WaveLynx Technologies Corporation

TEST REPORT FOR

Ethos Models: ET20-2, ET20-3, ET20-6, ET20-7, ET25-2, ET25-3, ET25-6 and ET25-7

Tested to The Following Standards:

FCC Part 15 Subpart C Section(s)

15.207 & 15.225 (13.110-14.010 MHz)

Report No.: 97757-40

Date of issue: June 24, 2016

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of EMC testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

This report contains a total of 102 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

TABLE OF CONTENTS

Administrative Information	3
Test Report Information	3
Report Authorization	3
Test Facility Information	4
Software Versions	4
Site Registration & Accreditation Information	4
Summary of Results	5
Modifications During Testing	5
Conditions During Testing	5
Equipment Under Test	6
General Product Information	9
FCC Part 15 Subpart C	10
15.215(c) Occupied Bandwidth (20dB BW)	10
15.225(a)-(c) Field Strength of Fundamental	17
15.225(e) Frequency Stability	42
15.225(d) Radiated Emissions	47
15.207 AC Conducted Emissions	87
Supplemental Information	101
Measurement Uncertainty	101
Emissions Tost Datails	101

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR:

REPORT PREPARED BY:

WaveLynx Technologies Corporation 12303 Airport Way, Suite 200 Broomfield, CO 80021

CKC Laboratories, Inc. 5046 Sierra Pines Drive Mariposa, CA 95338

REPRESENTATIVE: Daniel Field

Customer Reference Number: CKPO030916

Project Number: 97757

DATE OF EQUIPMENT RECEIPT:

cicience Number. en 0030310

April 20, 2016

Terri Rayle

DATE(S) OF TESTING:

April 20 - May 21, 2016

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the sample equipment tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm

Steve - Bel

Director of Quality Assurance & Engineering Services CKC Laboratories, Inc.

Page 3 of 102 Report No.: 97757-40

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. 5046 Sierra Pines Drive Mariposa, CA 95338

Software Versions

CKC Laboratories Proprietary Software	Version	
EMITest Emissions	5.03.02	

Site Registration & Accreditation Information

Location	CB#	TAIWAN	CANADA	FCC	JAPAN
Mariposa D	US0103	SL2-IN-E-1147R	3082A-1	784962	A-0136

Page 4 of 102 Report No.: 97757-40

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C - 15.225

Test Procedure	Description	Modifications	Results
15.215(c)	Occupied Bandwidth	NA	Pass
15.225(a)-(c)	Field Strength of Fundamental	NA	Pass
15.225(e)	Frequency Stability	NA	Pass
15.225(d)	Field Strength of Spurious Emissions	NA	Pass
15.207	AC Conducted Emissions	NA	Pass

NA = Not Applicable

Modifications During Testing

This list is a summary of the modifications made to the equipment during testing.

This list is a summary of the modifications made to the equipment during testing.		
Summary of Conditions		
No modifications were made during testing.		

Modifications listed above must be incorporated into all production units.

Conditions During Testing

This list is a summary of the conditions noted to the equipment during testing.

Summary of Conditions				
None	None			

Page 5 of 102 Report No.: 97757-40

EQUIPMENT UNDER TEST (EUT)

During testing numerous configurations may have been utilized. The configurations listed below support compliance to the standard(s) listed in the Summary of Results section.

^ -	. c· .		4
Cor	TIG	uration	1

E~	uin	ma	nt	Tes	+0	ત ٠
EU	uiu	me	IIL	163	LEI	.

Device	Manufacturer	Model #	S/N
Ethos	WaveLynx Technologies Corporation	ET20-3	NA

Support Equipment:

Device	Manufacturer	Model #	S/N
DC Power Supply	HP	6205C	2228A01775

Configuration 2

Equipment Tested:

Device	Manufacturer	Model #	S/N
Ethos	WaveLynx Technologies Corporation	ET20-2	NA

Support Equipment:

Device	Manufacturer	Model #	S/N
DC Power Supply	HP	6205C	2228A01775

Configuration 3

Equipment Tested:

Device	Manufacturer	Model #	S/N
Ethos	WaveLynx Technologies Corporation	ET20-7	NA

Support Equipment:

Device	Manufacturer	Model #	S/N
DC Power Supply	HP	6205C	2228A01775

Configuration 4

Equipment Tested:

Device	Manufacturer	Model #	S/N
Ethos	WaveLynx Technologies Corporation	ET20-6	NA

Support Equipment:

Device	Manufacturer	Model #	S/N
DC Power Supply	HP	6205C	2228A01775

Configuration 5

Equipment Tested:

Device	Manufacturer	Model #	S/N
Ethos	WaveLynx Technologies Corporation	ET25-3	NA

Support Equipment:

Device	Manufacturer	Model #	S/N
DC Power Supply	HP	6205C	2228A01775

Page 6 of 102 Report No.: 97757-40

Equipment Tested:

Device	Manufacturer	Model #	S/N
Ethos	WaveLynx Technologies Corporation	ET25-2	NA

Support Equipment:

Device	Manufacturer	Model #	S/N
DC Power Supply	HP	6205C	2228A01775

Configuration 7

Equipment Tested:

Device	Manufacturer	Model #	S/N
Ethos	WaveLynx Technologies Corporation	ET25-7	NA

Support Equipment:

Device	Manufacturer	Model #	S/N
DC Power Supply	HP	6205C	2228A01775

Configuration 8

Equipment Tested:

Device	Manufacturer	Model #	S/N
Ethos	WaveLynx Technologies Corporation	ET25-6	NA

Support Equipment:

Device	Manufacturer	Model #	S/N
DC Power Supply	HP	6205C	2228A01775

Configuration 12

Equipment Tested:

Device	Manufacturer	Model #	S/N
Ethos	WaveLynx Technologies Corporation	ET20-6	NA
Ethos	WaveLynx Technologies Corporation	ET20-7	NA

Support Equipment:

Device	Manufacturer	Model #	S/N
DC Power Supply	HP	6205C	2228A01775

Configuration 14

Equipment Tested:

Device	Manufacturer	Model #	S/N
Ethos	WaveLynx Technologies Corporation	ET25-6	NA
Ethos	WaveLynx Technologies Corporation	ET25-7	NA

Support Equipment:

Device	Manufacturer	Model #	S/N
DC Power Supply	HP	6205C	2228A01775

Page 7 of 102 Report No.: 97757-40

Equipment Tested:

Device	Manufacturer	Model #	S/N
Ethos	WaveLynx Technologies Corporation	ET20-2	NA
Ethos	WaveLynx Technologies Corporation	ET20-3	NA
Ethos	WaveLynx Technologies Corporation	ET20-6	NA
Ethos	WaveLynx Technologies Corporation	ET20-7	NA

Support Equipment:

Device	Manufacturer	Model #	S/N
DC Power Supply	HP	6205C	2228A01775

Configuration 16

Equipment Tested:

Device	Manufacturer	Model #	S/N
Ethos	WaveLynx Technologies Corporation	ET25-2	NA
Ethos	WaveLynx Technologies Corporation	ET25-3	NA
Ethos	WaveLynx Technologies Corporation	ET25-6	NA
Ethos	WaveLynx Technologies Corporation	ET25-7	NA

Support Equipment:

Device	Manufacturer	Model #	S/N
DC Power Supply	HP	6205C	2228A01775

Configuration 11

Equipment Tested:

Device	Manufacturer	Model #	S/N
Ethos	WaveLynx Technologies Corporation	ET20-2	NA
Ethos	WaveLynx Technologies Corporation	ET20-3	NA

Support Equipment:

Device	Manufacturer	Model #	S/N
DC Power Supply	HP	6205C	2228A01775

Configuration 13

Equipment Tested:

Device	Manufacturer	Model #	S/N
Ethos	WaveLynx Technologies Corporation	ET25-2	NA
Ethos	WaveLynx Technologies Corporation	ET25-3	NA

Support Equipment:

Device	Manufacturer	Model #	S/N
DC Power Supply	HP	6205C	2228A01775

Page 8 of 102 Report No.: 97757-40

General Product Information:

Product Information	Manufacturer-Provided Details				
Equipment Type: (All 8 EUTs)	Stand-Alone Equipment				
Modulation Type(s): (All 8 EUTs)	ASK with 847kHz subcarrier				
	Configuration 1 = 2.58%				
	Configuration 2 and Configuration 8 = 2.81%				
Maximum Duty Cycle:	Configuration 3 and Configuration 6 = 3.08%				
(Measured)	Configuration 4 = 3.09%				
	Configuration 5 = 3.05%				
	Configuration 7 = 2.82%				
Antenna Type(s) and Gain:	Configuration 15 and Configuration 16 = PCB Trace 65mm x 110mm				
Antenna Connection Type: (All 8 EUTs)	Integral				
Nominal Input Voltage:	12VDC				
(All 8 EUTs)	IZVUC				
Firmware / Software used for Test:	Wallmount Reader FCC LF Version 1				
(All 8 EUTs)	vvaiiiloulit Reduer FCC LF Version 1				

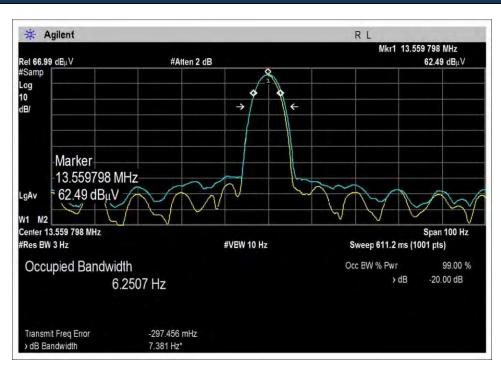
Page 9 of 102 Report No.: 97757-40

FCC Part 15 Subpart C

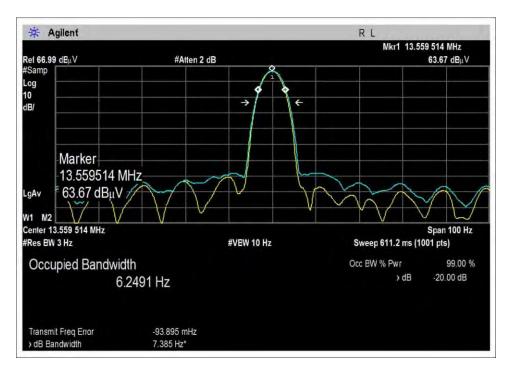
15.215(c) Occupied Bandwidth (20dB BW)

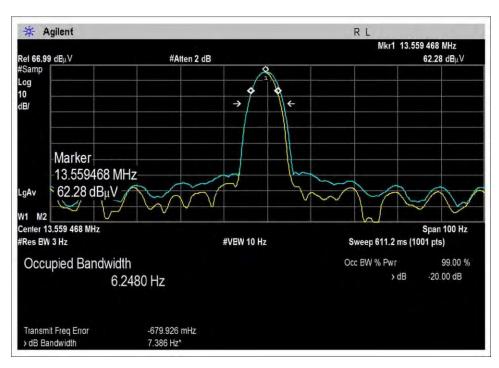
Test Setup/Conditions						
Test Location:	Mariposa Lab D	Test Engineer:	Benny Lovan / Skip Doyle			
Test Method:	ANSI C63.10 (2013)	Test Date(s):	4/20/2016, 04/25/16 – 04/27/16			
Configuration:	1, 2, 3, 4, 5, 6, 7 and 8	<u> </u>	04/27/10			
Test Setup:	Modulation: ASK 847kHz Subcarri	er				
	Antenna Type: Integral					
	Antenna Gain 2 dBi					
	EUT Orientation: Y-Axis					
	EUT Orientation: Y-Axis The EUT is powered by a DC power supply at 12VDC. The manufacturer declares it only ever be wall mounted in an upright (Y-axis) orientation. The EUT is setup on an 8 foam block. It has been programmed to continuously transmit the RFID signa 13.56MHz.					

Environmental Conditions							
Temperature (°C)	10 – 14.2	Relative Humidity (%):	48-76				


Test Equipment								
Asset#	Description	Manufacturer	Model	Cal Date	Cal Due			
ANSITED 3M	Cable	None	None	11/15/2014	11/15/2016			
ANP06884	Cable	TMS	LMR195-FR-4	10/27/2015	10/27/2017			
AN00226	Loop Antenna	EMCO	6502	4/4/2016	4/4/2018			

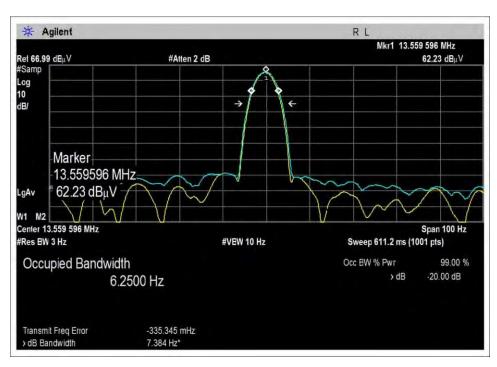
Page 10 of 102 Report No.: 97757-40


Test Data Summary								
Frequency (MHz)	Antenna Port	Modulation	Measured (kHz)	Limit (kHz)	Results			
Configuration 1 13.559	Integral	ASK with 847kHz subcarrier	.007381	None	NA			
Configuration 2 13.559	Integral	ASK with 847kHz subcarrier	.007386	None	NA			
Configuration 3 13.559	Integral	ASK with 847kHz subcarrier	.007386	None	NA			
Configuration 4 13.560	Integral	ASK with 847kHz subcarrier	.007386	None	NA			
Configuration 5 13.560	Integral	ASK with 847kHz subcarrier	.007384	None	NA			
Configuration 6 13.559	Integral	ASK with 847kHz subcarrier	.007386	None	NA			
Configuration 7 13.560	Integral	ASK with 847kHz subcarrier	.007386	None	NA			
Configuration 8 13.559	Integral	ASK with 847kHz subcarrier	.007384	None	NA			

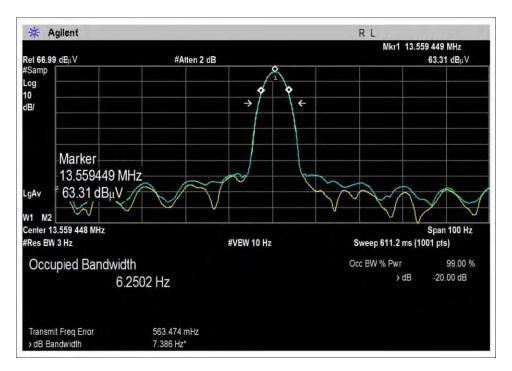

Plots

Configuration 1

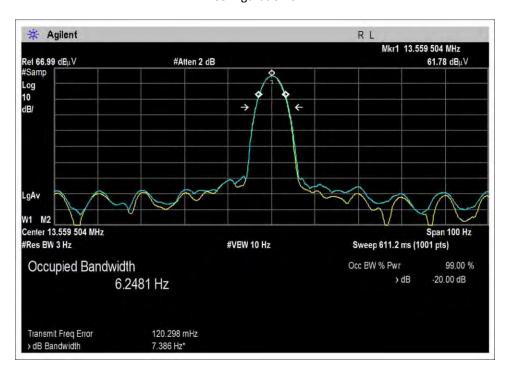




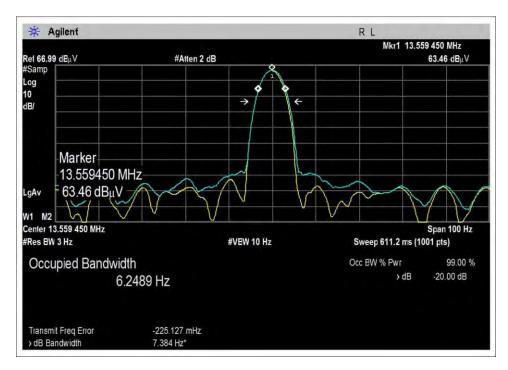
Configuration 3



Configuration 4



Configuration 5



Configuration 6

Configuration 7

Configuration 8

Page 15 of 102 Report No.: 97757-40

Test Setup Photo

Page 16 of 102 Report No.: 97757-40

15.225(a)-(c) Field Strength of Fundamental

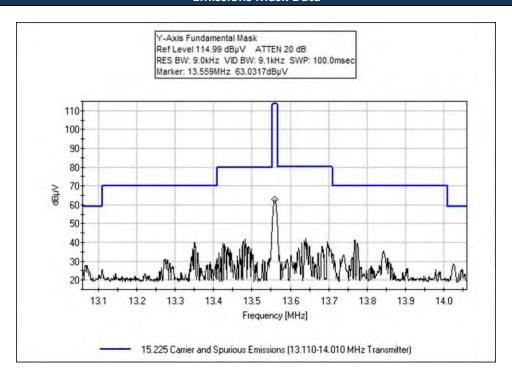
	Test Data Summary - Voltage Variations									
Frequency (MHz)	Modulation / Ant Port	V _{Minimum} (dBuV/m)	V _{Nominal} (dBuV/m)	V _{Maximum} (dBuV/m)	Max Deviation from V _{Nominal} (dB)					
		Configuration	n 1							
13.560 Parallel	ASK with 847kHz subcarrier / Integral Antenna	32.9	32.9	32.8	0.1					
13.56	ASK with 847kHz subcarrier /	30.2	30.1	30.1	0.1					
Perpendicular	Integral Antenna	Configuration	n 2							
13.559	ASK with 847kHz subcarrier /	Comigaratio	2							
Parallel	Integral Antenna	34.1	34.1	34.1	0.0					
13.560 Perpendicular	ASK with 847kHz subcarrier / Integral Antenna	31.1	31.0	31.1	0.1					
respendicular	integral / titelina	Configuration	n 3							
13.559 Parallel	ASK with 847kHz subcarrier / Integral Antenna	32.7	32.8	32.7	0.1					
13.560	ASK with 847kHz subcarrier /	29.1	29.1	29.1	0.0					
Perpendicular Integral Antenna Configuration 4										
13.56	ASK with 847kHz subcarrier /	Configuratio	on 4							
Parallel	Integral Antenna	34.1	34.0	34.1	0.1					
13.56 Perpendicular	ASK with 847kHz subcarrier / Integral Antenna	29.7	29.8	29.7	0.1					
respendicular	megra Antenia	Configuration	n 5							
13.560	ASK with 847kHz subcarrier /									
Parallel	Integral Antenna	32.6	32.7	32.6	0.1					
13.560 Perpendicular	ASK with 847kHz subcarrier / Integral Antenna	28.8	28.8	28.8	0.0					
respendiedia	integrar / interma	Configuration	n 6							
13.559 Parallel	ASK with 847kHz subcarrier / Integral Antenna	33.7	33.7	33.7	0.0					
13.559	ASK with 847kHz subcarrier /	30.3	30.3	30.3	0.0					
Perpendicular	Integral Antenna		. 7							
12.550	ACV with 947kH authorized	Configuration	on 7	T T						
13.559 Parallel	ASK with 847kHz subcarrier / Integral Antenna	32.3	32.2	32.3	0.1					
13.560 Perpendicular	ASK with 847kHz subcarrier / Integral Antenna	29.4	29.4	29.4	0.0					
. c.pe.naicaidi	1	Configuration	on 8							
13.559	ASK with 847kHz subcarrier /	33.9	33.9	33.9	0.0					
Parallel 13.560	Integral Antenna ASK with 847kHz subcarrier /	30.3	30.3	30.3	0.0					
Perpendicular	Integral Antenna	23.3	23.5	23.5	0.0					

Test performed using operational mode with the highest output power, representing worst case.

Page 17 of 102 Report No.: 97757-40

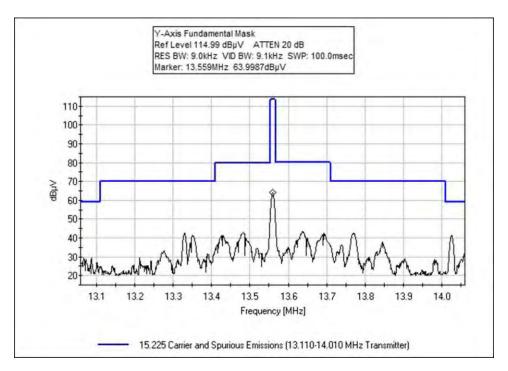
 $\frac{\textit{Parameter Definitions:}}{\textit{Measurements performed at input voltage Vnominal} \pm 15\%.}$

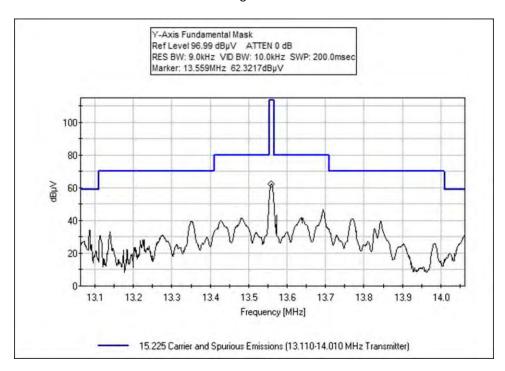
	, ,
Parameter	Value
V _{Nominal} :	12 VDC
V _{Minimum} :	10.2 VDC
V _{Maximum} :	13.8 VDC


	Test Data Summ	arv – Radiated	Field Strength Me	asurement		
Frequency (MHz)	Modulation	Ant. Type	Measured (dBuV/m @ 30m)	Limit (dBuV/m @ 30m)	Results	
		Configur	ation 1			
13.560 Parallel	ASK with 847kHz subcarrier	Integral	32.9	≤84	Pass	
13.560 Perpendicular	ASK with 847kHz	Integral	30.1	≤84	Pass	
respendicular	Subcarrier	Configur	ration 2			
13.559 Parallel	ASK with 847kHz subcarrier	Integral	34.1	≤84	Pass	
13.560 Perpendicular	ASK with 847kHz subcarrier	Integral	31.0	≤84	Pass	
Configuration 3						
13.560 Parallel	ASK with 847kHz subcarrier	Integral	32.8	≤84	Pass	
13.560 Perpendicular	ASK with 847kHz subcarrier	Integral	29.1	≤84	Pass	
respendicular	Subcurrier	Configur	ration 4			
13.560 Parallel	ASK with 847kHz subcarrier	Integral	34.0	≤84	Pass	
13.560 Perpendicular	ASK with 847kHz subcarrier	Integral	29.8	≤84	Pass	
-		Configur	ation 5			
13.560 Parallel	ASK with 847kHz subcarrier	Integral	32.7	≤84	Pass	
13.560 Perpendicular	ASK with 847kHz subcarrier	Integral	28.8	≤84	Pass	

Page 18 of 102 Report No.: 97757-40

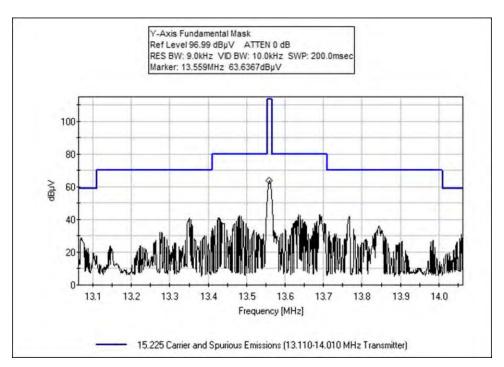
	Test Data Sumn	nary – Radiated	Field Strength Mea	asurement			
Frequency (MHz)	Modulation	Ant. Type	Measured (dBuV/m @ 30m)	Limit (dBuV/m @ 30m)	Results		
		Configur	ation 6				
13.559	13.559 ASK with 847kHz Integral 33.7 ≤84						
Parallel	subcarrier	iiitegiai	33.7	204	Pass		
13.559	ASK with 847kHz	Integral	30.3	≤84	Pass		
Perpendicular	subcarrier	iiitegiai	30.3	204	P d 55		
	Configuration 7						
13.559	ASK with 847kHz	Integral	Integral 32.2	≤84	Pass		
Parallel	subcarrier	iiitegiai	32.2	204	F d 3 5		
13.560	ASK with 847kHz	Integral	29.4	≤84	Pass		
Perpendicular	subcarrier	iiitegiai	25.4	204	P d 55		
		Configur	ation 8				
13.559	ASK with 847kHz	Integral	33.9	≤84	Pass		
Parallel	subcarrier	iiilegiai	33.3	≥04	F d 55		
13.560	ASK with 847kHz	Integral	30.3	≤84	Pass		
Perpendicular	subcarrier	integral	30.3	204	F a 5 5		

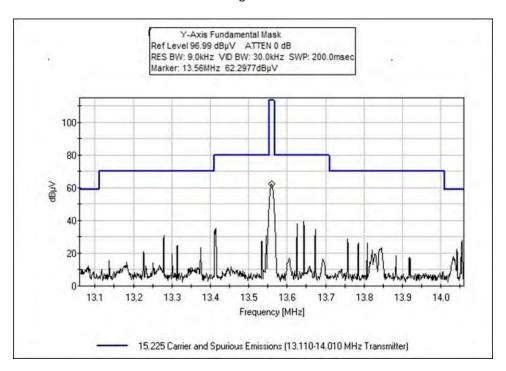

Emissions Mask Data



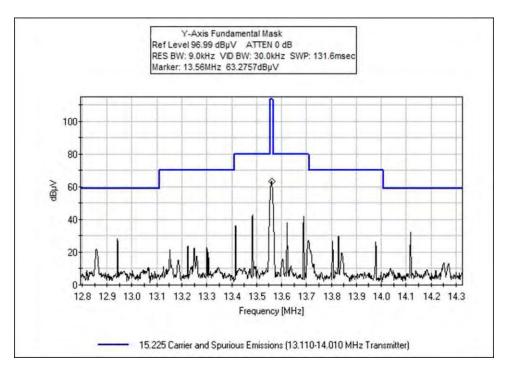
Configuration 1

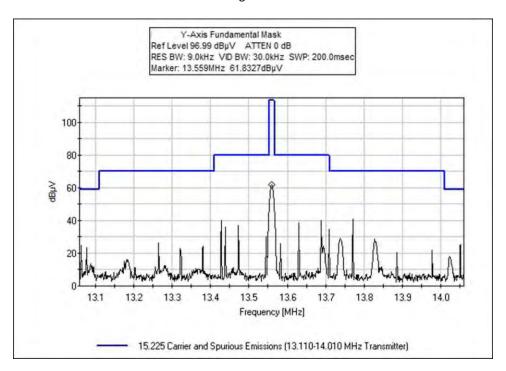
Page 19 of 102 Report No.: 97757-40



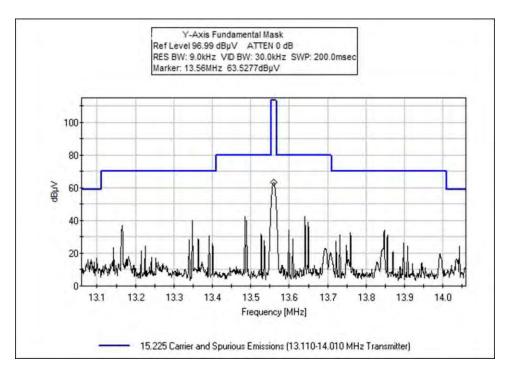


Configuration 3





Configuration 5



Configuration 7

Configuration 8

Page 23 of 102 Report No.: 97757-40

Test Setup / Conditions / Data

Test Location: CKC Laboratories Inc. • 5046 Sierra Pines Dr. • Mariposa, CA 95338 • 209-966-5240

Customer: WaveLynx Technologies Corporation

Specification: 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter)

 Work Order #:
 97757
 Date: 4/20/2016

 Test Type:
 Radiated Scan
 Time: 17:38:17

Tested By: Benny Lovan Sequence#: 1 Software: EMITest 5.03.02

Equipment Tested:

Device Manufacturer Model # S/N Configuration 1

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

Radiated Emissions Fundamental Measurements

Temperature: 20°C Humidity:40%

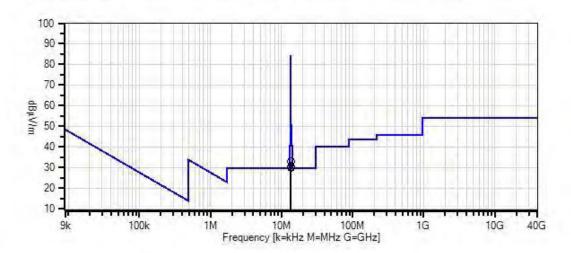
Atmospheric Pressure: 97.4 kPa

Method: ANSI C63.10 2013

Modulation: ASK 847kHz Subcarrier

Antenna Type: Integral Antenna Gain 2 dBi

The EUT is powered by a DC power supply at 12VDC. The manufacturer declares it will only ever be wall mounted in an upright/vertical (Y-axis) orientation.


The EUT is setup on an 80cm foam block. It has been programmed to continuously transmit the RFID signal at 13.56MHz

Measurements will be made in both polarities as well as with the voltage variation of 10.2VDC and 13.8VDC (+/-15% of nominal).

Page 24 of 102 Report No.: 97757-40

WaveLynx Technologies Corporation WO#: 97757 Sequence#: 1 Date: 4/20/2016 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter) Test Distance: 3 Meters Perpendicular

- Readings Peak Readings 0
- QP Readings
- Average Readings
- Ambient
 - Software Version: 5.03.02
- 1 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter)

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02668	Spectrum Analyzer	E4446A	8/14/2015	8/14/2016
T1	ANP06884	Cable	LMR195-FR-4	10/27/2015	10/27/2017
T2	ANSITED 3M	Cable		11/15/2014	11/15/2016
T3	AN00226	Loop Antenna	6502	4/4/2016	4/4/2018

Measur	ement Data:	Re	eading lis	ted by ma	argin.		Τe	est Distanc	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	13.560M	62.5	+0.1	+0.7	+9.6		-40.0	32.9	84.0	-51.1	Paral
									10.2VDC,	Y- Axis	
2	13.560M	62.5	+0.1	+0.7	+9.6		-40.0	32.9	84.0	-51.1	Paral
									Nominal 1	2VDC,	
									Y- Axis		
3	13.560M	62.4	+0.1	+0.7	+9.6		-40.0	32.8	84.0	-51.2	Paral
									13.8VDC,	Y- Axis	
4	13.560M	59.8	+0.1	+0.7	+9.6		-40.0	30.2	84.0	-53.8	Perpe
									10.2VDC,	Y- Axis	
5	13.560M	59.7	+0.1	+0.7	+9.6		-40.0	30.1	84.0	-53.9	Perpe
									Nominal 1	2VDC,	
									Y- Axis		
6	13.560M	59.7	+0.1	+0.7	+9.6		-40.0	30.1	84.0	-53.9	Perpe
									13.8VDC,	Y- Axis	_

Test Location: CKC Laboratories Inc. • 5046 Sierra Pines Dr. • Mariposa, CA 95338 • 209-966-5240

Customer: WaveLynx Technologies Corporation

Specification: 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter)

Work Order #: 97757 Date: 4/20/2016
Test Type: Radiated Scan Time: 16:37:24
Tested By: Benny Lovan Sequence#: 2

Software: EMITest 5.03.02

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Test Conditions / Notes:

Radiated Emissions Fundamental Measurements

Temperature: 20°C Humidity:40%

Atmospheric Pressure: 97.4 kPa

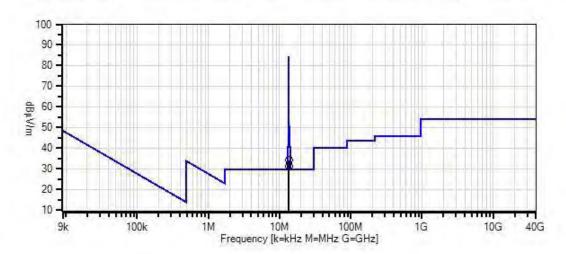
Method: ANSI C63.10 2013

Modulation: ASK 847kHz Subcarrier

Antenna Type: Integral Antenna Gain 2 dBi

The EUT is powered by a DC power supply at 12VDC. The manufacturer declares it will only ever be wall mounted in an upright/vertical (Y-axis) orientation.

The EUT is setup on an 80cm foam block. It has been programmed to continuously transmit the RFID signal at


13.56MHz.

Measurements will be made in both polarities as well as with the voltage variation of 10.2VDC and 13.8VDC (+/-15% of nominal).

Page 26 of 102 Report No.: 97757-40

WaveLynx Technologies Corporation WO#: 97757 Sequence#: 2 Date: 4/20/2016 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter) Test Distance: 3 Meters Perpendicular

- Readings Peak Readings QP Readings 0
- Average Readings
- Ambient
 - Software Version: 5.03.02
- 1 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter)

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02668	Spectrum Analyzer	E4446A	8/14/2015	8/14/2016
T1	ANP06884	Cable	LMR195-FR-4	10/27/2015	10/27/2017
T2	ANSITED 3M	Cable		11/15/2014	11/15/2016
T3	AN00226	Loop Antenna	6502	4/4/2016	4/4/2018

Measur	ement Data:	Re	Reading listed by margin.				Te	est Distanc	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	dBμV/m	dB	Ant
1	13.559M	63.7	+0.1	+0.7	+9.6		-40.0	34.1	84.0	-49.9	Paral
									13.8VDC,	Y- Axis	
2	13.560M	63.7	+0.1	+0.7	+9.6		-40.0	34.1	84.0	-49.9	Paral
									10.2VDC,	Y- Axis	
3	13.559M	63.7	+0.1	+0.7	+9.6		-40.0	34.1	84.0	-49.9	Paral
									Nominal 1	2VDC,	
									Y- Axis		
4	13.559M	60.7	+0.1	+0.7	+9.6		-40.0	31.1	84.0	-52.9	Perpe
									10.2VDC,	Y- Axis	
5	13.559M	60.7	+0.1	+0.7	+9.6		-40.0	31.1	84.0	-52.9	Perpe
									13.8VDC,	Y- Axis	_
6	13.560M	60.6	+0.1	+0.7	+9.6		-40.0	31.0	84.0	-53.0	Perpe
									Nominal 1	2VDC,	_
									Y- Axis		

Test Location: CKC Laboratories Inc. • 5046 Sierra Pines Dr. • Mariposa, CA 95338 • 209-966-5240

Customer: WaveLynx Technologies Corporation

Specification: 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter)

 Work Order #:
 97757
 Date: 4/25/2016

 Test Type:
 Radiated Scan
 Time: 14:44:38

Tested By: Benny Lovan Sequence#: 3
Software: EMITest 5.03.02

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 3			

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 3				

Test Conditions / Notes:

Radiated Emissions Fundamental Measurements

Temperature: 13°C Humidity:76%

Atmospheric Pressure: 97.3 kPa

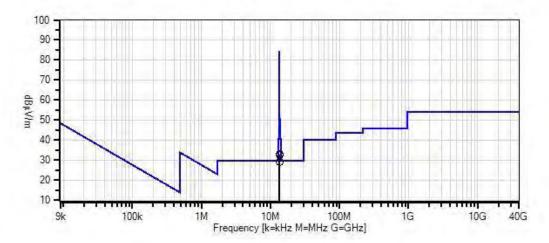
Method: ANSI C63.10 2013

Modulation: ASK 847kHz Subcarrier

Antenna Type: Integral Antenna Gain 2 dBi

The EUT is powered by a DC power supply at 12VDC. The manufacturer declares it will only ever be wall mounted in an upright/vertical (Y-axis) orientation.

The EUT is setup on an 80cm foam block. It has been programmed to continuously transmit the RFID signal at


13.56MHz.

Measurements will be made in both polarities as well as with the voltage variation of 10.2VDC and 13.8VDC (+/-15% of nominal).

Page 28 of 102 Report No.: 97757-40

WaveLynx Technologies Corporation WO#: 97757 Sequence#: 3 Date: 4/25/2016 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter) Test Distance: 3 Meters Parallel

- Readings Peak Readings QP Readings
- Average Readings
- Ambient
- Software Version: 5.03.02
- 1 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter)

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02668	Spectrum Analyzer	E4446A	8/14/2015	8/14/2016
T1	ANP06884	Cable	LMR195-FR-4	10/27/2015	10/27/2017
T2	ANSITED 3M	Cable		11/15/2014	11/15/2016
T3	AN00226	Loop Antenna	6502	4/4/2016	4/4/2018

Measure	ement Data:	Re	ading lis	ted by ma	argin.		Te	st Distanc	e: 3 Meters		
#	Freq	Rdng	T1	T2	Т3		Dist	Corr	Spec	Margin	Polar
	MHz	$dB\mu V$	dB	dB	dB	dΒ	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	13.559M	62.4	+0.1	+0.7	+9.6		-40.0	32.8	84.0	-51.2	Paral
									Nominal 12	2VDC,	
									Parallel, Y	-Axis	
2	13.559M	62.3	+0.1	+0.7	+9.6		-40.0	32.7	84.0	-51.3	Paral
									10.2VDC,	Parallel,	
									Y-Axis		
3	13.559M	62.3	+0.1	+0.7	+9.6		-40.0	32.7	84.0	-51.3	Paral
									13.8VDC,	Parallel,	
									Y-Axis		
4	13.559M	58.7	+0.1	+0.7	+9.6		-40.0	29.1	84.0	-54.9	Perpe
									13.8VDC,	Parallel,	
									Y-Axis		
5	13.560M	58.7	+0.1	+0.7	+9.6		-40.0	29.1	84.0	-54.9	Perpe
									Nominal 12	2VDC,	
									Parallel, Y	-Axis	
6	13.560M	58.7	+0.1	+0.7	+9.6		-40.0	29.1	84.0	-54.9	Perpe
									10.2VDC,	Parallel,	
									Y-Axis		

Page 30 of 102 Report No.: 97757-40

Test Location: CKC Laboratories Inc. • 5046 Sierra Pines Dr. • Mariposa, CA 95338 • 209-966-5240

Customer: WaveLynx Technologies Corporation

Specification: 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter)

Work Order #: 97757 Date: 4/25/2016
Test Type: Radiated Scan Time: 11:50:37
Tested By: Benny Lovan Sequence#: 4

Software: EMITest 5.03.02

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 4				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 4				

Test Conditions / Notes:

Radiated Emissions Fundamental Measurements

Temperature: 13°C Humidity:76%

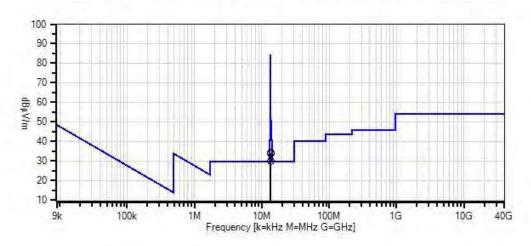
Atmospheric Pressure: 97.3 kPa

Method: ANSI C63.10 2013

Modulation: ASK 847kHz Subcarrier

Antenna Type: Integral Antenna Gain 2 dBi

The EUT is powered by a DC power supply at 12VDC. The manufacturer declares it will only ever be wall mounted in an upright/vertical (Y-axis) orientation.


The EUT is setup on an 80cm foam block. It has been programmed to continuously transmit the RFID signal at 13.56MHz.

Measurements will be made in both polarities as well as with the voltage variation of 10.2VDC and 13.8VDC (+/-15% of nominal).

Page 31 of 102 Report No.: 97757-40

WaveLynx Technologies Corporation WO#: 97757 Sequence#: 4 Date: 4/25/2016 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter) Test Distance: 3 Meters Parallel

---- Readings

- O Peak Readings
- × QP Readings
- * Average Readings
 - Ambient

Software Version: 5.03.02

1 - 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter)

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02668	Spectrum Analyzer	E4446A	8/14/2015	8/14/2016
T1	ANP06884	Cable	LMR195-FR-4	10/27/2015	10/27/2017
T2	ANSITED 3M	Cable		11/15/2014	11/15/2016
T3	AN00226	Loop Antenna	6502	4/4/2016	4/4/2018

Measur	ement Data:	Re	eading lis	ted by ma	ırgin.		Τe	est Distanc	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	$dB\mu V$	dB	dB	dB	dΒ	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	13.560M	63.7	+0.1	+0.7	+9.6		-40.0	34.1	84.0	-49.9	Paral
									13.8VDC,	Y- Axis	
2	13.560M	63.7	+0.1	+0.7	+9.6		-40.0	34.1	84.0	-49.9	Paral
									10.2VDC,	Y- Axis	
3	13.560M	63.6	+0.1	+0.7	+9.6		-40.0	34.0	84.0	-50.0	Paral
									Nominal 1	2VDC,	
									Y- Axis		
4	13.560M	59.4	+0.1	+0.7	+9.6		-40.0	29.8	84.0	-54.2	Perpe
									Nominal 1	2VDC,	
									Y- Axis		
5	13.560M	59.3	+0.1	+0.7	+9.6		-40.0	29.7	84.0	-54.3	Perpe
									13.8VDC,	Y- Axis	
6	13.560M	59.3	+0.1	+0.7	+9.6		-40.0	29.7	84.0	-54.3	Perpe
									10.2VDC,	Y- Axis	_

Test Location: CKC Laboratories Inc. • 5046 Sierra Pines Dr. • Mariposa, CA 95338 • 209-966-5240

Customer: WaveLynx Technologies Corporation

Specification: 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter)

Work Order #: 97757 Date: 4/27/2016
Test Type: Radiated Scan Time: 11:53:42
Tested By: Benny Lovan Sequence#: 5

Software: EMITest 5.03.02

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 5				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 5				

Test Conditions / Notes:

Radiated Emissions Fundamental Measurements

Temperature: 13°C Humidity:76%

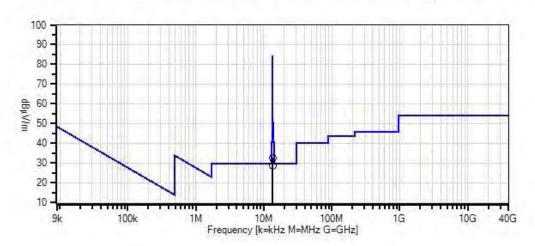
Atmospheric Pressure: 97.3 kPa

Method: ANSI C63.10 2013

Modulation: ASK 847kHz Subcarrier

Antenna Type: Integral Antenna Gain 2 dBi

The EUT is powered by a DC power supply at 12VDC. The manufacturer declares it will only ever be wall mounted in an upright/vertical (Y-axis) orientation.


The EUT is setup on an 80cm foam block. It has been programmed to continuously transmit the RFID signal at 13.56MHz.

Measurements will be made in both polarities as well as with the voltage variation of 10.2VDC and 13.8VDC (+/-15% of nominal).

Page 33 of 102 Report No.: 97757-40

WaveLynx Technologies Corporation WO#: 97757 Sequence#: 5 Date: 4/27/2016
15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter) Test Distance: 3 Meters Perpendicular

Readings Peak Readings

QP Readings Average Readings

Ambient

Software Version: 5.03.02

1 - 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter)

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02668	Spectrum Analyzer	E4446A	8/14/2015	8/14/2016
T1	ANP06884	Cable	LMR195-FR-4	10/27/2015	10/27/2017
T2	ANSITED 3M	Cable		11/15/2014	11/15/2016
T3	AN00226	Loop Antenna	6502	4/4/2016	4/4/2018

Measurement Data: Reading listed by ma			argin.		Te	est Distanc	e: 3 Meters				
#	Freq	Rdng	T1	T2	Т3		Dist	Corr	Spec	Margin	Polar
	MHz	$dB\mu V$	dB	dB	dB	dB	Table	$dB\mu V/m \\$	$dB\mu V/m$	dB	Ant
1	13.560M	62.3	+0.1	+0.7	+9.6		-40.0	32.7	84.0	-51.3	Paral
									Nominal 12	2VDC,	
									Y- Axis		
2	13.560M	62.2	+0.1	+0.7	+9.6		-40.0	32.6	84.0	-51.4	Paral
									13.8VDC,	Y- Axis	
3	13.560M	62.2	+0.1	+0.7	+9.6		-40.0	32.6	84.0	-51.4	Paral
									10.2VDC,	Y- Axis	
4	13.560M	58.4	+0.1	+0.7	+9.6		-40.0	28.8	84.0	-55.2	Perpe
									Nominal 12	2VDC,	
									Y- Axis		
5	13.560M	58.4	+0.1	+0.7	+9.6		-40.0	28.8	84.0	-55.2	Perpe
									10.2VDC,	Y- Axis	
6	13.560M	58.4	+0.1	+0.7	+9.6		-40.0	28.8	84.0	-55.2	Perpe
									13.8VDC,	Y- Axis	

Test Location: CKC Laboratories Inc. • 5046 Sierra Pines Dr. • Mariposa, CA 95338 • 209-966-5240

Customer: WaveLynx Technologies Corporation

Specification: 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter)

Work Order #: 97757 Date: 4/25/2016
Test Type: Radiated Scan
Tested By: Benny Lovan Sequence#: 6

Software: EMITest 5.03.02

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 6				

Support Equipment:

Device	Manufacturer	Model #	S/N
Configuration 6			

Test Conditions / Notes:

Radiated Emissions Fundamental Measurements

Temperature: 13°C Humidity:76%

Atmospheric Pressure: 97.3 kPa

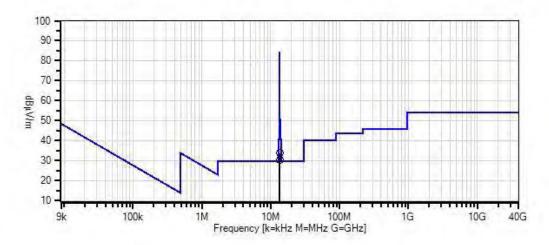
Method: ANSI C63.10 2013

Modulation: ASK 847kHz Subcarrier

Antenna Type: Integral Antenna Gain 2 dBi

The EUT is powered by a DC power supply at 12VDC. The manufacturer declares it will only ever be wall mounted in an upright/vertical (Y-axis) orientation.

The EUT is setup on an 80cm foam block. It has been programmed to continuously transmit the RFID signal at 13.56MHz.


Measurements will be made in both polarities as well as with the voltage variation of 10.2VDC and 13.8VDC (+/-

15% of nominal).

Page 35 of 102 Report No.: 97757-40

WaveLynx Technologies Corporation WO#: 97757 Sequence#: 6 Date: 4/25/2016 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter) Test Distance: 3 Meters Parallel

- Readings Peak Readings
 - QP Readings
- Average Readings
- Ambient
- Software Version: 5.03.02
- 1 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter)

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02668	Spectrum Analyzer	E4446A	8/14/2015	8/14/2016
T1	ANP06884	Cable	LMR195-FR-4	10/27/2015	10/27/2017
T2	ANSITED 3M	Cable		11/15/2014	11/15/2016
T3	AN00226	Loop Antenna	6502	4/4/2016	4/4/2018

Measurement Data: Reading listed by margin.				Te	est Distanc	e: 3 Meters	;				
#	Freq	Rdng	T1	T2	Т3		Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	13.560M	63.3	+0.1	+0.7	+9.6		-40.0	33.7	84.0	-50.3	Paral
									13.8VDC,	Y- Axis	
2	13.559M	63.3	+0.1	+0.7	+9.6		-40.0	33.7	84.0	-50.3	Paral
									10.2VDC,	Y- Axis	
3	13.559M	63.3	+0.1	+0.7	+9.6		-40.0	33.7	84.0	-50.3	Paral
									Nominal 1	2VDC,	
									Y- Axis		
4	13.559M	59.9	+0.1	+0.7	+9.6		-40.0	30.3	84.0	-53.7	Perpe
									Nominal 1	2VDC,	
									Y- Axis		
5	13.560M	59.9	+0.1	+0.7	+9.6		-40.0	30.3	84.0	-53.7	Perpe
									10.2VDC,	Y- Axis	_
6	13.560M	59.9	+0.1	+0.7	+9.6		-40.0	30.3	84.0	-53.7	Perpe
									13.8VDC,	Y- Axis	•

Test Location: CKC Laboratories Inc. • 5046 Sierra Pines Dr. • Mariposa, CA 95338 • 209-966-5240

Customer: WaveLynx Technologies Corporation

Specification: 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter)

Work Order #: 97757 Date: 4/27/2016
Test Type: Radiated Scan Time: 13:57:32
Tested By: Benny Lovan Sequence#: 7

Software: EMITest 5.03.02

Eauipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 7				

Support Equipment:

Device	Manufacturer	Model #	S/N
Configuration 7			

Test Conditions / Notes:

Radiated Emissions Fundamental Measurements

Temperature: 16.2°C Humidity:36%

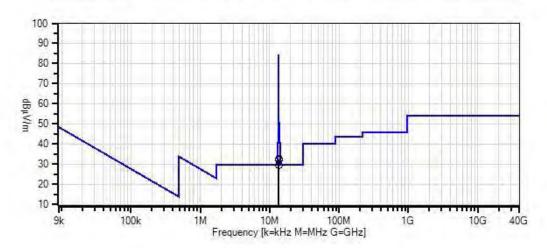
Atmospheric Pressure: 97.3 kPa

Method: ANSI C63.10 2013

Modulation: ASK 847kHz Subcarrier

Antenna Type: Integral Antenna Gain 2 dBi

The EUT is powered by a DC power supply at 12VDC. The manufacturer declares it will only ever be wall mounted in an upright/vertical (Y-axis) orientation.


The EUT is setup on an 80cm foam block. It has been programmed to continuously transmit the RFID signal at 13.56MHz.

Measurements will be made in both polarities as well as with the voltage variation of 10.2VDC and 13.8VDC (+/-15% of nominal).

Page 37 of 102 Report No.: 97757-40

WaveLynx Technologies Corporation WO#: 97757 Sequence#: 7 Date: 4/27/2016
15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter) Test Distance: 3 Meters Parallel

- Readings Peak Readings
 - QP Readings
- Average Readings
- Ambient
- Software Version: 5.03.02
- 1 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter)

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02668	Spectrum Analyzer	E4446A	8/14/2015	8/14/2016
T1	ANP06884	Cable	LMR195-FR-4	10/27/2015	10/27/2017
T2	ANSITED 3M	Cable		11/15/2014	11/15/2016
T3	AN00226	Loop Antenna	6502	4/4/2016	4/4/2018

Measur	ement Data:	Re	eading lis	ted by ma	argin.		Te	est Distanc	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	$dB\mu V$	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	13.560M	61.9	+0.1	+0.7	+9.6		-40.0	32.3	84.0	-51.7	Paral
									13.8Vdc, Y	/-Axis	
2	13.559M	61.9	+0.1	+0.7	+9.6		-40.0	32.3	84.0	-51.7	Paral
									10.2Vdc, Y	-Axis	
3	13.559M	61.8	+0.1	+0.7	+9.6		-40.0	32.2	84.0	-51.8	Paral
									Nominal 1	2.0Vdc,	
									Y-Axis		
4	13.560M	59.0	+0.1	+0.7	+9.6		-40.0	29.4	84.0	-54.6	Perpe
									Nominal 1	2.0Vdc,	
									Y-Axis		
5	13.560M	59.0	+0.1	+0.7	+9.6		-40.0	29.4	84.0	-54.6	Perpe
									13.8Vdc, Y	/-Axis	
6	13.560M	59.0	+0.1	+0.7	+9.6		-40.0	29.4	84.0	-54.6	Perpe
									10.2Vdc, Y	/-Axis	

Test Location: CKC Laboratories Inc. • 5046 Sierra Pines Dr. • Mariposa, CA 95338 • 209-966-5240

Customer: WaveLynx Technologies Corporation

Specification: 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter)

Work Order #: 97757 Date: 4/27/2016
Test Type: Radiated Scan Time: 12:47:11
Tested By: Benny Lovan Sequence#: 8

Software: EMITest 5.03.02

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 8				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 8				

Test Conditions / Notes:

Radiated Emissions Fundamental Measurements

Temperature: 16.2°C Humidity:42%

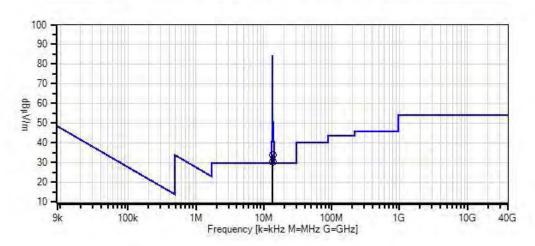
Atmospheric Pressure: 97.3 kPa

Method: ANSI C63.10 2013

Modulation: ASK 847kHz Subcarrier

Antenna Type: Integral Antenna Gain 2 dBi

The EUT is powered by a DC power supply at 12VDC. The manufacturer declares it will only ever be wall mounted in an upright/vertical (Y-axis) orientation.


The EUT is setup on an 80cm foam block. It has been programmed to continuously transmit the RFID signal at 13.56MHz.

Measurements will be made in both polarities as well as with the voltage variation of 10.2VDC and 13.8VDC (+/-15% of nominal).

Page 39 of 102 Report No.: 97757-40

WaveLynx Technologies Corporation WO#: 97757 Sequence#: 8 Date: 4/27/2016 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter) Test Distance: 3 Meters Parallel

- Readings Peak Readings
- QP Readings
- Average Readings
- Ambient
- Software Version: 5.03.02

1 - 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter)

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02668	Spectrum Analyzer	E4446A	8/14/2015	8/14/2016
T1	ANP06884	Cable	LMR195-FR-4	10/27/2015	10/27/2017
T2	ANSITED 3M	Cable		11/15/2014	11/15/2016
T3	AN00226	Loop Antenna	6502	4/4/2016	4/4/2018

Measur	ement Data:	Re	eading lis	ted by ma	ırgin.		Те	est Distanc	e: 3 Meters	;	
#	Freq	Rdng	T1	T2	Т3		Dist	Corr	Spec	Margin	Polar
	MHz	$dB\mu V$	dB	dB	dB	dΒ	Table	$dB\mu V/m \\$	$dB\mu V/m$	dB	Ant
1	13.560M	63.5	+0.1	+0.7	+9.6		-40.0	33.9	84.0	-50.1	Paral
									13.8VDC,	Y- Axis	
2	13.559M	63.5	+0.1	+0.7	+9.6		-40.0	33.9	84.0	-50.1	Paral
									10.2VDC,	Y- Axis	
3	13.559M	63.5	+0.1	+0.7	+9.6		-40.0	33.9	84.0	-50.1	Paral
									Nominal 1	2VDC,	
									Y- Axis		
4	13.560M	59.9	+0.1	+0.7	+9.6		-40.0	30.3	84.0	-53.7	Perpe
									Nominal 1	2VDC,	
									Y- Axis		
5	13.559M	59.9	+0.1	+0.7	+9.6		-40.0	30.3	84.0	-53.7	Perpe
									10.2VDC,	Y- Axis	
6	13.559M	59.9	+0.1	+0.7	+9.6	•	-40.0	30.3	84.0	-53.7	Perpe
									13.8VDC,	Y- Axis	_

Page 40 of 102 Report No.: 97757-40

Test Setup Photo

Page 41 of 102 Report No.: 97757-40

15.225(e) Frequency Stability

	Test Setup/Conditions							
Test Location:	Mariposa Lab A	Test Engineer:	Benny Lovan and Skip Doyle					
Test Method:	ANSI C63.10 (2013)	Test Date(s):	5/12/2016					
Configuration:	3, 4, 7 and 8							
Test Setup:	Once testing was complete, the tv	vo units were replaced Configurations 3, 4, 7	and 8 are worse case and testing					

Environmental Conditions						
Temperature (°C)	19	Relative Humidity (%):	59			

	Test Equipment								
Asset#	Description	Manufacturer	Model	Cal Date	Cal Due				
03197	Multimeter	Extech	MM570A	9/14/2014	9/14/2016				
02668	Spectrum Analyzer	Agilent	E4446A	8/14/2015	8/14/2016				
01879	Temperature Chamber	Thermotron	S-1.2 Min.	12/5/2014	12/5/2016				
00170	Loop Antenna	Solar	7334-1	NCR	NCR				

NCR = No Calibration Required

Page 42 of 102 Report No.: 97757-40

Test Data Summary – Configuration 3

	<u>, </u>				
Temperature (ºC)	Voltage	Frequency (MHz)	Deviation (%)	Limit (%)	Results
-20	V _{Nominal}	13.5598	-0.00147	±0.01	
-10	V _{Nominal}	13.5599	-0.00074	±0.01	
0	V _{Nominal}	13.5598	-0.00147	±0.01	
10	V _{Nominal}	13.5597	-0.00221	±0.01	
20	V _{Minimum}	13.5598	-0.00147	±0.01	Docs
20	V _{Nominal}	13.5598	-0.00147	±0.01	Pass
20	V _{Maximum}	13.5598	-0.00147	±0.01	
30	V _{Nominal}	13.5598	-0.00147	±0.01	
40	V _{Nominal}	13.5597	-0.00221	±0.01	
50	V _{Nominal}	13.5598	-0.00147	±0.01	
Nominal Frequency:		13.560000			

Test Data Summary – Configuration 4

	.,				
Temperature (ºC)	Voltage	Frequency (MHz)	Deviation (%)	Limit (%)	Results
-20	$V_{Nominal}$	13.5597	-0.00221	±0.01	
-10	V _{Nominal}	13.5597	-0.00221	±0.01	
0	V _{Nominal}	13.5596	-0.00295	±0.01	
10	V _{Nominal}	13.5597	-0.00221	±0.01	
20	$V_{Minimum}$	13.5596	-0.00295	±0.01	Doco
20	V _{Nominal}	13.5595	-0.00369	±0.01	Pass
20	V _{Maximum}	13.5596	-0.00295	±0.01	
30	V _{Nominal}	13.5596	-0.00295	±0.01	
40	$V_{Nominal}$	13.5595	-0.00369	±0.01	
50	V _{Nominal}	13.5595	-0.00369	±0.01	
Nominal Frequency:		13.560000			_

Test Data Summary – Configuration 7

Temperature (ºC)	Voltage	Frequency (MHz)	Deviation (%)	Limit (%)	Results
-20	V _{Nominal}	13.5597	-0.00221	±0.01	
-10	V _{Nominal}	13.5597	-0.00221	±0.01	
0	$V_{Nominal}$	13.5596	-0.00295	±0.01	
10	$V_{Nominal}$	13.5596	-0.00295	±0.01	
20	$V_{Minimum}$	13.5595	-0.00369	±0.01	Pass
20	$V_{Nominal}$	13.5596	-0.00295	±0.01	Pd55
20	V _{Maximum}	13.5596	-0.00295	±0.01	
30	V _{Nominal}	13.5596	-0.00295	±0.01	
40	$V_{Nominal}$	13.5595	-0.00369	±0.01	
50	V _{Nominal}	13.5594	-0.00442	±0.01	
Nominal Frequency:		13.560000			_

Page 43 of 102 Report No.: 97757-40

Test Data Summary – Configuration 8

	1						
Temperature (ºC)	Voltage	Frequency (MHz)	Deviation (%)	Limit (%)	Results		
-20	$V_{Nominal}$	13.5596	-0.00295	±0.01			
-10	$V_{Nominal}$	13.5596	-0.00295	±0.01			
0	$V_{Nominal}$	13.5596	-0.00295	±0.01			
10	$V_{Nominal}$	13.5594	-0.00442	±0.01			
20	$V_{Minimum}$	13.5595	-0.00369	±0.01	Docc		
20	$V_{Nominal}$	13.5595	-0.00369	±0.01	Pass		
20	$V_{Maximum}$	13.5594	-0.00442	±0.01			
30	$V_{Nominal}$	13.5594	-0.00442	±0.01			
40	$V_{Nominal}$	13.5594	-0.00442	±0.01			
50	$V_{Nominal}$	13.5594	-0.00442	±0.01			
Nominal Frequency:		13.560000					

Parameter Definitions:

Measurements performed at input voltage Vnominal ± 15%.

Parameter	Value
V _{Nominal} :	12VDC
V _{Minimum} :	10.2VDC
V _{Maximum} :	13.8VDC

Page 44 of 102 Report No.: 97757-40

Test Setup Photos

Page 45 of 102 Report No.: 97757-40

Page 46 of 102 Report No.: 97757-40

15.225(d) Radiated Emissions

Test Setup / Conditions / Data

Test Location: CKC Laboratories Inc. • 5046 Sierra Pines Dr. • Mariposa, CA 95338 • 209-966-5240

Customer: WaveLynx Technologies Corporation

Specification: 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter)

Work Order #: 97757 Date: 5/4/2016
Test Type: Radiated Scan Time: 16:37:07
Tested By: Benny Lovan Sequence#: 9

Software: EMITest 5.03.02

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 11

Support Equipment:

Device Manufacturer Model # S/N
Configuration 11

Test Conditions / Notes:

Radiated Spurious Emissions Measurements

Temperature: 22°C Humidity: 41%

Atmospheric Pressure: 97.1 kPa

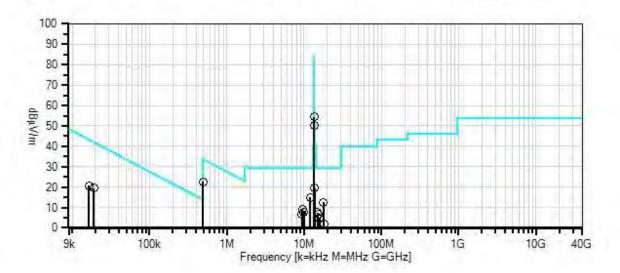
Frequency Range: 9kHz – 30MHz

Modulation: ASK with an 847kHz Subcarrier

Antenna Type: Integral Antenna Gain 2 dBi

Transmit Frequency: 13.56MHz

The EUTs are powered by a DC power supply at 12VDC. The manufacturer declares it will only ever be wall mounted in an upright/vertical (Y-axis) orientation.


The EUT is setup on an 80cm foam block. It has been programmed to continuously transmit the RFID signal at

13.56MHz

Page 47 of 102 Report No.: 97757-40

WaveLynx Technologies Corporation WO#: 97757 Sequence#: 9 Date: 5/4/2016 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter) Test Distance: 3 Meters Perpendicular

- Readings

-) Peak Readings
- × QP Readings
- * Average Readings
- ▼ Ambient

Software Version: 5.03.02

1 - 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter)

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP06884	Cable	LMR195-FR-4	10/27/2015	10/27/2017
T2	AN00226	Loop Antenna	6502	4/4/2016	4/4/2018
	AN02111	Spectrum Analyzer	8593EM	6/4/2015	6/4/2016
T3	ANMD3M	Cable		3/17/2016	3/17/2018
T4	ANP06229	Cable	CXTA04A-50	3/17/2016	3/17/2018

Measur	rement Data:		ading lis	ted by ma	argin.		Τe	est Distanc	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	494.600k	32.6	+0.0	+9.7	+0.1	+0.1	-20.0	22.5	33.7	-11.2	Perpe
2	11.954M	24.4	+0.1	+9.7	+0.4	+0.3	-20.0	14.9	29.5	-14.6	Paral
3	17.739M	22.9	+0.1	+8.7	+0.5	+0.4	-20.0	12.6	29.5	-16.9	Paral
4	9.477M	18.6	+0.1	+9.8	+0.3	+0.3	-20.0	9.1	29.5	-20.4	Paral
5	9.981M	17.2	+0.1	+9.8	+0.4	+0.3	-20.0	7.8	29.5	-21.7	Paral
6	15.002M	17.1	+0.1	+9.6	+0.4	+0.4	-20.0	7.6	29.5	-21.9	Paral
7	16.400k	46.7	+0.0	+14.1	+0.0	+0.0	-40.0	20.8	43.3	-22.5	Perpe
8	18.900k	45.9	+0.0	+13.5	+0.0	+0.0	-40.0	19.4	42.1	-22.7	Paral
9	9.352M	16.1	+0.1	+9.8	+0.3	+0.3	-20.0	6.6	29.5	-22.9	Paral
10	15.232M	16.1	+0.1	+9.5	+0.4	+0.4	-20.0	6.5	29.5	-23.0	Paral
11	15.790M	14.7	+0.1	+9.3	+0.4	+0.4	-20.0	4.9	29.5	-24.6	Perpe
12	17.930M	12.0	+0.1	+8.7	+0.5	+0.4	-20.0	1.7	29.5	-27.8	Perpe
13	13.559M	64.0	+0.1	+9.6	+0.4	+0.4	-20.0	54.5	84.0 Fundament	-29.5 tal	Paral
14	13.652M	29.0	+0.1	+9.6	+0.4	+0.4	-20.0	19.5	50.5	-31.0	Perpe
15	13.560M	59.6	+0.1	+9.6	+0.4	+0.4	-20.0	50.1	84.0 Fundament	-33.9 tal	Perpe

Page 49 of 102 Report No.: 97757-40

Test Location: CKC Laboratories Inc. • 5046 Sierra Pines Dr. • Mariposa, CA 95338 • 209-966-5240

WaveLynx Technologies Corporation Customer:

15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter) Specification:

Work Order #: Date: 5/4/2016 97757 Test Type: Time: 17:06:55 **Radiated Scan** Tested By: Benny Lovan Sequence#: 10

Software: EMITest 5.03.02

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 12				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 12				

Test Conditions / Notes:

Radiated Spurious Emissions Measurements

Temperature: 22°C Humidity:41%

Atmospheric Pressure: 97.1 kPa

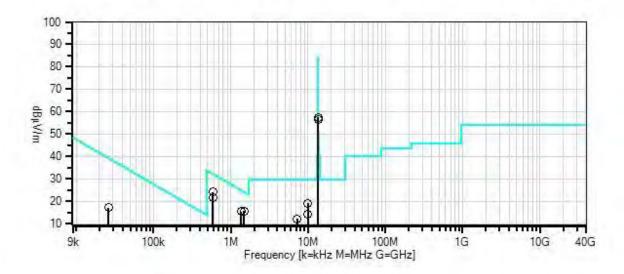
Frequency Range: 9kHz – 30MHz

Modulation: ASK with an 847kHz Subcarrier

Antenna Type: Integral Antenna Gain 2 dBi

Transmit Frequency: 13.56MHz

The EUTs are powered by a DC power supply at 12VDC. The manufacturer declares it will only ever be wall mounted in an upright/vertical (Y-axis) orientation.


The EUT is setup on an 80cm foam block. It has been programmed to continuously transmit the RFID signal at

13.56MHz

Page 50 of 102 Report No.: 97757-40

WaveLynx Technologies Corporation WO#: 97757 Sequence#: 10 Date: 5/4/2016 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter) Test Distance: 3 Meters Parallel

- Readings

- O Peak Readings
- × QP Readings
- * Average Readings
- ▼ Ambient

Software Version: 5.03.02

1 - 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter)

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP06884	Cable	LMR195-FR-4	10/27/2015	10/27/2017
T2	AN00226	Loop Antenna	6502	4/4/2016	4/4/2018
	AN02111	Spectrum Analyzer	8593EM	6/4/2015	6/4/2016
T3	ANMD3M	Cable		3/17/2016	3/17/2018
T4	ANP06229	Cable	CXTA04A-50	3/17/2016	3/17/2018

Measui	rement Data:	Re	eading lis	ted by ma	argin.		Te	est Distance	e: 3 Meters	1	
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	$dB\mu V$	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	586.300k	34.0	+0.0	+10.0	+0.1	+0.1	-20.0	24.2	32.2	-8.0	Perpe
2	1.484M	25.4	+0.0	+10.1	+0.1	+0.1	-20.0	15.7	24.1	-8.4	Perpe
3	1.365M	25.2	+0.0	+10.1	+0.1	+0.1	-20.0	15.5	24.8	-9.3	Perpe
4	10.003M	28.5	+0.1	+9.8	+0.4	+0.3	-20.0	19.1	29.5	-10.4	Paral
5	586.300k	31.5	+0.0	+10.0	+0.1	+0.1	-20.0	21.7	32.2	-10.5	Paral
6	10.008M	23.8	+0.1	+9.8	+0.4	+0.3	-20.0	14.4	29.5	-15.1	Perpe
7	9.987M	23.6	+0.1	+9.8	+0.4	+0.3	-20.0	14.2	29.5	-15.3	Perpe
8	7.191M	21.5	+0.1	+9.9	+0.3	+0.3	-20.0	12.1	29.5	-17.4	Paral
9	7.210M	17.7	+0.1	+9.9	+0.3	+0.3	-20.0	8.3	29.5	-21.2	Perpe
10	26.300k	44.8	+0.0	+12.4	+0.0	+0.0	-40.0	17.2	39.2	-22.0	Perpe
11	7.234M	15.3	+0.1	+9.9	+0.3	+0.3	-20.0	5.9	29.5	-23.6	Perpe
12	13.560M	67.0	+0.1	+9.6	+0.4	+0.4	-20.0	57.5	84.0 Fundament	-26.5 tal	Paral
13	13.560M	66.0	+0.1	+9.6	+0.4	+0.4	-20.0	56.5	84.0 Fundament	-27.5 tal	Perpe

Page 52 of 102 Report No.: 97757-40

Test Location: CKC Laboratories Inc. • 5046 Sierra Pines Dr. • Mariposa, CA 95338 • 209-966-5240

Customer: WaveLynx Technologies Corporation

Specification: 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter)

Work Order #: 97757 Date: 5/4/2016
Test Type: Radiated Scan Time: 14:44:50
Tested By: Benny Lovan Sequence#: 11

Software: EMITest 5.03.02

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 13				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 13				

Test Conditions / Notes:

Radiated Spurious Emissions Measurements

Temperature: 20°C Humidity:52%

Atmospheric Pressure: 97.31 kPa

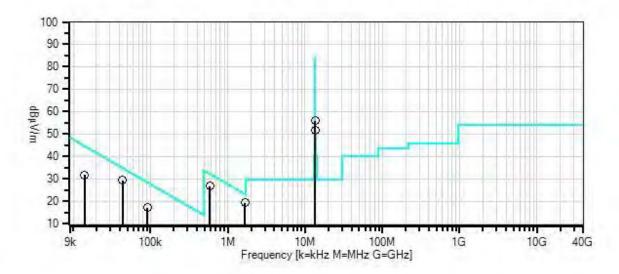
Frequency Range: 9kHz – 30MHz

Modulation: ASK with an 847kHz Subcarrier

Antenna Type: Integral Antenna Gain 2 dBi

Transmit Frequency: 13.56MHz

The EUTs are powered by a DC power supply at 12VDC. The manufacturer declares it will only ever be wall mounted in an upright/vertical (Y-axis) orientation.


The EUT is setup on an 80cm foam block. It has been programmed to continuously transmit the RFID signal at

13.56MHz

Page 53 of 102 Report No.: 97757-40

WaveLynx Technologies Corporation WO#: 97757 Sequence#: 11 Date: 5/4/2016 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter) Test Distance: 3 Meters Parallel

- Readings

- O Peak Readings
- × QP Readings
- * Average Readings
- ▼ Ambient

Software Version: 5.03.02

1 - 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter)

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP06884	Cable	LMR195-FR-4	10/27/2015	10/27/2017
T2	AN00226	Loop Antenna	6502	4/4/2016	4/4/2018
	AN02111	Spectrum Analyzer	8593EM	6/4/2015	6/4/2016
T3	ANMD3M	Cable		3/17/2016	3/17/2018
T4	ANP06229	Cable	CXTA04A-50	3/17/2016	3/17/2018

Measur	ement Data:	Re	eading lis	ted by ma	argin.		Te	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	$dB\mu V$	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	1.667M	29.0	+0.0	+10.1	+0.1	+0.1	-20.0	19.3	23.1	-3.8	Paral
2	586.300k	36.5	+0.0	+10.0	+0.1	+0.1	-20.0	26.7	32.2	-5.5	Perpe
3	43.700k	58.2	+0.0	+11.1	+0.0	+0.0	-40.0	29.3	34.8	-5.5	Perpe
4	90.800k	46.9	+0.0	+10.2	+0.0	+0.0	-40.0	17.1	28.4	-11.3	Perpe
5	14.000k	56.8	+0.0	+14.8	+0.0	+0.0	-40.0	31.6	44.7	-13.1	Perpe
6	13.560M	65.5	+0.1	+9.6	+0.4	+0.4	-20.0	56.0	84.0	-28.0	Paral
									Fundament	tal	
7	13.560M	61.0	+0.1	+9.6	+0.4	+0.4	-20.0	51.5	84.0	-32.5	Perpe
									Fundament	tal	

Page 55 of 102 Report No.: 97757-40

Test Location: CKC Laboratories Inc. • 5046 Sierra Pines Dr. • Mariposa, CA 95338 • 209-966-5240

WaveLynx Technologies Corporation Customer:

15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter) Specification:

Work Order #: Date: 5/4/2016 97757 Test Type: Time: 14:18:34 **Radiated Scan** Tested By: Benny Lovan Sequence#: 12

Software: EMITest 5.03.02

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 14				

Support Equipment:

Device	Manufacturer	Model #	S/N
Configuration 14			

Test Conditions / Notes:

Radiated Spurious Emissions Measurements

Temperature: 20°C Humidity:52%

Atmospheric Pressure: 97.31 kPa

Frequency Range: 9kHz – 30MHz

Modulation: ASK with an 847kHz Subcarrier

Antenna Type: Integral Antenna Gain 2 dBi

Transmit Frequency: 13.56MHz

The EUTs are powered by a DC power supply at 12VDC. The manufacturer declares it will only ever be wall mounted in an upright/vertical (Y-axis) orientation.

The EUT is setup on an 80cm foam block. It has been programmed to continuously transmit the RFID signal at

13.56MHz

Page 56 of 102 Report No.: 97757-40

WaveLynx Technologies Corporation WO#: 97757 Sequence#: 12 Date: 5/4/2016 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter) Test Distance: 3 Meters Perpendicular

- Readings

- Peak Readings
- × QP Readings
- * Average Readings
- ▼ Ambient

Software Version: 5.03.02

1 - 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter)

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP06884	Cable	LMR195-FR-4	10/27/2015	10/27/2017
T2	AN00226	Loop Antenna	6502	4/4/2016	4/4/2018
	AN02111	Spectrum Analyzer	8593EM	6/4/2015	6/4/2016
T3	ANMD3M	Cable		3/17/2016	3/17/2018
T4	ANP06229	Cable	CXTA04A-50	3/17/2016	3/17/2018

Measur	rement Data:	Re	eading lis	ted by ma	argin.		Те	est Distanc	e: 3 Meters	1	
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	$dB\mu V$	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	307.400k	30.4	+0.0	+9.8	+0.1	+0.0	-40.0	0.3	17.8	-17.5	Paral
2	11.636M	21.1	+0.1	+9.7	+0.4	+0.3	-20.0	11.6	29.5	-17.9	Perpe
3	347.600k	28.9	+0.0	+9.8	+0.1	+0.1	-40.0	-1.1	16.8	-17.9	Paral
4	9.934M	20.5	+0.1	+9.8	+0.4	+0.3	-20.0	11.1	29.5	-18.4	Paral
5	26.600k	48.3	+0.0	+12.4	+0.0	+0.0	-40.0	20.7	39.1	-18.4	Paral
6	10.000M	20.0	+0.1	+9.8	+0.4	+0.3	-20.0	10.6	29.5	-18.9	Perpe
7	14.000k	49.6	+0.0	+14.8	+0.0	+0.0	-40.0	24.4	44.7	-20.3	Perpe
8	15.480M	14.2	+0.1	+9.4	+0.4	+0.4	-20.0	4.5	29.5	-25.0	Perpe
9	13.559M	68.0	+0.1	+9.6	+0.4	+0.4	-20.0	58.5	84.0 Fundament	-25.5 tal	Paral
10	15.444M	8.0	+0.1	+9.4	+0.4	+0.4	-20.0	-1.7	29.5	-31.2	Paral
11	13.559M	57.3	+0.1	+9.6	+0.4	+0.4	-20.0	47.8	84.0 Fundament	-36.2 tal	Perpe

Page 58 of 102 Report No.: 97757-40

Test Location: CKC Laboratories, Inc. • 5046 Sierra Pines Dr. • Mariposa, CA 95338 • 209-966-5240

Customer: WaveLynx Technologies Corporation

Specification: 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter)

Work Order #: 97757 Date: 5/6/2016
Test Type: Radiated Scan
Tested By: Skip Doyle Sequence#: 13

Software: EMITest 5.03.02

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

Radiated Spurious Emissions Measurements

Temperature: 12°C Humidity:69%

Atmospheric Pressure: 97.0 kPa

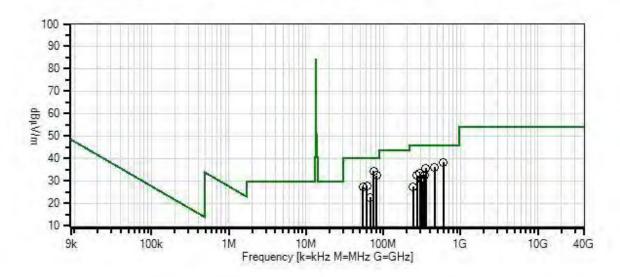
Frequency Range: 30MHz -1GHz

Modulation: ASK with an 847kHz Subcarrier

Antenna Type: Integral Antenna Gain 2 dBi

Transmit Frequency: 13.56MHz

The EUTs are powered by a DC power supply at 12VDC. The manufacturer declares it will only ever be wall mounted in an upright/vertical (Y-axis) orientation.


The EUT is setup on an 80cm foam block. It has been programmed to continuously transmit the RFID signal at

13.56MHz.

Page 59 of 102 Report No.: 97757-40

WaveLynx Technologies Corporation WO#: 97757 Sequence#: 13 Date: 5/6/2016 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter) Test Distance: 3 Meters Vert

- Readings

- O Peak Readings
- × QP Readings
- * Average Readings
- ▼ Ambient
 - Software Version: 5.03.02

1 - 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter)

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02111	Spectrum Analyzer	8593EM	6/4/2015	6/4/2016
T1	AN01991	Biconilog Antenna	CBL6111C	3/11/2016	3/11/2018
T2	ANMD3M	Cable		3/17/2016	3/17/2018
T3	ANP06229	Cable	CXTA04A-50	3/17/2016	3/17/2018
T4	ANP06884	Cable	LMR195-FR-4	10/27/2015	10/27/2017
T5	ANP06885	Cable	P06885	10/27/2015	10/27/2017
T6	ANP05657	Attenuator	PE7004-6	12/22/2015	12/22/2017
T7	AN00282	Preamp	8447D	4/7/2016	4/7/2018

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Т	est Distance	e: 3 Meters	1	
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7						
	MHz	dΒμV	dB	dB	dB	dB	Table		$dB\mu V/m$	dB	Ant
1	74.680M	46.9	+7.0	+0.9	+0.9	+0.2	+0.0	34.3	40.0	-5.7	Vert
			+0.2	+6.0	-27.8						
2	81.430M	44.8	+7.2	+1.0	+0.9	+0.2	+0.0	32.5	40.0	-7.5	Vert
			+0.2	+6.0	-27.8						
3	596.661M	34.3	+19.9	+2.7	+2.8	+0.4	+0.0	38.3	46.0	-7.8	Vert
			+0.5	+6.0	-28.4						
4	461.061M	35.3	+17.3	+2.3	+2.5	+0.4	+0.0	36.2	46.0	-9.8	Vert
			+0.5	+6.0	-28.1						
5	352.581M	37.0	+14.9	+2.1	+2.1	+0.4	+0.0	35.6	46.0	-10.4	Vert
			+0.4	+6.0	-27.3						
6	61.050M	41.8	+5.9	+0.8	+0.8	+0.1	+0.0	27.8	40.0	-12.2	Vert
			+0.2	+6.0	-27.8						
7	54.180M	40.0	+7.3	+0.8	+0.8	+0.1	+0.0	27.4	40.0	-12.6	Vert
			+0.2	+6.0	-27.8						
8	298.300M	36.3	+13.4	+1.9	+1.9	+0.4	+0.0	33.3	46.0	-12.7	Vert
			+0.4	+6.0	-27.0						
9	339.050M	34.4	+14.5	+2.0	+2.1	+0.4	+0.0	32.6	46.0	-13.4	Vert
			+0.4	+6.0	-27.2						
10	271.221M	36.2	+12.8	+1.8	+1.8	+0.3	+0.0	32.4	46.0	-13.6	Horiz
			+0.4	+6.0	-26.9						
11	311.930M	33.4	+13.8	+1.9	+2.0	+0.3	+0.0	30.8	46.0	-15.2	Vert
			+0.4	+6.0	-27.0						
12	325.430M	32.1	+14.2	+2.0	+2.0	+0.3	+0.0	29.9	46.0	-16.1	Vert
			+0.4	+6.0	-27.1						
13	67.821M	35.6	+6.8	+0.9	+0.9	+0.1	+0.0	22.7	40.0	-17.3	Horiz
			+0.2	+6.0	-27.8						
14	244.101M	32.5	+11.9	+1.7	+1.7	+0.3	+0.0	27.5	46.0	-18.5	Horiz
			+0.4	+6.0	-27.0						

Page 61 of 102 Report No.: 97757-40

Test Location: CKC Laboratories, Inc. • 5046 Sierra Pines Dr. • Mariposa, CA 95338 • 209-966-5240

Customer: WaveLynx Technologies Corporation

Specification: 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter)

Work Order #: 97757 Date: 5/6/2016
Test Type: Radiated Scan Time: 15:12:29
Tested By: Skip Doyle Sequence#: 14

Software: EMITest 5.03.02

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Support Equipment:

Device	Manufacturer	Model #	S/N
Configuration 2			

Test Conditions / Notes:

Radiated Spurious Emissions Measurements

Temperature: 12°C Humidity:69%

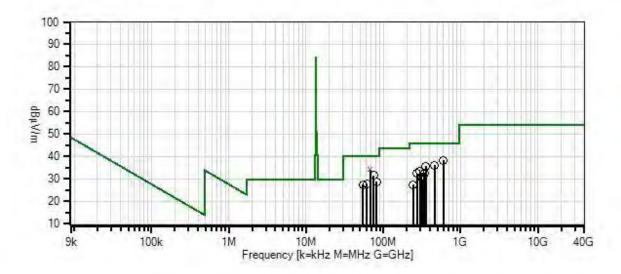
Atmospheric Pressure: 97.0 kPa

Frequency Range: 30MHz -1GHz

Modulation: ASK with an 847kHz Subcarrier

Antenna Type: Integral Antenna Gain 2 dBi

Transmit Frequency: 13.56MHz


The EUTs are powered by a DC power supply at 12VDC. The manufacturer declares it will only ever be wall mounted in an upright/vertical (Y-axis) orientation.

The EUT is setup on an 80cm foam block. It has been programmed to continuously transmit the RFID signal at 13.56MHz.

Page 62 of 102 Report No.: 97757-40

WaveLynx Technologies Corporation WO#: 97757 Sequence#: 14 Date: 5/6/2016 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter) Test Distance: 3 Meters Vert

- Readings

- O Peak Readings
- × QP Readings
- * Average Readings
- ▼ Ambient
 - Software Version: 5.03.02

1 - 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter)

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02111	Spectrum Analyzer	8593EM	6/4/2015	6/4/2016
T1	AN01991	Biconilog Antenna	CBL6111C	3/11/2016	3/11/2018
T2	ANMD3M	Cable		3/17/2016	3/17/2018
T3	ANP06229	Cable	CXTA04A-50	3/17/2016	3/17/2018
T4	ANP06884	Cable	LMR195-FR-4	10/27/2015	10/27/2017
T5	ANP06885	Cable	P06885	10/27/2015	10/27/2017
T6	ANP05657	Attenuator	PE7004-6	12/22/2015	12/22/2017
T7	AN00282	Preamp	8447D	4/7/2016	4/7/2018

Measu	rement Data:	Re	eading lis	ted by ma	ırgin.		Те	est Distance	e: 3 Meters	i	
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7						
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	67.812M	47.0	+6.8	+0.9	+0.9	+0.1	+0.0	34.1	40.0	-5.9	Vert
	QP		+0.2	+6.0	-27.8						
^	67.810M	47.8	+6.8	+0.9	+0.9	+0.1	+0.0	34.9	40.0	-5.1	Vert
			+0.2	+6.0	-27.8						
3	596.661M	34.3	+19.9	+2.7	+2.8	+0.4	+0.0	38.3	46.0	-7.8	Vert
			+0.5	+6.0	-28.4						
4	74.593M	44.1	+7.0	+0.9	+0.9	+0.2	+0.0	31.5	40.0	-8.5	Vert
			+0.2	+6.0	-27.8						
5	461.061M	35.3	+17.3	+2.3	+2.5	+0.4	+0.0	36.2	46.0	-9.8	Vert
			+0.5	+6.0	-28.1						
6	352.581M	37.0	+14.9	+2.1	+2.1	+0.4	+0.0	35.6	46.0	-10.4	Vert
			+0.4	+6.0	-27.3						
7	81.376M	41.0	+7.2	+1.0	+0.9	+0.2	+0.0	28.8	40.0	-11.3	Vert
			+0.2	+6.0	-27.8						
8	61.050M	41.8	+5.9	+0.8	+0.8	+0.1	+0.0	27.8	40.0	-12.2	Vert
			+0.2	+6.0	-27.8						
9	54.180M	40.0	+7.3	+0.8	+0.8	+0.1	+0.0	27.4	40.0	-12.6	Vert
			+0.2	+6.0	-27.8						
10	298.300M	36.3	+13.4	+1.9	+1.9	+0.4	+0.0	33.3	46.0	-12.7	Vert
			+0.4	+6.0	-27.0						
11	339.050M	34.4	+14.5	+2.0	+2.1	+0.4	+0.0	32.6	46.0	-13.4	Vert
			+0.4	+6.0	-27.2						
12	271.221M	36.2	+12.8	+1.8	+1.8	+0.3	+0.0	32.4	46.0	-13.6	Horiz
			+0.4	+6.0	-26.9						
13	311.930M	33.4	+13.8	+1.9	+2.0	+0.3	+0.0	30.8	46.0	-15.2	Vert
			+0.4	+6.0	-27.0						
14	325.430M	32.1	+14.2	+2.0	+2.0	+0.3	+0.0	29.9	46.0	-16.1	Vert
			+0.4	+6.0	-27.1						
15	244.101M	32.5	+11.9	+1.7	+1.7	+0.3	+0.0	27.5	46.0	-18.5	Horiz
			+0.4	+6.0	-27.0						

Page 64 of 102 Report No.: 97757-40

Test Location: CKC Laboratories, Inc. • 5046 Sierra Pines Dr. • Mariposa, CA 95338 • 209-966-5240

Customer: WaveLynx Technologies Corporation

Specification: 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter)

Work Order #: 97757 Date: 5/6/2016
Test Type: Radiated Scan Time: 16:33:48
Tested By: Skip Doyle Sequence#: 15

Software: EMITest 5.03.02

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 3				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 3				

Test Conditions / Notes:

Radiated Spurious Emissions Measurements

Temperature: 12°C Humidity:69%

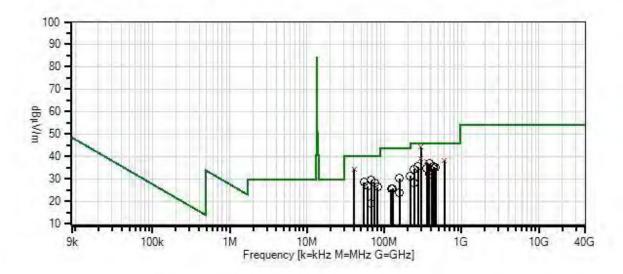
Atmospheric Pressure: 97.0 kPa

Frequency Range: 30MHz -1GHz

Modulation: ASK with an 847kHz Subcarrier

Antenna Type: Integral Antenna Gain 2 dBi

Transmit Frequency: 13.56MHz


The EUTs are powered by a DC power supply at 12VDC. The manufacturer declares it will only ever be wall mounted in an upright/vertical (Y-axis) orientation.

The EUT is setup on an 80cm foam block. It has been programmed to continuously transmit the RFID signal at 13.56MHz.

Page 65 of 102 Report No.: 97757-40

WaveLynx Technologies Corporation WO#: 97757 Sequence#: 15 Date: 5/6/2016 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter) Test Distance: 3 Meters Vert

- Readings

- Peak Readings
- × QP Readings
- * Average Readings
- ▼ Ambient
 - Software Version: 5.03.02

- 1 - 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter)

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02111	Spectrum Analyzer	8593EM	6/4/2015	6/4/2016
T1	AN01991	Biconilog Antenna	CBL6111C	3/11/2016	3/11/2018
T2	ANMD3M	Cable		3/17/2016	3/17/2018
T3	ANP06229	Cable	CXTA04A-50	3/17/2016	3/17/2018
T4	ANP06884	Cable	LMR195-FR-4	10/27/2015	10/27/2017
T5	ANP06885	Cable	P06885	10/27/2015	10/27/2017
T6	ANP05657	Attenuator	PE7004-6	12/22/2015	12/22/2017
T7	AN00282	Preamp	8447D	4/7/2016	4/7/2018

Measu	rement Data:	: Reading listed by margin.			Test Distance: 3 Meters						
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7						
	MHz	$dB\mu V$	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	298.324M	47.2	+13.4	+1.9	+1.9	+0.4	+0.0	44.2	46.0	-1.8	Vert
	QP		+0.4	+6.0	-27.0						
^	298.341M	48.4	+13.4	+1.9	+1.9	+0.4	+0.0	45.4	46.0	-0.6	Vert
			+0.4	+6.0	-27.0						
3	40.694M	40.6	+14.0	+0.7	+0.7	+0.1	+0.0	34.4	40.0	-5.6	Vert
	QP		+0.2	+6.0	-27.9						
^	40.692M	42.9	+14.0	+0.7	+0.7	+0.1	+0.0	36.7	40.0	-3.3	Vert
			+0.2	+6.0	-27.9						
5	298.323M	42.0	+13.4	+1.9	+1.9	+0.4	+0.0	39.0	46.0	-7.0	Horiz
	QP		+0.4	+6.0	-27.0						
^	298.317M	42.7	+13.4	+1.9	+1.9	+0.4	+0.0	39.7	46.0	-6.3	Horiz
			+0.4	+6.0	-27.0						
7	596.635M	34.3	+19.9	+2.7	+2.8	+0.4	+0.0	38.2	46.0	-7.8	Vert
	QP		+0.5	+6.0	-28.4						
^	596.639M	35.5	+19.9	+2.7	+2.8	+0.4	+0.0	39.4	46.0	-6.6	Vert
			+0.5	+6.0	-28.4						
9	352.563M	39.1	+14.9	+2.1	+2.1	+0.4	+0.0	37.7	46.0	-8.3	Vert
	QP		+0.4	+6.0	-27.3						
^	352.564M	41.3	+14.9	+2.1	+2.1	+0.4	+0.0	39.9	46.0	-6.1	Vert
			+0.4	+6.0	-27.3						
11	379.679M	37.6	+15.6	+2.1	+2.2	+0.4	+0.0	36.8	46.0	-9.2	Vert
			+0.4	+6.0	-27.5						
12	271.167M	39.3	+12.8	+1.8	+1.8	+0.3	+0.0	35.5	46.0	-10.5	Horiz
			+0.4	+6.0	-26.9						
13	433.919M	35.0	+16.8	+2.3	+2.4	+0.4	+0.0	35.5	46.0	-10.6	Vert
			+0.5	+6.0	-27.9						
14	67.807M	42.3	+6.8	+0.9	+0.9	+0.1	+0.0	29.4	40.0	-10.6	Vert
			+0.2	+6.0	-27.8						
15	461.039M	34.2	+17.3	+2.3	+2.5	+0.4	+0.0	35.1	46.0	-10.9	Vert
			+0.5	+6.0	-28.1						
16	433.917M	34.4	+16.8	+2.3	+2.4	+0.4	+0.0	34.9	46.0	-11.1	Horiz
			+0.5	+6.0	-27.9						
17	352.557M	36.0	+14.9	+2.1	+2.1	+0.4	+0.0	34.6	46.0	-11.4	Horiz
			+0.4	+6.0	-27.3						
18	54.273M	41.0	+7.3	+0.8	+0.8	+0.1	+0.0	28.4	40.0	-11.6	Vert
			+0.2	+6.0	-27.8						

Page 67 of 102 Report No.: 97757-40

19	244.086M	39.3	+11.9	+1.7	+1.7	+0.3	+0.0	34.3	46.0	-11.7	Vert
			+0.4	+6.0	-27.0						
20	74.592M	40.8	+7.0	+0.9	+0.9	+0.2	+0.0	28.2	40.0	-11.8	Vert
			+0.2	+6.0	-27.8						
21	406.799M	34.1	+16.2	+2.2	+2.3	+0.4	+0.0	33.9	46.0	-12.1	Vert
			+0.4	+6.0	-27.7						
22	155.952M	37.8	+10.8	+1.3	+1.4	+0.2	+0.0	30.3	43.5	-13.2	Vert
			+0.3	+6.0	-27.5						
23	61.027M	40.8	+5.9	+0.8	+0.8	+0.1	+0.0	26.8	40.0	-13.3	Vert
			+0.2	+6.0	-27.8						
24	81.372M	38.7	+7.2	+1.0	+0.9	+0.2	+0.0	26.4	40.0	-13.6	Vert
			+0.2	+6.0	-27.8						
25	379.677M	33.0	+15.6	+2.1	+2.2	+0.4	+0.0	32.2	46.0	-13.8	Horiz
			+0.4	+6.0	-27.5						
26	216.973M	38.3	+10.1	+1.6	+1.6	+0.3	+0.0	31.2	46.0	-14.8	Vert
			+0.4	+6.0	-27.1						
27	128.832M	32.6	+11.7	+1.2	+1.2	+0.2	+0.0	25.6	43.5	-17.9	Vert
			+0.3	+6.0	-27.6						
28	244.083M	33.1	+11.9	+1.7	+1.7	+0.3	+0.0	28.1	46.0	-17.9	Horiz
			+0.4	+6.0	-27.0						
29	122.052M	32.5	+11.6	+1.2	+1.2	+0.2	+0.0	25.4	43.5	-18.1	Vert
			+0.3	+6.0	-27.6						
30	155.943M	31.4	+10.8	+1.3	+1.4	+0.2	+0.0	23.9	43.5	-19.6	Horiz
			+0.3	+6.0	-27.5						
31	67.803M	31.9	+6.8	+0.9	+0.9	+0.1	+0.0	19.0	40.0	-21.0	Horiz
			+0.2	+6.0	-27.8						

Page 68 of 102 Report No.: 97757-40

Test Location: CKC Laboratories, Inc. • 5046 Sierra Pines Dr. • Mariposa, CA 95338 • 209-966-5240

Customer: WaveLynx Technologies Corporation

Specification: 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter)

Work Order #: 97757 Date: 5/6/2016
Test Type: Radiated Scan Time: 15:49:55
Tested By: Skip Doyle Sequence#: 16

Software: EMITest 5.03.02

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 4				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 4				

Test Conditions / Notes:

Radiated Spurious Emissions Measurements

Temperature: 12°C Humidity:69%

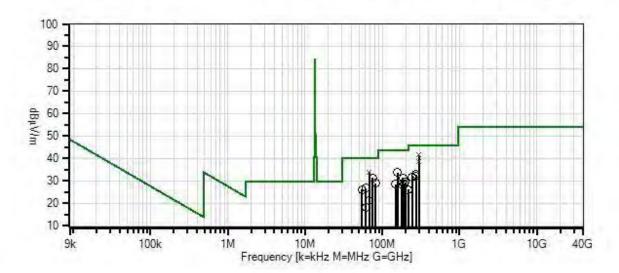
Atmospheric Pressure: 97.0 kPa

Frequency Range: 30MHz -1GHz

Modulation: ASK with an 847kHz Subcarrier

Antenna Type: Integral Antenna Gain 2 dBi

Transmit Frequency: 13.56MHz


The EUTs are powered by a DC power supply at 12VDC. The manufacturer declares it will only ever be wall mounted in an upright/vertical (Y-axis) orientation.

The EUT is setup on an 80cm foam block. It has been programmed to continuously transmit the RFID signal at 13.56MHz.

Page 69 of 102 Report No.: 97757-40

WaveLynx Technologies Corporation WO#: 97757 Sequence#: 16 Date: 5/6/2016 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter) Test Distance: 3 Meters Horiz

- Readings

- Peak Readings
- × QP Readings
- * Average Readings
- ▼ Ambient
 - Software Version: 5.03.02

1 - 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter)

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02111	Spectrum Analyzer	8593EM	6/4/2015	6/4/2016
T1	AN01991	Biconilog Antenna	CBL6111C	3/11/2016	3/11/2018
T2	ANMD3M	Cable		3/17/2016	3/17/2018
T3	ANP06229	Cable	CXTA04A-50	3/17/2016	3/17/2018
T4	ANP06884	Cable	LMR195-FR-4	10/27/2015	10/27/2017
T5	ANP06885	Cable	P06885	10/27/2015	10/27/2017
Т6	ANP05657	Attenuator	PE7004-6	12/22/2015	12/22/2017
T7	AN00282	Preamp	8447D	4/7/2016	4/7/2018

Measu	rement Data:		eading lis	ted by ma	ırgin.		Те	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7						
	MHz	dΒμV	dB	dB	dB	dB	Table	dBμV/m	$dB\mu V/m$	dB	Ant
1	298.327M	44.6	+13.4	+1.9	+1.9	+0.4	+0.0	41.6	46.0	-4.4	Vert
	QP		+0.4	+6.0	-27.0						
^	298.319M	45.2	+13.4	+1.9	+1.9	+0.4	+0.0	42.2	46.0	-3.8	Vert
			+0.4	+6.0	-27.0						
3	67.813M	46.8	+6.8	+0.9	+0.9	+0.1	+0.0	33.9	40.0	-6.1	Vert
	QP		+0.2	+6.0	-27.8						
^	67.814M	48.0	+6.8	+0.9	+0.9	+0.1	+0.0	35.1	40.0	-4.9	Vert
			+0.2	+6.0	-27.8						
5	298.326M	41.7	+13.4	+1.9	+1.9	+0.4	+0.0	38.7	46.0	-7.3	Horiz
	QP		+0.4	+6.0	-27.0						
^	298.322M	43.8	+13.4	+1.9	+1.9	+0.4	+0.0	40.8	46.0	-5.2	Horiz
			+0.4	+6.0	-27.0						
7	74.584M	43.8	+7.0	+0.9	+0.9	+0.2	+0.0	31.2	40.0	-8.8	Vert
			+0.2	+6.0	-27.8						
8	155.959M	41.1	+10.8	+1.3	+1.4	+0.2	+0.0	33.6	43.5	-9.9	Vert
			+0.3	+6.0	-27.5						
9	81.365M	41.3	+7.2	+1.0	+0.9	+0.2	+0.0	29.0	40.0	-11.0	Vert
			+0.2	+6.0	-27.8						
10	183.081M	40.0	+9.2	+1.5	+1.5	+0.2	+0.0	31.4	43.5	-12.1	Vert
			+0.3	+6.0	-27.3						
11	61.022M	40.8	+5.9	+0.8	+0.8	+0.1	+0.0	26.8	40.0	-13.2	Vert
			+0.2	+6.0	-27.8						
12	271.195M	36.6	+12.8	+1.8	+1.8	+0.3	+0.0	32.8	46.0	-13.2	Vert
			+0.4	+6.0	-26.9						
13	54.251M	38.7	+7.3	+0.8	+0.8	+0.1	+0.0	26.1	40.0	-13.9	Vert
			+0.2	+6.0	-27.8						

Page 71 of 102 Report No.: 97757-40

14	271.207M	35.9	+12.8	+1.8	+1.8	+0.3	+0.0	32.1	46.0	-13.9	Horiz
			+0.4	+6.0	-26.9						
15	196.636M	38.1	+8.9	+1.5	+1.5	+0.3	+0.0	29.4	43.5	-14.1	Vert
			+0.3	+6.0	-27.2						
16	244.089M	36.4	+11.9	+1.7	+1.7	+0.3	+0.0	31.4	46.0	-14.6	Vert
			+0.4	+6.0	-27.0						
17	189.845M	37.5	+9.0	+1.5	+1.5	+0.3	+0.0	28.8	43.5	-14.7	Vert
			+0.3	+6.0	-27.3						
18	176.285M	37.2	+9.3	+1.4	+1.4	+0.2	+0.0	28.4	43.5	-15.1	Vert
			+0.3	+6.0	-27.4						
19	149.170M	35.6	+11.2	+1.3	+1.3	+0.2	+0.0	28.4	43.5	-15.1	Vert
			+0.3	+6.0	-27.5						
20	67.806M	33.9	+6.8	+0.9	+0.9	+0.1	+0.0	21.0	40.0	-19.0	Horiz
			+0.2	+6.0	-27.8						
21	216.959M	33.2	+10.1	+1.6	+1.6	+0.3	+0.0	26.1	46.0	-19.9	Vert
			+0.4	+6.0	-27.1						
22	61.019M	32.3	+5.9	+0.8	+0.8	+0.1	+0.0	18.3	40.0	-21.7	Horiz
			+0.2	+6.0	-27.8						

Page 72 of 102 Report No.: 97757-40

Test Location: CKC Laboratories, Inc. • 5046 Sierra Pines Dr. • Mariposa, CA 95338 • 209-966-5240

Customer: WaveLynx Technologies Corporation

Specification: 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter)

Work Order #: 97757 Date: 5/6/2016
Test Type: Radiated Scan Time: 17:32:57
Tested By: Skip Doyle Sequence#: 17

Software: EMITest 5.03.02

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 5				

Support Equipment:

Device	Manufacturer	Model #	S/N
Configuration 5			

Test Conditions / Notes:

Radiated Spurious Emissions Measurements

Temperature: 12°C Humidity:69%

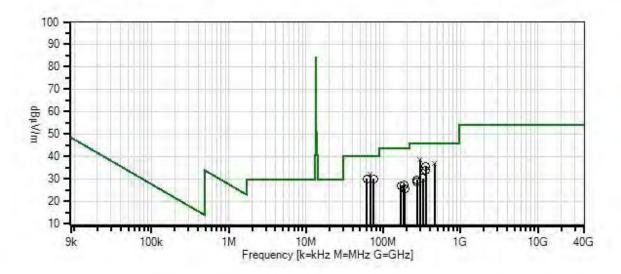
Atmospheric Pressure: 97.0 kPa

Frequency Range: 30MHz -1GHz

Modulation: ASK with an 847kHz Subcarrier

Antenna Type: Integral Antenna Gain 2 dBi

Transmit Frequency: 13.56MHz


The EUTs are powered by a DC power supply at 12VDC. The manufacturer declares it will only ever be wall mounted in an upright/vertical (Y-axis) orientation.

The EUT is setup on an 80cm foam block. It has been programmed to continuously transmit the RFID signal at 13.56MHz.

Page 73 of 102 Report No.: 97757-40

WaveLynx Technologies Corporation WO#: 97757 Sequence#: 17 Date: 5/6/2016 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter) Test Distance: 3 Meters Vert

- Readings

- O Peak Readings
- × QP Readings
- * Average Readings
- ▼ Ambient
 - Software Version: 5.03.02

1 - 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter)

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02111	Spectrum Analyzer	8593EM	6/4/2015	6/4/2016
T1	AN01991	Biconilog Antenna	CBL6111C	3/11/2016	3/11/2018
T2	ANMD3M	Cable		3/17/2016	3/17/2018
T3	ANP06229	Cable	CXTA04A-50	3/17/2016	3/17/2018
T4	ANP06884	Cable	LMR195-FR-4	10/27/2015	10/27/2017
T5	ANP06885	Cable	P06885	10/27/2015	10/27/2017
T6	ANP05657	Attenuator	PE7004-6	12/22/2015	12/22/2017
T7	AN00282	Preamp	8447D	4/7/2016	4/7/2018

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Measu	rement Data:	Re	eading lis	ted by ma	ırgin.		Те	est Distance	e: 3 Meters		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	#	Freq	Rdng			-	T4	Dist	Corr	Spec	Margin	Polar
1 298.328M												
QP +0.4 +6.0 -27.0 ^ 298.323M 42.3 +13.4 +1.9 +1.9 +0.4 +0.0 39.3 46.0 -6.7 Horiz 3 67.815M 45.2 +6.8 +0.9 +0.9 +0.1 +0.0 32.3 40.0 -7.7 Vert QP +0.2 +6.0 -27.8 -27.8 -27.8 -27.8 -27.8 -27.8 -27.8 -27.0 -6.7 Vert 5 461.041M 36.0 +17.3 +2.3 +2.5 +0.4 +0.0 37.0 46.0 -9.0 Vert QP +0.5 +6.0 -28.1 -28.1 -28.1 -28.1 -28.1 -40.9 -9.9 Vert 7 74.595M 42.7 +7.0 +0.9 +0.9 +0.2 +0.0 30.1 40.0 -9.9 Vert 8 61.035M 44.1 +5.9 +0.8 +0.8 +0.1 +0.0 30.1 40.0 -9.9 Vert 10 352								Table	•	dBμV/m		
^ 298.323M 42.3 +13.4 +1.9 +1.9 +0.4 +0.0 39.3 46.0 -6.7 Horiz 3 67.815M 45.2 +6.8 +0.9 +0.9 +0.1 +0.0 32.3 40.0 -7.7 Vert 0P +0.2 +6.8 +0.9 +0.9 +0.1 +0.0 33.3 40.0 -6.7 Vert 67.798M 46.2 +6.8 +0.9 +0.9 +0.1 +0.0 33.3 40.0 -6.7 Vert QP +0.5 +6.0 -22.81 +0.4 +0.0 37.0 46.0 -9.0 Vert 461.044M 37.4 +17.3 +2.3 +2.5 +0.4 +0.0 38.3 46.0 -7.7 Vert 40.2 +6.0 -28.1 +0.4 +0.0 38.3 46.0 -7.7 Vert 40.2 +6.0 -28.1 +0.2 +0.0 30.1 40.0 -9.9 Vert 40.2 </td <td></td> <td></td> <td>41.7</td> <td></td> <td></td> <td></td> <td>+0.4</td> <td>+0.0</td> <td>38.7</td> <td>46.0</td> <td>-7.3</td> <td>Horiz</td>			41.7				+0.4	+0.0	38.7	46.0	-7.3	Horiz
+0.4		`										
3 67.815M	^	298.323M	42.3				+0.4	+0.0	39.3	46.0	-6.7	Horiz
QP +0.2 +6.0 -27.8 ^ 67.798M 46.2 +6.8 +0.9 +0.9 +0.1 +0.0 33.3 40.0 -6.7 Vert 5 461.041M 36.0 +17.3 +2.3 +2.5 +0.4 +0.0 37.0 46.0 -9.0 Vert QP +0.5 +6.0 -28.1 -2.5 +0.4 +0.0 38.3 46.0 -7.7 Vert * 461.044M 37.4 +17.3 +2.3 +2.5 +0.4 +0.0 38.3 46.0 -7.7 Vert * 461.044M 37.4 +17.3 +2.3 +2.5 +0.4 +0.0 38.3 46.0 -7.7 Vert ************************************												
^ 67.798M 46.2 +6.8 +0.9 +0.9 +0.1 +0.0 33.3 40.0 -6.7 Vert 5 461.041M 36.0 +17.3 +2.3 +2.5 +0.4 +0.0 37.0 46.0 -9.0 Vert QP +0.5 +6.0 -28.1 -2.8 +0.4 +0.0 38.3 46.0 -7.7 Vert 461.044M 37.4 +17.3 +2.3 +2.5 +0.4 +0.0 38.3 46.0 -7.7 Vert 461.044M 37.4 +17.3 +2.3 +2.5 +0.4 +0.0 38.3 46.0 -7.7 Vert 40.5 +6.6 -28.1 -28.1 -40.0 30.1 40.0 -9.9 Vert 40.2 +6.0 -27.8 -40.9 +0.2 +0.0 30.1 40.0 -9.9 Vert 9 352.558M 37.0 +14.9 +2.1 +2.1 +2.1 +0.4 +0.0 35	_		45.2				+0.1	+0.0	32.3	40.0	-7.7	Vert
+0.2 +6.0 -27.8 5 461.041M 36.0 +17.3 +2.3 +2.5 +0.4 +0.0 37.0 46.0 -9.0 Vert QP +0.5 +6.0 -28.1 -28.1 -28.1 -28.1 -27.7 Vert 461.044M 37.4 +17.3 +2.3 +2.5 +0.4 +0.0 38.3 46.0 -7.7 Vert 7 74.595M 42.7 +7.0 +0.9 +0.9 +0.2 +0.0 30.1 40.0 -9.9 Vert 8 61.035M 44.1 +5.9 +0.8 +0.8 +0.1 +0.0 30.1 40.0 -9.9 Vert 9 352.558M 37.0 +14.9 +2.1 +2.1 +0.4 +0.0 35.6 46.0 -10.4 Vert 10 352.559M 35.2 +14.9 +2.1 +2.1 +0.4 +0.0 33.8 46.0 -12.2 Horiz 11												
5 461.041M QP 36.0 +17.3 +2.3 +2.5 +6.0 -28.1 +0.4 +0.0 37.0 46.0 -9.0 Vert ^ 461.044M 37.4 +17.3 +2.3 +2.3 +2.5 +6.0 -28.1 +0.5 +6.0 -28.1 +0.0 38.3 46.0 -7.7 Vert 7 74.595M 42.7 +7.0 +0.9 +0.9 +0.9 +0.9 +0.2 +0.0 30.1 40.0 -9.9 Vert +0.2 +6.0 -27.8 8 61.035M 44.1 +5.9 +0.8 +0.8 +0.8 +0.1 +0.0 30.1 40.0 -9.9 Vert 9 352.558M 37.0 +14.9 +2.1 +2.1 +2.1 +0.4 +0.0 35.6 46.0 -10.4 Vert 10 352.559M 35.2 +14.9 +2.1 +2.1 +2.1 +0.4 +0.0 33.8 46.0 -12.2 Horiz 11 325.435M 32.5 +14.2 +2.0 +2.0 +0.0 +0.3 +0.0 30.3 46.0 -15.7 Vert 12 183.066M 35.9 +9.2 +1.5 +1.5 +1.5 +0.2 +0.0 27.3 43.5 -16.2 Vert 13 271.224M 33.5 +12.8 +1.8 +1.8 +1.8 +0.3 +0.0 29.6 46.0 -16.4 Horiz 14 169.519M 35.3 +9.8 +1.4 +1.4 +1.4 +0.2 +0.0 27.0 43.5 -16.5 Vert 15 271.206M 32.4 +12.8 +1.8 +1.8 +1.8 +0.3 +0.0 28.6 46.0 -17.4 Vert 16 189.860M 34.3 +9.0 +1.5 +1.5 +1.5 +0.3 +0.0 25.6 43.5 -17.9 Horiz	^	67.798M	46.2			+0.9	+0.1	+0.0	33.3	40.0	-6.7	Vert
QP +0.5 +6.0 -28.1 ^ 461.044M 37.4 +17.3 +2.3 +2.5 +0.4 +0.0 38.3 46.0 -7.7 Vert 7 74.595M 42.7 +7.0 +0.9 +0.9 +0.2 +0.0 30.1 40.0 -9.9 Vert 8 61.035M 44.1 +5.9 +0.8 +0.8 +0.1 +0.0 30.1 40.0 -9.9 Vert 9 352.558M 37.0 +14.9 +2.1 +2.1 +0.4 +0.0 35.6 46.0 -10.4 Vert 10 352.559M 35.2 +14.9 +2.1 +2.1 +0.4 +0.0 33.8 46.0 -10.4 Vert 11 325.435M 32.5 +14.2 +2.0 +2.0 +0.3 +0.0 30.3 46.0 -15.7 Vert 12 183.066M 35.9 +9.2 +1.5 +1.5 +0.2 +0.0 27.3 43.5 -16.2 Vert 13 271.224M 33.5				+0.2	+6.0	-27.8						
^ 461.044M 37.4 +17.3 +2.3 +2.5 +0.4 +0.0 38.3 46.0 -7.7 Vert 7 74.595M 42.7 +7.0 +0.9 +0.9 +0.2 +0.0 30.1 40.0 -9.9 Vert 8 61.035M 44.1 +5.9 +0.8 +0.8 +0.1 +0.0 30.1 40.0 -9.9 Vert 9 352.558M 37.0 +14.9 +2.1 +2.1 +0.4 +0.0 35.6 46.0 -10.4 Vert 10 352.559M 35.2 +14.9 +2.1 +2.1 +0.4 +0.0 33.8 46.0 -12.2 Horiz 11 325.435M 32.5 +14.2 +2.0 +2.0 +0.4 +0.0 30.3 46.0 -15.7 Vert 12 183.066M 35.9 +9.2 +1.5 +1.5 +0.2 +0.0 27.3 43.5 -16.2 Vert 13 271.224M 33.5 +12.8 +1.8 +1.8 +0.2 +0.0 27.3 43	5	461.041M	36.0	+17.3			+0.4	+0.0	37.0	46.0	-9.0	Vert
+0.5 +6.0 -28.1 7 74.595M 42.7 +7.0 +0.9 +0.9 +0.2 +0.0 30.1 40.0 -9.9 Vert 8 61.035M 44.1 +5.9 +0.8 +0.8 +0.1 +0.0 30.1 40.0 -9.9 Vert 9 352.558M 37.0 +14.9 +2.1 +2.1 +0.4 +0.0 35.6 46.0 -10.4 Vert 10 352.559M 35.2 +14.9 +2.1 +2.1 +0.4 +0.0 33.8 46.0 -12.2 Horiz 11 325.435M 32.5 +14.2 +2.0 +2.0 +0.3 +0.0 30.3 46.0 -15.7 Vert 12 183.066M 35.9 +9.2 +1.5 +1.5 +0.2 +0.0 27.3 43.5 -16.2 Vert 13 271.224M 33.5 +12.8 +1.8 +1.8 +0.3 +0.0 29.6 46.0		`										
7 74.595M 42.7 +7.0 +0.9 +0.9 +0.2 +0.0 30.1 40.0 -9.9 Vert 8 61.035M 44.1 +5.9 +0.8 +0.8 +0.1 +0.0 30.1 40.0 -9.9 Vert 9 352.558M 37.0 +14.9 +2.1 +2.1 +0.4 +0.0 35.6 46.0 -10.4 Vert 10 352.559M 35.2 +14.9 +2.1 +2.1 +0.4 +0.0 33.8 46.0 -12.2 Horiz 11 325.435M 32.5 +14.2 +2.0 +2.0 +0.3 +0.0 30.3 46.0 -15.7 Vert 12 183.066M 35.9 +9.2 +1.5 +1.5 +0.2 +0.0 27.3 43.5 -16.2 Vert 13 271.224M 33.5 +12.8 +1.8 +1.8 +0.0 27.0 27.0 43.5 -16.5 Vert 14 169	^	461.044M	37.4				+0.4	+0.0	38.3	46.0	-7.7	Vert
8 61.035M 44.1 +5.9 +0.8 +0.8 +0.1 +0.0 30.1 40.0 -9.9 Vert 9 352.558M 37.0 +14.9 +2.1 +2.1 +0.4 +0.0 35.6 46.0 -10.4 Vert 10 352.559M 35.2 +14.9 +2.1 +2.1 +0.4 +0.0 33.8 46.0 -12.2 Horiz 11 325.435M 32.5 +14.2 +2.0 +2.0 +0.3 +0.0 30.3 46.0 -15.7 Vert 12 183.066M 35.9 +9.2 +1.5 +1.5 +0.2 +0.0 27.3 43.5 -16.2 Vert 13 271.224M 33.5 +12.8 +1.8 +1.8 +0.2 +0.0 27.3 43.5 -16.2 Vert 14 169.519M 35.3 +9.8 +1.4 +1.4 +0.2 +0.0 27.0 43.5 -16.5 Vert 15												
8 61.035M 44.1 +5.9 +0.8 +0.8 +0.1 +0.0 30.1 40.0 -9.9 Vert 9 352.558M 37.0 +14.9 +2.1 +2.1 +0.4 +0.0 35.6 46.0 -10.4 Vert 10 352.559M 35.2 +14.9 +2.1 +2.1 +0.4 +0.0 33.8 46.0 -12.2 Horiz 11 325.435M 32.5 +14.2 +2.0 +2.0 +0.3 +0.0 30.3 46.0 -15.7 Vert 12 183.066M 35.9 +9.2 +1.5 +1.5 +0.2 +0.0 27.3 43.5 -16.2 Vert 13 271.224M 33.5 +12.8 +1.8 +1.8 +0.2 +0.0 27.3 43.5 -16.2 Vert 14 169.519M 35.3 +9.8 +1.4 +1.4 +0.2 +0.0 27.0 43.5 -16.5 Vert 15 271.206M 32.4 +12.8 +1.8 +1.8 +0.3 +0.0 28.6 <	7	74.595M	42.7				+0.2	+0.0	30.1	40.0	-9.9	Vert
+0.2 +6.0 -27.8 9 352.558M 37.0 +14.9 +2.1 +2.1 +0.4 +0.0 35.6 46.0 -10.4 Vert 10 352.559M 35.2 +14.9 +2.1 +2.1 +0.4 +0.0 33.8 46.0 -12.2 Horiz 11 325.435M 32.5 +14.2 +2.0 +2.0 +0.3 +0.0 30.3 46.0 -15.7 Vert 12 183.066M 35.9 +9.2 +1.5 +1.5 +0.2 +0.0 27.3 43.5 -16.2 Vert 13 271.224M 33.5 +12.8 +1.8 +1.8 +0.3 +0.0 29.6 46.0 -16.4 Horiz 14 169.519M 35.3 +9.8 +1.4 +1.4 +0.2 +0.0 27.0 43.5 -16.5 Vert 15 271.206M 32.4 +12.8 +1.8 +1.8 +0.3 +0.0 28.6 46.					+6.0	-27.8						
9 352.558M 37.0 +14.9 +2.1 +2.1 +0.4 +0.0 35.6 46.0 -10.4 Vert +0.4 +6.0 -27.3 10 352.559M 35.2 +14.9 +2.1 +2.1 +0.4 +0.0 33.8 46.0 -12.2 Horiz +0.4 +6.0 -27.3 11 325.435M 32.5 +14.2 +2.0 +2.0 +0.3 +0.0 30.3 46.0 -15.7 Vert +0.4 +6.0 -27.1 12 183.066M 35.9 +9.2 +1.5 +1.5 +1.5 +0.2 +0.0 27.3 43.5 -16.2 Vert +0.3 +6.0 -27.3 13 271.224M 33.5 +12.8 +1.8 +1.8 +1.8 +0.3 +0.0 29.6 46.0 -16.4 Horiz +0.4 +6.0 -26.9 14 169.519M 35.3 +9.8 +1.4 +1.4 +0.2 +0.0 27.0 43.5 -16.5 Vert +0.3 +6.0 -27.4 15 271.206M 32.4 +12.8 +1.8 +1.8 +1.8 +0.3 +0.0 28.6 46.0 -17.4 Vert +0.4 +6.0 -26.9 16 189.860M 34.3 +9.0 +1.5 +1.5 +0.3 +0.0 25.6 43.5 -17.9 Horiz	8	61.035M	44.1	+5.9	+0.8	+0.8	+0.1	+0.0	30.1	40.0	-9.9	Vert
+0.4 +6.0 -27.3 10 352.559M 35.2 +14.9 +2.1 +2.1 +0.4 +0.0 33.8 46.0 -12.2 Horiz 11 325.435M 32.5 +14.2 +2.0 +2.0 +0.3 +0.0 30.3 46.0 -15.7 Vert 12 183.066M 35.9 +9.2 +1.5 +1.5 +0.2 +0.0 27.3 43.5 -16.2 Vert 13 271.224M 33.5 +12.8 +1.8 +1.8 +0.3 +0.0 29.6 46.0 -16.4 Horiz 14 169.519M 35.3 +9.8 +1.4 +1.4 +0.2 +0.0 27.0 43.5 -16.5 Vert 15 271.206M 32.4 +12.8 +1.8 +1.8 +0.3 +0.0 28.6 46.0 -17.4 Vert 16 189.860M 34.3 +9.0 +1.5 +1.5 +0.3 +0.0 25.6 43.5 -17.9 Horiz						-27.8						
10 352.559M 35.2 +14.9 +2.1 +2.1 +0.4 +0.0 33.8 46.0 -12.2 Horiz 11 325.435M 32.5 +14.2 +2.0 +2.0 +0.3 +0.0 30.3 46.0 -15.7 Vert 12 183.066M 35.9 +9.2 +1.5 +1.5 +0.2 +0.0 27.3 43.5 -16.2 Vert 13 271.224M 33.5 +12.8 +1.8 +1.8 +0.3 +0.0 29.6 46.0 -16.4 Horiz 14 169.519M 35.3 +9.8 +1.4 +1.4 +0.2 +0.0 27.0 43.5 -16.5 Vert +0.3 +6.0 -27.4 -27.4 +0.0 27.0 43.5 -16.5 Vert 15 271.206M 32.4 +12.8 +1.8 +1.8 +0.3 +0.0 28.6 46.0 -17.4 Vert 16 189.860M 34.3 +9.0 +1.5 +1.5 +0.3 +0.0 25.6 43.5 -17.9 Horiz	9	352.558M	37.0	+14.9	+2.1	+2.1	+0.4	+0.0	35.6	46.0	-10.4	Vert
+0.4 +6.0 -27.3 11 325.435M 32.5 +14.2 +2.0 +2.0 +0.3 +0.0 30.3 46.0 -15.7 Vert +0.4 +6.0 -27.1 12 183.066M 35.9 +9.2 +1.5 +1.5 +0.2 +0.0 27.3 43.5 -16.2 Vert +0.3 +6.0 -27.3 13 271.224M 33.5 +12.8 +1.8 +1.8 +0.3 +0.0 29.6 46.0 -16.4 Horiz +0.4 +6.0 -26.9 14 169.519M 35.3 +9.8 +1.4 +1.4 +0.2 +0.0 27.0 43.5 -16.5 Vert +0.3 +6.0 -27.4 15 271.206M 32.4 +12.8 +1.8 +1.8 +1.8 +0.3 +0.0 28.6 46.0 -17.4 Vert +0.4 +6.0 -26.9 16 189.860M 34.3 +9.0 +1.5 +1.5 +0.3 +0.0 25.6 43.5 -17.9 Horiz						-27.3						
11 325.435M 32.5 +14.2 +2.0 +2.0 +0.3 +0.0 30.3 46.0 -15.7 Vert 12 183.066M 35.9 +9.2 +1.5 +1.5 +0.2 +0.0 27.3 43.5 -16.2 Vert 13 271.224M 33.5 +12.8 +1.8 +1.8 +0.3 +0.0 29.6 46.0 -16.4 Horiz 14 169.519M 35.3 +9.8 +1.4 +1.4 +0.2 +0.0 27.0 43.5 -16.5 Vert +0.3 +6.0 -27.4 15 271.206M 32.4 +12.8 +1.8 +1.8 +0.3 +0.0 28.6 46.0 -17.4 Vert +0.4 +6.0 -26.9 16 189.860M 34.3 +9.0 +1.5 +1.5 +0.3 +0.0 25.6 43.5 -17.9 Horiz	10	352.559M	35.2	+14.9		+2.1	+0.4	+0.0	33.8	46.0	-12.2	Horiz
+0.4 +6.0 -27.1 12 183.066M 35.9 +9.2 +1.5 +1.5 +0.2 +0.0 27.3 43.5 -16.2 Vert +0.3 +6.0 -27.3 -27.3 -27.3 -16.2 Vert 13 271.224M 33.5 +12.8 +1.8 +1.8 +0.0 29.6 46.0 -16.4 Horiz 14 169.519M 35.3 +9.8 +1.4 +1.4 +0.2 +0.0 27.0 43.5 -16.5 Vert +0.3 +6.0 -27.4 -27.4 -16.5 Vert 15 271.206M 32.4 +12.8 +1.8 +1.8 +0.3 +0.0 28.6 46.0 -17.4 Vert +0.4 +6.0 -26.9 -26.9 -26.9 -27.4 -						-27.3						
12 183.066M 35.9 +9.2 +1.5 +1.5 +0.2 +0.0 27.3 43.5 -16.2 Vert +0.3 +6.0 -27.3 13 271.224M 33.5 +12.8 +1.8 +1.8 +0.3 +0.0 29.6 46.0 -16.4 Horiz +0.4 +6.0 -26.9 14 169.519M 35.3 +9.8 +1.4 +1.4 +0.2 +0.0 27.0 43.5 -16.5 Vert +0.3 +6.0 -27.4 15 271.206M 32.4 +12.8 +1.8 +1.8 +1.8 +0.3 +0.0 28.6 46.0 -17.4 Vert +0.4 +6.0 -26.9 16 189.860M 34.3 +9.0 +1.5 +1.5 +0.3 +0.0 25.6 43.5 -17.9 Horiz	11	325.435M	32.5	+14.2	+2.0	+2.0	+0.3	+0.0	30.3	46.0	-15.7	Vert
+0.3 +6.0 -27.3 13 271.224M 33.5 +12.8 +1.8 +1.8 +0.3 +0.0 29.6 46.0 -16.4 Horiz +0.4 +6.0 -26.9 14 169.519M 35.3 +9.8 +1.4 +1.4 +0.2 +0.0 27.0 43.5 -16.5 Vert +0.3 +6.0 -27.4 15 271.206M 32.4 +12.8 +1.8 +1.8 +0.3 +0.0 28.6 46.0 -17.4 Vert +0.4 +6.0 -26.9 16 189.860M 34.3 +9.0 +1.5 +1.5 +0.3 +0.0 25.6 43.5 -17.9 Horiz				+0.4	+6.0	-27.1						
13 271.224M 33.5 +12.8 +1.8 +1.8 +0.3 +0.0 29.6 46.0 -16.4 Horiz 14 169.519M 35.3 +9.8 +1.4 +1.4 +0.2 +0.0 27.0 43.5 -16.5 Vert 15 271.206M 32.4 +12.8 +1.8 +1.8 +0.3 +0.0 28.6 46.0 -17.4 Vert +0.4 +6.0 -26.9 16 189.860M 34.3 +9.0 +1.5 +1.5 +0.3 +0.0 25.6 43.5 -17.9 Horiz	12	183.066M	35.9	+9.2	+1.5	+1.5	+0.2	+0.0	27.3	43.5	-16.2	Vert
+0.4 +6.0 -26.9 14 169.519M 35.3 +9.8 +1.4 +1.4 +0.2 +0.0 27.0 43.5 -16.5 Vert +0.3 +6.0 -27.4 15 271.206M 32.4 +12.8 +1.8 +1.8 +0.3 +0.0 28.6 46.0 -17.4 Vert +0.4 +6.0 -26.9 16 189.860M 34.3 +9.0 +1.5 +1.5 +0.3 +0.0 25.6 43.5 -17.9 Horiz				+0.3	+6.0	-27.3						
14 169.519M 35.3 +9.8 +1.4 +1.4 +0.2 +0.0 27.0 43.5 -16.5 Vert +0.3 +6.0 -27.4 15 271.206M 32.4 +12.8 +1.8 +1.8 +0.3 +0.0 28.6 46.0 -17.4 Vert +0.4 +6.0 -26.9 16 189.860M 34.3 +9.0 +1.5 +1.5 +0.3 +0.0 25.6 43.5 -17.9 Horiz	13	271.224M	33.5	+12.8	+1.8	+1.8	+0.3	+0.0	29.6	46.0	-16.4	Horiz
+0.3 +6.0 -27.4 15 271.206M 32.4 +12.8 +1.8 +1.8 +0.3 +0.0 28.6 46.0 -17.4 Vert +0.4 +6.0 -26.9 16 189.860M 34.3 +9.0 +1.5 +1.5 +0.3 +0.0 25.6 43.5 -17.9 Horiz				+0.4	+6.0	-26.9						
15 271.206M 32.4 +12.8 +1.8 +1.8 +0.3 +0.0 28.6 46.0 -17.4 Vert +0.4 +6.0 -26.9 16 189.860M 34.3 +9.0 +1.5 +1.5 +0.3 +0.0 25.6 43.5 -17.9 Horiz	14	169.519M	35.3				+0.2	+0.0	27.0	43.5	-16.5	Vert
+0.4 +6.0 -26.9 16 189.860M 34.3 +9.0 +1.5 +1.5 +0.3 +0.0 25.6 43.5 -17.9 Horiz				+0.3	+6.0	-27.4						
16 189.860M 34.3 +9.0 +1.5 +1.5 +0.3 +0.0 25.6 43.5 -17.9 Horiz	15	271.206M	32.4	+12.8	+1.8	+1.8	+0.3	+0.0	28.6	46.0	-17.4	Vert
				+0.4	+6.0	-26.9						
0.0 0.0 0.0	16	189.860M	34.3	+9.0	+1.5	+1.5	+0.3	+0.0	25.6	43.5	-17.9	Horiz
+0.3 +6.0 -27.3				+0.3	+6.0	-27.3						

Page 75 of 102 Report No.: 97757-40

Test Location: CKC Laboratories, Inc. • 5046 Sierra Pines Dr. • Mariposa, CA 95338 • 209-966-5240

Customer: WaveLynx Technologies Corporation

Specification: 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter)

Work Order #: 97757 Date: 5/6/2016
Test Type: Radiated Scan Time: 17:10:55
Tested By: Skip Doyle Sequence#: 18

Software: EMITest 5.03.02

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 6				

Support Equipment:

Device	Manufacturer	Model #	S/N
Configuration 6			

Test Conditions / Notes:

Radiated Spurious Emissions Measurements

Temperature: 12°C Humidity:69%

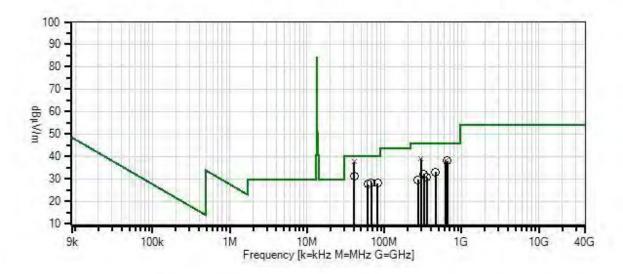
Atmospheric Pressure: 97.0 kPa

Frequency Range: 30MHz -1GHz

Modulation: ASK with an 847kHz Subcarrier

Antenna Type: Integral Antenna Gain 2 dBi

Transmit Frequency: 13.56MHz


The EUTs are powered by a DC power supply at 12VDC. The manufacturer declares it will only ever be wall mounted in an upright/vertical (Y-axis) orientation.

The EUT is setup on an 80cm foam block. It has been programmed to continuously transmit the RFID signal at 13.56MHz.

Page 76 of 102 Report No.: 97757-40

WaveLynx Technologies Corporation WO#: 97757 Sequence#: 18 Date: 5/6/2016 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter) Test Distance: 3 Meters Horiz

- Readings

- O Peak Readings
- × QP Readings
- * Average Readings
- ▼ Ambient
 - Software Version: 5.03.02

1 - 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter)

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02111	Spectrum Analyzer	8593EM	6/4/2015	6/4/2016
T1	AN01991	Biconilog Antenna	CBL6111C	3/11/2016	3/11/2018
T2	ANMD3M	Cable		3/17/2016	3/17/2018
T3	ANP06229	Cable	CXTA04A-50	3/17/2016	3/17/2018
T4	ANP06884	Cable	LMR195-FR-4	10/27/2015	10/27/2017
T5	ANP06885	Cable	P06885	10/27/2015	10/27/2017
T6	ANP05657	Attenuator	PE7004-6	12/22/2015	12/22/2017
T7	AN00282	Preamp	8447D	4/7/2016	4/7/2018

Measu	rement Data:		eading lis	ted by ma	ırgin.		Т	est Distance	e: 3 Meters	1	
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7						
	MHz	dΒμV	dB	dB	dB	dB	Table	•	$dB\mu V/m$	dB	Ant
1	40.696M	43.7	+14.0	+0.7	+0.7	+0.1	+0.0	37.5	40.0	-2.5	Vert
	QP		+0.2	+6.0	-27.9						
^	40.685M	45.1	+14.1	+0.7	+0.7	+0.1	+0.0	39.0	40.0	-1.0	Vert
			+0.2	+6.0	-27.9						
3		42.1	+13.4	+1.9	+1.9	+0.4	+0.0	39.1	46.0	-6.9	Vert
	QP		+0.4	+6.0	-27.0						
^	298.325M	43.4	+13.4	+1.9	+1.9	+0.4	+0.0	40.4	46.0	-5.6	Vert
			+0.4	+6.0	-27.0			• • • •	1.5.0		
5		41.9	+13.4	+1.9	+1.9	+0.4	+0.0	38.9	46.0	-7.1	Horiz
	QP	40.0	+0.4	+6.0	-27.0	. 0. 4	. 0. 0	20.2	46.0		
^	298.326M	42.3	+13.4	+1.9	+1.9	+0.4	+0.0	39.3	46.0	-6.7	Horiz
	(22.75.4).6	22.0	+0.4	+6.0	-27.0	. 0. 4	. 0. 0	20.2	46.0		T7 .
7		33.9	+20.3	+2.7	+2.9	+0.4	+0.0	38.3	46.0	-7.7	Vert
^	QP	25.2	+0.5	+6.0	-28.4	. 0. 4	. 0. 0	20.7	46.0		T 7 .
	623.754M	35.3	+20.3	+2.7	+2.9	+0.4	+0.0	39.7	46.0	-6.3	Vert
9	(50.070M	22.0	+0.5	+6.0	-28.4	10.5	100	20.0	46.0	0.0	1 7 4
9	650.879M	32.9	+20.7	+2.8	+3.0	+0.5	+0.0	38.0	46.0	-8.0	Vert
10	10 695M	37.1	+0.5	+6.0	-28.4	+0.1	+0.0	31.0	40.0	-9.0	Howin
10	40.685M	3/.1	+14.1	+0.7 +6.0	+0.7 -27.9	+0.1	+0.0	31.0	40.0	-9.0	Horiz
11	67.805M	41.2	+6.8	+0.9	+0.9	+0.1	+0.0	28.3	40.0	-11.7	Vert
11	07.803WI	41.2	+0.8	+6.0	-27.8	+0.1	+0.0	26.3	40.0	-11./	VEIT
12	81.365M	40.3	+7.2	+1.0	+0.9	+0.2	+0.0	28.0	40.0	-12.0	Vert
12	01.3031	70.5	+0.2	+6.0	-27.8	10.2	10.0	20.0	40.0	-12.0	VCIT
13	61.025M	41.7	+5.9	+0.8	+0.8	+0.1	+0.0	27.7	40.0	-12.3	Vert
13	01.0251	71./	+0.2	+6.0	-27.8	10.1	10.0	21.1	40.0	-12.3	VCIT
14	461.036M	32.1	+17.3	+2.3	+2.5	+0.4	+0.0	33.0	46.0	-13.0	Vert
17	101.050111	22.1	+0.5	+6.0	-28.1	10.4	.0.0	55.0	70.0	13.0	V 01 t
15	325.429M	34.2	+14.2	+2.0	+2.0	+0.3	+0.0	32.0	46.0	-14.0	Vert
	525.125111	5 1.2	+0.4	+6.0	-27.1	. 0.3	. 0.0	32.0	10.0	1 1.0	, 011
16	352.556M	32.1	+14.9	+2.1	+2.1	+0.4	+0.0	30.7	46.0	-15.3	Vert
	202.000111	J = . 1	+0.4	+6.0	-27.3	· · ·	0.0	20.,		10.0	
17	271.204M	33.3	+12.8	+1.8	+1.8	+0.3	+0.0	29.5	46.0	-16.5	Horiz
	,		+0.4	+6.0	-26.9		2.0				
L											

Page 78 of 102 Report No.: 97757-40

Test Location: CKC Laboratories, Inc. • 5046 Sierra Pines Dr. • Mariposa, CA 95338 • 209-966-5240

Customer: WaveLynx Technologies Corporation

Specification: 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter)

Work Order #: 97757 Date: 5/6/2016
Test Type: Radiated Scan
Tested By: Skip Doyle Sequence#: 19

Software: EMITest 5.03.02

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 7				

Support Equipment:

Device	Manufacturer	Model #	S/N
Configuration 7			

Test Conditions / Notes:

Radiated Spurious Emissions Measurements

Temperature: 12°C Humidity:69%

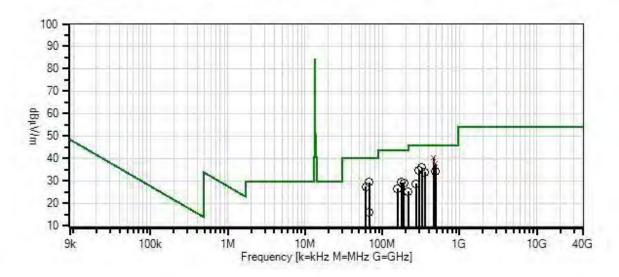
Atmospheric Pressure: 97.0 kPa

Frequency Range: 30MHz -1GHz

Modulation: ASK with an 847kHz Subcarrier

Antenna Type: Integral Antenna Gain 2 dBi

Transmit Frequency: 13.56MHz


The EUTs are powered by a DC power supply at 12VDC. The manufacturer declares it will only ever be wall mounted in an upright/vertical (Y-axis) orientation.

The EUT is setup on an 80cm foam block. It has been programmed to continuously transmit the RFID signal at 13.56MHz.

Page 79 of 102 Report No.: 97757-40

WaveLynx Technologies Corporation WO#: 97757 Sequence#: 19 Date: 5/6/2016 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter) Test Distance: 3 Meters Vert

- Readings

- Peak Readings
- × QP Readings
- * Average Readings
- ▼ Ambient
 - Software Version: 5.03.02

- 1 - 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter)

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02111	Spectrum Analyzer	8593EM	6/4/2015	6/4/2016
T1	AN01991	Biconilog Antenna	CBL6111C	3/11/2016	3/11/2018
T2	ANMD3M	Cable		3/17/2016	3/17/2018
T3	ANP06229	Cable	CXTA04A-50	3/17/2016	3/17/2018
T4	ANP06884	Cable	LMR195-FR-4	10/27/2015	10/27/2017
T5	ANP06885	Cable	P06885	10/27/2015	10/27/2017
Т6	ANP05657	Attenuator	PE7004-6	12/22/2015	12/22/2017
T7	AN00282	Preamp	8447D	4/7/2016	4/7/2018

Measu	rement Data:	Re	eading lis	ted by ma	ırgin.		Te	est Distance	e: 3 Meters	i	
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7						
	MHz	dΒμV	dB	dB	dB	dB	Table		dBμV/m	dB	Ant
1	461.042M	39.5	+17.3	+2.3	+2.5	+0.4	+0.0	40.4	46.0	-5.6	Vert
	QP		+0.5	+6.0	-28.1						
^	461.044M	40.7	+17.3	+2.3	+2.5	+0.4	+0.0	41.6	46.0	-4.4	Vert
			+0.5	+6.0	-28.1						
3	488.161M	36.1	+17.8	+2.4	+2.5	+0.4	+0.0	37.5	46.0	-8.5	Vert
	QP		+0.5	+6.0	-28.2						
^	488.162M	37.4	+17.8	+2.4	+2.5	+0.4	+0.0	38.8	46.0	-7.2	Vert
			+0.5	+6.0	-28.2						
5	325.445M	38.0	+14.2	+2.0	+2.0	+0.3	+0.0	35.8	46.0	-10.2	Horiz
			+0.4	+6.0	-27.1						
6	67.815M	42.2	+6.8	+0.9	+0.9	+0.1	+0.0	29.3	40.0	-10.7	Vert
			+0.2	+6.0	-27.8				15.0		
7	298.330M	37.7	+13.4	+1.9	+1.9	+0.4	+0.0	34.7	46.0	-11.3	Horiz
	100 1 7 2 2		+0.4	+6.0	-27.0				15.0		
8	488.172M	32.8	+17.8	+2.4	+2.5	+0.4	+0.0	34.2	46.0	-11.8	Horiz
	252 5503 5	27.2	+0.5	+6.0	-28.2	. 0. 4	. 0. 0	22.0	46.0	10.1	TT .
9	352.570M	35.3	+14.9	+2.1	+2.1	+0.4	+0.0	33.9	46.0	-12.1	Horiz
1.0	61.0223.5	41.4	+0.4	+6.0	-27.3	. 0. 1	. 0. 0	27.4	40.0	10.6	**
10	61.033M	41.4	+5.9	+0.8	+0.8	+0.1	+0.0	27.4	40.0	-12.6	Vert
1.1	177. 2073.1	20.1	+0.2	+6.0	-27.8	. 0. 2	. 0. 0	20.2	10.5	1.4.0	T 7
11	176.287M	38.1	+9.3	+1.4	+1.4	+0.2	+0.0	29.3	43.5	-14.2	Vert
10	100 02234	27.0	+0.3	+6.0	-27.4	.0.2		20.1	12.5	1.4.4	тт .
12	189.833M	37.8	+9.0	+1.5	+1.5	+0.3	+0.0	29.1	43.5	-14.4	Horiz
1.2	155.06134	24.0	+0.3	+6.0	-27.3	.0.2		26.5	12.5	17.0	тт .
13	155.961M	34.0	+10.8	+1.3	+1.4	+0.2	+0.0	26.5	43.5	-17.0	Horiz
1 /	271 20134	22.5	+0.3	+6.0	-27.5	10.2	100	20.7	46.0	17.2	V4
14	271.201M	32.5	+12.8	+1.8	+1.8	+0.3	+0.0	28.7	46.0	-17.3	Vert
1.5	216.06734	22.4	+0.4	+6.0	-26.9	10.2	100	25.2	46.0	20.7	V 4
15	216.967M	32.4	+10.1	+1.6	+1.6	+0.3	+0.0	25.3	46.0	-20.7	Vert
1.0	67 01 EN A	20.0	+0.4	+6.0	-27.1	+Ω 1	100	15.0	40.0	24.1	IIo::!=
16	67.815M	28.8	+6.8	+0.9	+0.9	+0.1	+0.0	15.9	40.0	-24.1	Horiz
			+0.2	+6.0	-27.8						

Page 81 of 102 Report No.: 97757-40

Test Location: CKC Laboratories, Inc. • 5046 Sierra Pines Dr. • Mariposa, CA 95338 • 209-966-5240

Customer: WaveLynx Technologies Corporation

Specification: 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter)

Work Order #: 97757 Date: 5/6/2016
Test Type: Radiated Scan Time: 18:07:10
Tested By: Skip Doyle Sequence#: 20

Software: EMITest 5.03.02

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 8				

Support Equipment:

Device	Manufacturer	Model #	S/N
Configuration 8			

Test Conditions / Notes:

Radiated Spurious Emissions Measurements

Temperature: 12°C Humidity:69%

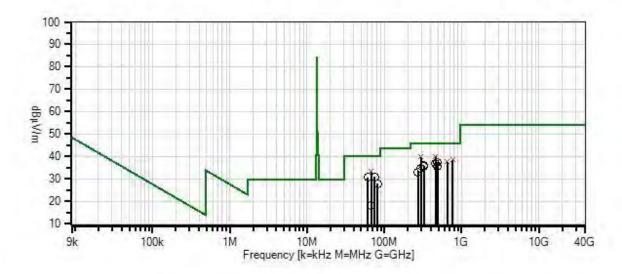
Atmospheric Pressure: 97.0 kPa

Frequency Range: 30MHz -1GHz

Modulation: ASK with an 847kHz Subcarrier

Antenna Type: Integral Antenna Gain 2 dBi

Transmit Frequency: 13.56MHz


The EUTs are powered by a DC power supply at 12VDC. The manufacturer declares it will only ever be wall mounted in an upright/vertical (Y-axis) orientation.

The EUT is setup on an 80cm foam block. It has been programmed to continuously transmit the RFID signal at 13.56MHz.

Page 82 of 102 Report No.: 97757-40

WaveLynx Technologies Corporation WO#: 97757 Sequence#: 20 Date: 5/6/2016 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter) Test Distance: 3 Meters Horiz

- Readings

- O Peak Readings
- × QP Readings
- * Average Readings
- ▼ Ambient
 - Software Version: 5.03.02

1 - 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter)

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02111	Spectrum Analyzer	8593EM	6/4/2015	6/4/2016
T1	AN01991	Biconilog Antenna	CBL6111C	3/11/2016	3/11/2018
T2	ANMD3M	Cable		3/17/2016	3/17/2018
T3	ANP06229	Cable	CXTA04A-50	3/17/2016	3/17/2018
T4	ANP06884	Cable	LMR195-FR-4	10/27/2015	10/27/2017
T5	ANP06885	Cable	P06885	10/27/2015	10/27/2017
Т6	ANP05657	Attenuator	PE7004-6	12/22/2015	12/22/2017
T7	AN00282	Preamp	8447D	4/7/2016	4/7/2018

Measu	rement Data:	Re	eading lis	ted by ma	ırgin.		Т	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7						
	MHz	dΒμV	dB	dB	dB	dB	Table	dBμV/m	dBμV/m	dB	Ant
1	461.041M	39.2	+17.3	+2.3	+2.5	+0.4	+0.0	40.1	46.0	-5.9	Vert
	QP		+0.5	+6.0	-28.1						
^	461.039M	40.2	+17.3	+2.3	+2.5	+0.4	+0.0	41.0	46.0	-4.9	Vert
			+0.5	+6.0	-28.1						
3	298.325M	42.8	+13.4	+1.9	+1.9	+0.4	+0.0	39.8	46.0	-6.2	Vert
	QP		+0.4	+6.0	-27.0						
^	298.328M	43.3	+13.4	+1.9	+1.9	+0.4	+0.0	40.3	46.0	-5.7	Vert
			+0.4	+6.0	-27.0						
^	298.324M	40.7	+13.4	+1.9	+1.9	+0.4	+0.0	37.7	46.0	-8.3	Vert
			+0.4	+6.0	-27.0						
6		46.3	+6.8	+0.9	+0.9	+0.1	+0.0	33.4	40.0	-6.6	Vert
	QP		+0.2	+6.0	-27.8						
^	67.811M	46.9	+6.8	+0.9	+0.9	+0.1	+0.0	34.0	40.0	-6.0	Vert
			+0.2	+6.0	-27.8						
8	759.349M	30.2	+23.2	+3.0	+3.3	+0.5	+0.0	38.6	46.0	-7.4	Horiz
	QP		+0.6	+6.0	-28.2						
^	759.362M	33.0	+23.2	+3.0	+3.3	+0.5	+0.0	41.4	46.0	-4.6	Horiz
			+0.6	+6.0	-28.2						
10		32.5	+20.7	+2.8	+3.0	+0.5	+0.0	37.6	46.0	-8.4	Vert
	QP		+0.5	+6.0	-28.4						
^	650.873M	34.6	+20.7	+2.8	+3.0	+0.5	+0.0	39.7	46.0	-6.3	Vert
			+0.5	+6.0	-28.4						
12	488.150M	35.9	+17.8	+2.4	+2.5	+0.4	+0.0	37.3	46.0	-8.7	Horiz
			+0.5	+6.0	-28.2						
13	74.590M	43.6	+7.0	+0.9	+0.9	+0.2	+0.0	31.0	40.0	-9.0	Vert
			+0.2	+6.0	-27.8						

Page 84 of 102 Report No.: 97757-40

14	461.030M	36.1	+17.3	+2.3	+2.5	+0.4	+0.0	37.0	46.0	-9.0	Horiz
			+0.5	+6.0	-28.1						
15	61.032M	44.7	+5.9	+0.8	+0.8	+0.1	+0.0	30.7	40.0	-9.3	Vert
			+0.2	+6.0	-27.8						
16	325.444M	38.1	+14.2	+2.0	+2.0	+0.3	+0.0	35.9	46.0	-10.1	Vert
			+0.4	+6.0	-27.1						
17	325.439M	38.0	+14.2	+2.0	+2.0	+0.3	+0.0	35.8	46.0	-10.2	Horiz
			+0.4	+6.0	-27.1						
18	488.170M	34.2	+17.8	+2.4	+2.5	+0.4	+0.0	35.6	46.0	-10.4	Vert
			+0.5	+6.0	-28.2						
19	298.325M	37.9	+13.4	+1.9	+1.9	+0.4	+0.0	34.9	46.0	-11.1	Horiz
			+0.4	+6.0	-27.0						
20	81.370M	40.1	+7.2	+1.0	+0.9	+0.2	+0.0	27.8	40.0	-12.2	Vert
			+0.2	+6.0	-27.8						
21	271.210M	36.9	+12.8	+1.8	+1.8	+0.3	+0.0	33.1	46.0	-12.9	Vert
			+0.4	+6.0	-26.9						
22	67.815M	30.8	+6.8	+0.9	+0.9	+0.1	+0.0	17.9	40.0	-22.1	Horiz
			+0.2	+6.0	-27.8						

Page 85 of 102 Report No.: 97757-40

Test Setup Photo

Page 86 of 102 Report No.: 97757-40

15.207 AC Conducted Emissions

Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 5046 Sierra Pines Drive • Mariposa, CA 95338 • (209) 966-5240

Customer: WaveLynx Technologies Corporation.

Specification: 15.207 AC Mains - Average

Work Order #: 97757 Date: 5/3/2016
Test Type: Conducted Emissions Time: 13:22:30
Tested By: Skip Doyle Sequence#: 21

Software: EMITest 5.03.02 115V 60Hz

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 15

Support Equipment:

Device Manufacturer Model # S/N
Configuration 15

Test Conditions / Notes:

Testing the 115VAC/60Hz input to the 12VDC power supply

Test Method: ANSI C63.10: 2013

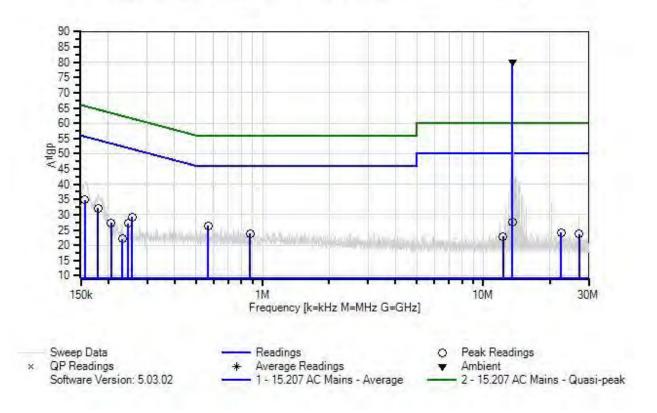
Frequency Range of Interest:

0.150-30MHz

RBW = 9kHz; VBW > 9kHz

Environmental Conditions: Temperature: 20°C Relative Humidity: 35% Atmospheric Pressure: 97.1kPa

The EUTs are powered by a DC power supply at 12VDC. The customer declares it will only ever be wall mounted in an upright/vertical (Y-axis) orientation.


It has been programmed to continuously transmit the RFID signal at 125kHz.

Configuration 15 is made up of Configurations 1, 2, 3 and 4. All were tested simultaneously. A quick "preview" of one-unit vs four units connected to the LISN was performed while the measuring instrument was set to a wide span, there was no difference in the rescan emission observed.

Page 87 of 102 Report No.: 97757-40

WaveLynx Technologies Corporation. WO#: 97757 Sequence#: 21 Date: 5/3/2016 15.207 AC Mains - Average Test Lead: 115V 60Hz LINE

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP06770	Attenuator	PE7010-10	1/15/2015	1/15/2017
	AN01248	50uH LISN-Line 1	8028-50-TS-24-	1/4/2016	1/4/2017
		(Return) (dB)	BNC		
T2	AN01248	50uH LISN-Line 2	8028-50-TS-24-	1/4/2016	1/4/2017
		(Line) (dB)	BNC		
T3	AN02609	High Pass Filter	HE9615-150K-	2/18/2016	2/18/2018
			50-720B		
T4	AN02668	Spectrum Analyzer	E4446A	8/14/2015	8/14/2016
T5	ANP06884	Cable	LMR195-FR-4	10/27/2015	10/27/2017
T6	ANMD INT	Cable	Underground	3/17/2016	3/17/2018
			cables only		
T7	ANP01153	Cable	NA	3/3/2016	3/3/2018

Measu	rement Data:		eading lis	ted by ma	argin.			Test Lea	ad: LINE		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7						
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	13.560M	69.1	+10.1	+0.3	+0.2	+0.0	+0.0	80.1	50.0	+30.1	LINE
	Ambient		+0.1	+0.2	+0.1				Fundamer		
2	568.000k	15.8	+10.1	+0.1	+0.3	+0.0	+0.0	26.3	46.0	-19.7	LINE
			+0.0	+0.0	+0.0						
3	156.900k	23.6	+10.1	+0.1	+1.0	+0.0	+0.0	34.8	55.6	-20.8	LINE
			+0.0	+0.0	+0.0						
4	880.000k	13.3	+10.1	+0.2	+0.2	+0.0	+0.0	23.8	46.0	-22.2	LINE
			+0.0	+0.0	+0.0						
5	180.000k	21.7	+10.1	+0.1	+0.3	+0.0	+0.0	32.2	54.5	-22.3	LINE
			+0.0	+0.0	+0.0						
6	13.561M	16.6	+10.1	+0.3	+0.2	+0.0	+0.0	27.6	50.0	-22.4	LINE
			+0.1	+0.2	+0.1				Fundamer	ntal -	
									antenna		
										ted, under	
									load		
7	256.300k	18.8	+10.1	+0.1	+0.2	+0.0	+0.0	29.2	51.6	-22.4	LINE
			+0.0	+0.0	+0.0						
8	245.700k	16.7	+10.1	+0.1	+0.2	+0.0	+0.0	27.1	51.9	-24.8	LINE
			+0.0	+0.0	+0.0						
9	22.540M	12.6	+10.1	+0.6	+0.3	+0.0	+0.0	24.1	50.0	-25.9	LINE
			+0.1	+0.2	+0.2						
10	205.800k	16.9	+10.1	+0.1	+0.2	+0.0	+0.0	27.3	53.4	-26.1	LINE
			+0.0	+0.0	+0.0						
11	27.120M	12.6	+10.1	+0.1	+0.3	+0.0	+0.0	23.6	50.0	-26.4	LINE
			+0.1	+0.2	+0.2						
12	12.300M	12.0	+10.1	+0.3	+0.1	+0.0	+0.0	22.9	50.0	-27.1	LINE
			+0.1	+0.2	+0.1						
13	232.000k	11.7	+10.1	+0.1	+0.2	+0.0	+0.0	22.1	52.4	-30.3	LINE
			+0.0	+0.0	+0.0						

Page 89 of 102 Report No.: 97757-40

Test Location: CKC Laboratories, Inc. • 5046 Sierra Pines Drive • Mariposa, CA 95338 • (209) 966-5240

Customer: WaveLynx Technologies Corporation.

Specification: 15.207 AC Mains - Average

Work Order #: 97757 Date: 5/3/2016
Test Type: Conducted Emissions Time: 13:30:48
Tested By: Skip Doyle Sequence#: 22

Software: EMITest 5.03.02 115V 60Hz

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 15

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 15				

Test Conditions / Notes:

Testing the 115VAC/60Hz input to the 12VDC power supply

Test Method: ANSI C63.10: 2013

Frequency Range of Interest:

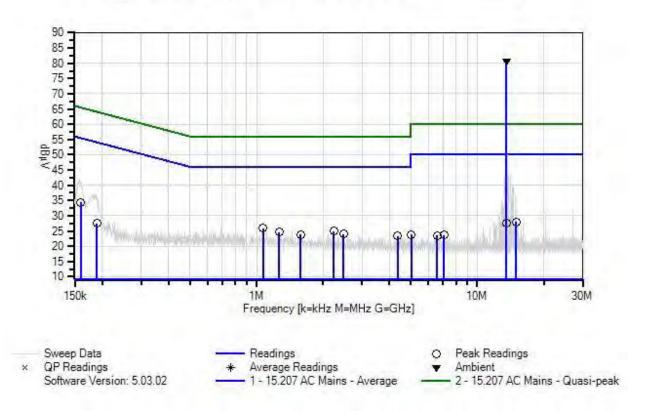
0.150-30MHz

RBW = 9kHz; VBW > 9kHz

Environmental Conditions: Temperature: 20°C Relative Humidity: 35%

Atmospheric Pressure: 97.1kPa

The EUTs are powered by a DC power supply at 12VDC. The manufacturer declares it will only ever be wall mounted in an upright/vertical (Y-axis) orientation.


It has been programmed to continuously transmit the RFID signal at 125kHz.

Configuration 15 is made up of Configurations 1, 2, 3 and 4. All were tested simultaneously. A quick "preview" of one-unit vs four units connected to the LISN was performed while the measuring instrument was set to a wide span, there was no difference in the rescan emission observed.

Page 90 of 102 Report No.: 97757-40

WaveLynx Technologies Corporation. WO#: 97757 Sequence#: 22 Date: 5/3/2016 15.207 AC Mains - Average Test Lead: 115V 60Hz RETURN

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP06770	Attenuator	PE7010-10	1/15/2015	1/15/2017
T2	AN01248	50uH LISN-Line 1	8028-50-TS-24-	1/4/2016	1/4/2017
		(Return) (dB)	BNC		
	AN01248	50uH LISN-Line 2	8028-50-TS-24-	1/4/2016	1/4/2017
		(Line) (dB)	BNC		
Т3	AN02609	High Pass Filter	HE9615-150K-	2/18/2016	2/18/2018
			50-720B		
T4	AN02668	Spectrum Analyzer	E4446A	8/14/2015	8/14/2016
T5	ANP06884	Cable	LMR195-FR-4	10/27/2015	10/27/2017
T6	ANMD INT	Cable	Underground	3/17/2016	3/17/2018
			cables only		
T7	ANP01153	Cable	NA	3/3/2016	3/3/2018

Measur	rement Data:	Re	eading lis	ted by ma	argin.			Test Lea	ad: RETUR	N	
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7						
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	13.560M	69.5	+10.1	+0.4	+0.2	+0.0	+0.0	80.6	50.0	+30.6	RETUR
	Ambient		+0.1	+0.2	+0.1				Fundamer		
2	1.072M	15.4	+10.1	+0.1	+0.2	+0.0	+0.0	25.9	46.0	-20.1	RETUR
			+0.0	+0.1	+0.0						
3	2.233M	14.4	+10.1	+0.1	+0.2	+0.0	+0.0	24.9	46.0	-21.1	RETUR
			+0.0	+0.1	+0.0						
4	160.000k	23.5	+10.1	+0.1	+0.6	+0.0	+0.0	34.3	55.5	-21.2	RETUR
			+0.0	+0.0	+0.0						
5	1.266M	14.1	+10.1	+0.1	+0.2	+0.0	+0.0	24.6	46.0	-21.4	RETUR
			+0.0	+0.1	+0.0						
6	2.476M	13.6	+10.1	+0.1	+0.1	+0.0	+0.0	24.0	46.0	-22.0	RETUR
			+0.0	+0.1	+0.0						
7	15.000M	16.8	+10.1	+0.4	+0.2	+0.0	+0.0	27.9	50.0	-22.1	RETUR
			+0.1	+0.2	+0.1						
8	1.585M	13.3	+10.1	+0.1	+0.2	+0.0	+0.0	23.8	46.0	-22.2	RETUR
			+0.0	+0.1	+0.0						
9	13.560M	16.6	+10.1	+0.4	+0.2	+0.0	+0.0	27.7	50.0	-22.3	RETUR
			+0.1	+0.2	+0.1				Fundamer	ıtal-	
									Antenna		
									Disconnec	eted and	
									Loaded		
10	4.357M	12.8	+10.1	+0.1	+0.1	+0.0	+0.0	23.3	46.0	-22.7	RETUR
			+0.0	+0.1	+0.1						
11	5.032M	13.3	+10.1	+0.1	+0.1	+0.0	+0.0	23.8	50.0	-26.2	RETUR
			+0.0	+0.1	+0.1						
12	7.066M	12.9	+10.1	+0.2	+0.2	+0.0	+0.0	23.7	50.0	-26.3	RETUR
			+0.1	+0.1	+0.1						
13	6.562M	12.6	+10.1	+0.2	+0.2	+0.0	+0.0	23.4	50.0	-26.6	RETUR
			+0.1	+0.1	+0.1						
14	189.000k	17.0	+10.1	+0.1	+0.3	+0.0	+0.0	27.5	54.1	-26.6	RETUR
			+0.0	+0.0	+0.0						

Page 92 of 102 Report No.: 97757-40

Test Location: CKC Laboratories, Inc. • 5046 Sierra Pines Drive • Mariposa, CA 95338 • (209) 966-5240

Customer: WaveLynx Technologies Corporation.

Specification: 15.207 AC Mains - Average

Work Order #: 97757 Date: 5/3/2016
Test Type: Conducted Emissions Time: 13:34:55
Tested By: Skip Doyle Sequence#: 24

Software: EMITest 5.03.02 115V 60Hz

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 16

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 16				

Test Conditions / Notes:

Testing the 115VAC/60Hz input to the 12VDC power supply

Test Method: ANSI C 63.4 2014

Frequency Range of Interest:

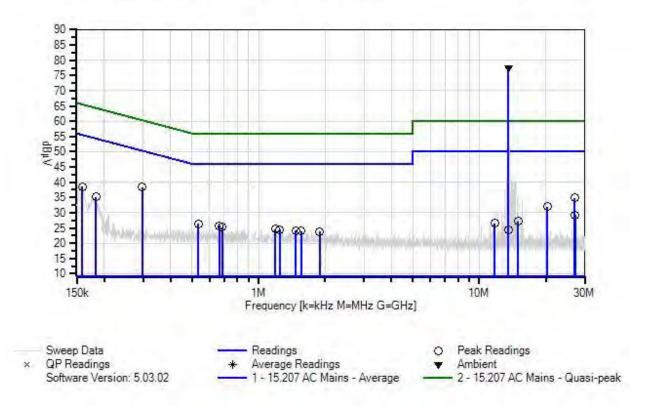
0.150-30MHz

RBW = 9kHz; VBW > 9kHz

Environmental Conditions: Temperature: 20°C Relative Humidity: 35%

Atmospheric Pressure: 97.1kPa

The EUTs are powered by a DC power supply at 12VDC. The manufacturer declares it will only ever be wall mounted in an upright/vertical (Y-axis) orientation.


It has been programmed to continuously transmit the RFID signal at 13.56MHz.

Configuration 16 is made up of Configurations 5, 6, 7 and 8. All were tested simultaneously. A quick "preview" of one-unit vs four units connected to the LISN was performed while the measuring instrument was set to a wide span, there was no difference in the rescan emission observed.

Page 93 of 102 Report No.: 97757-40

WaveLynx Technologies Corporation. WO#: 97757 Sequence#: 24 Date: 5/3/2016 15.207 AC Mains - Average Test Lead: 115V 60Hz LINE

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP06770	Attenuator	PE7010-10	1/15/2015	1/15/2017
	AN01248	50uH LISN-Line 1	8028-50-TS-24-	1/4/2016	1/4/2017
		(Return) (dB)	BNC		
T2	AN01248	50uH LISN-Line 2	8028-50-TS-24-	1/4/2016	1/4/2017
		(Line) (dB)	BNC		
Т3	AN02609	High Pass Filter	HE9615-150K-	2/18/2016	2/18/2018
			50-720B		
T4	AN02668	Spectrum Analyzer	E4446A	8/14/2015	8/14/2016
T5	ANP06884	Cable	LMR195-FR-4	10/27/2015	10/27/2017
T6	ANMD INT	Cable	Underground	3/17/2016	3/17/2018
			cables only		
T7	ANP01153	Cable	NA	3/3/2016	3/3/2018

Measi	urement Data:	Re	eading lis	ted by ma	argin.			Test Lea	d: LINE		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7						
	MHz	$dB\mu V$	dB	dB	dB	dB	Table	$dB\mu V$	dΒμV	dB	Ant
1	13.560M	66.5	+10.1	+0.3	+0.2	+0.0	+0.0	77.5	50.0	+27.5	LINE
	Ambient		+0.1	+0.2	+0.1				Fundamen	ıtal	
2	296.896k	27.9	+10.1	+0.1	+0.2	+0.0	+0.0	38.3	50.3	-12.0	LINE
			+0.0	+0.0	+0.0						
3	27.026M	23.9	+10.1	+0.1	+0.3	+0.0	+0.0	34.9	50.0	-15.1	LINE
			+0.1	+0.2	+0.2						
4	158.726k	27.6	+10.1	+0.1	+0.8	+0.0	+0.0	38.6	55.5	-16.9	LINE
			+0.0	+0.0	+0.0						
5	20.337M	20.7	+10.1	+0.4	+0.2	+0.0	+0.0	31.9	50.0	-18.1	LINE
			+0.1	+0.2	+0.2						
6	183.451k	24.6	+10.1	+0.1	+0.3	+0.0	+0.0	35.1	54.3	-19.2	LINE
			+0.0	+0.0	+0.0						
7	532.510k	15.8	+10.1	+0.1	+0.3	+0.0	+0.0	26.3	46.0	-19.7	LINE
			+0.0	+0.0	+0.0						
8	663.407k	15.1	+10.1	+0.2	+0.3	+0.0	+0.0	25.7	46.0	-20.3	LINE
			+0.0	+0.0	+0.0						
9	683.041k	14.7	+10.1	+0.2	+0.3	+0.0	+0.0	25.3	46.0	-20.7	LINE
			+0.0	+0.0	+0.0						
10	27.122M	18.2	+10.1	+0.1	+0.3	+0.0	+0.0	29.2	50.0	-20.8	LINE
			+0.1	+0.2	+0.2						

Page 95 of 102 Report No.: 97757-40

11	1.192M	13.8	+10.1	+0.4	+0.2	+0.0	+0.0	24.6	46.0	-21.4	LINE
			+0.0	+0.1	+0.0						
12	1.247M	13.6	+10.1	+0.4	+0.2	+0.0	+0.0	24.4	46.0	-21.6	LINE
			+0.0	+0.1	+0.0						
13	1.473M	13.3	+10.1	+0.4	+0.2	+0.0	+0.0	24.1	46.0	-21.9	LINE
			+0.0	+0.1	+0.0						
14	1.558M	13.1	+10.1	+0.4	+0.2	+0.0	+0.0	23.9	46.0	-22.1	LINE
			+0.0	+0.1	+0.0						
15	1.889M	13.0	+10.1	+0.4	+0.2	+0.0	+0.0	23.8	46.0	-22.2	LINE
			+0.0	+0.1	+0.0						
16	15.000M	16.2	+10.1	+0.3	+0.2	+0.0	+0.0	27.2	50.0	-22.8	LINE
			+0.1	+0.2	+0.1						
17	11.760M	15.6	+10.1	+0.3	+0.1	+0.0	+0.0	26.5	50.0	-23.5	LINE
			+0.1	+0.2	+0.1						
18	13.560M	13.5	+10.1	+0.3	+0.2	+0.0	+0.0	24.5	50.0	-25.5	LINE
			+0.1	+0.2	+0.1				Fundament	al -	
									antenna		
									disconnecte	ed, under	
									load		

Page 96 of 102 Report No.: 97757-40

Test Location: CKC Laboratories, Inc. • 5046 Sierra Pines Drive • Mariposa, CA 95338 • (209) 966-5240

Customer: WaveLynx Technologies Corporation.

Specification: 15.207 AC Mains - Average

Work Order #: 97757 Date: 5/3/2016
Test Type: Conducted Emissions Time: 13:41:59
Tested By: Skip Doyle Sequence#: 23

Software: EMITest 5.03.02 115V 60Hz

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 16				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 16				

Test Conditions / Notes:

Testing the 115VAC/60Hz input to the 12VDC power supply

Test Method: ANSI C 63.4 2014

Frequency Range of Interest:

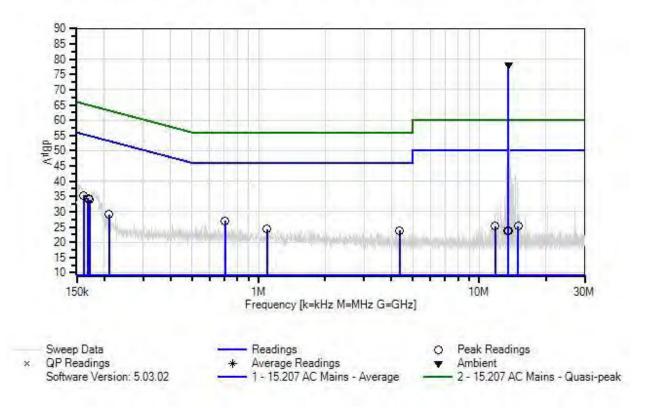
0.150-30MHz

RBW = 9kHz; VBW > 9kHz

Environmental Conditions: Temperature: 20°C Relative Humidity: 35%

Atmospheric Pressure: 97.1kPa

The EUTs are powered by a DC power supply at 12VDC. The manufacturer declares it will only ever be wall mounted in an upright/vertical (Y-axis) orientation.


It has been programmed to continuously transmit the RFID signal at 13.56MHz.

Configuration 16 is made up of Configurations 5, 6, 7 and 8. All were tested simultaneously. A quick "preview" of one-unit vs four units connected to the LISN was performed while the measuring instrument was set to a wide span, there was no difference in the rescan emission observed.

Page 97 of 102 Report No.: 97757-40

WaveLynx Technologies Corporation. WO#: 97757 Sequence#: 23 Date: 5/3/2016 15.207 AC Mains - Average Test Lead: 115V 60Hz RETURN

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP06770	Attenuator	PE7010-10	1/15/2015	1/15/2017
T2	AN01248	50uH LISN-Line 1	8028-50-TS-24-	1/4/2016	1/4/2017
		(Return) (dB)	BNC		
	AN01248	50uH LISN-Line 2	8028-50-TS-24-	1/4/2016	1/4/2017
		(Line) (dB)	BNC		
Т3	AN02609	High Pass Filter	HE9615-150K-	2/18/2016	2/18/2018
			50-720B		
T4	AN02668	Spectrum Analyzer	E4446A	8/14/2015	8/14/2016
T5	ANP06884	Cable	LMR195-FR-4	10/27/2015	10/27/2017
T6	ANMD INT	Cable	Underground	3/17/2016	3/17/2018
			cables only		
T7	ANP01153	Cable	NA	3/3/2016	3/3/2018

Measi	Measurement Data: Reading listed by margin.					Test Lead: RETURN					
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7						
	MHz	$dB\mu V$	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	13.560M	67.1	+10.1	+0.4	+0.2	+0.0	+0.0	78.2	50.0	+28.2	RETUR
	Ambient		+0.1	+0.2	+0.1				Fundamen	ıtal	
2	704.340k	16.6	+10.1	+0.1	+0.3	+0.0	+0.0	27.1	46.0	-18.9	RETUR
			+0.0	+0.0	+0.0						
3	161.640k	24.5	+10.1	+0.1	+0.6	+0.0	+0.0	35.3	55.4	-20.1	RETUR
			+0.0	+0.0	+0.0						
4	168.660k	23.7	+10.1	+0.1	+0.4	+0.0	+0.0	34.3	55.0	-20.7	RETUR
			+0.0	+0.0	+0.0						
5	171.290k	23.3	+10.1	+0.1	+0.4	+0.0	+0.0	33.9	54.9	-21.0	RETUR
			+0.0	+0.0	+0.0						
6	1.090M	13.8	+10.1	+0.1	+0.2	+0.0	+0.0	24.3	46.0	-21.7	RETUR
			+0.0	+0.1	+0.0						
7	4.357M	13.3	+10.1	+0.1	+0.1	+0.0	+0.0	23.8	46.0	-22.2	RETUR
			+0.0	+0.1	+0.1						
8	209.840k	18.7	+10.1	+0.1	+0.2	+0.0	+0.0	29.1	53.2	-24.1	RETUR
			+0.0	+0.0	+0.0						
9	11.780M	14.3	+10.1	+0.3	+0.1	+0.0	+0.0	25.2	50.0	-24.8	RETUR
			+0.1	+0.2	+0.1						
10	15.000M	14.1	+10.1	+0.4	+0.2	+0.0	+0.0	25.2	50.0	-24.8	RETUR
			+0.1	+0.2	+0.1						
11	13.450M	12.7	+10.1	+0.4	+0.2	+0.0	+0.0	23.8	50.0	-26.2	RETUR
			+0.1	+0.2	+0.1						
12	13.560M	12.6	+10.1	+0.4	+0.2	+0.0	+0.0	23.7	50.0	-26.3	RETUR
			+0.1	+0.2	+0.1				Fundamen	ıtal -	
									antenna		
									disconnec	ted, under	
									load		

Page 99 of 102 Report No.: 97757-40

Test Setup Photos

Page 100 of 102 Report No.: 97757-40

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $dB\mu V/m$, the spectrum analyzer reading in $dB\mu V$ was corrected by using the following formula. This reading was then compared to the applicable specification limit. Individual measurements were compared with the displayed limit value in the margin column. The margin was calculated based on subtracting the limit value from the corrected measurement value; a positive margin represents a measurement exceeding the limit, while a negative margin represents a measurement less than the limit.

SAMPLE CALCULATIONS							
Meter reading (dBμV)							
+	Antenna Factor	(dB/m)					
+	Cable Loss	(dB)					
-	Distance Correction	(dB)					
-	Preamplifier Gain	(dB)					
=	Corrected Reading	(dBμV/m)					

Page 101 of 102 Report No.: 97757-40

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE						
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING			
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz			
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz			
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz			
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz			
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz			

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or caret ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.

Page 102 of 102 Report No.: 97757-40