- 2. Log in to the AU WebOMT. See Section 0 for the procedures to access the OMT.
- 3. Select the **Engineering** tab.
- 4. In the Advanced Command area, click the drop-down menu for the Master-slave AU select command and select Slave AU from the drop-down menu.
- 5. Click **Set** in the pop-up window.

User Manual

		Sc	reenShot	Upgrade	Configuratio
		- (A)	Logs	Register	Language
		.	.og out	Le Users	
Site Info	All Select Engineering				< 🖻 🕻
Site ID: 00000000	DAS Topo User Para Alarm Syste	em Info Band Config Digit	al Info Co	mbiners Engineer	ing Command
Device ID: 0	Engineering Info	14			-
Dev Type: MasterAU	Data Update Time				
Denview DAS ALL	ARM CRC Check				
Dev Name: DAS AU	FPGA CRC Check				Q Query all
	Current AU Software Filename				- Onum
Online User	AU CRC Check				Query
• 1 E 1071142	Current EU Software Filename		-		Set
10.7.1.142	EU CRC Check				
	Current RU Software Filename			2	
	RU CRC Check				2
	Current HP RU Software Filename		-		
	HP RU CRC Check				
	Digital Panel Information		11	1.1	
	Maximum Delay		U	s	
	OP Info		_		
	Advanced Command				
	Master / Slave AU	Master AU			
	Modem Type	Slave AU			
	Backup Battery Switch	On	_		-
	Battery Contain 1	None			
	Hardware Reset	Reset			
	Software Reset	Reset	_		
	Wi-Fi Module Reset	Reset			
	Alarm Init/ Report	Initialization	~		
	Alarm Mode Select	Normal Mode 3min	~		

Figure 3-6 Master / Slave AU Selection

After setup is complete, check the device type of the AU.

To query the device type:

- Log in to the Slave AU WebOMT. (See Section 0 for the procedures to access the OMT.) 1.
- 2. View the Site Info field. See 3 in Figure 3-6.
- The device type should be "Slave AU" if the setup was successful. 3.

Note: Please update the day and time after a Slave AU changes to a Master AU.

3.7. OMT Parameters, Alarms and Commands for the AU

See Section 2.3, OMT Display, for information on how to use the WebOMT interface to view and change parameters and run commands.

3.7.1. AU User and Network Parameters

Table 5, Table 6 and Table 7 show the device information, TCP/IP and SNMP network management parameters,

respectively, that are displayed on the WebOMT under the User Parameters tab.

Table 5AU Device Information

Parameter	Description	RD/RW
Vendor Name	Name to distinguish different manufacturers	RD
Product Model	/	RD
Serial Number	/	RD
RMON Mode	Current remote monitoring mode	RD
Software Upgrade Result	/	RD
Remote Upgrade Mode	/	RD
RMON Edition	Current edition of remote monitoring software	RD
Device Edition (FPGA)	Device edition defined by FPGA	RD
Device Location	/	RW

Table 6	AU Network Management (TCP/IP protocol)
TUDIC U	Ao network management (rer/m protocol)

Parameter	Description	RD/RW
Site ID	The unique identification number of the site in the system	RW
Device ID	Number assigned by the system to distinguish subsets in the same	RW
	site	
OMC IP Addr	IP address of Monitoring Center	RW
OMC IP Port	Port Number of Monitoring Center	RW
Heartbeat Interval Time	Interval time of device sending packet to OMC, to confirm a free link	RW
Protocol Select	TCP/IP	RW
Region Protocol	Reserve	RW
Device Recv Port (UDP)	Device receive port number	RW
Query/Set IP Addr1	Only a device with this specified IP address can connect to the	RW
	system via UDP connection mode	
Query/Set IP Addr2	Only a device with this specified IP address can connect to the	RW
	system via UDP connection mode	
Date and Time	/	RW
Device IP Addr	Default IP Address — 10.7.3.200	RW
Subnet Mask	Default Subnet Mask— 255.0.0.0	RW
Default Gateway	Default Gateway— 10.7.0.1	RW
Server IP Addr (FTP)	IP Address of the connected FTP Server for software upgrade	RW
Server IP Port (FTP)	Port Number of the connected FTP Server for software upgrade	RW
FTP Username	Username for device to log into FTP Server	RW
FTP Password	Password for device to log into FTP Server	RW
Awaiting Upgrade Filepath	File path (directory) for device to acquire software upgrade file from	RW
	FTP Server	
Awaiting Upgrade Filename	Filename of the awaiting software upgrade file	RW
FTP File Transfer Control	Start /Cancel upgrade	RW

Table 7 AU Network Management (SNMP protocol)

Parameter	Description	RD/RW
Site ID	The unique identification number of the site in the system	RW
Device ID	Number assigned by the system to distinguish the subsets in the	RW
	same site	
Trap IP Addr	IP address of Monitoring Center	RW
Trap IP Port	Port Number of Monitoring Center	RW
Protocol Select	SNMP	RW
Date and Time	/	RW
Device IP Addr	Default IP Address — 10.7.3.200	RW
Subnet Mask	Default Subnet Mask— 255.0.0.0	RW
Default Gateway	Default Gateway— 10.7.0.1	RW

CrossFire – A revolution in RF Transport for In Building Wireless

User Manual

Parameter	Description	RD/RW
Server IP Addr (FTP)	IP Address of the connected FTP Server for software upgrade	RW
Server IP port (FTP)	Port Number of the connected FTP Server for software upgrade	RW
FTP Username	Username for device to log into FTP Server	RW
FTP Password	Password for device to log into FTP Server	RW
Awaiting Upgrade Filepath	File path (directory) for device to acquire software upgrade file from	RW
	FTP Server	
Awaiting Upgrade filename	Filename of the awaiting software upgrade file	RW
FTP File Transfer Control	Start /Cancel upgrade	RW

3.7.2. AU Alarms

Table 8 lists the possible alarms on the IDAS system for the AU.

Table 8	IDAS Alarms for the AL	J
10010 0		

Parameter	Description	RD/RW
Power Interruption Alarm	Electrical supply failure	RD
Battery Failure Alarm	Standby battery failure	RD
MOV Alarm	Device has been moved from the original installation location	RD
Open Case Alarm	Alarm when device is open	RD
Over-temperature Alarm	Device temperature is over the rated temperature threshold	RD
DPLL Unlocked Alarm	Digital phase lock loop unlocked	RD
LO1~4 Unlocked Alarm	Local oscillation unlocked	RD
CH1~4 ALC Alarm	Alarm when ALC is working	RD
OP1~6 Transceiver Failure Alarm	OP-transceiver unplugged or failure (Port OP1~OP6)	RD
OP-AU1/2 Transceiver Failure Alarm	OP-transceiver unplugged or failure (Port S_AU1/2)	RD
CH1~4 DL Under Input-power Alarm	Channel 1~4 input power under rated threshold	RD
CH1~4 DL Over Input-power Alarm	Channel 1~4 input power over rated threshold	RD
External Alarm 1~4	External device failure (such as UPS failure)	RD

3.7.3. AU System Info

Parameter	Description	RD/RW
RF Signal Switch	/	RW
UL Attenuation	Range: 0-15dB	RW
DL Attenuation	Range: 0-15dB	RW
DL Under Input-power Threshold	Default value: -30dBm/ Range: -35~ +15dBm	RW
DL Over Input-power Threshold	Default value: 10dBm/ Range: +10~ +30dBm	RW
DL Input-power	/	RD

CrossFire – A revolution in RF Transport for In Building Wireless

User Manual

Bandwidth	/	RD
UL Center Frequency	/	RD
DL Center Frequency	/	RD

Table 10 AU Sampling Info

Parameter	Description	RD/RW
Over-temperature Threshold	Default value:80 $^\circ C$ / Range: -55 $^\circ$ +125 $^\circ C$	RW
Device Temperature	/	RD
Device Routing Addr	Device routing address	RD

3.7.4. AU Band Config

Table 11 Channel 1~4

CH1 Info Check	Valid: Channel operating normally	RD
	Invalid: out of operation	
UL Freq_low	Lower limit of uplink frequency	RW
UL Freq_high	Higher limit of uplink frequency	RW
DL Freq_low	/	RW
DL Freq_high	/	RW
Signal1~3 Bandwidth	/	RW
Signal1~3 UL Center Frequency	/	RW
Signal1~3 DL Center Frequency	/	RW

Note: UL Freq_low/high and DL Freq_low/high should agree with the values for the corresponding duplexer.

The values for signal bandwidth and UL/DL center frequency should agree with the operators' signal.

Table 12	AU Public	Parameters
		i ulullictelij

Parameter	Description	RD/RW
AU CH Info Update	Update after channel parameter configuration. Configuration	RW
	modification will be effective after update.	
Local Signal Bandwidth	Signal bandwidth of local AU	RD
Local Transmission Bandwidth	Transmission bandwidth of local AU	RD
System Signal Bandwidth	Signal bandwidth of all AUs if Slave AU exists	RD
System Transmission Bandwidth	Transmission bandwidth of all AUs if Slave AU exists	RD

Note: See Section 7.2 for details on configuring channel properties.

3.7.5. AU Digital Info

Table 13AU Downlink Power

Parameter	Description	RD/RW
CH1~4 DL Baseband Input-power	Power of DL detected in digital domain	RD

Table 14 AU Uplink Power

Parameter	Description	RD/RW
CH1~4 UL Baseband Output-power	Power of UL detected in digital domain	RD

Table 15 Optical Module Information

Parameter	Description	RD/RW
Optical Port 1 Optical Module	Optical Module Number	RD
DDM Function Availability	/	RD
Tx Power	/	RD
Rx Power	/	RD
Voltage	/	RD
Bias Current	/	RD
Temperature	/	RD
Optical Wavelength	/	RD

3.7.6. AU Combiner

Table 16AU Channel 1~4

Parameter	Description	RD/RW
Port 1~4 Input Power Value	/	RD
Port 1~4 Attenuation Value	Range: 0-15dB	RW

3.7.7. AU Engineering Information

Table 17AU Engineering Info

Parameter	Description	RD/RW
Update Time	Last update time	RD
ARM CRC Check	To check ARM software version of current device	RD
FPGA CRC Check	To check FPGA software version of current device	RD
Current AU Upgrade-file name	To check AU software version	RD
AU CRC Check	To check AU software version	RD
Current EU Upgrade-file name	To check EU software version	RD

CrossFire – A revolution in RF Transport for In Building Wireless

User Manual

Parameter	Description	RD/RW
EU CRC Check	To check EU software version	RD
Current RU Upgrade-file name	To check RU software version	RD
HP RU CRC Check	To check RU software version	RD

Table 18 AU Digital Panel Information

Maximum DelayMaximum delay from AU to the last RURD	imum Delay

Table 19 AU: OP Info

OP1~6CPRI Sync Alarm	CPRI SYNC alarm for Port " OP1~OP6"	RD
OP-AU1 CPRI Sync Alarm	CPRI SYNC alarm for Port " AU1"	RD
OP-AU2 CPRI Sync Alarm	CPRI SYNC alarm for Port " AU2"	RD
OP1~6LOS Alarm	Loss of optical signal alarm for Port "OP1~OP6"	RD
OP-AU1 LOS Alarm	Loss of optical signal alarm for Port "AU1"	RD
OP-AU2 LOS Alarm	Loss of optical signal alarm for Port "AU2"	RD

Table 20AU Advanced Commands

Command	Description	RD/RW
Master / Slave AU Select	Master AU / Slave AU select	RW
Modem Type	Reserve	RD
Backup Battery Switch	/	RW
Hardware Reset	Noted: Signal interruption during hardware reset	RW
Software Reset	Noted : Signal is normal during software reset	RW
Wi-Fi Module Reset	/	RW
Initialization/Alarm Report	Initialization: Clear alarms and disable all alarms;	RW
	Report Site launch: Report to OMC when new site launches;	
Alarm Mode Selection	Normal mode: 3 minutes	RW
	Test mode: 1 minute	

3.7.8. AU Command

Table 21AU Factory Parameters

Factory Pattern	To perform Delete all Slave-Devices or Device Initialization functions,	RW
	factory authorization is required.	
Factory Pattern Password	Reserve	RW

4. EU Instructions

4.1. EU Physical Appearance

Figure 4-1 shows a photograph of the EU component of the IDAS.

Figure 4-1 Physical Appearance of the EU

4.2. EU Front Panel

Figure 4-2 shows a schematic of the front panel of the EU and Table 22 lists the interfaces and their functionality.

Figure 4-2 Front Panel of the EU

Table 22	EU Front Panel Interfaces
----------	---------------------------

SN	Interface Name	Description
1	SLAVE	Connects Master AU/EU at the next higher level via optical fiber
2	MASTER	Connects for EU at the next lower level via optical fiber

SN	Interface Name	Description
3	OP1	Connects RU via optical fiber
4	OP2	Connects RU via optical fiber
5	OP3	Connects RU via optical fiber
6	OP4	Connects RU via optical fiber
7	OP5	Connects RU via optical fiber
8	OP6	Connects RU via optical fiber
9	GE1	LAN signals or S1 signals input via CAT-5(STP)
10	GE2	LAN signals or S1 signals input via CAT-5(STP)
11	GE3	LAN signals or S1 signals input via CAT-5(STP)
12	GE4	LAN signals or S1 signals input via CAT-5(STP)
13	GE5	LAN signals or S1 signals input via CAT-5(STP)
14	GE6	LAN signals or S1 signals input via CAT-5(STP)
15	CONSOLE	Connection for local PC through CAT-5 for local monitoring
16	AP	Connection for WLAN Network adapters for monitoring device through Wi-Fi
17	DEBUG	Connection for local debugging PC through USB wire
18	STATUS	Indicates device operating status

4.3. EU Back Panel

Figure 4-3 shows a schematic of the back panel of the EU and Table 23 lists the interfaces and their functionality.

Figure 4-3 Back Panel of the EU

|--|

SN	Interface Name	Description
19	Electrical Power Line Interface	/
20	Grounding	/

4.4. Indicator Description

See Section 3.5 for details.

4.5. OMT Parameters, Alarms and Commands for the EU

See Section 2.3, OMT Display, for information on how to use the WebOMT interface to view and change parameters

and run commands.

4.5.1. EU User Parameters

Table 24 EU Device Information

Parameter	Description	RD/RW
Vendor	Name to distinguish from different manufacturers	RD
Product Model	/	RD
Serial Number	/	RD
RMON Mode	Current remote monitoring mode	RD
Software Upgrade Result	/	RD
Remote Upgrade Mode	/	RD
RMON Edition	Current edition of remote monitoring software	RD
Device Edition(FPGA)	Device edition defined by FPGA	RD
Device Location	/	RW

Table 25	EU Network Management
----------	-----------------------

Parameter	Description	RD/RW
Site ID	The unique identification number of site in the system assigned by	RW
	Master AU	
Device ID	Number to distinguish the subsets in the same site assigned by	RW
	Master AU	
Date and Time	/	RW

4.5.2. EU Alarms

Table 26IDAS Alarms for the EU

Parameter	Description	RD/RW
Power Interruption Alarm	Electric supply failure	RW
MOV Alarm	Alarm when device leave the original installation location	RW
Open Case Alarm	Alarm when device is open	RW
Over-temperature Alarm	Alarm when device temperature over rated temperature threshold	RW
DPLL Unlocked Alarm	Digital phase lock loop unlocked	RW
OP-transceiver1~6 Failure Alarm	OP-transceiver unplugged or failure (Port OP1~OP6)	RW
OP-slave transceiver Alarm	OP-transceiver unplugged or failure (Port SLAVE)	RW
OP-master transceiver Alarm	OP-transceiver unplugged or failure (Port MASTER)	RW
Link Alarm	Alarm when local EU cannot connect to the system	RW

4.5.3. EU System Info

Table 27EU Sampling Info

Parameter	Description	RD/RW
Over-temperature Threshold	Default value: 80 $^\circ C$ / Range: -55~ +125 $^\circ C$	RW
Device Temperature	/	RD
Device Routing Addr	Device Routing Address	RD

4.5.4. EU Engineering Information

Table 28EU Engineering Info

Parameter	Description	RD/RW
Update Time	Last update time	RD
ARM CRC Check	To check ARM software CRC value of current device	RD
FPGA CRC Check	To check FPGA software CRC value of current device	RD
EU CRC Check	To check EU software CRC value of current device	RD

Table 29 EU: OP Info

OP1~6 CPRI Sync Alarm	CPRI SYNC Alarm of Port " OP1~OP6"	RD
OP-slave CPRI Sync Alarm	CPRI SYNC Alarm of Port "SLAVE"	RD
OP-master CPRI Sync Alarm	CPRI SYNC Alarm of Port "MASTER"	RD
OP1~6LOS Alarm	Loss of optical signal Alarm of Port "OP1~OP6"	RD
OP-slave LOS Alarm	Loss of optical signal Alarm of Port "Slave"	RD
OP-master LOS Alarm	Loss of optical signal Alarm of Port "Master"	RD

Table 30 AU Advanced Commands

Command	Description	RD/RW
Hardware Reset	Noted: Signal interruption during hardware reset	RW
Software Reset	Noted: Signal is normal during software reset	RW
Wi-Fi Module Reset	/	RW
Initialization/Alarm Report	Initialization: Clear alarms and disable all alarms;	RW
	Report Site launch: Report to OMC when new site launches;	
Alarm Mode Selection	Normal mode: 3 minutes	RW
	Test mode: 1 minute	

4.5.5. EU Digital Info

Table 31 Optical Module Information

Optical Port 1 Optical Module	/	RD
DDM Function Availability	/	RD
Tx Power	/	RD
Rx Power	/	RD
Voltage	/	RD
Bias Current	/	RD
Temperature	/	RD
Optical Wavelength	/	RD

4.5.6. EU Command

Table 32 EU Factory Parameters

Factory Pattern	To perform Device Initialization functions, factory authorization is required.	RW
Factory Pattern Password	Reserve	RW

5. RU Instructions

5.1. RU Physical Appearance

Figure 5-1 shows a photograph of the RU component of the IDAS.

Figure 5-1 Physical Appearance of the RU

5.2. RU Front Panel

Figure 5-2 shows a schematic of the front panel of the RU and Table 33 lists the interfaces and their functionality.

Figure 5-2 Front Panel of the RU

Table 33 RU Front Panel Interfaces	Table 33	RU Front Panel Interfaces
------------------------------------	----------	----------------------------------

SN	Interface Name	Description
1	CH2	PA 2 Module Interface, connects service antenna via 4.3-10 female connector
2	CH1	PA 1 Module Interface, connects service antenna via 4.3-10 female Connector
3	Modem Interface /Reserved	Reserved if no modem
4	Slave OP	Connects EU or RU at the next higher level via optical fiber
5	Slave	Indicates Slave OP port operating status
6	MASTER OP	Connects RU at the next lower level via optical fiber
7	Master	Indicates Master OP port operating status
8	RUN	Indicates device operating status
9	DEBUG	Connection for local PC through CAT-5 for local monitoring
10	GE	LAN signals or S1 signals output via CAT-5(STP)
11	PWR	Electrical Power Line Interface

5.3. Indicator Description

Refer to Section 3.5 for details.

5.4. OMT Parameters, Alarms and Commands for the RU

See Section 2.3, OMT Display, for information on how to use the WebOMT interface to view and change parameters

User Manual

and run commands.

5.4.1. RU User Parameters

Table 34 RU Device Information

Parameter	Description	RD/RW
Vendor	Name to distinguish from different manufacturers	RD
Product Model	/	RD
Serial Number	/	RD
RMON Mode	Current remote monitoring mode	RD
Software Upgrading Result		RD
Remote Upgrade Mode	/	RD
MON Edition	Current edition of remote monitoring software	RD
Device Edition(FPGA)	Device edition defined by FPGA	RD
Device Location	/	RW

Table 35 RU Network Management

Parameter	Description	RD/RW
Site ID	The unique identification number of the site in the system	RW
Device ID	Number to distinguish the subsets in the same site	RW
Date and Time	/	RW

5.4.2. RU Alarms

Table 36 IDAS Alarms for the RU

Parameter	Description	RD/RW
Power Interruption Alarm	Electric supply failure	RW
MOV Alarm	Alarm when device leave the original installation location	RW
Open Case Alarm	Alarm when device is open	RW
Over-temperature Alarm	Alarm when device temperature over rated temperature threshold	RW
DPLL unlocked Alarm	Digital phase lock loop unlocked	RW
LO1~2 unlocked Alarm	Local Oscillation unlocked	RW
CH1~2 ALC Alarm	Alarm when ALC is working	RW
OP-slave Transceiver Alarm	OP-transceiver unplugged or failure (Port "Slave")	RW
OP-master Transceiver Alarm	OP-transceiver unplugged or failure (Port "Master")	RW
CH1~2 DL Under Output-power Alarm	Channel 1~4 output-power under rated threshold	RW
CH1~2 DL Over Output-power Alarm	Channel 1~4 output-power over rated threshold	RW
Link Alarm	Alarm when local RU cannot connect to the system	RW

5.4.3. RU System Info

Table 37RU: RF Channel 1~2

RF signal switch	/	RW
UL Attenuation	Range:0-15dB	RW
DL Attenuation	Range:0-15dB	RW
DL under output-power threshold	Default value: -30dBm/ Range: -35~ +15dBm	RW
DL over output-power threshold	Default value: 10dBm/ Range: +10~ +30dBm	RW
DL output-power	/	RD
Bandwidth	/	RD
UL center frequency	/	RD
DL center frequency	/	RD
UL Gain	/	RD
DL Gain	/	RD

Table 38 RU Sampling Info

Parameter	Description	RD/RW
Over-temperature threshold	Default value: 80 $^\circ C$ / Range: -55 $^\circ$ +125 $^\circ C$	RW
Device Temperature	/	RD
CH1 DL Output-power	/	RD
CH2 DL Output-power	/	RD
CH1 VSWR	/	RD
CH2 VSWR	/	RD
Device Routing Addr	Device Routing Address	RD

5.4.4. RU Band Config

Table 39RU Channel 1~2

Command	Description	RD/RW
UL Freq_low	Lower limit of uplink frequency	RW
UL Freq_high	Higher limit of uplink frequency	RW
DL Freq_low	/	RW
DL Freq_high	/	RW

5.4.5. RU Digital Info

Table 40 RU Downlink Power

CH1~2 UL Baseband input-power	Power of UL detected in digital domain	RD
-------------------------------	--	----

Table 41 RU Uplink Power

CH1~2 DL Baseband Output-power P	Power of DL detected in digital domain	RD
		· · · · · · · · · · · · · · · · · · ·

Table 42 Optical Module Information

Slave/Master Optical Port Optical Module	/	RD
DDM function availability	/	RD
Tx power	/	RD
Rx power	/	RD
Voltage	/	RD
Bias Current	/	RD
Temperature	/	RD
Optical wavelength	/	RD

5.4.6. RU Actual Gain

Table 43 RU Channel 1~2 Actual Gain

Parameter	Description	RD/RW
Port 1~4 UL	Channel 1~2 Port 1~4 UL gain	RD
Port 1~4 DL	Channel 1~2 Port 1~4 DL gain	RD

5.4.7. RU Engineering Information

Table 44 RU Engineering Info

Parameter	Description	RD/RW
Update Time	Last update time	RD
ARM CRC Check	To check ARM software CRC value of current device	RD
FPGA CRC Check	To check FPGA software CRC value of current device	RD
RU CRC Check	To check RU software CRC value of current device	RD

Table 45 RU DPD Switch

Parameter	Description	RD/RW
CH1 DPD Switch	Enable/Disable	RW
CH2 DPD Switch	Enable/Disable	RW

Table 46 RU Digital Panel Information

Maximum Delay to Master Device	Maximum delay from AU to the last RU	RD
		1

Table 47 RU: OP Info

OP-slave CPRI Sync Alarm	CPRI SYNC Alarm of Port " Slave"	RD
OP-master CPRI Sync Alarm	CPRI SYNC Alarm of Port "Master"	RD
OP-slave LOS Alarm	Loss of optical signal Alarm of Port "Slave"	RD
OP-master LOS Alarm	Loss of optical signal Alarm of Port "Master"	RD

Table 48 RU Channel Map (RU-AU)

Channel Map 1	See below for details	RD
Channel Map 2	See below for details	RD

15	1/	12	10	11	10	0	0	7	6	E	4	2	2	1	0
15	14	12	12	11	10	9	0	/	0	5	4	5	2	T	0

The value of channel map contains 16 binary numbers. "0" means the corresponding channel is not in use while "1"

means the corresponding channel is in use.

Numbers "0"~"3" correspond to RF channels "1~4" of Master AU(0)

Numbers "4"~"7" correspond to RF channels "1~4" of Slave AU(1)

Numbers "8"~"11" correspond to RF channels "1~4" of Slave AU(2)

Numbers "12"~"15" are not in use and should be all zero.

For example, the value "0000 0100 0010 0001" means that the first channel on the Master AU and the second

channel on the Slave AU1 and the third channel on the Slave AU2 are now in use, while all others are not in use.

Table 49 RU Advanced Commands

Command	Description	RD/RW
Hardware Reset	/	RW
Software Reset	/	RW
Wi-Fi module reset	/	RW
Initialization/Alarm report	Initialization: Clear and disable all alarms;	RW
	Report site launch: Report to OMC when new site launches;	
Alarm mode selection	Normal mode = 3 minutes / Test mode = 1 minute	RW

5.4.8. RU Command

Table 50RU Factory Parameters

Factory pattern	To perform Device Initialization functions, factory authorization is required.	RW
Factory pattern password	Reserve	RW

6. Installation and Connections

6.1. Installation Preparation

6.1.1. Client Cooperation

To guarantee a secure installation and proper operation and maintenance of the device, please contact *ZENIC8* for technical support and actively cooperate with *ZENIC8*'s engineering technicians to understand the installation process, structure, wiring, debugging steps and so on.

6.1.2. Site Investigation

Before installation, the installer should contact the project director to ensure that the site is suitable for installation. Details required include information about the installation site such as whether there is an iron tower or high mast nearby, the surrounding environmental conditions such as temperature and humidity, the power source and so on. Installation staff should complete a site investigation with the project director before construction and conduct field observation of the installation site and the coverage area of the device, to confirm factors such as signal intensity, signal quality, the required coverage range, device location, antenna-feeder system and power supply system.

All devices must be installed indoors. The operating temperature range is $-10^{\circ}C \sim +45^{\circ}C$. Indoor ventilation should be robust and humidity should be 85%. (See the **SPEC** for the complete technical specifications.)

Note: Only the maintenance personnel or the users who understand the reason for access and are experienced with restricted area access and understand the necessary preventive measures should access the installation site.

6.1.3. Installation Tools

Tools required for installation include:

- electric percussion drill
- screwdriver
- wrench

6.2. Unpacking and Inspecting the Device

This section discusses the procedures for receiving the shipment, inspecting the packing container, unpacking and inspecting the device.

Inspecting the Packing Container 6.2.1.

Handle the packing container carefully. Inspect the packing container immediately on arrival at the installation site to verify that no obvious damage occurred during shipment. Ensure that the container is sound and that the waterproof and vibration warning notices are still obvious.

If any damage is observed, notify ZENIC8 immediately. Do not open or unpack the container until ZENIC8 personnel have inspected it.

A ZENIC8 engineering technician will attend the installation site to inspect and unpack the shipment with the customer. The technician will complete a shipment arrival and inspection report.

6.2.2. **Unpacking the Device**

If the container appears to be in satisfactory condition, perform the following procedures to unpack the device:

- 1. Ensure both user and supplier representatives are in attendance during shipment inspection.
- 2. Confirm where the device is to be stored.
- 3. Ensure procedures are in place to handle the device and other equipment properly, after it has been unpacked and inspected.
- Ensure the following tools are available to unpack the shipment: hammer, paper cutter and crow bar. 4.
- 5. Open the packing container carefully. The device is contained in a protective package inside the packing container; however, caution is still necessary so as not to damage the internal package and device.
- 6. Remove the internal package from the packing container.
- 7. Unpack the device from the internal package carefully.

Verifying the Contents 6.2.3.

To verify the contents of the package:

- 1. Verify that the contents and quantities agree with the Delivery Packing List.
- 2. Check the device model against the Delivery Packing List.
- 3. Notify ZENIC8 immediately if any discrepancies are discovered, to verify whether the complete and correct shipment has been received.

6.2.4. **Inspecting the Device**

After unpacking the device, place the device on solid ground and check the following to ensure the device has not been damaged:

- 1. Inspect the device's appearance, overall dimensions and weight.
- 2. Check that the device has not been deformed or bent in any way.
- 3. Check that there are no warps, scratches, bubbles or dirt marks.
- 4. Check that there are no loose, missing or incorrectly fastened screws.
- 5. Check that the installation slots in the cabinet sub-rack are rectangular.
- 6. Ensure that the guide bar has not been damaged and the fittings and auxiliary parts are intact.
- 7. Check that the silk—screened images on the device are clearly visible and intact.

6.3. Device Installation

The AU, EU and RU have two possible installation modes: rack installation and wall mounted. The AU is usually installed in a rack, while the EU and RU is usually wall mounted.

Note: Never placed an operating RU horizontally.

6.3.1. Rack Installation (Only for AU and EU)

To install the device into a 19" standard rack:

- Choose an indoor location. The location should be larger than 1000×800×2500 mm and it is recommended that the rack be at least 200 mm away from the wall.
- 2. Install the device into the 19" standard rack and fasten with 4*M6 screws.

6.3.2. Wall Mounting Installation (for AU and EU)

To install the device using a wall mounting (see Figure 6-1):

- 1. Rotate the hanger 90° and install (the hanger can be installed in the middle of the rack).
- 2. Choose an appropriate indoor location. Mark $4^*\phi 6.8$ holes sites for the hanger to be attached to the wall.
- 3. Drill at the four sites using a percussion drill and embed $4^*\phi 8$ plastic expansion pipes.
- 4. Fasten the case with 4*ST4.5 self-tapping screws.

Note: Wall mounting installation of the AU is exactly the same as that of EU.

Figure 6-1 Wall Mounting Installation of an EU

6.3.3. Wall Mounting Installation (for RU)

To install the device using a wall mounting:

Note: Wall mounting installation of the POI is exactly the same as that of RU.

- 1) Front-mounting Installation (see Figure 6-2, Figure 6-3):
 - a) Choose an appropriate location. Mark $2^*\phi 13$ holes sites for the **mounting bracket** I to be attached to the wall.
 - b) Drill at the two sites using a percussion drill and embed 2*M10*90 expansion bolts.
 - c) Fasten the **mounting bracket** II to the back of device with 2*M6*14 screws.
 - d) Hang the device on the mounting bracket and fasten the case with 2*M10 nut.

Figure 6-2 Schematic of RU Wall Front-mounting Installation

Figure 6-3 Exploded View of RU Front-mounting Installation

- 2) Side-mounting Installation(see Figure 6-4 and Figure 6-5):
 - a) Choose an appropriate location. Mark $2^*\phi 13$ holes sites for the **mounting bracket** I to be attached to the wall.
 - b) Drill at the two sites using a percussion drill and embed 2*M10*90 expansion bolts.
 - c) Fasten **mounting bracket** II to the side of device with 2*M6*14 screws.
 - d) Hang the device on the mounting bracket and fasten the case with 2*M10 nut.

Figure 6-4 Schematic of RU Wall Side-mounting Installation

Figure 6-5 Exploded View of RU Side-mounting Installation

6.3.4. Suspension Installation (For AU and EU, Optional)

To install a device using a suspension installation:

- 1. Fasten two hangers to the sides of device with 8 M3*6 screws. See Figure 6-6 for details.
- 2. Measure the dimension between the centres of hangers. See Figure 6-7 for details.
- Choose an appropriate indoor location. Mark 4 holes sites for the stand-off bracket to be attached to the wall.
 See Figure 6-8 for details.
- 4. Hang the device on the stand-off bracket and fasten with the bolts. See Figure 6-9 for details.

Figure 6-6 Step 1 of Suspension Installation

Figure 6-7 Step 2 of Suspension Installation

Figure 6-9 Step 4 of Suspension Installation

6.3.5. Pole Mounting (Only for RU, Optional)

To install the device using pall mounting (see Figure 6-10 and Figure 6-11).

Note: Pole mounting of the POI is exactly the same as that of RU.

- 1) Choose an appropriate location.
- 2) Fasten mounting bracket I to the side of device with 2*M6*14 screws.
- 3) Fasten the case to **mounting bracket** II and **mounting bracket** III with 2*M10*200 bolts.

Figure 6-10 Schematic of RU Pall Installation

Figure 6-11 Exploded View of RU Pall Installation

6.3.6. Selecting the Installation Site

- Choose a location for installation that is convenient based on the power supply and feeder layout and where an optical cable interface is available for the optical fibre connection.
- 2. The installation location should be away from heat sources and should not be located in a damp environment.
- 3. The ventilation should be adequate such that the indoor temperature is maintained between -10° C and 45° C.
- 4. The back and sides of the case should be at least 80-100 cm away from the wall or other devices.

6.4. Device Connections

Slave AU Connection

6.4.1. Optical Interface Connection

• Single Optical Fibre-module

Figure 6-13 shows that when using a pair of single optical fibre-modules, the wavelength of the two modules should be different, for example, 1271nm & 1331nm. See Table 51 for the optical fibre module corresponding to each port. When the optical module is unplugged or not synchronized, the indicators are red as shown in the left pair of indicators in Figure 6-15. Check whether both indicators turn green after connecting one pair of optical modules. If they are red, the terminal has not synchronized. See Section 9 for how to resolve this issue.

Table 51	Ontical Module Selection for Single Ontical fibre-module
Table 51	optical Module Selection for Single Optical fibre-module

Device Unit	Port	Wavelength of Module		
Master AU	All Ports	1271nm		
Slave AU	OP1 (only this port is used)	1331nm		
EU	Slave	1331nm		
	Master & OP1~OP6	1271nm		
RU	Slave	1331nm		
	Master	1271nm		

Figure 6-13 Single Optical Fibre Module

• Double Optical Fibre-module

The optical connector unit includes an optical module and optical fibre. Figure 6-14 shows that when using a double optical fibre-module, the optical transmitter and optical receiver should correspond to each other. In other words, the optical transmitter of optical module A should correspond to the optical receiver of optical module B and the receiver of A should correspond to the transmitter of B. The optical receiver and transmitter terminals of the optical module can be determined by the triangular mark on the optical module. Figure 6-14 shows the triangular mark in the yellow box and the red and green lines indicate the optical fibre connections.

Figure 6-14 Optical Module Connection

Each pair (2) of optical module cages has four LED indicator arrows. The two on the left are green and the two on the right are red as shown in Figure 6-15. The indicator arrows represent the synchronization status of the upper and lower optical modules. When optical module A has synchronized with module B (both uplink and downlink), the indicators turn green as shown in the right pair of indicators in Figure 6-15. When the optical module is unplugged or not synchronized, the indicators are red as shown in the left pair of indicators in Figure 6-15. Check whether both indicators turn green after connecting one pair of optical modules. If they are red, the terminal has not synchronized.

Figure 6-15 Optical SYNC Status

6.4.2. AU connections

Prior to attempting the AU connections, read Section 3 thoroughly.

The AU has eight optical ports, designated by eight silk-screened images: "AU1", "AU2", "OP1/AU", "OP2", "OP3", "OP4", "OP5", "OP6". The ports "OP1~OP6" all have the same functionality, providing connections to lower level EUs or RUs. Insert the optical module into any one of the OP1~OP6 ports, then insert the tail of the optical fibre into the optical module and connect the other end to the lower EU or RU. After the AU and EU/RU are connected and powered on, the optical interface indicator LED will turn green, which indicates that the devices are synchronized. If the optical indicator LED does not turn green, check whether the connection direction of the optical fibre is correct and whether the optical module is inserted tightly.

The "AU1" and "AU2" optical ports are for connecting to the slave AU.

When connecting to the slave AU, first access the slave AU independently (see Section 2.2 for instructions on how to access the WebOMT for the Slave AU). Ensure the status of the AU is "Slave AU" and then connect the optical fibre.

Note: The connection between the Master AU and the Slave AU can only be from the OP1/AU port on the Slave AU to the AU1 (or AU2) port on the Master AU; other optical ports are invalid for Master-Slave AU connections.

6.4.3. EU connections

Prior to attempting the EU connections, read Section 4 thoroughly.

The EU has 8 optical ports and 6 electrical ports. The optical "SLAVE" port should be connected to the AU or upper EU and the optical "MASTER" port should be connected in a cascading manner to a lower EU in a daisy chain. (Refer to the networking definition of a daisy chain.) The OP1~OP6 ports have the same functionality and are all used for connections to RUs. After the EU is connected to the upper device and powered on, the optical indicator LED turns green which means that the devices are synchronized. If the LED does not turn green, see Section 9 to resolve the issue.

Each EU has six electrical ports, GE1~GE6, which support six LAN signals. Each electrical port corresponds to a specific optical port, for example, port GE1 corresponds to port OP1 and port GE6 corresponds to port OP6.

6.4.4. RU connections

Prior to attempting the RU connections, read Section 5 thoroughly.

The RU has 2 optical ports, "SLAVE" and "Master. The "SLAVE" port should be connected to an upper AU, EU or RU, and the "MASTER" port should only be connected to a lower RU. After the RU has been connected to the upper device and powered on, the optical indicator LED turns green which means that the devices are synchronized. If the LED does not turn green, see Section 9 to resolve the issue.

6.4.5. Standby battery connection

A plug is connected to a power source on the output wire of the device's lithium battery. To prevent battery discharge, this is unplugged before shipping. After the device is operational, plug it in to ensure normal reporting if the power is cut.

6.5. WLAN Access (Wi-Fi)

Each EU has six electrical ports, GE1~GE6, which support up to 6 LAN signals. LAN signals are input on the GE1~GE6 ports and output from the corresponding OP1~OP6 ports. The signals are then transmitted to the RUs via optical signals over optical fibre and output from the GE port on the RU. Each RU connects to an AP device through their respective GE port. Thus, 6 independent Gigabit Ethernet transmission channels can be completed. See Figure 6-16 for WLAN connection details.

Note: each electrical port (GE1~GE6) must correspond to an optical port (OP1~OP6), i.e. GE1 should correspond to OP1, GE2 should correspond to OP2, etc. WLAN signal input on GE1 is then sent out on OP1.

If there are multiple access points (AP) that are connected to more than one cascading RU in a signal chain, the WLAN

signal will only be output from one of the RUs, with the priority being RU1>RU2>RU3 when selecting which RU the signal will be output from. If there is only one AP device, then the WLAN signal is always output from the RU that is connected to the AP.

Figure 6-16 WLAN Access

7. System Debugging Setup

After installation and connection, power the devices on. At this point, it is strongly recommended that a laptop be connected to the Master AU to enable system debugging. Check each device's working status. The optical interface indicator LEDs should be green and stay lit and the STATUS indicator LEDs should be green and flashing slowly. Now, start the online debugging according to Figure 7-1 and Figure 7-2.

User Manual

Figure 7-2 EU Debugging Procedures

7.1. Network Management System Setup for SNMP

The site number must be set using the WebOMT on the Master AU before connecting to the network management system (NMS). The NMS should identify devices by their unique site number. Network parameters also need to be set up for the specific network. If the NMS supports the SNMP protocol, set **Protocol Select** to "SNMP" and configure related parameters such as the **Trap IP Addr**, **Trap Port**, **Subnet Mask**, **Default Gateway**, etc. as shown in Table 7. If the NMS supports the ZENIC8 proprietary protocol, set **Protocol Select** to "TCP/IP" and configure the corresponding parameters as shown in Table 6.

The remote FTP server parameters also need to be set up if remote software upgrades are supported. These parameters are set in the **Engineering** tab —> **User Para** sub-tab in the WebOMT. See Figure 7-3 for details.

User Manual

		Scree	nShot 🧱 Upgrade	onfigurati
		S Log	gs 🥞 Register	🁪 Language
Site Info	All Select Engineering			2 13
	Engineering			
e ID: 00000000	DAS Topo User Para Alarm	System Info Engineering	Characteristics Digital Info	o Command
vice ID: 0	Device Info			
v Type MasterAU	Vendor	SUNWAVE		
	Product Model	iDAS-A201008317		
v Name: DAS AU	Serial Number	123		Ouerrall
	RMON Mode	Monitoring mode		Query all
Online User Master AU	Software Upgrading Result	Upgrading succeed		Q Query
2 1077184	Remote Upgrade Mode	FTP		
III 11 7 70 1	MON Edition	1.1		🏀 Set
11.7.70.1	Device Edition(FPGA)	01		
	Device Location	Building A		
	Network Management			
	Site ID	0000000	hexadecimal	
SNMP Set	Device ID	0	decimalism	
	Trap IP Addr	10.7.2.31		
	Trap Port	162		
	Protocol Selected	SNMP 🗸	Select SNMP	
	Date and Time	2014-05-12 13:41:47		
	Device IP Addr	10.7.3.205		
Device Info	Subnet Mask	255.0.0.0		
	Default Gateway	10.7.0.1		
	Server IP Addr (FTP)	10.7.0.21		
	Server IP port (FTP)	100		
	FTP Username	zjj		
	FTP Password	zjj		
	Awaiting Upgrading filepath	/home/zjj		
	Awaiting Upgrading filename	1.txt		
	FTP File Transfer control	Start upgrade 🗸 🗸		

Figure 7-3 NMS Setup

7.2. Channel Properties Configuration

According to the different base station operating frequency bands for each operator, select the passive RF modules for the AU and active RF modules for the RU with the corresponding frequency band and set the channel properties in the WebOMT of the Master AU. The limits of the uplink and downlink operating frequency bands correspond to the effective RF range of the selected RF modules.

To set the channel properties (see Figure 7-4):

- 1. In the WebOMT, select the **Engineering** tab.
- 2. Select the **Characteristics** sub-tab on the **Engineering** page.

- Set the uplink and downlink operating frequency band limits for channels 1, 2, 3 and 4.
 (See step 1 in Figure 7-4.)
- 4. Set the uplink and downlink centre frequencies and the bandwidth for signals 1, 2, 3 and 4.

(See step 2 in Figure 7-4.)

- 5. Click **Set** to validate the parameter values. (See step **4** in Figure 7-4.) Ensure the value of **CH1~4 info** is **valid**.
- 6. In the Public Parameters section, set AU CH Info Update to "Update". (See step 3 in Figure 7-4.)

Note: The maximum bandwidth per operating band should be less than 80MHz and the maximum bandwidth for all

operators should be less than 200 MHz.

All Sele	ct Engine	eering		
DAS	Topo U	ser Para Alarm Real-time Info	Engineering Characteristics	Digital Info Order
Channel	1			
	0e16	CH1 Info Check	Valid	
	0d29	UL F_low	1850	
	0d28	UL F_high	1910	
	0d27	DL F_low	1930	
	0d26	DL F_high	1990	
	0d2a	Signal1 Bandwidth	10	
	0d2b	Signal1 UL center frequency	1880	
	0d2c	Signal1 DL center frequency	1960	
	0d2d	Signal2 Bandwidth	0	
	0d2e	Signal2 UL center frequency	0	
	0d2f	Signal2 DL center frequency 🛛 🙎	0	
	0e10	Signal3 Bandwidth	0	
	0e11	Signal3 UL center frequency	0	
	0e12	Signal3 DL center frequency	0	
	0e13	Signal4 bandwidth	0	Q Query all
	0e14	Signal4 UL center frequency	0	
	0e15	Signal4 DL center frequency	0	Query
Channel	2			Set
Channel	3			
Channel	4			
Public Pa	arameters			
	0eb0	AU CH Info Update	Update 🔒 👻	
	0eb1	Local signal bandwidth	40	
	0eb4	Local transmission bandwidth	40	
	0eb2	System signal bandwidth	40	
	0eb3	Systemtransmission bandwidth	40	

Figure 7-4 Setting Channel Properties

7.3. Channel Gain Adjustment

After setting the channel properties, access the RF signals. In the IDAS, the nominal downlink input power of the AU is 0dBm and the maximum allowable input power is 15dBm. Therefore, before accessing the RF signals, estimate the signal power. Monitor the downlink input power with a spectrum analyser or read the downlink input power value from the "**Combiners**" on the WebOMT in order to set the downlink input power within the appropriate range.

To adjust gain on AU WebOMT (see Figure 7-5):

- 1) In the AU WebOMT, select the **Engineering** tab.
- 2) Select the **Combiners** sub-tab on the Engineering page.
- 3) Check the input power value of the port which there is input signals. See Figure 3-4 for active combiner ports.
- 4) Set the attenuation value. For example, the input power value of port 1 channel 1 is 3.499 dBm, then enters
 3.50 attenuation in **port 1 Attenuation value** and click **set** to confirm.

Site Info	All Select Engineering			~
Device ID: 0000000	DAS Topo User Para Alarm Sys	tem Info Band Config Combiners	Digital Info Engineering	Command
Derrice Sub ID: 0	Channel1			
Device State ID.	port1 Input power value	3.499	dBm	
Dev Type: Master AU	port2 Input power value	-25.796	dBm	0.0
31	port3 Input power value	-27.098	dBm	Query all
Dev Name: DAS AU	port4 Input power value	-26.261	dBm	Q Ouerv
	port1 Attenuation value	3.50 Enter the appropria	ateis	
Online User	port2 Attenuation value	⁰ attenuation value	to ^{dB}	🌯 Set
	port3 Attenuation value	⁰ reduce the input	dB 🗕	
L IP 11.7.10.1	port4 Attenuation value	⁰ reduce the input	dB Click	Set to conf
	Channel2	power to 0 dBm		
	port1 Input power value	-26.814	dBm	
	port2 Input power value	-26.632	dBm	
	port3 Input power value	-26.905	dBm	
	port4 Input power value	-25.813	dBm	
	port1 Attenuation value	0	dB	
	port2 Attenuation value	0	dB	
	port3 Attenuation value	0	dB	
	port4 Attenuation value	0	dB	
	Channel3			
	port1 Input power value	-26.069	dBm	
	port2 Input power value	-25.068	dBm	
	port3 Input power value	-25.523	dBm	
	port4 Input power value	-24.431	dBm	
	port1 Attenuation value	0	dB	
	port2 Attenuation value	0	dB	
	port3 Attenuation value	0	dB	
	port4 Attenuation value	0	dB	
	Channel4			

Figure 7-5 Gain Adjustment on AU Combiners

5) Select the System Info sub-tab on the Engineering page.

6) Select the **Sampling Info** sub-tab and check the channel input power after combiner.

If the input power exceeds 0 dBm, set the appropriate DL attenuation to reduce the input power to 0dBm. See

Figure 7-6 for details.

Site Info		All Select Engineerin	ng		
Device ID:	00000000	DAS Topo User Pa	ara Alarm System Info Ba	nd Config Combiners Digital Info	Engineering Command
Device Sub ID:	0	RF Channel 1			
		RF Signal Switc	ch On		
Dev Type:	Master AU	UL Attenuation	0	dB	Q Query
		DL Attenuation	0	dB	
Dev Name:	DAS AU	Bandwidth	20	MHz	Q Quer
		UL Center Freq	uency 834.800	MHz	
Online User		DL Center Freq	uency 879.800	MHz	🏀 Set
		RF Channel 2			
	11.7.10.1	RF Signal Switc	h On		
		UL Attenuation	0	dB	
		DL Attenuation	0	dB	
		Bandwidth	30	MHz	
		UL Center Frequencies	uency 904.400	MHz	
		DL Center Freq	uency 949.400	MHz	
		RF Channel 3			
		RF Signal Switc	h On		
		UL Attenuation	0	dB	
		DL Attenuation	0	dB	
		Bandwidth	60	MHz	
		UL Center Freq	uency 1740	MHz	
		DL Center Freq	uency 1835	MHz	
		RE Channel 4			
		RF Signal Switc	h On		
		UL Attenuation	0	dB	
		DL Attenuation	0	dB	
		Bandwidth	60	MHz	
		UL Center Freq	uency 1950	MHz	
		DL Center Freq	uency 2140	MHz	
		Alarm Threshold			
			Input-power Threshold -30	dBm	Power detected after Combin
		CH2 DI Under I	Input-power Threshold -30	dBm	
		CH3 DL Under I	Input-power Threshold -30	dBm	
		CH4 DL Under I	Input-power Threshold -30	dBm	
		CH1 DL Over In	nout-power Threshold 10	dBm	
		CH2 DL Over In	put-power Threshold 10	dBm	
		CH3 DL Over In	put-power Threshold 10	dBm	
		CH4 DL Over In	nout-power Threshold 10	dBm	
		Over-temperatu	re Threshold 85	tr.	
		Sampling Info		0.	
		CH1 DL Input-p	ower(after Combiner) -0.6	dBm	-15~15
		CH2 DL Input-n	ower(after Combiner) <-15	dBm	-15~15
		CH3 DL Input-p	ower(after Combiner) <.15	dBm	-15~15
		CH4 DL Input-p	ower(after Combiner) <.15	dBm	-15~15
			atura 60	30m	10 10
				-	

Figure 7-6 Downlink Input Power Adjustment after Combiner

To adjust gain on RU WebOMT (see Figure 7-7 for details):

- 1) In the **RU** WebOMT, select the **Engineering** tab.
- 2) Select the **System Info** sub-tab on the Engineering page.
- 3) Select the Sampling Info sub-tab to check the output power
- 4) Set the Attenuation to achieve the desired output power.

Site Info	All Select Engineering		< 🛃
Device ID: 00000000	DAS Topo User Para Alarm System	Info Band Config Actual Gain Digital Info Engineering	Command
Detrice Sub ID: 2	RF Channel 1		
Dence blo ID.	RF Signal Switch	On	
Dev Type: HRU	UL Attenuation	0 dB	Q Query all
COMPANY CARE	DL Attenuation	0 dB	0.000
Dev Name: DAS HRU	Bandwidth	MHz	Query
	UL Center Frequency	MHz	Set
Online User	DL Center Frequency	MHz	
• 1	RF Channel 2		
L L 11.7.1.1	RF Signal Switch	On	
	UL Attenuation	dB	
	DL Attenuation	dB	
	Bandwidth	MHz	
	UL Center Frequency	MHz	
	DL Center Frequency	MHz	
	Alarm Threshold		
	CH1 DL Under Output-power Threshold	i dBm	
	CH2 DL Under Output-power Threshold	i dBm	
	CH1 DL Over Output-power Threshold	dBm	
	CH2 DL Over Output-power Threshold	dBm	
	VSWR Threshold		
	Over-temperature Threshold	<u>5</u>	
	Sampling Info		
	CH1 DL Output-power	<20 dBm 20~43	
	CH2 DL Output-power	<20 dBm 20~43	
	CH1 VSWR		
	CH2 VSWR		
	Device Temperature	č	
	Device Routing Address		

Figure 7-7 Gain Adjustment on RU WebOMT

7.4. Alarm Parameters Setup

After completing the radio-frequency channel properties configuration, set up the alarm parameters using the following procedure:

- 1. In the WebOMT, select the **Engineering** tab.
- 2. Set the statuses of the optical transceiver one by one.
- 3. If there is an optical path connection, enable the basic device alarms, such as Power Interruption Alarm, Battery Failure Alarm, MOV Alarm, etc. For alarms related to channel properties, such as the DPLL unlocked Alarm, LO unlocked Alarm, OP transceiver failure Alarm, etc., only enable those associated with the channels which have an input signal, to avoid unnecessary alarms. See Figure 7-8 for details.

Wait 3~5 minutes after completing the setup, then query to see if there is a failure alarm for the device. If there is an alarm, see Section 9 or troubleshooting manual to resolve the issue. Figure 7-8 shows an example of AU Alarm Parameters Setup. User Manual

DAS	Topo User Para Alarm System	Info Band C	Config Digital Info Cor	mbiners Engineer	ing Command
Alarm					
~	Power Interruption Alarm	0	Disable	~	
~	Battery Failure Alarm		Warning	~	
~	MOV Alarm		Minor	~	
~	Open Case Alarm		Major	~	
1	Over-temperature Alarm		Critical	~	🔍 Query al
	DPLL Unlocked Alarm	0	Disable	~	
	LO1 Unlocked Alarm	0	Disable	~	Query
	LO2 Unlocked Alarm	0	Disable	~	On Sat
	LO3 Unlocked Alarm	0	Disable	~	Set Set
	LO4 Unlocked Alarm	0	Disable	~	
	CH1 ALC Alarm	0	Disable	~	
	CH2 ALC Alarm	0	Disable	~	
	CH3 ALC Alarm	0	Disable	~	
	CH4 ALC Alarm	0	Disable	~	
	OP1 Transceiver Failure Alarm	0	Disable	~	
	OP2 Transceiver Failure Alarm	0	Disable	~	
	OP3 Transceiver Failure Alarm	0	Disable	~	
	OP4 Transceiver Failure Alarm	0	Disable	~	
	OP5 Transceiver Failure Alarm	0	Disable	~	
	OP6 Transceiver Failure Alarm	0	Disable	~	
	OP-AU1 Transceiver Failure Alarm	0	Disable	~	
	OP-AU2 Transceiver Failure Alarm	0	Disable	~	
	CH1 DL Under Input-power Alarm	0	Disable	~	
	CH2 DL Under Input-power Alarm	0	Disable	~	
	CH3 DL Under Input-power Alarm	0	Disable	~	
	CH4 DL Under Input-power Alarm	0	Disable	~	
	CH1 DL Over Input-power Alarm	0	Disable	~	
	CH2 DL Over Input-power Alarm	0	Disable	~	
	CH3 DL Over Input-power Alarm	Õ	Disable	~	
	CH4 DL Over Input-power Alarm	0	Disable	~	
	External Alarm 1	Õ	Disable	~	
	External Alarm 2	0	Disable	~	
	External Alarm 3	Õ	Disable	~	
1	External Alarm 4	9	Disable		

Figure 7-8 Alarm Parameters Setup of AU

7.4.1. Alarm level

Disable	N	
Warning	12	
Minor		
Major		
Critical		

The alarm level is distinguished to four levels— Warning, Minor, Major, Critical corresponding to the alarm level on NMS. The level of specific alarm is independently chosen by user.

7.4.2. External Alarms

Figure 7-10 External Level

See Figure 7-10 for details of external level.

7.5. Configuring OMT User Parameters

Table 52 shows the clickable icons in the WebOMT used for configuration.

Table 52 WebOMT Configuration Icons

lcon	Description
	Show/hide parameter ID numbers. Every parameter can be distinguished by its unique ID number in the
2	WebOMT.
Б	Show/hide configurable parameters.
Ŋ	<i>Note:</i> only some of the read-write parameters are configurable and can be modified.
	Save configuration. Note: this button is only enabled after checking the selected parameter. Otherwise, it is
	greyed-out and is an invalid choice.

To configure the parameters, use the following procedure and refer to Figure 7-11 and Figure 7-12:

- 1. In the WebOMT, select the appropriate tab (for example, the **User Para** tab).
- 2. Click the button to show the parameter ID numbers. See 1 in Figure 7-11.
- 3. Click the button to show the configurable parameter choice box. See **2** in Figure 7-11.
- 4. Check the parameter that you want to configure. See the blue check mark in **3** in Figure 7-11.
- 5. Click the button to save the configuration. See **4** in Figure 7-11. *Note:* you can also use the **Save Configuration** button on the Configuration page shown in Figure 7-12. (See next step.)
- 6. Click the **Configuration** button. (See **5** in Figure 7-11.) This takes you to the Configuration page. In Figure 7-12, the underlined file contains the configuration parameter data. Use the **Download** and **Load Configuration** buttons to save the file to a local PC and load the file to the WebOMT, respectively. See the red frames in Figure 7-12.

5

User Manual

			CreenShot		Upgrade	Configuration
			Logs		Register	👪 Language
					0	
All Sele	ect En	gineering				
DAS	Торо	User Para Alarm Real-tim	e Info Engineering Cha	aracter	istics Digita	I Info Command
Device I	nfo					
	0002	Vendor Code	14			
	0004	Product Model	0			
	0005	Serial Number	123			
	0010	RMON Mode	Monitoring mode			
	0018	Software Upgrading Result	Upgrading succeed			
	0020	Remote Upgrad Mode	FTP			
	000a	MON Edition	1.0			
	0021	Device Edition(FPGA)	01			
Network	Manage	ement				
	0101	Site ID	0D151111		hexadecimal	
	0102	Device ID	0		decimalism	
	0130	OMC IP Addr	10.7.4.228			
	0131	OMC IP port	7777			
	0134	Heartbeat interval time	30		s	
	01c8	Protocol Select	TCP/IP	*		
	0138	Region protocol	IP+UDP	*		
	0139	Device recv port(UDP)	7777			
	0143	Query/Set IP addr 1	10.7.0.10			
	0144	Query/Set IP addr 2	10.7.0.5			

Figure 7-11 Configuring User Parameters

HomePage									
File Name			File Size	Date					Ö
Engineering_param_2000-1-1_005834.zip	Ē	<u>.</u>	763 B	2000-1-1	00:58		<		
				Delete	Download	Save Configu	ation	Load Config	uation

8. Software Upgrade

The Master AU consolidates the management of software upgrades for the entire system and saves the last software package for the AU, EU and RU. Slave devices compare the local software with that saved in the Master AU at run time. If the software version is different, the slave device will start the software upgrade progress and reset automatically after the upgrade is complete. The benefit of this approach is that if a slave device is replaced, a software upgrade is started automatically without having to do additional operations. If the Master AU is replaced, before connecting the new Master AU to the system, check the software version using the WebOMT as shown in Figure 8-1. If the software version is not the latest version, upload the latest software packages to the new Master AU.

II Selec	t Engine	MCU Parameter	Digital Module Smal	II-Signal Board	
DAS	Торо Ц	lser Para Alarm Real-tim	e Info Engineering	Characteristics	Digital Info Order
ngineerir	g Info	Ken Harrison			
	0602	Update Time	2013-05-07 10:30:27		
	0605	ARM CRC Check	0CA6		
	Ob8c	FPGA CRC Check	85C8		
	0ь21	Current AU upgrading-file name	DAS_AU_FA1AA_V1.0	1_201304	
~	0ь22	Current EU upgrading-file name	DAS_EU_FE1AA_V1.01	_201304:	
	01-00				

Figure 8-1 Checking Software Package Version

As mentioned above, the system software upgrade is divided into two steps. First, upload the package to the master AU. Second, the slave device automatically downloads the new software package from the Master AU to complete the upgrade process. This process can be performed in one of two ways: by performing a local upgrade using the OMT or by performing a remote upgrade via FTP.

8.1. Local Upgrade

As an example, to do an RU or EU upgrade:

 Log in to the WebOMT on the Master AU. Click the Upgrading button on the main page to navigate to the software upgrade page. See Figure 8-2.

User Manual

D Lo	gs 🤤	Register	Language
Scree	nShot	Upgrade	Configuration

2. On the software upgrade page, as shown in Figure 8-3, click the Upload button to upload the RU or EU software package file.

Refresh Delete Download Upgrade Check Version

Figure 8-3 Software Upgrade Step 2

3. When the software upload has completed successfully, select the file that was just uploaded and click the **Upgrade** button to complete the software upgrade, as shown in Figure 8-4 for an RU upgrade.

File Name		File Size	Date	Ŭ
DAS_RU_FR1AA_V1.01_20130427.zip	İ	3453 KB	2013-5-7 10:29	
DAS_EU_FE1AA_V1.01_20130427.zip		3000 KB	2013-5-7 10:29	
DAS_AU_FA1AA_V1.01_20130427.zip		3576 KB	2013-5-7 10:29	
pLond †			Refresh Delete Dov	/nload Upgrade) Check Version
pLond 🕈			Refresh Delete Dov	vnload Upgrade Check Versi

Figure 8-4 Software Upgrade Step 3

4. When the upgrade has completed, confirm that the software has been updated correctly as shown in Figure 8-1.

There is one difference in the AU upgrade process. Follow the same steps as for the RU or EU; however, when the AU package upgrade has completed successfully, the Master AU resets itself automatically to complete the software

upgrade.

8.2. Remote Upgrade

Use FTP to perform an upgrade remotely. As shown in Figure 8-5, set up the FTP server IP address, port number, login name, login password, file storage path and filename to be upgraded. Then, set the **FTP File Transfer Control** item to "Start upgrade". To complete the upgrade, click the **Set** button to download the software from the FTP server. When using this method, ensure that the FTP server is running correctly and the file to be upgraded has been saved in the specified directory.

Site Info		All Se	lect Engineering				< E
ite ID:	0000000	DA	S Topo User Para Alarm	System Info Engineering	Characteristics	Digital Info	Command
evice ID:	0	Device	Info				
ev Type:	MasterAU		Vendor	SUNWAVE			
Dev Name: DAS AU			Product Model	iDAS-A201008317			
			Serial Number	123			
Online User			RMON Mode	Monitoring mode			
			Software Upgrading Result	Upgrading succeed			
. 2	10 7 3 229		Remote Upgrade Mode	FTP			
	11 7 70 1		MON Edition	1.1			
	11.7.70.1		Device Edition(FPGA)	01			
			Device Location	Building A			
		Netwo	rk Management				
			Site ID	00000000	hexadecimal		
			Device ID	0	decimalism		
			OMC IP Addr	10.7.3.58	1		
			OMC IP port	80			
			Heartbeat interval time	30	S		
			Protocol Selected	TCP/IP			
			Region protocol	IP+UDP 🗸			
			Device recv port(UDP)	100			
			Query/Set IP addr 1	10.7.0.10			
			Query/Set IP addr 2	10.7.0.20			
			Date and Time	2014-05-12 15:31:22			
			Device IP Addr	10.7.6.205			
			Subnet Mask	255.0.0.0			
	🚹 💶 🗹		Default Gateway	10.7.0.1			
			Server IP Addr (FTP)	10.7.0.21	1		
	Query all		Server IP port (FTP)	100			
	O Overv		FTP Username	zjj			
	Query		FTP Password	zjj			
	🌯 Set		Awaiting Upgrading filepath	/home/zjj			
			Awaiting Upgrading filename	1.txt			
			FTP File Transfer control	Start upgrade			

Figure 8-5 Setting up Remote Upgrade via FTP

If the IDAS is connected to an NMS, the operations above can be set through the NMS to implement a remote software upgrade, as shown in Figure 8-6.

9. Device Maintenance

9.1. Regular Maintenance

When the IDAS is running, regular inspection is recommended, as follows:

- Check that RF and power cables are connected securely and that all screws are tight. If any connections pose a safety hazard, deal with them as soon as possible.
- 2. Check the ground status of the device.
- 3. Measure the power supply voltage of the devices.
- 4. Check the operating status and main performance parameters of devices regularly through the NMS or OMT.
- 5. Check whether all warning marks are intact.

If a fault occurs and the device cannot operate normally, return the device to the factory for repair or send to technicians for site repair.

9.2. Troubleshooting

This section lists problems that may arise in engineering applications and suggests relevant solutions.

- 1. The slave device cannot synchronize with the master device:
 - a) Query the software version using the OMT. Make sure that the device is running the correct software.
 - b) Check the SFP module to confirm whether the SFP module has been damaged.
 - c) Restart the device. If the problem persists, the device may have been damaged. The equipment needs to be replaced.
- 2. RU downlink shows an output-power alarm:
 - a) The gain of the RU downlink is equal to (37- DL attenuation dB). Check the RU downlink baseband power, and then add the downlink baseband power to the RU downlink gain. The result should be close to the output power. If the deviation is more than 5 dB, the PA module may be damaged.
- 3. Over-temperature alarm:
 - a) The devices need space to dissipate heat. Ensure the device is not covered by anything. If the device is covered, the temperature will rise.

10. Application Scenarios

This section describes various configuration scenarios for the IDAS.

10.1. Operators Located at Same Site

In this example, operators A, B, C, D and E are located at the same site (see Figure 10-1). Operators B and C operate in the same frequency band, which can be combined in one channel in "the RF domain". The maximum bandwidth per operating band should be less than 60MHz and the maximum bandwidth of all operators should be less than 200 MHz.

Figure 10-1 Example for Operators Located at Same Site

10.2. Operators Located at Separate Sites

In this example, operators A, B, D and E are located at one site and operators C and F are located at a different site. (See Figure 10-2) Operators C and F can access the Master AU through the Slave AU so that all operators can combine within the same fibre from the Master AU to the EU. In contrast with the scenario in section 10.1, operators B and C can be combined in the "baseband domain". The maximum bandwidth per operating band should be less than 60MHz and the maximum bandwidth of all operators should be less than 200 MHz.

CrossFire – A revolution in RF Transport for In Building Wireless

User Manual

Figure 10-2 Example for Operators Located at Separate Sites

10.3. MIMO Application

Since the same frequency is used between MIMO1 and MIMO2, operator C, as shown in Figure 10-3, must employ two special channels in the AU and RU. In order to guarantee coherence between MIMO1 and MIMO2, MIMO1 and MIMO2 must be in the same AU and RU. The maximum bandwidth per operating band should be less than 60MHz and the maximum bandwidth of all operators should be less than 200MHz.

10.4. RU Cascade Application

In this scenario, RU1 can connect to the EU or directly to the AU. A maximum of four RUs can cascade when RU1 is connected to the EU and a maximum of five RUs can cascade when RU1 is directly connected to the AU. (See Figure 10-4) The maximum bandwidth per operating band should be less than 60MHz and the maximum bandwidth of all operators should be less than 200 MHz.

Figure 10-4 Example for Cascading RU Application

10.5. WLAN Application

IDAS provides a transparent pipeline for 10M/100M/1000Mbps Ethernet transmission. Each EU has six electrical ports (GE1~GE6) for six WLAN signals to access. Meanwhile, six optical ports (OP1~OP6) correspond to GE1~GE6 for the output signal. (See Figure 10-5) The flow path of the signal is:

Input LAN signals— EU— RU— AP— POI— Antenna-feeder system.

Note:

- The electrical port must correspond to an optical port, for example, GE1 corresponds to OP1.
- If multiple cascading RUs connect, the WLAN signal can be output from a random RU.
- If multiple cascading RUs connect and more than one AP device connects to the RUs, the WLAN signal can be output from one RU, and the priority is RU1>RU2>RU3.

Figure 10-5 Example for WLAN Application