WaveLynx Technologies Corporation

TEST REPORT FOR

Ethos Models: ET20-2, ET20-3, ET20-6, ET20-7, ET25-2, ET25-3, ET25-6 and ET25-7

Tested to The Following Standards:

FCC Part 15 Subpart C Section(s)

15.207 & 15.225 (13.110-14.010 MHz)

Report No.: 97757-40

Date of issue: June 24, 2016

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of EMC testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

This report contains a total of 102 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

TABLE OF CONTENTS

Administrative Information	3
Test Report Information	3
Report Authorization	3
Test Facility Information	4
Software Versions	4
Site Registration & Accreditation Information	4
Summary of Results	5
Modifications During Testing	5
Conditions During Testing	5
Equipment Under Test	6
General Product Information	9
FCC Part 15 Subpart C	
15.215(c) Occupied Bandwidth (20dB BW)	10
15.225(a)-(c) Field Strength of Fundamental	17
15.225(e) Frequency Stability	42
15.225(d) Radiated Emissions	47
15.207 AC Conducted Emissions	87
Supplemental Information	
Measurement Uncertainty	101
Emissions Test Details	101

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR:

REPORT PREPARED BY:

WaveLynx Technologies Corporation 12303 Airport Way, Suite 200 Broomfield, CO 80021

CKC Laboratories, Inc. 5046 Sierra Pines Drive Mariposa, CA 95338

Terri Rayle

REPRESENTATIVE: Daniel Field Customer Reference Number: CKPO030916

DATE OF EQUIPMENT RECEIPT: DATE(S) OF TESTING:

Project Number: 97757

April 20, 2016 April 20 - May 21, 2016

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the sample equipment tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve -7 Be

Steve Behm **Director of Quality Assurance & Engineering Services** CKC Laboratories, Inc.

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. 5046 Sierra Pines Drive Mariposa, CA 95338

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.03.02

Site Registration & Accreditation Information

Location	CB #	TAIWAN	CANADA	FCC	JAPAN
Mariposa D	US0103	SL2-IN-E-1147R	3082A-1	784962	A-0136

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C - 15.225

Test Procedure	Description	Modifications	Results
15.215(c)	Occupied Bandwidth	NA	Pass
15.225(a)-(c)	Field Strength of Fundamental	NA	Pass
15.225(e)	Frequency Stability	NA	Pass
15.225(d)	Field Strength of Spurious Emissions	NA	Pass
15.207	AC Conducted Emissions	NA	Pass

NA = Not Applicable

Modifications During Testing

This list is a summary of the modifications made to the equipment during testing.

Summary of Conditions

No modifications were made during testing.

Modifications listed above must be incorporated into all production units.

Conditions During Testing

This list is a summary of the conditions noted to the equipment during testing.

Summary of Conditions

None

EQUIPMENT UNDER TEST (EUT)

During testing numerous configurations may have been utilized. The configurations listed below support compliance to the standard(s) listed in the Summary of Results section.

Configuration 1 Equipment Tested:			
Device	Manufacturer	Model #	S/N
Ethos	WaveLynx Technologies Corporation	ET20-3	NA
Support Equipment:			
Device	Manufacturer	Model #	S/N
DC Power Supply	HP	6205C	2228A01775
Configuration 2 Equipment Tested:			
Device	Manufacturer	Model #	S/N
Ethos	WaveLynx Technologies Corporation	ET20-2	NA
Support Equipment:			
Device	Manufacturer	Model #	S/N
DC Power Supply	НР	6205C	2228A01775
Configuration 3 Equipment Tested:			
Device	Manufacturer	Model #	S/N
Ethos	WaveLynx Technologies Corporation	ET20-7	NA
Support Equipment:			
Device	Manufacturer	Model #	S/N
DC Power Supply	НР	6205C	2228A01775
Configuration 4 Equipment Tested:			
Device	Manufacturer	Model #	S/N
Ethos	WaveLynx Technologies Corporation	ET20-6	NA
Support Equipment:			
Device	Manufacturer	Model #	S/N
DC Power Supply	НР	6205C	2228A01775
Configuration 5 Equipment Tested:			
Device	Manufacturer	Model #	S/N
Ethos	WaveLynx Technologies Corporation	ET25-3	NA
Support Equipment:			
Device	Manufacturer	Model #	S/N
DC Power Supply	HP	6205C	2228A01775

Equipment Tested:			
Device	Manufacturer	Model #	S/N
Ethos	WaveLynx Technologies Corporation	ET25-2	NA
Support Equipment:			
Device	Manufacturer	Model #	S/N
DC Power Supply	НР	6205C	2228A01775
Configuration 7			
Equipment Tested:			o /b)
Device	Manufacturer	Model #	S/N
Ethos	WaveLynx Technologies Corporation	ET25-7	NA
Support Equipment:			
Device	Manufacturer	Model #	S/N
DC Power Supply	HP	6205C	2228A01775
Configuration 8 Equipment Tested:			
Device	Manufacturer	Model #	S/N
Ethos	WaveLynx Technologies Corporation	ET25-6	NA
Support Equipment:			
Device	Manufacturer	Model #	S/N
DC Power Supply	HP	6205C	2228A01775
Configuration 12 Equipment Tested:			
Device	Manufacturer	Model #	S/N
Ethos	WaveLynx Technologies Corporation	ET20-6	NA
Ethos	WaveLynx Technologies Corporation	ET20-7	NA
Support Equipment:			
Device	Manufacturer	Model #	S/N
DC Power Supply	НР	6205C	2228A01775
Configuration 14 Equipment Tested:			
Device	Manufacturer	Model #	S/N
Ethos	WaveLynx Technologies Corporation	ET25-6	NA
Ethos	WaveLynx Technologies Corporation	ET25-7	NA
Support Equipment:			
Device	Manufacturer	Model #	S/N

Equipment resteu.			
Device	Manufacturer	Model #	S/N
Ethos	WaveLynx Technologies Corporation	ET20-2	NA
Ethos	WaveLynx Technologies Corporation	ET20-3	NA
Ethos	WaveLynx Technologies Corporation	ET20-6	NA
Ethos	WaveLynx Technologies Corporation	ET20-7	NA
Support Equipment:			
Device	Manufacturer	Model #	S/N
DC Power Supply	HP	6205C	2228A01775

Configuration 16

Equipment Tested:

Manufacturer	Model #	S/N
WaveLynx Technologies Corporation	ET25-2	NA
WaveLynx Technologies Corporation	ET25-3	NA
WaveLynx Technologies Corporation	ET25-6	NA
WaveLynx Technologies Corporation	ET25-7	NA
	Manufacturer WaveLynx Technologies Corporation WaveLynx Technologies Corporation WaveLynx Technologies Corporation WaveLynx Technologies Corporation	ManufacturerModel #WaveLynx Technologies CorporationET25-2WaveLynx Technologies CorporationET25-3WaveLynx Technologies CorporationET25-6WaveLynx Technologies CorporationET25-7

Support Equipment:DeviceManufacturerModel #S/NDC Power SupplyHP6205C2228A01775

Configuration 11

Equipment resteu.			
Device	Manufacturer	Model #	S/N
Ethos	WaveLynx Technologies Corporation	ET20-2	NA
Ethos	WaveLynx Technologies Corporation	ET20-3	NA

Support Equipment:			
Device	Manufacturer	Model #	S/N
DC Power Supply	НР	6205C	2228A01775

Configuration 13

Equipment Tested:

Device	Manufacturer	Model #	S/N
Ethos	WaveLynx Technologies Corporation	ET25-2	NA
Ethos	WaveLynx Technologies Corporation	ET25-3	NA
Sunnort Fauinment			

Support Equipment.			
Device	Manufacturer	Model #	S/N
DC Power Supply	НР	6205C	2228A01775

General Product Information:

Product Information	Manufacturer-Provided Details			
Equipment Type: (All 8 EUTs)	Stand-Alone Equipment			
Modulation Type(s): (All 8 EUTs)	ASK with 847kHz subcarrier			
	Configuration 1 = 2.58%			
	Configuration 2 and Configuration 8 = 2.81%			
Maximum Duty Cycle:	Configuration 3 and Configuration 6 = 3.08%			
(Measured)	Configuration 4 = 3.09%			
	Configuration 5 = 3.05%			
	Configuration 7 = 2.82%			
Antenna Type(s) and Gain:	Configuration 15 and Configuration 16 = PCB Trace 65mm x 110mm			
Antenna Connection Type: (All 8 EUTs)	Integral			
Nominal Input Voltage:	13//00			
(All 8 EUTs)	12VDC			
Firmware / Software used for Test:	Wallmount Reader ECCLE Version 1			
(All 8 EUTs)				

FCC Part 15 Subpart C

15.215(c) Occupied Bandwidth (20dB BW)

Test Setup/Conditions				
Test Location:	Mariposa Lab D	Test Engineer:	Benny Lovan / Skip Doyle	
Test Method:	ANSI C63.10 (2013)	Test Date(s):	4/20/2016, 04/25/16 – 04/27/16	
Configuration:	1, 2, 3, 4, 5, 6, 7 and 8			
Test Setup:	Modulation: ASK 847kHz Subcarrie Antenna Type: Integral Antenna Gain 2 dBi EUT Orientation: Y-Axis The EUT is powered by a DC pow only ever be wall mounted in an u foam block. It has been progr 13.56MHz.	er ver supply at 12VDC. upright (Y-axis) orienta rammed to continuor	The manufacturer declares it will tion. The EUT is setup on an 80cm usly transmit the RFID signal at	

Environmental Conditions				
Temperature (^o C)	10 - 14.2	Relative Humidity (%):	48-76	

Test Equipment					
Asset#	Description	Manufacturer	Model	Cal Date	Cal Due
ANSITED 3M	Cable	None	None	11/15/2014	11/15/2016
ANP06884	Cable	TMS	LMR195-FR-4	10/27/2015	10/27/2017
AN00226	Loop Antenna	EMCO	6502	4/4/2016	4/4/2018

Test Data Summary					
Frequency (MHz)	Antenna Port	Modulation	Measured (kHz)	Limit (kHz)	Results
Configuration 1 13.559	Integral	ASK with 847kHz subcarrier	.007381	None	NA
Configuration 2 13.559	Integral	ASK with 847kHz subcarrier	.007386	None	NA
Configuration 3 13.559	Integral	ASK with 847kHz subcarrier	.007386	None	NA
Configuration 4 13.560	Integral	ASK with 847kHz subcarrier	.007386	None	NA
Configuration 5 13.560	Integral	ASK with 847kHz subcarrier	.007384	None	NA
Configuration 6 13.559	Integral	ASK with 847kHz subcarrier	.007386	None	NA
Configuration 7 13.560	Integral	ASK with 847kHz subcarrier	.007386	None	NA
Configuration 8 13.559	Integral	ASK with 847kHz subcarrier	.007384	None	NA

Configuration 2

Configuration 4

Configuration 6

Configuration 8

Test Setup Photo

15.225(a)-(c) Field Strength of Fundamental

	Test Data Summary - Voltage Variations					
Frequency (MHz)	Modulation / Ant Port	V _{Minimum} (dBuV/m)	V _{Nominal} (dBuV/m)	V _{Maximum} (dBuV/m)	Max Deviation from V _{Nominal} (dB)	
	r	Configuratio	on 1			
13.560	ASK with 847kHz subcarrier /	32.9	32.9	32.8	0.1	
Parallel	Integral Antenna	52.5	52.15	52.0	0.1	
13.56	ASK with 847kHz subcarrier /	30.2	30.1	30.1	0.1	
Perpendicular	Integral Antenna					
		Configuratio	on 2			
13.559	ASK with 847kHz subcarrier /	34.1	34.1	34.1	0.0	
Parallel	Integral Antenna					
13.560	ASK with 847kHz subcarrier /	31.1	31.0	31.1	0.1	
Perpendicular	Integral Antenna					
12 550		Configuratio	on 3			
13.559	ASK with 847kHz subcarrier /	32.7	32.8	32.7	0.1	
Parallel	Integral Antenna					
13.560 Dama and isordam	ASK with 84/kHz subcarrier /	29.1	29.1	29.1	0.0	
Perpendicular Integral Antenna						
12.50		Configuratio	on 4			
13.50	ASK WITH 847KHZ Subcarrier /	34.1	34.0	34.1	0.1	
	ASK with 847kHz subcarrier /					
15.50 Bornondicular		29.7	29.8	29.7	0.1	
Perpendicular	integral Antenna	Configuratio	n 5			
13 560	ASK with 847kHz subcarrier /	Configuratio	5			
Parallel	Integral Antenna	32.6	32.7	32.6	0.1	
13 560	ASK with 847kHz subcarrier /					
Perpendicular	Integral Antenna	28.8	28.8	28.8	0.0	
respendedid		Configuratio	on 6			
13.559	ASK with 847kHz subcarrier /					
Parallel	Integral Antenna	33.7	33.7	33.7	0.0	
13.559	ASK with 847kHz subcarrier /					
Perpendicular	Integral Antenna	30.3	30.3	30.3	0.0	
•		Configuratio	on 7			
13.559	ASK with 847kHz subcarrier /	22.2	22.2	22.2	0.1	
Parallel	Integral Antenna	32.3	32.2	32.3	0.1	
13.560	ASK with 847kHz subcarrier /	20.4	20.4	20.4	0.0	
Perpendicular	Integral Antenna	29.4	29.4	29.4	0.0	
		Configuratio	on 8			
13.559	ASK with 847kHz subcarrier /	33.0	33.0	33.0	0.0	
Parallel	Integral Antenna	55.5	55.5	33.3	0.0	
13.560	ASK with 847kHz subcarrier /	30.3	30.3	30.3	0.0	
Perpendicular	Integral Antenna	50.5	50.5	50.5	0.0	

Test performed using operational mode with the highest output power, representing worst case.

Parameter Definitions:

Measurements performed at input voltage Vnominal ± 15%.

Parameter	Value
V _{Nominal} :	12 VDC
V _{Minimum} :	10.2 VDC
V _{Maximum} :	13.8 VDC

Test Data Summary – Radiated Field Strength Measurement					
Frequency (MHz)	Modulation	Ant. Type	Measured (dBuV/m @ 30m)	Limit (dBuV/m @ 30m)	Results
		Configur	ation 1		
13.560	ASK with 847kHz	Integral	32.9	<84	Pass
Parallel	subcarrier	integrai	52.5		1 0 3 5
13.560	ASK with 847kHz	Integral	30.1	<81	Pass
Perpendicular	subcarrier	integrai	50.1	204	F d SS
		Configur	ation 2	1	
13.559	ASK with 847kHz	Integral	34.1	<84	Pass
Parallel	subcarrier	integrai	54.1	204	1 855
13.560	ASK with 847kHz	Integral	31.0	<81	Pass
Perpendicular	subcarrier	integrai	51.0	204	1 8 3 3
		Configur	ation 3		
13.560	ASK with 847kHz	Integral	32.8	<84	Pass
Parallel	subcarrier	integrai	52.0	204	1 0 3 5
13.560	ASK with 847kHz	Integral	29.1	<84	Pass
Perpendicular	subcarrier	integrai	25.1	204	1 0 3 5
		Configur	ation 4		
13.560	ASK with 847kHz	Integral	34.0	<81	Pass
Parallel	subcarrier	integrai	54.0	204	1 8 3 3
13.560	ASK with 847kHz	Integral	29.8	<81	Pass
Perpendicular	subcarrier	integrai	25.0	204	1 8 3 3
Configuration 5					
13.560	ASK with 847kHz	Integral	32.7	<84	Pass
Parallel	subcarrier	integral	52.7	+02	1 0 3 5
13.560	ASK with 847kHz	Integral	28.8	<84	Pass
Perpendicular	subcarrier	integral	20.0	204	газэ

Test Data Summary – Radiated Field Strength Measurement					
Frequency (MHz)	Modulation	Ant. Type	Measured (dBuV/m @ 30m)	Limit (dBuV/m @ 30m)	Results
		Configur	ation 6		
13.559 Parallel	ASK with 847kHz subcarrier	Integral	33.7	≤84	Pass
13.559 Perpendicular	ASK with 847kHz subcarrier	Integral	30.3	≤84	Pass
		Configur	ation 7		
13.559 Parallel	ASK with 847kHz subcarrier	Integral	32.2	≤84	Pass
13.560 Perpendicular	ASK with 847kHz subcarrier	Integral	29.4	≤84	Pass
Configuration 8					
13.559 Parallel	ASK with 847kHz subcarrier	Integral	33.9	≤84	Pass
13.560 Perpendicular	ASK with 847kHz subcarrier	Integral	30.3	≤84	Pass

Emissions Mask Data

Configuration 2

Configuration 3

Configuration 4

Configuration 5

Configuration 6

Configuration 7

Configuration 8

Test Setup / Conditions / Data

Test Location:	CKC Laboratories Inc. • 5046 Sierra Pines Dr. • Mariposa, CA 95338 • 209-966-5240				
Customer:	WaveLynx Technologies Corporation				
Specification:	15.225 Carrier and Sp	ourious Emissions (13.110-14.010 N	/IHz Transmitter)		
Work Order #:	97757	Date:	4/20/2016		
Test Type:	Radiated Scan	Time:	17:38:17		
Tested By:	Benny Lovan	Sequence#:	1		
Software:	EMITest 5.03.02				

Equipment Tested:

-4			
Device	Manufacturer	Model #	S/N
Configuration 1			

Support Equipment:

Device	Manufacturer	Model #	S/N
Configuration 1			

Test Conditions / Notes:

Radiated Emissions Fundamental Measurements

Temperature: 20°C Humidity:40% Atmospheric Pressure: 97.4 kPa

Method: ANSI C63.10 2013

Modulation: ASK 847kHz Subcarrier Antenna Type: Integral Antenna Gain 2 dBi

The EUT is powered by a DC power supply at 12VDC. The manufacturer declares it will only ever be wall mounted in an upright/vertical (Y-axis) orientation.

The EUT is setup on an 80cm foam block. It has been programmed to continuously transmit the RFID signal at 13.56MHz.

Measurements will be made in both polarities as well as with the voltage variation of 10.2VDC and 13.8VDC (+/-15% of nominal).

WaveLynx Technologies Corporation WO#: 97757 Sequence#: 1 Date: 4/20/2016 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter) Test Distance: 3 Meters Perpendicular

- Average Readings
- Ambient
- Software Version: 5.03.02
- 1 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter)

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02668	Spectrum Analyzer	E4446A	8/14/2015	8/14/2016
T1	ANP06884	Cable	LMR195-FR-4	10/27/2015	10/27/2017
T2	ANSITED 3M	Cable		11/15/2014	11/15/2016
Т3	AN00226	Loop Antenna	6502	4/4/2016	4/4/2018

Measur	<i>Teasurement Data:</i> Reading listed by margin.			argin.	Test Distance: 3 Meters						
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	13.560M	62.5	+0.1	+0.7	+9.6		-40.0	32.9	84.0	-51.1	Paral
									10.2VDC,	Y- Axis	
2	13.560M	62.5	+0.1	+0.7	+9.6		-40.0	32.9	84.0	-51.1	Paral
									Nominal 1	2VDC,	
									Y- Axis		
3	13.560M	62.4	+0.1	+0.7	+9.6		-40.0	32.8	84.0	-51.2	Paral
									13.8VDC,	Y- Axis	
4	13.560M	59.8	+0.1	+0.7	+9.6		-40.0	30.2	84.0	-53.8	Perpe
									10.2VDC,	Y- Axis	
5	13.560M	59.7	+0.1	+0.7	+9.6		-40.0	30.1	84.0	-53.9	Perpe
									Nominal 12	2VDC,	
									Y- Axis		
6	13.560M	59.7	+0.1	+0.7	+9.6		-40.0	30.1	84.0	-53.9	Perpe
									13.8VDC,	Y- Axis	_

Test Location:	CKC Laboratories Inc. • 5046 Sierra Pines Dr. • Mariposa, CA 95338 • 209-966-5240						
Customer:	WaveLynx Technologies Corporation						
Specification:	15.225 Carrier and Spurious	Emissions (13.110-14.010 N	/IHz Transmitter)				
Work Order #:	97757	Date:	4/20/2016				
Test Type:	Radiated Scan	Time:	16:37:24				
Tested By:	Benny Lovan	Sequence#:	2				
Software:	EMITest 5.03.02						

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 2			
Support Equipment:			
Device	Manufacturer	Model #	S/N
Configuration 2			

Test Conditions / Notes:

Radiated Emissions Fundamental Measurements

Temperature: 20°C Humidity:40% Atmospheric Pressure: 97.4 kPa

Method: ANSI C63.10 2013

Modulation: ASK 847kHz Subcarrier Antenna Type: Integral Antenna Gain 2 dBi

The EUT is powered by a DC power supply at 12VDC. The manufacturer declares it will only ever be wall mounted in an upright/vertical (Y-axis) orientation.

The EUT is setup on an 80cm foam block. It has been programmed to continuously transmit the RFID signal at 13.56MHz.

Measurements will be made in both polarities as well as with the voltage variation of 10.2VDC and 13.8VDC (+/-15% of nominal).

WaveLynx Technologies Corporation WO#: 97757 Sequence#: 2 Date: 4/20/2016 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter) Test Distance: 3 Meters Perpendicular

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02668	Spectrum Analyzer	E4446A	8/14/2015	8/14/2016
T1	ANP06884	Cable	LMR195-FR-4	10/27/2015	10/27/2017
T2	ANSITED 3M	Cable		11/15/2014	11/15/2016
Т3	AN00226	Loop Antenna	6502	4/4/2016	4/4/2018

<i>Measurement Data:</i> Reading listed by margin.			ırgin.	Test Distance: 3 Meters							
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant
1	13.559M	63.7	+0.1	+0.7	+9.6		-40.0	34.1	84.0	-49.9	Paral
									13.8VDC,	Y- Axis	
2	13.560M	63.7	+0.1	+0.7	+9.6		-40.0	34.1	84.0	-49.9	Paral
									10.2VDC,	Y- Axis	
3	13.559M	63.7	+0.1	+0.7	+9.6		-40.0	34.1	84.0	-49.9	Paral
									Nominal 1	2VDC,	
									Y- Axis		
4	13.559M	60.7	+0.1	+0.7	+9.6		-40.0	31.1	84.0	-52.9	Perpe
									10.2VDC,	Y- Axis	
5	13.559M	60.7	+0.1	+0.7	+9.6		-40.0	31.1	84.0	-52.9	Perpe
									13.8VDC,	Y- Axis	-
6	13.560M	60.6	+0.1	+0.7	+9.6		-40.0	31.0	84.0	-53.0	Perpe
									Nominal 1	2VDC,	
									Y- Axis		

Test Location:	CKC Laboratories Inc. • 5046 Sierra Pines Dr. • Mariposa, CA 95338 • 209-966-5240						
Customer:	WaveLynx Technologies Corporation						
Specification:	15.225 Carrier and Spurious En	missions (13.110-14.010 N	/IHz Transmitter)				
Work Order #:	97757	Date:	4/25/2016				
Test Type:	Radiated Scan	Time:	14:44:38				
Tested By:	Benny Lovan	Sequence#:	3				
Software:	EMITest 5.03.02						

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 3			
Support Equipment:			
Device	Manufacturer	Model #	S/N
Configuration 3			

Test Conditions / Notes:

Radiated Emissions Fundamental Measurements

Temperature: 13°C Humidity:76% Atmospheric Pressure: 97.3 kPa

Method: ANSI C63.10 2013

Modulation: ASK 847kHz Subcarrier Antenna Type: Integral Antenna Gain 2 dBi

The EUT is powered by a DC power supply at 12VDC. The manufacturer declares it will only ever be wall mounted in an upright/vertical (Y-axis) orientation.

The EUT is setup on an 80cm foam block. It has been programmed to continuously transmit the RFID signal at 13.56MHz.

Measurements will be made in both polarities as well as with the voltage variation of 10.2VDC and 13.8VDC (+/-15% of nominal).

WaveLynx Technologies Corporation WO#: 97757 Sequence#: 3 Date: 4/25/2016 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter) Test Distance: 3 Meters Parallel

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02668	Spectrum Analyzer	E4446A	8/14/2015	8/14/2016
T1	ANP06884	Cable	LMR195-FR-4	10/27/2015	10/27/2017
T2	ANSITED 3M	Cable		11/15/2014	11/15/2016
T3	AN00226	Loop Antenna	6502	4/4/2016	4/4/2018

Measur	ement Data:	Re	eading lis	ted by ma	argin.	Test Distance: 3 Meters					
#	Freq	Rdng	T1	T2	Т3		Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	13.559M	62.4	+0.1	+0.7	+9.6		-40.0	32.8	84.0	-51.2	Paral
									Nominal 1	2VDC,	
									Parallel, Y	-Axis	
2	13.559M	62.3	+0.1	+0.7	+9.6		-40.0	32.7	84.0	-51.3	Paral
									10.2VDC,	Parallel,	
									Y-Axis		
3	13.559M	62.3	+0.1	+0.7	+9.6		-40.0	32.7	84.0	-51.3	Paral
									13.8VDC,	Parallel,	
									Y-Axis		
4	13.559M	58.7	+0.1	+0.7	+9.6		-40.0	29.1	84.0	-54.9	Perpe
									13.8VDC,	Parallel,	
									Y-Axis		
5	13.560M	58.7	+0.1	+0.7	+9.6		-40.0	29.1	84.0	-54.9	Perpe
									Nominal 1	2VDC,	
									Parallel, Y	-Axis	
6	13.560M	58.7	+0.1	+0.7	+9.6		-40.0	29.1	84.0	-54.9	Perpe
									10.2VDC,	Parallel,	
									Y-Axis		

Test Location:	CKC Laboratories Inc. • 5046 Sierra Pines Dr. • Mariposa, CA 95338 • 209-966-5240						
Customer:	WaveLynx Technologies Corporation						
Specification:	15.225 Carrier and Spurious Emissio	ns (13.110-14.010 M	1Hz Transmitter)				
Work Order #:	97757	Date:	4/25/2016				
Test Type:	Radiated Scan	Time:	11:50:37				
Tested By:	Benny Lovan	Sequence#:	4				
Software:	EMITest 5.03.02						

Equipment Tested:

Device	Manufacturer	Model #	S/N						
Configuration 4	Configuration 4								
Support Equipmen	nt:								
Device	Manufacturer	Model #	S/N						
Configuration 4									
Test Conditions / I	Votes:								
Radiated Emissions	Fundamental Measurements								
Temperature: 13°C Humidity:76%	we: 07 3 kPo								
Method: ANSI C63	Atmospheric Pressure: 97.3 kPa Method: ANSI C63.10 2013								
Modulation: ASK 8 Antenna Type: Inte	47kHz Subcarrier gral								

Antenna Gain 2 dBi

The EUT is powered by a DC power supply at 12VDC. The manufacturer declares it will only ever be wall mounted in an upright/vertical (Y-axis) orientation.

The EUT is setup on an 80cm foam block. It has been programmed to continuously transmit the RFID signal at 13.56MHz.

Measurements will be made in both polarities as well as with the voltage variation of 10.2VDC and 13.8VDC (+/-15% of nominal).

WaveLynx Technologies Corporation WO#: 97757 Sequence#: 4 Date: 4/25/2016 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter) Test Distance: 3 Meters Parallel

Test	Equipment:	

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02668	Spectrum Analyzer	E4446A	8/14/2015	8/14/2016
T1	ANP06884	Cable	LMR195-FR-4	10/27/2015	10/27/2017
T2	ANSITED 3M	Cable		11/15/2014	11/15/2016
T3	AN00226	Loop Antenna	6502	4/4/2016	4/4/2018

Measur	ement Data:	Re	Reading listed by margin.				Test Distance: 3 Meters				
#	Freq	Rdng	T1	T2	Т3		Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	dBµV/m	dB	Ant
1	13.560M	63.7	+0.1	+0.7	+9.6		-40.0	34.1	84.0	-49.9	Paral
									13.8VDC,	Y- Axis	
2	13.560M	63.7	+0.1	+0.7	+9.6		-40.0	34.1	84.0	-49.9	Paral
									10.2VDC,	Y- Axis	
3	13.560M	63.6	+0.1	+0.7	+9.6		-40.0	34.0	84.0	-50.0	Paral
									Nominal 1	2VDC,	
									Y- Axis		
4	13.560M	59.4	+0.1	+0.7	+9.6		-40.0	29.8	84.0	-54.2	Perpe
									Nominal 1	2VDC,	
									Y- Axis		
5	13.560M	59.3	+0.1	+0.7	+9.6		-40.0	29.7	84.0	-54.3	Perpe
									13.8VDC,	Y- Axis	
6	13.560M	59.3	+0.1	+0.7	+9.6		-40.0	29.7	84.0	-54.3	Perpe
									10.2VDC,	Y- Axis	-

Test Location:	CKC Laboratories Inc. • 5046 Sierra Pines Dr. • Mariposa, CA 95338 • 209-966-5240							
Customer:	WaveLynx Technologies Corporation							
Specification:	15.225 Carrier and Spurious Emissions	(13.110-14.010 M	1Hz Transmitter)					
Work Order #:	97757	Date:	4/27/2016					
Test Type:	Radiated Scan	Time:	11:53:42					
Tested By:	Benny Lovan	Sequence#:	5					
Software:	EMITest 5.03.02							

Equipment Tested:

Device	Manufacturer	Model #	S/N					
Configuration 5								
Support Equipment:								
Device	Manufacturer	Model #	S/N					
Configuration 5								
Test Conditions / Notes:								
Radiated Emissions Fundan	nental Measurements							
Temperature: 13°C Humidity:76% Atmospheric Pressure: 97.3	Temperature: 13°C Humidity:76% Atmospheric Pressure: 97.3 kPa							
Method: ANSI C63.10 2013	3							
Modulation: ASK 847kHz 5 Antenna Type: Integral Antenna Gain 2 dBi	Subcarrier							

The EUT is powered by a DC power supply at 12VDC. The manufacturer declares it will only ever be wall mounted in an upright/vertical (Y-axis) orientation.

The EUT is setup on an 80cm foam block. It has been programmed to continuously transmit the RFID signal at 13.56MHz.

Measurements will be made in both polarities as well as with the voltage variation of 10.2VDC and 13.8VDC (+/-15% of nominal).

WaveLynx Technologies Corporation WO#: 97757 Sequence#: 5 Date: 4/27/2016 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter) Test Distance: 3 Meters Perpendicular

Software Version: 5.03.02

- 1 - 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter)

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02668	Spectrum Analyzer	E4446A	8/14/2015	8/14/2016
T1	ANP06884	Cable	LMR195-FR-4	10/27/2015	10/27/2017
T2	ANSITED 3M	Cable		11/15/2014	11/15/2016
Т3	AN00226	Loop Antenna	6502	4/4/2016	4/4/2018

Measur	ement Data:	Re	eading lis	ted by ma	argin.		Te	est Distanc	e: 3 Meters		
#	Freq	Rdng	T1	T2	Т3		Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	13.560M	62.3	+0.1	+0.7	+9.6		-40.0	32.7	84.0	-51.3	Paral
									Nominal 1	2VDC,	
									Y- Axis		
2	13.560M	62.2	+0.1	+0.7	+9.6		-40.0	32.6	84.0	-51.4	Paral
									13.8VDC,	Y- Axis	
3	13.560M	62.2	+0.1	+0.7	+9.6		-40.0	32.6	84.0	-51.4	Paral
									10.2VDC,	Y- Axis	
4	13.560M	58.4	+0.1	+0.7	+9.6		-40.0	28.8	84.0	-55.2	Perpe
									Nominal 1	2VDC,	
									Y- Axis		
5	13.560M	58.4	+0.1	+0.7	+9.6		-40.0	28.8	84.0	-55.2	Perpe
									10.2VDC,	Y- Axis	
6	13.560M	58.4	+0.1	+0.7	+9.6		-40.0	28.8	84.0	-55.2	Perpe
									13.8VDC,	Y- Axis	-

Test Location:	CKC Laboratories Inc. • 5046 Sierra Pines Dr. • Mariposa, CA 95338 • 209-966-5240							
Customer:	WaveLynx Technologies Corporation							
Specification:	15.225 Carrier and Spurious Emission	s (13.110-14.010 N	1Hz Transmitter)					
Work Order #:	97757	Date:	4/25/2016					
Test Type:	Radiated Scan	Time:	16:06:43					
Tested By:	Benny Lovan	Sequence#:	6					
Software:	EMITest 5.03.02							

Equipment Tested:

Device	Manufacturer	Model #	S/N								
Configuration 6											
Support Equipmer	Support Equipment:										
Device	Manufacturer	Model #	S/N								
Configuration 6											
Test Conditions /	Notes:										
Radiated Emissions	s Fundamental Measurements										
Temperature: 13°C Humidity:76% Atmospheric Press	ure: 97.3 kPa										
Method: ANSI C63	Method: ANSI C63.10 2013										
Modulation: ASK 8 Antenna Type: Inte Antenna Gain 2 dB	347kHz Subcarrier gral i										

The EUT is powered by a DC power supply at 12VDC. The manufacturer declares it will only ever be wall mounted in an upright/vertical (Y-axis) orientation.

The EUT is setup on an 80cm foam block. It has been programmed to continuously transmit the RFID signal at 13.56MHz.

Measurements will be made in both polarities as well as with the voltage variation of 10.2VDC and 13.8VDC (+/-15% of nominal).

WaveLynx Technologies Corporation WO#: 97757 Sequence#: 6 Date: 4/25/2016 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter) Test Distance: 3 Meters Parallel

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02668	Spectrum Analyzer	E4446A	8/14/2015	8/14/2016
T1	ANP06884	Cable	LMR195-FR-4	10/27/2015	10/27/2017
T2	ANSITED 3M	Cable		11/15/2014	11/15/2016
Т3	AN00226	Loop Antenna	6502	4/4/2016	4/4/2018

Measur	ement Data:	Reading listed by margin.			argin.	Test Distance: 3 Meters					
#	Freq	Rdng	T1	T2	Т3		Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	13.560M	63.3	+0.1	+0.7	+9.6		-40.0	33.7	84.0	-50.3	Paral
									13.8VDC,	Y- Axis	
2	13.559M	63.3	+0.1	+0.7	+9.6		-40.0	33.7	84.0	-50.3	Paral
									10.2VDC,	Y- Axis	
3	13.559M	63.3	+0.1	+0.7	+9.6		-40.0	33.7	84.0	-50.3	Paral
									Nominal 1	2VDC,	
									Y- Axis		
4	13.559M	59.9	+0.1	+0.7	+9.6		-40.0	30.3	84.0	-53.7	Perpe
									Nominal 1	2VDC,	
									Y- Axis		
5	13.560M	59.9	+0.1	+0.7	+9.6		-40.0	30.3	84.0	-53.7	Perpe
									10.2VDC,	Y- Axis	
6	13.560M	59.9	+0.1	+0.7	+9.6		-40.0	30.3	84.0	-53.7	Perpe
									13.8VDC,	Y- Axis	_

Test Location:	CKC Laboratories Inc. • 5046 Sierra Pines Dr. • Mariposa, CA 95338 • 209-966-5240						
Customer:	WaveLynx Technologies Corporation						
Specification:	15.225 Carrier and Spurious Emissions (2	13.110-14.010 N	1Hz Transmitter)				
Work Order #:	97757	Date:	4/27/2016				
Test Type:	Radiated Scan	Time:	13:57:32				
Tested By:	Benny Lovan	Sequence#:	7				
Software:	EMITest 5.03.02						

Device	Manufacturer	Model #	S/N								
Configuration 7	Configuration 7										
Support Equipmen	t:										
Device	Manufacturer	Model #	S/N								
Configuration 7											
Test Conditions / N	lotes:										
Radiated Emissions	Fundamental Measurements										
Temperature: 16.2°C Humidity:36% Atmospheric Pressu	C re: 97.3 kPa										
Method: ANSI C63.	10 2013										

Modulation: ASK 847kHz Subcarrier Antenna Type: Integral Antenna Gain 2 dBi

The EUT is powered by a DC power supply at 12VDC. The manufacturer declares it will only ever be wall mounted in an upright/vertical (Y-axis) orientation.

The EUT is setup on an 80cm foam block. It has been programmed to continuously transmit the RFID signal at 13.56MHz.

Measurements will be made in both polarities as well as with the voltage variation of 10.2VDC and 13.8VDC (+/-15% of nominal).

WaveLynx Technologies Corporation WO#: 97757 Sequence#: 7 Date: 4/27/2016 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter) Test Distance: 3 Meters Parallel

Software Version: 5.03.02

- 1 - 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter)

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02668	Spectrum Analyzer	E4446A	8/14/2015	8/14/2016
T1	ANP06884	Cable	LMR195-FR-4	10/27/2015	10/27/2017
T2	ANSITED 3M	Cable		11/15/2014	11/15/2016
Т3	AN00226	Loop Antenna	6502	4/4/2016	4/4/2018

Measur	ement Data:	Re	eading lis	ted by ma	argin.		Те	est Distanc	e: 3 Meters		
#	Freq	Rdng	T1	T2	Т3		Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	13.560M	61.9	+0.1	+0.7	+9.6		-40.0	32.3	84.0	-51.7	Paral
									13.8Vdc, Y	/-Axis	
2	13.559M	61.9	+0.1	+0.7	+9.6		-40.0	32.3	84.0	-51.7	Paral
									10.2Vdc, Y	/-Axis	
3	13.559M	61.8	+0.1	+0.7	+9.6		-40.0	32.2	84.0	-51.8	Paral
									Nominal 12	2.0Vdc,	
									Y-Axis		
4	13.560M	59.0	+0.1	+0.7	+9.6		-40.0	29.4	84.0	-54.6	Perpe
									Nominal 12	2.0Vdc,	
									Y-Axis		
5	13.560M	59.0	+0.1	+0.7	+9.6		-40.0	29.4	84.0	-54.6	Perpe
									13.8Vdc, Y	/-Axis	
6	13.560M	59.0	+0.1	+0.7	+9.6		-40.0	29.4	84.0	-54.6	Perpe
									10.2Vdc, Y	/-Axis	_

Test Location:	CKC Laboratories Inc. • 5046 Sierra Pines Dr. • Mariposa, CA 95338 • 209-966-5240						
Customer:	WaveLynx Technologies Corporation						
Specification:	15.225 Carrier and Spurious Emissions	(13.110-14.010 M	1Hz Transmitter)				
Work Order #:	97757	Date:	4/27/2016				
Test Type:	Radiated Scan	Time:	12:47:11				
Tested By:	Benny Lovan	Sequence#:	8				
Software:	EMITest 5.03.02						

Device	Manufacturer	Model #	S/N								
Configuration 8	Configuration 8										
Support Equipme	Support Equipment:										
Device	Manufacturer	Model #	S/N								
Configuration 8											
Test Conditions /	Notes:										
Radiated Emission	s Fundamental Measurements										
Temperature: 16.2 Humidity:42% Atmospheric Press	°C sure: 97.3 kPa										
Method: ANSI C6	Method: ANSI C63.10 2013										
Modulation: ASK Antenna Type: Intenna Gain 2 dB	847kHz Subcarrier egral 3i										

The EUT is powered by a DC power supply at 12VDC. The manufacturer declares it will only ever be wall mounted in an upright/vertical (Y-axis) orientation.

The EUT is setup on an 80cm foam block. It has been programmed to continuously transmit the RFID signal at 13.56MHz.

Measurements will be made in both polarities as well as with the voltage variation of 10.2VDC and 13.8VDC (+/-15% of nominal).

WaveLynx Technologies Corporation WO#: 97757 Sequence#: 8 Date: 4/27/2016 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter) Test Distance: 3 Meters Parallel

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02668	Spectrum Analyzer	E4446A	8/14/2015	8/14/2016
T1	ANP06884	Cable	LMR195-FR-4	10/27/2015	10/27/2017
T2	ANSITED 3M	Cable		11/15/2014	11/15/2016
Т3	AN00226	Loop Antenna	6502	4/4/2016	4/4/2018

1 - 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter)

Measur	ement Data:	Re	eading lis	ted by ma	argin.		Te	est Distanc	e: 3 Meters		
#	Freq	Rdng	T1	T2	Т3		Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	dBµV/m	dB	Ant
1	13.560M	63.5	+0.1	+0.7	+9.6		-40.0	33.9	84.0	-50.1	Paral
									13.8VDC,	Y- Axis	
2	13.559M	63.5	+0.1	+0.7	+9.6		-40.0	33.9	84.0	-50.1	Paral
									10.2VDC,	Y- Axis	
3	13.559M	63.5	+0.1	+0.7	+9.6		-40.0	33.9	84.0	-50.1	Paral
									Nominal 1	2VDC,	
									Y- Axis		
4	13.560M	59.9	+0.1	+0.7	+9.6		-40.0	30.3	84.0	-53.7	Perpe
									Nominal 1	2VDC,	
									Y- Axis		
5	13.559M	59.9	+0.1	+0.7	+9.6		-40.0	30.3	84.0	-53.7	Perpe
									10.2VDC,	Y- Axis	
6	13.559M	59.9	+0.1	+0.7	+9.6		-40.0	30.3	84.0	-53.7	Perpe
									13.8VDC,	Y- Axis	_

Test Setup Photo

15.225(e) Frequency Stability

Test Setup/Conditions									
Test Location:	Mariposa Lab A	Test Engineer:	Benny Lovan and Skip Doyle						
Test Method:	ANSI C63.10 (2013)	Test Date(s):	5/12/2016						
Configuration:	3, 4, 7 and 8								
Test Setup:	Configurations 4 and 8 were tes	sted simultaneously	within the temperature chamber.						
	Once testing was complete, the tw	vo units were replace	d with Configurations 3 and 7.						
	The manufacturer declares that Configurations 3, 4, 7 and 8 are worse case and testing								
	performed on these would satisfy	the testing for config	urations 1, 2, 5 and 6.						

Environmental Conditions							
Temperature (^o C)	19	Relative Humidity (%):	59				

Test Equipment										
Asset#	Description	Manufacturer	Model	Cal Date	Cal Due					
03197	Multimeter	Extech	MM570A	9/14/2014	9/14/2016					
02668	Spectrum Analyzer	Agilent	E4446A	8/14/2015	8/14/2016					
01879	Temperature Chamber	Thermotron	S-1.2 Min.	12/5/2014	12/5/2016					
00170	Loop Antenna	Solar	7334-1	NCR	NCR					

NCR = No Calibration Required

Temperature (ºC)	Voltage	Frequency (MHz)	Deviation (%)	Limit (%)	Results
-20	V _{Nominal}	13.5598	-0.00147	±0.01	
-10	V _{Nominal}	13.5599	-0.00074	±0.01	
0	V _{Nominal}	13.5598	-0.00147	±0.01	
10	V _{Nominal}	13.5597	-0.00221	±0.01	
20	V _{Minimum}	13.5598	-0.00147	±0.01	Dass
20	V _{Nominal}	13.5598	-0.00147	±0.01	PdSS
20	V _{Maximum}	13.5598	-0.00147	±0.01	
30	V _{Nominal}	13.5598	-0.00147	±0.01	
40	V _{Nominal}	13.5597	-0.00221	±0.01	
50	V _{Nominal}	13.5598	-0.00147	±0.01	
Nominal F	requency:	13.560000			

Test Data Summary – Configuration 3

Test Data Summary – Configuration 4

Temperature (ºC)	Voltage	Frequency (MHz)	Deviation (%)	Limit (%)	Results
-20	V _{Nominal}	13.5597	-0.00221	±0.01	
-10	V _{Nominal}	13.5597	-0.00221	±0.01	
0	V _{Nominal}	13.5596	-0.00295	±0.01	
10	V _{Nominal}	13.5597	-0.00221	±0.01	
20	V _{Minimum}	13.5596	-0.00295	±0.01	Dace
20	V _{Nominal}	13.5595	-0.00369	±0.01	Pass
20	V _{Maximum}	13.5596	-0.00295	±0.01	
30	V _{Nominal}	13.5596	-0.00295	±0.01	
40	V _{Nominal}	13.5595	-0.00369	±0.01	
50	V _{Nominal}	13.5595	-0.00369	±0.01	
Nominal F	requency:	13.560000			

Test Data Summary – Configuration 7

Temperature (ºC)	Voltage	Frequency (MHz)	Deviation (%)	Limit (%)	Results
-20	V _{Nominal}	13.5597	-0.00221	±0.01	
-10	V _{Nominal}	13.5597	-0.00221	±0.01	
0	V _{Nominal}	13.5596	-0.00295	±0.01	
10	V _{Nominal}	13.5596	-0.00295	±0.01	
20	V _{Minimum}	13.5595	-0.00369	±0.01	Dace
20	V _{Nominal}	13.5596	-0.00295	±0.01	Pass
20	V _{Maximum}	13.5596	-0.00295	±0.01	
30	V _{Nominal}	13.5596	-0.00295	±0.01	
40	V _{Nominal}	13.5595	-0.00369	±0.01	
50	V _{Nominal}	13.5594	-0.00442	±0.01	
Nominal F	requency:	13.560000			

Temperature (ºC)	Voltage	Frequency (MHz)	Deviation (%)	Limit (%)	Results
-20	V _{Nominal}	13.5596	-0.00295	±0.01	
-10	V _{Nominal}	13.5596	-0.00295	±0.01	
0	V _{Nominal}	13.5596	-0.00295	±0.01	
10	V _{Nominal}	13.5594	-0.00442	±0.01	
20	VMinimum	13.5595	-0.00369	±0.01	Dace
20	V _{Nominal}	13.5595	-0.00369	±0.01	Pass
20	V _{Maximum}	13.5594	-0.00442	±0.01	
30	V _{Nominal}	13.5594	-0.00442	±0.01	
40	V _{Nominal}	13.5594	-0.00442	±0.01	
50	V _{Nominal}	13.5594	-0.00442	±0.01	
Nominal F	requency:	13,560000			

Test Data Summary – Configuration 8

Parameter Definitions:

Measurements performed at input voltage Vnominal ± 15%.

Parameter	Value
V _{Nominal} :	12VDC
V _{Minimum} :	10.2VDC
V _{Maximum} :	13.8VDC

Test Setup Photos

Page 45 of 102 Report No.: 97757-40

Page 46 of 102 Report No.: 97757-40

15.225(d) Radiated Emissions

Test Setup / Conditions / Data

Test Location:	CKC Laboratories Inc. • 5046 S	Sierra Pines Dr. • Mariposa, C	A 95338 • 209-966-5240
Customer:	WaveLynx Technologies Corp	ooration	
Specification:	15.225 Carrier and Spurious	Emissions (13.110-14.010 N	AHz Transmitter)
Work Order #:	97757	Date:	5/4/2016
Test Type:	Radiated Scan	Time:	16:37:07
Tested By:	Benny Lovan	Sequence#:	9
Software:	EMITest 5.03.02		

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 11			

Support Equipment:

Device	Manufacturer	Model #	S/N
Configuration 11			

Test Conditions / Notes:

Radiated Spurious Emissions Measurements

Temperature: 22°C Humidity: 41% Atmospheric Pressure: 97.1 kPa

Frequency Range: 9kHz – 30MHz Modulation: ASK with an 847kHz Subcarrier Antenna Type: Integral Antenna Gain 2 dBi Transmit Frequency: 13.56MHz

The EUTs are powered by a DC power supply at 12VDC. The manufacturer declares it will only ever be wall mounted in an upright/vertical (Y-axis) orientation.

The EUT is setup on an 80cm foam block. It has been programmed to continuously transmit the RFID signal at 13.56MHz

WaveLynx Technologies Corporation WO#: 97757 Sequence#: 9 Date: 5/4/2016 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter) Test Distance: 3 Meters Perpendicular

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP06884	Cable	LMR195-FR-4	10/27/2015	10/27/2017
T2	AN00226	Loop Antenna	6502	4/4/2016	4/4/2018
	AN02111	Spectrum Analyzer	8593EM	6/4/2015	6/4/2016
Т3	ANMD3M	Cable		3/17/2016	3/17/2018
T4	ANP06229	Cable	CXTA04A-50	3/17/2016	3/17/2018

Measur	rement Data:	Re	ading lis	ted by ma	argin.		Те	est Distanc	e: 3 Meters		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant
1	494.600k	32.6	+0.0	+9.7	+0.1	+0.1	-20.0	22.5	33.7	-11.2	Perpe
2	11.954M	24.4	+0.1	+9.7	+0.4	+0.3	-20.0	14.9	29.5	-14.6	Paral
3	17.739M	22.9	+0.1	+8.7	+0.5	+0.4	-20.0	12.6	29.5	-16.9	Paral
4	9.477M	18.6	+0.1	+9.8	+0.3	+0.3	-20.0	9.1	29.5	-20.4	Paral
5	9.981M	17.2	+0.1	+9.8	+0.4	+0.3	-20.0	7.8	29.5	-21.7	Paral
6	15.002M	17.1	+0.1	+9.6	+0.4	+0.4	-20.0	7.6	29.5	-21.9	Paral
7	16.400k	46.7	+0.0	+14.1	+0.0	+0.0	-40.0	20.8	43.3	-22.5	Perpe
8	18.900k	45.9	+0.0	+13.5	+0.0	+0.0	-40.0	19.4	42.1	-22.7	Paral
9	9.352M	16.1	+0.1	+9.8	+0.3	+0.3	-20.0	6.6	29.5	-22.9	Paral
10	15.232M	16.1	+0.1	+9.5	+0.4	+0.4	-20.0	6.5	29.5	-23.0	Paral
11	15.790M	14.7	+0.1	+9.3	+0.4	+0.4	-20.0	4.9	29.5	-24.6	Perpe
12	17.930M	12.0	+0.1	+8.7	+0.5	+0.4	-20.0	1.7	29.5	-27.8	Perpe
13	13.559M	64.0	+0.1	+9.6	+0.4	+0.4	-20.0	54.5	84.0 Fundament	-29.5 tal	Paral
14	13.652M	29.0	+0.1	+9.6	+0.4	+0.4	-20.0	19.5	50.5	-31.0	Perpe
15	13.560M	59.6	+0.1	+9.6	+0.4	+0.4	-20.0	50.1	84.0 Fundament	-33.9 tal	Perpe

Test Location:	CKC Laboratories Inc. • 5046 Sierra Pines Dr. • Mariposa, CA 95338 • 209-966-5240				
Customer:	WaveLynx Technologies Corporation				
Specification:	15.225 Carrier and Spurious Emissions (1	3.110-14.010 N	(1Hz Transmitter)		
Work Order #:	97757	Date:	5/4/2016		
Test Type:	Radiated Scan	Time:	17:06:55		
Tested By:	Benny Lovan	Sequence#:	10		
Software:	EMITest 5.03.02				

Device	Manufacturer	Model #	S/N	
Configuration 12				
Support Equipment	t:			
Device	Manufacturer	Model #	S/N	
Configuration 12				
Test Conditions / N	lotes:			
Radiated Spurious E	missions Measurements			
Temperature: 22°C Humidity:41% Atmospheric Pressur	re: 97.1 kPa			
Frequency Range: 9 Modulation: ASK w Antenna Type: Integ Antenna Gain 2 dBi Transmit Frequency	kHz – 30MHz ith an 847kHz Subcarrier gral : 13.56MHz			
The EUTs are powe	ered by a DC power supply at 12	VDC. The manufac	cturer declares it will only ever	r be wall

mounted in an upright/vertical (Y-axis) orientation.

The EUT is setup on an 80cm foam block. It has been programmed to continuously transmit the RFID signal at 13.56MHz

WaveLynx Technologies Corporation WO#: 97757 Sequence#: 10 Date: 5/4/2016 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter) Test Distance: 3 Meters Parallel

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP06884	Cable	LMR195-FR-4	10/27/2015	10/27/2017
T2	AN00226	Loop Antenna	6502	4/4/2016	4/4/2018
	AN02111	Spectrum Analyzer	8593EM	6/4/2015	6/4/2016
Т3	ANMD3M	Cable		3/17/2016	3/17/2018
T4	ANP06229	Cable	CXTA04A-50	3/17/2016	3/17/2018

Measur	rement Data:	Re	eading lis	ted by ma	argin.		Τe	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant
1	586.300k	34.0	+0.0	+10.0	+0.1	+0.1	-20.0	24.2	32.2	-8.0	Perpe
2	1.484M	25.4	+0.0	+10.1	+0.1	+0.1	-20.0	15.7	24.1	-8.4	Perpe
3	1.365M	25.2	+0.0	+10.1	+0.1	+0.1	-20.0	15.5	24.8	-9.3	Perpe
4	10.002M	28.5	+0.1	10.8	10.4	+0.2	20.0	10.1	20.5	10.4	Damal
4	10.005101	28.3	± 0.1	+9.8	+0.4	± 0.5	-20.0	19.1	29.3	-10.4	Parai
5	586 300k	31.5	+0.0	+10.0	+0.1	+0.1	-20.0	21.7	32.2	-10.5	Paral
5	200.200K	51.5	. 0.0	10.0	. 0.1	.0.1	20.0	21.7	52.2	10.5	1 urur
6	10.008M	23.8	+0.1	+9.8	+0.4	+0.3	-20.0	14.4	29.5	-15.1	Perpe
											1
7	9.987M	23.6	+0.1	+9.8	+0.4	+0.3	-20.0	14.2	29.5	-15.3	Perpe
8	7.191M	21.5	+0.1	+9.9	+0.3	+0.3	-20.0	12.1	29.5	-17.4	Paral
							• • •		• • •		-
9	7.210M	17.7	+0.1	+9.9	+0.3	+0.3	-20.0	8.3	29.5	-21.2	Perpe
10	26 2001	44.0		12.4			40.0	17.0	20.2	22.0	D
10	26.300k	44.8	+0.0	+12.4	+0.0	+0.0	-40.0	17.2	39.2	-22.0	Perpe
11	7 234M	15.3	+0.1	+0.0	+0.3	+0.3	-20.0	5.9	29.5	-23.6	Perne
11	/.254101	15.5	10.1	1.7.7	10.5	10.5	-20.0	5.7	29.5	-25.0	reipe
12	13.560M	67.0	+0.1	+9.6	+0.4	+0.4	-20.0	57.5	84.0	-26.5	Paral
									Fundament	tal	
13	13.560M	66.0	+0.1	+9.6	+0.4	+0.4	-20.0	56.5	84.0	-27.5	Perpe
									Fundamen	tal	

Test Location:	CKC Laboratories Inc. • 504	6 Sierra Pines Dr. • Mariposa, C.	A 95338 • 209-966-5240
Customer:	WaveLynx Technologies Co	orporation	
Specification:	15.225 Carrier and Spuriou	s Emissions (13.110-14.010 N	AHz Transmitter)
Work Order #:	97757	Date:	5/4/2016
Test Type:	Radiated Scan	Time:	14:44:50
Tested By:	Benny Lovan	Sequence#:	11
Software:	EMITest 5.03.02		

Configuration 12	S/N	Model #	Manufacturer	Device
				Configuration 13

S/N

Support Equipment: Device Manufacturer Model

Configuration 13

Test Conditions / Notes:

Radiated Spurious Emissions Measurements

Temperature: 20°C Humidity:52% Atmospheric Pressure: 97.31 kPa

Frequency Range: 9kHz – 30MHz Modulation: ASK with an 847kHz Subcarrier Antenna Type: Integral Antenna Gain 2 dBi Transmit Frequency: 13.56MHz

The EUTs are powered by a DC power supply at 12VDC. The manufacturer declares it will only ever be wall mounted in an upright/vertical (Y-axis) orientation.

The EUT is setup on an 80cm foam block. It has been programmed to continuously transmit the RFID signal at 13.56MHz

WaveLynx Technologies Corporation WO#: 97757 Sequence#: 11 Date: 5/4/2016 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter) Test Distance: 3 Meters Parallel

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP06884	Cable	LMR195-FR-4	10/27/2015	10/27/2017
T2	AN00226	Loop Antenna	6502	4/4/2016	4/4/2018
	AN02111	Spectrum Analyzer	8593EM	6/4/2015	6/4/2016
Т3	ANMD3M	Cable		3/17/2016	3/17/2018
T4	ANP06229	Cable	CXTA04A-50	3/17/2016	3/17/2018

Measur	rement Data:	Re	eading lis	ted by ma	argin.		Те	est Distanc	e: 3 Meters		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	dBµV/m	dB	Ant
1	1.667M	29.0	+0.0	+10.1	+0.1	+0.1	-20.0	19.3	23.1	-3.8	Paral
2	586.300k	36.5	+0.0	+10.0	+0.1	+0.1	-20.0	26.7	32.2	-5.5	Perpe
3	43.700k	58.2	+0.0	+11.1	+0.0	+0.0	-40.0	29.3	34.8	-5.5	Perpe
4	90.800k	46.9	+0.0	+10.2	+0.0	+0.0	-40.0	17.1	28.4	-11.3	Perpe
5	14.000k	56.8	+0.0	+14.8	+0.0	+0.0	-40.0	31.6	44.7	-13.1	Perpe
6	13.560M	65.5	+0.1	+9.6	+0.4	+0.4	-20.0	56.0	84.0	-28.0	Paral
									Fundament	tal	
7	13.560M	61.0	+0.1	+9.6	+0.4	+0.4	-20.0	51.5	84.0	-32.5	Perpe
									Fundament	tal	

Test Location:	CKC Laboratories Inc. • 5046 Sierra Pines Dr.	• Mariposa, CA	A 95338 • 209-966-5240
Customer:	WaveLynx Technologies Corporation		
Specification:	15.225 Carrier and Spurious Emissions (13	8.110-14.010 N	(1Hz Transmitter)
Work Order #:	97757	Date:	5/4/2016
Test Type:	Radiated Scan	Time:	14:18:34
Tested By:	Benny Lovan	Sequence#:	12
Software:	EMITest 5.03.02		

Device	Manufacturer	Model #	S/N	
Configuration 14				
Support Equipment				
Device	Manufacturer	Model #	S/N	
Configuration 14				
Test Conditions / N	otes:			
Radiated Spurious E	missions Measurements			
Temperature: 20°C Humidity:52% Atmospheric Pressur	re: 97.31 kPa			
Frequency Range: 9 Modulation: ASK w Antenna Type: Integ Antenna Gain 2 dBi Transmit Frequency	<hz 30mhz<br="" –="">ith an 847kHz Subcarrier ral : 13.56MHz</hz>			
The EUTs are power mounted in an uprig The EUT is setup or 13.56MHz	ered by a DC power supply at ht/vertical (Y-axis) orientation. n an 80cm foam block. It has	t 12VDC. The manufact	urer declares it will only ever be ntinuously transmit the RFID sig	e wall nal at

WaveLynx Technologies Corporation WO#: 97757 Sequence#: 12 Date: 5/4/2016 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter) Test Distance: 3 Meters Perpendicular

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP06884	Cable	LMR195-FR-4	10/27/2015	10/27/2017
T2	AN00226	Loop Antenna	6502	4/4/2016	4/4/2018
	AN02111	Spectrum Analyzer	8593EM	6/4/2015	6/4/2016
Т3	ANMD3M	Cable		3/17/2016	3/17/2018
T4	ANP06229	Cable	CXTA04A-50	3/17/2016	3/17/2018

Measur	rement Data:	Re	eading lis	ted by ma	argin.		Те	est Distance	e: 3 Meters	5	
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant
1	307.400k	30.4	+0.0	+9.8	+0.1	+0.0	-40.0	0.3	17.8	-17.5	Paral
2	11.636M	21.1	+0.1	+9.7	+0.4	+0.3	-20.0	11.6	29.5	-17.9	Perpe
3	347.600k	28.9	+0.0	+9.8	+0.1	+0.1	-40.0	-1.1	16.8	-17.9	Paral
4	9.934M	20.5	+0.1	+9.8	+0.4	+0.3	-20.0	11.1	29.5	-18.4	Paral
5	26.600k	48.3	+0.0	+12.4	+0.0	+0.0	-40.0	20.7	39.1	-18.4	Paral
											_
6	10.000M	20.0	+0.1	+9.8	+0.4	+0.3	-20.0	10.6	29.5	-18.9	Perpe
	14.0001	10.6		. 1 4 0			10.0			20.2	D
1	14.000k	49.6	+0.0	+14.8	+0.0	+0.0	-40.0	24.4	44.7	-20.3	Perpe
	1.5.4003.6	110	. 0.1	. 0. 1	. 0. 1		20.0		20.5	22.0	D
8	15.480M	14.2	+0.1	+9.4	+0.4	+0.4	-20.0	4.5	29.5	-25.0	Perpe
	12 55016	(0.0	+0.1	10.0	10.4	10.4	20.0	<u> </u>	04.0	25.5	D 1
9	13.559M	68.0	+0.1	+9.6	+0.4	+0.4	-20.0	38.3	84.0	-25.5	Paral
									Fundament	tal	
10	15.444M	8.0	+0.1	+9.4	+0.4	+0.4	-20.0	-1.7	29.5	-31.2	Paral
							• • • •				
	13.559M	57.3	+0.1	+9.6	+0.4	+0.4	-20.0	47.8	84.0	-36.2	Perpe
									Fundament	tal	

Test Location:	CKC Laboratories, Inc. • 5	046 Sierra Pines Dr. • Mariposa, C	CA 95338 • 209-966-5240
Customer:	WaveLynx Technologies	Corporation	
Specification:	15.225 Carrier and Spurio	ous Emissions (13.110-14.010 N	AHz Transmitter)
Work Order #:	97757	Date:	5/6/2016
Test Type:	Radiated Scan	Time:	14:55:56
Tested By:	Skip Doyle	Sequence#:	13
Software:	EMITest 5.03.02		

	WIDUEI #	5/ IN
Configuration 1		

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

Radiated Spurious Emissions Measurements

Temperature: 12°C Humidity:69% Atmospheric Pressure: 97.0 kPa

Frequency Range: 30MHz -1GHz Modulation: ASK with an 847kHz Subcarrier Antenna Type: Integral Antenna Gain 2 dBi Transmit Frequency: 13.56MHz

The EUTs are powered by a DC power supply at 12VDC. The manufacturer declares it will only ever be wall mounted in an upright/vertical (Y-axis) orientation.

The EUT is setup on an 80cm foam block. It has been programmed to continuously transmit the RFID signal at 13.56MHz.

WaveLynx Technologies Corporation WO#: 97757 Sequence#: 13 Date: 5/6/2016 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter) Test Distance: 3 Meters Vert

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02111	Spectrum Analyzer	8593EM	6/4/2015	6/4/2016
T1	AN01991	Biconilog Antenna	CBL6111C	3/11/2016	3/11/2018
T2	ANMD3M	Cable		3/17/2016	3/17/2018
Т3	ANP06229	Cable	CXTA04A-50	3/17/2016	3/17/2018
T4	ANP06884	Cable	LMR195-FR-4	10/27/2015	10/27/2017
T5	ANP06885	Cable	P06885	10/27/2015	10/27/2017
T6	ANP05657	Attenuator	PE7004-6	12/22/2015	12/22/2017
T7	AN00282	Preamp	8447D	4/7/2016	4/7/2018

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Te	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7						
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	$dB\mu V/m$	dB	Ant
1	74.680M	46.9	+7.0	+0.9	+0.9	+0.2	+0.0	34.3	40.0	-5.7	Vert
			+0.2	+6.0	-27.8						
2	81.430M	44.8	+7.2	+1.0	+0.9	+0.2	+0.0	32.5	40.0	-7.5	Vert
			+0.2	+6.0	-27.8						
3	596.661M	34.3	+19.9	+2.7	+2.8	+0.4	+0.0	38.3	46.0	-7.8	Vert
			+0.5	+6.0	-28.4						
4	461.061M	35.3	+17.3	+2.3	+2.5	+0.4	+0.0	36.2	46.0	-9.8	Vert
			+0.5	+6.0	-28.1						
5	352.581M	37.0	+14.9	+2.1	+2.1	+0.4	+0.0	35.6	46.0	-10.4	Vert
			+0.4	+6.0	-27.3						
6	61.050M	41.8	+5.9	+0.8	+0.8	+0.1	+0.0	27.8	40.0	-12.2	Vert
			+0.2	+6.0	-27.8						
7	54.180M	40.0	+7.3	+0.8	+0.8	+0.1	+0.0	27.4	40.0	-12.6	Vert
			+0.2	+6.0	-27.8						
8	298.300M	36.3	+13.4	+1.9	+1.9	+0.4	+0.0	33.3	46.0	-12.7	Vert
			+0.4	+6.0	-27.0						
9	339.050M	34.4	+14.5	+2.0	+2.1	+0.4	+0.0	32.6	46.0	-13.4	Vert
			+0.4	+6.0	-27.2						
10	271.221M	36.2	+12.8	+1.8	+1.8	+0.3	+0.0	32.4	46.0	-13.6	Horiz
			+0.4	+6.0	-26.9						
11	311.930M	33.4	+13.8	+1.9	+2.0	+0.3	+0.0	30.8	46.0	-15.2	Vert
			+0.4	+6.0	-27.0						
12	325.430M	32.1	+14.2	+2.0	+2.0	+0.3	+0.0	29.9	46.0	-16.1	Vert
			+0.4	+6.0	-27.1						
13	67.821M	35.6	+6.8	+0.9	+0.9	+0.1	+0.0	22.7	40.0	-17.3	Horiz
			+0.2	+6.0	-27.8						
14	244.101M	32.5	+11.9	+1.7	+1.7	+0.3	+0.0	27.5	46.0	-18.5	Horiz
			+0.4	+6.0	-27.0						

Test Location:	CKC Laboratories, Inc. • 5046 Sierra Pines I	Dr. • Mariposa, C	A 95338 • 209-966-5240						
Customer:	WaveLynx Technologies Corporation								
Specification:	15.225 Carrier and Spurious Emissions (13.110-14.010 N	1Hz Transmitter)						
Work Order #:	97757	Date:	5/6/2016						
Test Type:	Radiated Scan	Time:	15:12:29						
Tested By:	Skip Doyle	Sequence#:	14						
Software:	EMITest 5.03.02								

13.56MHz.

Device	Manufacturer	Model #	S/N					
Configuration 2								
Support Equipment	:							
Device	Manufacturer	Model #	S/N					
Configuration 2								
Test Conditions / N	otes:							
Radiated Spurious E	missions Measurements							
Temperature: 12°C Humidity:69% Atmospheric Pressur	e: 97.0 kPa							
Frequency Range: 30)MHz -1GHz							
Modulation: ASK with	th an 847kHz Subcarrier							
Antenna Type: Integ	ral							
Antenna Gain 2 dBi	Antenna Gain 2 dBi							
Transmit Frequency:	13.56MHz							
The EUTs are powe mounted in an upright	red by a DC power supply at nt/vertical (Y-axis) orientation.	12VDC. The manufa	cturer declares it will only ever l	be wall				

The EUT is setup on an 80cm foam block. It has been programmed to continuously transmit the RFID signal at

WaveLynx Technologies Corporation WO#: 97757 Sequence#: 14 Date: 5/6/2016 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter) Test Distance: 3 Meters Vert

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02111	Spectrum Analyzer	8593EM	6/4/2015	6/4/2016
T1	AN01991	Biconilog Antenna	CBL6111C	3/11/2016	3/11/2018
T2	ANMD3M	Cable		3/17/2016	3/17/2018
Т3	ANP06229	Cable	CXTA04A-50	3/17/2016	3/17/2018
T4	ANP06884	Cable	LMR195-FR-4	10/27/2015	10/27/2017
T5	ANP06885	Cable	P06885	10/27/2015	10/27/2017
T6	ANP05657	Attenuator	PE7004-6	12/22/2015	12/22/2017
T7	AN00282	Preamp	8447D	4/7/2016	4/7/2018

Measu	rement Data:	· Ro	eading lis	ted by ma	argin.		Te	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7						
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant
1	67.812M	47.0	+6.8	+0.9	+0.9	+0.1	+0.0	34.1	40.0	-5.9	Vert
	QP		+0.2	+6.0	-27.8						
^	67.810M	47.8	+6.8	+0.9	+0.9	+0.1	+0.0	34.9	40.0	-5.1	Vert
			+0.2	+6.0	-27.8						
3	596.661M	34.3	+19.9	+2.7	+2.8	+0.4	+0.0	38.3	46.0	-7.8	Vert
			+0.5	+6.0	-28.4						
4	74.593M	44.1	+7.0	+0.9	+0.9	+0.2	+0.0	31.5	40.0	-8.5	Vert
			+0.2	+6.0	-27.8						
5	461.061M	35.3	+17.3	+2.3	+2.5	+0.4	+0.0	36.2	46.0	-9.8	Vert
			+0.5	+6.0	-28.1						
6	352.581M	37.0	+14.9	+2.1	+2.1	+0.4	+0.0	35.6	46.0	-10.4	Vert
			+0.4	+6.0	-27.3						
7	81.376M	41.0	+7.2	+1.0	+0.9	+0.2	+0.0	28.8	40.0	-11.3	Vert
			+0.2	+6.0	-27.8						
8	61.050M	41.8	+5.9	+0.8	+0.8	+0.1	+0.0	27.8	40.0	-12.2	Vert
			+0.2	+6.0	-27.8						
9	54.180M	40.0	+7.3	+0.8	+0.8	+0.1	+0.0	27.4	40.0	-12.6	Vert
			+0.2	+6.0	-27.8						
10	298.300M	36.3	+13.4	+1.9	+1.9	+0.4	+0.0	33.3	46.0	-12.7	Vert
			+0.4	+6.0	-27.0						
11	339.050M	34.4	+14.5	+2.0	+2.1	+0.4	+0.0	32.6	46.0	-13.4	Vert
			+0.4	+6.0	-27.2						
12	271.221M	36.2	+12.8	+1.8	+1.8	+0.3	+0.0	32.4	46.0	-13.6	Horiz
			+0.4	+6.0	-26.9						
13	311.930M	33.4	+13.8	+1.9	+2.0	+0.3	+0.0	30.8	46.0	-15.2	Vert
			+0.4	+6.0	-27.0						
14	325.430M	32.1	+14.2	+2.0	+2.0	+0.3	+0.0	29.9	46.0	-16.1	Vert
			+0.4	+6.0	-27.1						
15	244.101M	32.5	+11.9	+1.7	+1.7	+0.3	+0.0	27.5	46.0	-18.5	Horiz
			+0.4	+6.0	-27.0						

Test Location:	CKC Laboratories, Inc. • 5046 Sierra Pines I	Dr. • Mariposa, C	A 95338 • 209-966-5240
Customer:	WaveLynx Technologies Corporation		
Specification:	15.225 Carrier and Spurious Emissions (13.110-14.010 N	(1Hz Transmitter)
Work Order #:	97757	Date:	5/6/2016
Test Type:	Radiated Scan	Time:	16:33:48
Tested By:	Skip Doyle	Sequence#:	15
Software:	EMITest 5.03.02		

Device	Manufacturer	Model #	S/N	
Configuration 3				
Support Equipmen	t:			
Device	Manufacturer	Model #	S/N	
Configuration 3				
Test Conditions / N	lotes:			
Radiated Spurious E	Emissions Measurements			
Temperature: 12°C Humidity:69% Atmospheric Pressu	re: 97.0 kPa			
Frequency Range: 3 Modulation: ASK w Antenna Type: Integ Antenna Gain 2 dBi Transmit Frequency	0MHz -1GHz ith an 847kHz Subcarrier gral : 13.56MHz			
The EUTs are power mounted in an uprig	ered by a DC power supply at ht/vertical (Y-axis) orientation.	t 12VDC. The manufac	urer declares it will only evo	er be wall

The EUT is setup on an 80cm foam block. It has been programmed to continuously transmit the RFID signal at 13.56MHz.

WaveLynx Technologies Corporation WO#: 97757 Sequence#: 15 Date: 5/6/2016 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter) Test Distance: 3 Meters Vert

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02111	Spectrum Analyzer	8593EM	6/4/2015	6/4/2016
T1	AN01991	Biconilog Antenna	CBL6111C	3/11/2016	3/11/2018
T2	ANMD3M	Cable		3/17/2016	3/17/2018
T3	ANP06229	Cable	CXTA04A-50	3/17/2016	3/17/2018
T4	ANP06884	Cable	LMR195-FR-4	10/27/2015	10/27/2017
T5	ANP06885	Cable	P06885	10/27/2015	10/27/2017
T6	ANP05657	Attenuator	PE7004-6	12/22/2015	12/22/2017
T7	AN00282	Preamp	8447D	4/7/2016	4/7/2018

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Meası	irement Data:	Re	eading lis	ted by ma	argin.		Те	est Distance	e: 3 Meters		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				T5	T6	T7						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	$dB\mu V/m$	dB	Ant
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	298.324M	47.2	+13.4	+1.9	+1.9	+0.4	+0.0	44.2	46.0	-1.8	Vert
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		QP		+0.4	+6.0	-27.0						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	^	298.341M	48.4	+13.4	+1.9	+1.9	+0.4	+0.0	45.4	46.0	-0.6	Vert
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				+0.4	+6.0	-27.0						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	3	40.694M	40.6	+14.0	+0.7	+0.7	+0.1	+0.0	34.4	40.0	-5.6	Vert
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		QP		+0.2	+6.0	-27.9						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	^	40.692M	42.9	+14.0	+0.7	+0.7	+0.1	+0.0	36.7	40.0	-3.3	Vert
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				+0.2	+6.0	-27.9						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	5	298.323M	42.0	+13.4	+1.9	+1.9	+0.4	+0.0	39.0	46.0	-7.0	Horiz
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		QP		+0.4	+6.0	-27.0						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	^	298.317M	42.7	+13.4	+1.9	+1.9	+0.4	+0.0	39.7	46.0	-6.3	Horiz
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				+0.4	+6.0	-27.0						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	7	596.635M	34.3	+19.9	+2.7	+2.8	+0.4	+0.0	38.2	46.0	-7.8	Vert
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		QP		+0.5	+6.0	-28.4						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	^	596.639M	35.5	+19.9	+2.7	+2.8	+0.4	+0.0	39.4	46.0	-6.6	Vert
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				+0.5	+6.0	-28.4						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	9	352.563M	39.1	+14.9	+2.1	+2.1	+0.4	+0.0	37.7	46.0	-8.3	Vert
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		QP		+0.4	+6.0	-27.3						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	^	352.564M	41.3	+14.9	+2.1	+2.1	+0.4	+0.0	39.9	46.0	-6.1	Vert
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				+0.4	+6.0	-27.3						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	379.679M	37.6	+15.6	+2.1	+2.2	+0.4	+0.0	36.8	46.0	-9.2	Vert
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				+0.4	+6.0	-27.5						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	271.167M	39.3	+12.8	+1.8	+1.8	+0.3	+0.0	35.5	46.0	-10.5	Horiz
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				+0.4	+6.0	-26.9						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13	433.919M	35.0	+16.8	+2.3	+2.4	+0.4	+0.0	35.5	46.0	-10.6	Vert
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				+0.5	+6.0	-27.9						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14	67.807M	42.3	+6.8	+0.9	+0.9	+0.1	+0.0	29.4	40.0	-10.6	Vert
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				+0.2	+6.0	-27.8						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15	461.039M	34.2	+17.3	+2.3	+2.5	+0.4	+0.0	35.1	46.0	-10.9	Vert
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				+0.5	+6.0	-28.1						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	16	433.917M	34.4	+16.8	+2.3	+2.4	+0.4	+0.0	34.9	46.0	-11.1	Horiz
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				+0.5	+6.0	-27.9						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	17	352.557M	36.0	+14.9	+2.1	+2.1	+0.4	+0.0	34.6	46.0	-11.4	Horiz
$18 54.273M 41.0 +7.3 +0.8 +0.8 +0.1 +0.0 28.4 40.0 -11.6 Vert \\ +0.2 +6.0 -27.8 $				+0.4	+6.0	-27.3						
+0.2 +6.0 -27.8	18	54.273M	41.0	+7.3	+0.8	+0.8	+0.1	+0.0	28.4	40.0	-11.6	Vert
				+0.2	+6.0	-27.8						

19	244.086M	39.3	+11.9 +0.4	+1.7 +6.0	+1.7	+0.3	+0.0	34.3	46.0	-11.7	Vert
20	74.592M	40.8	+0.4 +7.0 +0.2	+0.0 +0.9 +6.0	+0.9	+0.2	+0.0	28.2	40.0	-11.8	Vert
21	406.799M	34.1	+0.2 +16.2 +0.4	+2.2 +6.0	+2.3 -27.7	+0.4	+0.0	33.9	46.0	-12.1	Vert
22	155.952M	37.8	+10.8 +0.3	$^{+1.3}_{+6.0}$	+1.4 -27.5	+0.2	+0.0	30.3	43.5	-13.2	Vert
23	61.027M	40.8	+5.9 +0.2	$^{+0.8}_{+6.0}$	+0.8 -27.8	+0.1	+0.0	26.8	40.0	-13.3	Vert
24	81.372M	38.7	+7.2 +0.2	$^{+1.0}_{+6.0}$	+0.9 -27.8	+0.2	+0.0	26.4	40.0	-13.6	Vert
25	379.677M	33.0	+15.6 +0.4	$^{+2.1}_{+6.0}$	+2.2 -27.5	+0.4	+0.0	32.2	46.0	-13.8	Horiz
26	216.973M	38.3	+10.1 +0.4	$^{+1.6}_{+6.0}$	+1.6 -27.1	+0.3	+0.0	31.2	46.0	-14.8	Vert
27	128.832M	32.6	+11.7 +0.3	$^{+1.2}_{+6.0}$	+1.2 -27.6	+0.2	+0.0	25.6	43.5	-17.9	Vert
28	244.083M	33.1	+11.9 +0.4	$^{+1.7}_{+6.0}$	+1.7 -27.0	+0.3	+0.0	28.1	46.0	-17.9	Horiz
29	122.052M	32.5	+11.6 +0.3	+1.2 +6.0	+1.2 -27.6	+0.2	+0.0	25.4	43.5	-18.1	Vert
30	155.943M	31.4	+10.8 +0.3	+1.3 +6.0	+1.4 -27.5	+0.2	+0.0	23.9	43.5	-19.6	Horiz
31	67.803M	31.9	$^{+6.8}_{+0.2}$	$^{+0.9}_{+6.0}$	+0.9 -27.8	+0.1	+0.0	19.0	40.0	-21.0	Horiz

Test Location:	CKC Laboratories, Inc. • 5046 Sierra Pines	Dr. • Mariposa, C	A 95338 • 209-966-5240						
Customer:	WaveLynx Technologies Corporation								
Specification:	15.225 Carrier and Spurious Emissions (13.110-14.010 N	(1Hz Transmitter)						
Work Order #:	97757	Date:	5/6/2016						
Test Type:	Radiated Scan	Time:	15:49:55						
Tested By:	Skip Doyle	Sequence#:	16						
Software:	EMITest 5.03.02								

Device	Manufacturer	Model #	S/N	
Configuration 4				
Support Equipmer	nt:			
Device	Manufacturer	Model #	S/N	
Configuration 4				
Test Conditions / I	Notes:			
Radiated Spurious I	Emissions Measurements			
Temperature: 12°C Humidity:69% Atmospheric Pressu	ıre: 97.0 kPa			
Frequency Range: 3 Modulation: ASK v Antenna Type: Inte Antenna Gain 2 dB Transmit Frequency	30MHz -1GHz vith an 847kHz Subcarrier gral i y: 13.56MHz			
The EUTs are pow mounted in an upris	rered by a DC power supply at ght/vertical (Y-axis) orientation	t 12VDC. The manufac	turer declares it will only ever b	oe wall

The EUT is setup on an 80cm foam block. It has been programmed to continuously transmit the RFID signal at 13.56MHz.

WaveLynx Technologies Corporation WO#: 97757 Sequence#: 16 Date: 5/6/2016 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter) Test Distance: 3 Meters Horiz

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02111	Spectrum Analyzer	8593EM	6/4/2015	6/4/2016
T1	AN01991	Biconilog Antenna	CBL6111C	3/11/2016	3/11/2018
T2	ANMD3M	Cable		3/17/2016	3/17/2018
Т3	ANP06229	Cable	CXTA04A-50	3/17/2016	3/17/2018
T4	ANP06884	Cable	LMR195-FR-4	10/27/2015	10/27/2017
T5	ANP06885	Cable	P06885	10/27/2015	10/27/2017
T6	ANP05657	Attenuator	PE7004-6	12/22/2015	12/22/2017
T7	AN00282	Preamp	8447D	4/7/2016	4/7/2018

<i>Measurement Data:</i> Reading listed by margin.					Test Distance: 3 Meters						
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7						
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	298.327M	44.6	+13.4	+1.9	+1.9	+0.4	+0.0	41.6	46.0	-4.4	Vert
	QP		+0.4	+6.0	-27.0						
^	298.319M	45.2	+13.4	+1.9	+1.9	+0.4	+0.0	42.2	46.0	-3.8	Vert
			+0.4	+6.0	-27.0						
3	67.813M	46.8	+6.8	+0.9	+0.9	+0.1	+0.0	33.9	40.0	-6.1	Vert
	QP		+0.2	+6.0	-27.8						
^	67.814M	48.0	+6.8	+0.9	+0.9	+0.1	+0.0	35.1	40.0	-4.9	Vert
			+0.2	+6.0	-27.8						
5	298.326M	41.7	+13.4	+1.9	+1.9	+0.4	+0.0	38.7	46.0	-7.3	Horiz
	QP		+0.4	+6.0	-27.0						
^	298.322M	43.8	+13.4	+1.9	+1.9	+0.4	+0.0	40.8	46.0	-5.2	Horiz
			+0.4	+6.0	-27.0						
7	74.584M	43.8	+7.0	+0.9	+0.9	+0.2	+0.0	31.2	40.0	-8.8	Vert
			+0.2	+6.0	-27.8						
8	155.959M	41.1	+10.8	+1.3	+1.4	+0.2	+0.0	33.6	43.5	-9.9	Vert
			+0.3	+6.0	-27.5						
9	81.365M	41.3	+7.2	+1.0	+0.9	+0.2	+0.0	29.0	40.0	-11.0	Vert
			+0.2	+6.0	-27.8						
10	183.081M	40.0	+9.2	+1.5	+1.5	+0.2	+0.0	31.4	43.5	-12.1	Vert
			+0.3	+6.0	-27.3						
11	61.022M	40.8	+5.9	+0.8	+0.8	+0.1	+0.0	26.8	40.0	-13.2	Vert
			+0.2	+6.0	-27.8						
12	271.195M	36.6	+12.8	+1.8	+1.8	+0.3	+0.0	32.8	46.0	-13.2	Vert
			+0.4	+6.0	-26.9						
13	54.251M	38.7	+7.3	+0.8	+0.8	+0.1	+0.0	26.1	40.0	-13.9	Vert
			+0.2	+6.0	-27.8						

14	271.207M	35.9	+12.8	+1.8	+1.8	+0.3	+0.0	32.1	46.0	-13.9	Horiz
			+0.4	+6.0	-26.9						
15	196.636M	38.1	+8.9	+1.5	+1.5	+0.3	+0.0	29.4	43.5	-14.1	Vert
			+0.3	+6.0	-27.2						
16	244.089M	36.4	+11.9	+1.7	+1.7	+0.3	+0.0	31.4	46.0	-14.6	Vert
			+0.4	+6.0	-27.0						
17	189.845M	37.5	+9.0	+1.5	+1.5	+0.3	+0.0	28.8	43.5	-14.7	Vert
			+0.3	+6.0	-27.3						
18	176.285M	37.2	+9.3	+1.4	+1.4	+0.2	+0.0	28.4	43.5	-15.1	Vert
			+0.3	+6.0	-27.4						
19	149.170M	35.6	+11.2	+1.3	+1.3	+0.2	+0.0	28.4	43.5	-15.1	Vert
			+0.3	+6.0	-27.5						
20	67.806M	33.9	+6.8	+0.9	+0.9	+0.1	+0.0	21.0	40.0	-19.0	Horiz
			+0.2	+6.0	-27.8						
21	216.959M	33.2	+10.1	+1.6	+1.6	+0.3	+0.0	26.1	46.0	-19.9	Vert
			+0.4	+6.0	-27.1						
22	61.019M	32.3	+5.9	+0.8	+0.8	+0.1	+0.0	18.3	40.0	-21.7	Horiz
			+0.2	+6.0	-27.8						

Test Location:	CKC Laboratories, Inc. • 5046 Sierra Pines	Dr. • Mariposa, C	A 95338 • 209-966-5240
Customer:	WaveLynx Technologies Corporation		
Specification:	15.225 Carrier and Spurious Emissions (13.110-14.010 N	1Hz Transmitter)
Work Order #:	97757	Date:	5/6/2016
Test Type:	Radiated Scan	Time:	17:32:57
Tested By:	Skip Doyle	Sequence#:	17
Software:	EMITest 5.03.02		

Device	Manufacturer	Model #	S/N							
Configuration 5										
Support Equipment	Support Equipment:									
Device	Manufacturer	Model #	S/N							
Configuration 5										
Test Conditions / N	lotes:									
Radiated Spurious E	missions Measurements									
Temperature: 12°C Humidity:69% Atmospheric Pressur	re: 97.0 kPa									
Frequency Range: 30 Modulation: ASK w Antenna Type: Integ Antenna Gain 2 dBi Transmit Frequency	0MHz -1GHz ith an 847kHz Subcarrier gral : 13.56MHz									
			1 1 1 11 11	1 11						

The EUTs are powered by a DC power supply at 12VDC. The manufacturer declares it will only ever be wall mounted in an upright/vertical (Y-axis) orientation.

The EUT is setup on an 80cm foam block. It has been programmed to continuously transmit the RFID signal at 13.56MHz.

WaveLynx Technologies Corporation WO#: 97757 Sequence#: 17 Date: 5/6/2016 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter) Test Distance: 3 Meters Vert

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02111	Spectrum Analyzer	8593EM	6/4/2015	6/4/2016
T1	AN01991	Biconilog Antenna	CBL6111C	3/11/2016	3/11/2018
T2	ANMD3M	Cable		3/17/2016	3/17/2018
Т3	ANP06229	Cable	CXTA04A-50	3/17/2016	3/17/2018
T4	ANP06884	Cable	LMR195-FR-4	10/27/2015	10/27/2017
T5	ANP06885	Cable	P06885	10/27/2015	10/27/2017
T6	ANP05657	Attenuator	PE7004-6	12/22/2015	12/22/2017
T7	AN00282	Preamp	8447D	4/7/2016	4/7/2018

Meası	irement Data:	Re	eading lis	ted by ma	argin.		Те	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7						
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant
1	298.328M	41.7	+13.4	+1.9	+1.9	+0.4	+0.0	38.7	46.0	-7.3	Horiz
	QP		+0.4	+6.0	-27.0						
^	298.323M	42.3	+13.4	+1.9	+1.9	+0.4	+0.0	39.3	46.0	-6.7	Horiz
			+0.4	+6.0	-27.0						
3	67.815M	45.2	+6.8	+0.9	+0.9	+0.1	+0.0	32.3	40.0	-7.7	Vert
	QP		+0.2	+6.0	-27.8						
^	67.798M	46.2	+6.8	+0.9	+0.9	+0.1	+0.0	33.3	40.0	-6.7	Vert
			+0.2	+6.0	-27.8						
5	461.041M	36.0	+17.3	+2.3	+2.5	+0.4	+0.0	37.0	46.0	-9.0	Vert
	QP		+0.5	+6.0	-28.1						
^	461.044M	37.4	+17.3	+2.3	+2.5	+0.4	+0.0	38.3	46.0	-7.7	Vert
			+0.5	+6.0	-28.1						
7	74.595M	42.7	+7.0	+0.9	+0.9	+0.2	+0.0	30.1	40.0	-9.9	Vert
			+0.2	+6.0	-27.8						
8	61.035M	44.1	+5.9	+0.8	+0.8	+0.1	+0.0	30.1	40.0	-9.9	Vert
			+0.2	+6.0	-27.8						
9	352.558M	37.0	+14.9	+2.1	+2.1	+0.4	+0.0	35.6	46.0	-10.4	Vert
			+0.4	+6.0	-27.3						
10	352.559M	35.2	+14.9	+2.1	+2.1	+0.4	+0.0	33.8	46.0	-12.2	Horiz
			+0.4	+6.0	-27.3						
11	325.435M	32.5	+14.2	+2.0	+2.0	+0.3	+0.0	30.3	46.0	-15.7	Vert
			+0.4	+6.0	-27.1						
12	183.066M	35.9	+9.2	+1.5	+1.5	+0.2	+0.0	27.3	43.5	-16.2	Vert
			+0.3	+6.0	-27.3						
13	271.224M	33.5	+12.8	+1.8	+1.8	+0.3	+0.0	29.6	46.0	-16.4	Horiz
			+0.4	+6.0	-26.9						
14	169.519M	35.3	+9.8	+1.4	+1.4	+0.2	+0.0	27.0	43.5	-16.5	Vert
			+0.3	+6.0	-27.4						
15	271.206M	32.4	+12.8	+1.8	+1.8	+0.3	+0.0	28.6	46.0	-17.4	Vert
			+0.4	+6.0	-26.9						
16	189.860M	34.3	+9.0	+1.5	+1.5	+0.3	+0.0	25.6	43.5	-17.9	Horiz
			+0.3	+6.0	-27.3						

Test Location:	CKC Laboratories, Inc. • 5046 Sierra Pine	s Dr. • Mariposa, C	A 95338 • 209-966-5240
Customer:	WaveLynx Technologies Corporation		
Specification:	15.225 Carrier and Spurious Emissions	(13.110-14.010 M	(1Hz Transmitter)
Work Order #:	97757	Date:	5/6/2016
Test Type:	Radiated Scan	Time:	17:10:55
Tested By:	Skip Doyle	Sequence#:	18
Software:	EMITest 5.03.02		

Device	Manufacturer	Model #	S/N	
Configuration 6				
Support Equipmen	t:			
Device	Manufacturer	Model #	S/N	
Configuration 6				
Test Conditions / N	lotes:			
Radiated Spurious E	Emissions Measurements			
Temperature: 12°C Humidity:69% Atmospheric Pressu Frequency Range: 3 Modulation: ASK w Antenna Type: Integ Antenna Gain 2 dBi Transmit Frequency	re: 97.0 kPa 0MHz -1GHz vith an 847kHz Subcarrier gral : 13.56MHz			
The EUTs are pow- mounted in an uprig The EUT is setup of 13.56MHz.	ered by a DC power supply a ht/vertical (Y-axis) orientation n an 80cm foam block. It has	t 12VDC. The manufac	turer declares it will only ever be ontinuously transmit the RFID sigr	wall 1al at

WaveLynx Technologies Corporation WO#: 97757 Sequence#: 18 Date: 5/6/2016 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter) Test Distance: 3 Meters Horiz

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02111	Spectrum Analyzer	8593EM	6/4/2015	6/4/2016
T1	AN01991	Biconilog Antenna	CBL6111C	3/11/2016	3/11/2018
T2	ANMD3M	Cable		3/17/2016	3/17/2018
T3	ANP06229	Cable	CXTA04A-50	3/17/2016	3/17/2018
T4	ANP06884	Cable	LMR195-FR-4	10/27/2015	10/27/2017
T5	ANP06885	Cable	P06885	10/27/2015	10/27/2017
T6	ANP05657	Attenuator	PE7004-6	12/22/2015	12/22/2017
T7	AN00282	Preamp	8447D	4/7/2016	4/7/2018

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Те	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	Τ7						
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	40.696M	43.7	+14.0	+0.7	+0.7	+0.1	+0.0	37.5	40.0	-2.5	Vert
	QP		+0.2	+6.0	-27.9						
^	40.685M	45.1	+14.1	+0.7	+0.7	+0.1	+0.0	39.0	40.0	-1.0	Vert
			+0.2	+6.0	-27.9						
3	298.325M	42.1	+13.4	+1.9	+1.9	+0.4	+0.0	39.1	46.0	-6.9	Vert
	QP		+0.4	+6.0	-27.0						
^	298.325M	43.4	+13.4	+1.9	+1.9	+0.4	+0.0	40.4	46.0	-5.6	Vert
			+0.4	+6.0	-27.0						
5	298.324M	41.9	+13.4	+1.9	+1.9	+0.4	+0.0	38.9	46.0	-7.1	Horiz
	QP		+0.4	+6.0	-27.0						
^	298.326M	42.3	+13.4	+1.9	+1.9	+0.4	+0.0	39.3	46.0	-6.7	Horiz
			+0.4	+6.0	-27.0						
7	623.754M	33.9	+20.3	+2.7	+2.9	+0.4	+0.0	38.3	46.0	-7.7	Vert
	QP		+0.5	+6.0	-28.4						
^	623.754M	35.3	+20.3	+2.7	+2.9	+0.4	+0.0	39.7	46.0	-6.3	Vert
			+0.5	+6.0	-28.4						
9	650.879M	32.9	+20.7	+2.8	+3.0	+0.5	+0.0	38.0	46.0	-8.0	Vert
			+0.5	+6.0	-28.4						
10	40.685M	37.1	+14.1	+0.7	+0.7	+0.1	+0.0	31.0	40.0	-9.0	Horiz
			+0.2	+6.0	-27.9						
11	67.805M	41.2	+6.8	+0.9	+0.9	+0.1	+0.0	28.3	40.0	-11.7	Vert
			+0.2	+6.0	-27.8						
12	81.365M	40.3	+7.2	+1.0	+0.9	+0.2	+0.0	28.0	40.0	-12.0	Vert
			+0.2	+6.0	-27.8						
13	61.025M	41.7	+5.9	+0.8	+0.8	+0.1	+0.0	27.7	40.0	-12.3	Vert
			+0.2	+6.0	-27.8						
14	461.036M	32.1	+17.3	+2.3	+2.5	+0.4	+0.0	33.0	46.0	-13.0	Vert
			+0.5	+6.0	-28.1						
15	325.429M	34.2	+14.2	+2.0	+2.0	+0.3	+0.0	32.0	46.0	-14.0	Vert
			+0.4	+6.0	-27.1						
16	3 <u>52.556</u> M	32.1	+14.9	+2.1	+2.1	+0.4	+0.0	30.7	46.0	-15.3	Vert
			+0.4	+6.0	-27.3						
17	271.204M	33.3	+12.8	+1.8	+1.8	+0.3	+0.0	29.5	46.0	-16.5	Horiz
			+0.4	+6.0	-26.9						

Test Location:	CKC Laboratories, Inc. • 5046 Sierra Pines I	Dr. • Mariposa, C	A 95338 • 209-966-5240
Customer:	WaveLynx Technologies Corporation		
Specification:	15.225 Carrier and Spurious Emissions (13.110-14.010 N	1Hz Transmitter)
Work Order #:	97757	Date:	5/6/2016
Test Type:	Radiated Scan	Time:	18:25:30
Tested By:	Skip Doyle	Sequence#:	19
Software:	EMITest 5.03.02		

Device	Manufacturer	Model #	S/N	
Configuration 7				
Support Equipment	t:			
Device	Manufacturer	Model #	S/N	
Configuration 7				
Test Conditions / N	lotes:			
Radiated Spurious E	missions Measurements			
Temperature: 12°C Humidity:69% Atmospheric Pressu	re: 97.0 kPa			
Frequency Range: 3	0MHz -1GHz			
Modulation: ASK w	ith an 847kHz Subcarrier			
Antenna Type: Integ	gral			
Antenna Gain 2 dBi				
Transmit Frequency	: 13.56MHz			
The EUTs are power mounted in an uprig	ered by a DC power supply a ht/vertical (Y-axis) orientation	t 12VDC. The manufac	turer declares it will only ev	ver be wall

The EUT is setup on an 80cm foam block. It has been programmed to continuously transmit the RFID signal at 13.56MHz.

WaveLynx Technologies Corporation WO#: 97757 Sequence#: 19 Date: 5/6/2016 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter) Test Distance: 3 Meters Vert

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02111	Spectrum Analyzer	8593EM	6/4/2015	6/4/2016
T1	AN01991	Biconilog Antenna	CBL6111C	3/11/2016	3/11/2018
T2	ANMD3M	Cable		3/17/2016	3/17/2018
Т3	ANP06229	Cable	CXTA04A-50	3/17/2016	3/17/2018
T4	ANP06884	Cable	LMR195-FR-4	10/27/2015	10/27/2017
T5	ANP06885	Cable	P06885	10/27/2015	10/27/2017
T6	ANP05657	Attenuator	PE7004-6	12/22/2015	12/22/2017
T7	AN00282	Preamp	8447D	4/7/2016	4/7/2018

Meast	urement Data:	· Re	eading lis	ted by ma	argin.		Те	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7						
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant
1	461.042M	39.5	+17.3	+2.3	+2.5	+0.4	+0.0	40.4	46.0	-5.6	Vert
	QP		+0.5	+6.0	-28.1						
^	461.044M	40.7	+17.3	+2.3	+2.5	+0.4	+0.0	41.6	46.0	-4.4	Vert
			+0.5	+6.0	-28.1						
3	488.161M	36.1	+17.8	+2.4	+2.5	+0.4	+0.0	37.5	46.0	-8.5	Vert
	QP		+0.5	+6.0	-28.2						
^	488.162M	37.4	+17.8	+2.4	+2.5	+0.4	+0.0	38.8	46.0	-7.2	Vert
			+0.5	+6.0	-28.2						
5	325.445M	38.0	+14.2	+2.0	+2.0	+0.3	+0.0	35.8	46.0	-10.2	Horiz
			+0.4	+6.0	-27.1						
6	67.815M	42.2	+6.8	+0.9	+0.9	+0.1	+0.0	29.3	40.0	-10.7	Vert
			+0.2	+6.0	-27.8						
7	298.330M	37.7	+13.4	+1.9	+1.9	+0.4	+0.0	34.7	46.0	-11.3	Horiz
			+0.4	+6.0	-27.0						
8	488.172M	32.8	+17.8	+2.4	+2.5	+0.4	+0.0	34.2	46.0	-11.8	Horiz
			+0.5	+6.0	-28.2						
9	352.570M	35.3	+14.9	+2.1	+2.1	+0.4	+0.0	33.9	46.0	-12.1	Horiz
			+0.4	+6.0	-27.3						
10	61.033M	41.4	+5.9	+0.8	+0.8	+0.1	+0.0	27.4	40.0	-12.6	Vert
			+0.2	+6.0	-27.8						
11	176.287M	38.1	+9.3	+1.4	+1.4	+0.2	+0.0	29.3	43.5	-14.2	Vert
			+0.3	+6.0	-27.4						
12	189.833M	37.8	+9.0	+1.5	+1.5	+0.3	+0.0	29.1	43.5	-14.4	Horiz
			+0.3	+6.0	-27.3						
13	155.961M	34.0	+10.8	+1.3	+1.4	+0.2	+0.0	26.5	43.5	-17.0	Horiz
			+0.3	+6.0	-27.5						
14	271.201M	32.5	+12.8	+1.8	+1.8	+0.3	+0.0	28.7	46.0	-17.3	Vert
			+0.4	+6.0	-26.9						
15	216.967M	32.4	+10.1	+1.6	+1.6	+0.3	+0.0	25.3	46.0	-20.7	Vert
			+0.4	+6.0	-27.1						
16	67.815M	28.8	+6.8	+0.9	+0.9	+0.1	+0.0	15.9	40.0	-24.1	Horiz
			+0.2	+6.0	-27.8						

Test Location:	CKC Laboratories, Inc. • 5046 Sierra Pines I	Dr. • Mariposa, C	A 95338 • 209-966-5240
Customer:	WaveLynx Technologies Corporation		
Specification:	15.225 Carrier and Spurious Emissions (2	13.110-14.010 N	1Hz Transmitter)
Work Order #:	97757	Date:	5/6/2016
Test Type:	Radiated Scan	Time:	18:07:10
Tested By:	Skip Doyle	Sequence#:	20
Software:	EMITest 5.03.02		

13.56MHz.

Device	Manufacturer	Model #	S/N
Configuration 8			
Support Equipment	:		
Device	Manufacturer	Model #	S/N
Configuration 8			
Test Conditions / Ne	otes:		
Radiated Spurious En	missions Measurements		
Temperature: 12°C Humidity:69% Atmospheric Pressur	e: 97.0 kPa		
Frequency Range: 30)MHz -1GHz		
Modulation: ASK wi	th an 847kHz Subcarrier		
Antenna Type: Integr	ral		
Transmit Frequency:	13.56MHz		
The EUTs are powe mounted in an upright	red by a DC power supply at nt/vertical (Y-axis) orientation	t 12VDC. The manufac	turer declares it will only ever be wal
The EUT is setup or	1 an 80cm foam block. It has	s been programmed to co	ontinuously transmit the RFID signal a

WaveLynx Technologies Corporation WO#: 97757 Sequence#: 20 Date: 5/6/2016 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter) Test Distance: 3 Meters Horiz

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02111	Spectrum Analyzer	8593EM	6/4/2015	6/4/2016
T1	AN01991	Biconilog Antenna	CBL6111C	3/11/2016	3/11/2018
T2	ANMD3M	Cable		3/17/2016	3/17/2018
Т3	ANP06229	Cable	CXTA04A-50	3/17/2016	3/17/2018
T4	ANP06884	Cable	LMR195-FR-4	10/27/2015	10/27/2017
T5	ANP06885	Cable	P06885	10/27/2015	10/27/2017
T6	ANP05657	Attenuator	PE7004-6	12/22/2015	12/22/2017
T7	AN00282	Preamp	8447D	4/7/2016	4/7/2018

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Te	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	Τ7						
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	$dB\mu V/m$	dB	Ant
1	461.041M	39.2	+17.3	+2.3	+2.5	+0.4	+0.0	40.1	46.0	-5.9	Vert
	QP		+0.5	+6.0	-28.1						
^	461.039M	40.2	+17.3	+2.3	+2.5	+0.4	+0.0	41.0	46.0	-4.9	Vert
			+0.5	+6.0	-28.1						
3	298.325M	42.8	+13.4	+1.9	+1.9	+0.4	+0.0	39.8	46.0	-6.2	Vert
	QP		+0.4	+6.0	-27.0						
^	298.328M	43.3	+13.4	+1.9	+1.9	+0.4	+0.0	40.3	46.0	-5.7	Vert
			+0.4	+6.0	-27.0						
^	298.324M	40.7	+13.4	+1.9	+1.9	+0.4	+0.0	37.7	46.0	-8.3	Vert
			+0.4	+6.0	-27.0						
6	67.814M	46.3	+6.8	+0.9	+0.9	+0.1	+0.0	33.4	40.0	-6.6	Vert
	QP		+0.2	+6.0	-27.8						
^	67.811M	46.9	+6.8	+0.9	+0.9	+0.1	+0.0	34.0	40.0	-6.0	Vert
			+0.2	+6.0	-27.8						
8	759.349M	30.2	+23.2	+3.0	+3.3	+0.5	+0.0	38.6	46.0	-7.4	Horiz
	QP		+0.6	+6.0	-28.2						
^	759.362M	33.0	+23.2	+3.0	+3.3	+0.5	+0.0	41.4	46.0	-4.6	Horiz
			+0.6	+6.0	-28.2						
10	650.870M	32.5	+20.7	+2.8	+3.0	+0.5	+0.0	37.6	46.0	-8.4	Vert
	QP		+0.5	+6.0	-28.4						
^	650.873M	34.6	+20.7	+2.8	+3.0	+0.5	+0.0	39.7	46.0	-6.3	Vert
			+0.5	+6.0	-28.4						
12	488.150M	35.9	+17.8	+2.4	+2.5	+0.4	+0.0	37.3	46.0	-8.7	Horiz
			+0.5	+6.0	-28.2						
13	74.590M	43.6	+7.0	+0.9	+0.9	+0.2	+0.0	31.0	40.0	-9.0	Vert
			+0.2	+6.0	-27.8						

14	461.030M	36.1	+17.3	+2.3	+2.5	+0.4	+0.0	37.0	46.0	-9.0	Horiz
	1011020111	0011	+0.5	+6.0	-28.1	011	0.0	0,10	1010	2.0	110112
15	61.032M	44.7	+5.9	+0.8	+0.8	+0.1	+0.0	30.7	40.0	-9.3	Vert
			+0.2	+6.0	-27.8						
16	325.444M	38.1	+14.2	+2.0	+2.0	+0.3	+0.0	35.9	46.0	-10.1	Vert
			+0.4	+6.0	-27.1						
17	325.439M	38.0	+14.2	+2.0	+2.0	+0.3	+0.0	35.8	46.0	-10.2	Horiz
			+0.4	+6.0	-27.1						
18	488.170M	34.2	+17.8	+2.4	+2.5	+0.4	+0.0	35.6	46.0	-10.4	Vert
			+0.5	+6.0	-28.2						
19	298.325M	37.9	+13.4	+1.9	+1.9	+0.4	+0.0	34.9	46.0	-11.1	Horiz
			+0.4	+6.0	-27.0						
20	81.370M	40.1	+7.2	+1.0	+0.9	+0.2	+0.0	27.8	40.0	-12.2	Vert
			+0.2	+6.0	-27.8						
21	271.210M	36.9	+12.8	+1.8	+1.8	+0.3	+0.0	33.1	46.0	-12.9	Vert
			+0.4	+6.0	-26.9						
22	67.815M	30.8	+6.8	+0.9	+0.9	+0.1	+0.0	17.9	40.0	-22.1	Horiz
			+0.2	+6.0	-27.8						

Test Setup Photo

15.207 AC Conducted Emissions

Test Setup / Conditions / Data

Test Location:	CKC Laboratories, Inc. • 5046 Sierra Pi	ines Drive • Mariposa, CA 95338 • (209) 966-5240	
Customer:	WaveLynx Technologies Corporation	n.	
Specification:	15.207 AC Mains - Average		
Work Order #:	97757	Date: 5/3/2016	
Test Type:	Conducted Emissions	Time: 13:22:30	
Tested By:	Skip Doyle	Sequence#: 21	
Software:	EMITest 5.03.02	115V 60Hz	

Equipment Tested:

1 1				
Device	Manufacturer	Model #	S/N	
Configuration 15				

Support Equipment:

Device	Manufacturer	Model #	S/N
Configuration 15			

Test Conditions / Notes:

Testing the 115VAC/60Hz input to the 12VDC power supply

Test Method: ANSI C63.10: 2013

Frequency Range of Interest: 0.150-30MHz

RBW = 9kHz; VBW > 9kHz

Environmental Conditions: Temperature: 20°C Relative Humidity: 35% Atmospheric Pressure: 97.1kPa

The EUTs are powered by a DC power supply at 12VDC. The customer declares it will only ever be wall mounted in an upright/vertical (Y-axis) orientation.

It has been programmed to continuously transmit the RFID signal at 125kHz.

Configuration 15 is made up of Configurations 1, 2, 3 and 4. All were tested simultaneously. A quick "preview" of one-unit vs four units connected to the LISN was performed while the measuring instrument was set to a wide span, there was no difference in the rescan emission observed.

WaveLynx Technologies Corporation. WO#: 97757 Sequence#: 21 Date: 5/3/2016 15.207 AC Mains - Average Test Lead: 115V 60Hz LINE

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP06770	Attenuator	PE7010-10	1/15/2015	1/15/2017
	AN01248	50uH LISN-Line 1	8028-50-TS-24-	1/4/2016	1/4/2017
		(Return) (dB)	BNC		
T2	AN01248	50uH LISN-Line 2	8028-50-TS-24-	1/4/2016	1/4/2017
		(Line) (dB)	BNC		
Т3	AN02609	High Pass Filter	HE9615-150K-	2/18/2016	2/18/2018
			50-720B		
T4	AN02668	Spectrum Analyzer	E4446A	8/14/2015	8/14/2016
T5	ANP06884	Cable	LMR195-FR-4	10/27/2015	10/27/2017
Т6	ANMD INT	Cable	Underground	3/17/2016	3/17/2018
			cables only		
T7	ANP01153	Cable	NA	3/3/2016	3/3/2018

Measu	rement Data:	R	eading lis	ted by ma	argin.			Test Lea	ad: LINE		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	Τ7						
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	13.560M	69.1	+10.1	+0.3	+0.2	+0.0	+0.0	80.1	50.0	+30.1	LINE
	Ambient		+0.1	+0.2	+0.1				Fundamer	ntal	
2	568.000k	15.8	+10.1	+0.1	+0.3	+0.0	+0.0	26.3	46.0	-19.7	LINE
			+0.0	+0.0	+0.0						
3	156.900k	23.6	+10.1	+0.1	+1.0	+0.0	+0.0	34.8	55.6	-20.8	LINE
			+0.0	+0.0	+0.0						
4	880.000k	13.3	+10.1	+0.2	+0.2	+0.0	+0.0	23.8	46.0	-22.2	LINE
			+0.0	+0.0	+0.0						
5	180.000k	21.7	+10.1	+0.1	+0.3	+0.0	+0.0	32.2	54.5	-22.3	LINE
			+0.0	+0.0	+0.0						
6	13.561M	16.6	+10.1	+0.3	+0.2	+0.0	+0.0	27.6	50.0	-22.4	LINE
			+0.1	+0.2	+0.1				Fundamer	ntal -	
									antenna		
									disconnec	ted, under	
									load		
7	256.300k	18.8	+10.1	+0.1	+0.2	+0.0	+0.0	29.2	51.6	-22.4	LINE
			+0.0	+0.0	+0.0						
8	245.700k	16.7	+10.1	+0.1	+0.2	+0.0	+0.0	27.1	51.9	-24.8	LINE
			+0.0	+0.0	+0.0						
9	22.540M	12.6	+10.1	+0.6	+0.3	+0.0	+0.0	24.1	50.0	-25.9	LINE
			+0.1	+0.2	+0.2						
10	205.800k	16.9	+10.1	+0.1	+0.2	+0.0	+0.0	27.3	53.4	-26.1	LINE
			+0.0	+0.0	+0.0						
11	27.120M	12.6	+10.1	+0.1	+0.3	+0.0	+0.0	23.6	50.0	-26.4	LINE
			+0.1	+0.2	+0.2						
12	12.300M	12.0	+10.1	+0.3	+0.1	+0.0	+0.0	22.9	50.0	-27.1	LINE
			+0.1	+0.2	+0.1						
13	232.000k	11.7	+10.1	+0.1	+0.2	+0.0	+0.0	22.1	52.4	-30.3	LINE
			+0.0	+0.0	+0.0						

Test Location:	CKC Laboratories, Inc. • 5046 Sierra Pines Dr	rive • Mariposa	, CA 95338 • (209) 966-5240
Customer:	WaveLynx Technologies Corporation.		
Specification:	15.207 AC Mains - Average		
Work Order #:	97757	Date:	5/3/2016
Test Type:	Conducted Emissions	Time:	13:30:48
Tested By:	Skip Doyle	Sequence#:	22
Software:	EMITest 5.03.02		115V 60Hz

Device	Manufacturer	Model #	S/N	
Configuration 15				

Support Equipment:

Configuration 15	Device	Manufacturer	Model #	S/N
•	Configuration 15			

Test Conditions / Notes:

Testing the 115VAC/60Hz input to the 12VDC power supply

Test Method: ANSI C63.10: 2013

Frequency Range of Interest: 0.150-30MHz

RBW = 9kHz; VBW > 9kHz

Environmental Conditions: Temperature: 20°C Relative Humidity: 35% Atmospheric Pressure: 97.1kPa

The EUTs are powered by a DC power supply at 12VDC. The manufacturer declares it will only ever be wall mounted in an upright/vertical (Y-axis) orientation.

It has been programmed to continuously transmit the RFID signal at 125kHz.

Configuration 15 is made up of Configurations 1, 2, 3 and 4. All were tested simultaneously. A quick "preview" of one-unit vs four units connected to the LISN was performed while the measuring instrument was set to a wide span, there was no difference in the rescan emission observed.

WaveLynx Technologies Corporation. WO#: 97757 Sequence#: 22 Date: 5/3/2016 15.207 AC Mains - Average Test Lead: 115V 60Hz RETURN

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP06770	Attenuator	PE7010-10	1/15/2015	1/15/2017
T2	AN01248	50uH LISN-Line 1	8028-50-TS-24-	1/4/2016	1/4/2017
		(Return) (dB)	BNC		
	AN01248	50uH LISN-Line 2	8028-50-TS-24-	1/4/2016	1/4/2017
		(Line) (dB)	BNC		
Т3	AN02609	High Pass Filter	HE9615-150K-	2/18/2016	2/18/2018
			50-720B		
T4	AN02668	Spectrum Analyzer	E4446A	8/14/2015	8/14/2016
T5	ANP06884	Cable	LMR195-FR-4	10/27/2015	10/27/2017
T6	ANMD INT	Cable	Underground	3/17/2016	3/17/2018
			cables only		
T7	ANP01153	Cable	NA	3/3/2016	3/3/2018

Measu	urement Data:	R	eading lis	ted by ma	argin.			Test Lea	ad: RETUR	N	
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	Τ7						
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	13.560M	69.5	+10.1	+0.4	+0.2	+0.0	+0.0	80.6	50.0	+30.6	RETUR
	Ambient		+0.1	+0.2	+0.1				Fundamen	tal	
2	1.072M	15.4	+10.1	+0.1	+0.2	+0.0	+0.0	25.9	46.0	-20.1	RETUR
			+0.0	+0.1	+0.0						
3	2.233M	14.4	+10.1	+0.1	+0.2	+0.0	+0.0	24.9	46.0	-21.1	RETUR
			+0.0	+0.1	+0.0						
4	160.000k	23.5	+10.1	+0.1	+0.6	+0.0	+0.0	34.3	55.5	-21.2	RETUR
			+0.0	+0.0	+0.0						
5	1.266M	14.1	+10.1	+0.1	+0.2	+0.0	+0.0	24.6	46.0	-21.4	RETUR
			+0.0	+0.1	+0.0						
6	2.476M	13.6	+10.1	+0.1	+0.1	+0.0	+0.0	24.0	46.0	-22.0	RETUR
			+0.0	+0.1	+0.0						
7	15.000M	16.8	+10.1	+0.4	+0.2	+0.0	+0.0	27.9	50.0	-22.1	RETUR
			+0.1	+0.2	+0.1						
8	1.585M	13.3	+10.1	+0.1	+0.2	+0.0	+0.0	23.8	46.0	-22.2	RETUR
			+0.0	+0.1	+0.0						
9	13.560M	16.6	+10.1	+0.4	+0.2	+0.0	+0.0	27.7	50.0	-22.3	RETUR
			+0.1	+0.2	+0.1				Fundamen	tal-	
									Antenna		
									Disconnec	ted and	
									Loaded		
10	4.357M	12.8	+10.1	+0.1	+0.1	+0.0	+0.0	23.3	46.0	-22.7	RETUR
			+0.0	+0.1	+0.1						
11	5.032M	13.3	+10.1	+0.1	+0.1	+0.0	+0.0	23.8	50.0	-26.2	RETUR
			+0.0	+0.1	+0.1						
12	7.066M	12.9	+10.1	+0.2	+0.2	+0.0	+0.0	23.7	50.0	-26.3	RETUR
			+0.1	+0.1	+0.1						
13	6.562M	12.6	+10.1	+0.2	+0.2	+0.0	+0.0	23.4	50.0	-26.6	RETUR
			+0.1	+0.1	+0.1						
14	189.000k	17.0	+10.1	+0.1	+0.3	+0.0	+0.0	27.5	54.1	-26.6	RETUR
			+0.0	+0.0	+0.0						

Test Location:	CKC Laboratories, Inc. • 5046 Sierra Pines D	rive • Mariposa	, CA 95338 • (209) 966-5240				
Customer:	WaveLynx Technologies Corporation.						
Specification:	15.207 AC Mains - Average						
Work Order #:	97757	Date:	5/3/2016				
Test Type:	Conducted Emissions	Time:	13:34:55				
Tested By:	Skip Doyle	Sequence#:	24				
Software:	EMITest 5.03.02		115V 60Hz				

Device	Manufacturer	Model #	S/N	
Configuration 16				

Support Equipment:

Device	Manufacturer	Model #	S/N
Configuration 16			

Test Conditions / Notes:

Testing the 115VAC/60Hz input to the 12VDC power supply

Test Method: ANSI C 63.4 2014

Frequency Range of Interest: 0.150-30MHz

RBW = 9kHz; VBW > 9kHz

Environmental Conditions: Temperature: 20°C Relative Humidity: 35% Atmospheric Pressure: 97.1kPa

The EUTs are powered by a DC power supply at 12VDC. The manufacturer declares it will only ever be wall mounted in an upright/vertical (Y-axis) orientation.

It has been programmed to continuously transmit the RFID signal at 13.56MHz.

Configuration 16 is made up of Configurations 5, 6, 7 and 8. All were tested simultaneously. A quick "preview" of one-unit vs four units connected to the LISN was performed while the measuring instrument was set to a wide span, there was no difference in the rescan emission observed.

WaveLynx Technologies Corporation. WO#: 97757 Sequence#: 24 Date: 5/3/2016 15.207 AC Mains - Average Test Lead: 115V 60Hz LINE

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP06770	Attenuator	PE7010-10	1/15/2015	1/15/2017
	AN01248	50uH LISN-Line 1	8028-50-TS-24-	1/4/2016	1/4/2017
		(Return) (dB)	BNC		
T2	AN01248	50uH LISN-Line 2	8028-50-TS-24-	1/4/2016	1/4/2017
		(Line) (dB)	BNC		
Т3	AN02609	High Pass Filter	HE9615-150K-	2/18/2016	2/18/2018
			50-720B		
T4	AN02668	Spectrum Analyzer	E4446A	8/14/2015	8/14/2016
T5	ANP06884	Cable	LMR195-FR-4	10/27/2015	10/27/2017
Т6	ANMD INT	Cable	Underground	3/17/2016	3/17/2018
			cables only		
T7	ANP01153	Cable	NA	3/3/2016	3/3/2018

Measu	urement Data:	R	eading lis	ted by ma	argin.			Test Lea	d: LINE		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	Τ7						
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	13.560M	66.5	+10.1	+0.3	+0.2	+0.0	+0.0	77.5	50.0	+27.5	LINE
	Ambient		+0.1	+0.2	+0.1				Fundamen	ıtal	
2	296.896k	27.9	+10.1	+0.1	+0.2	+0.0	+0.0	38.3	50.3	-12.0	LINE
			+0.0	+0.0	+0.0						
3	27.026M	23.9	+10.1	+0.1	+0.3	+0.0	+0.0	34.9	50.0	-15.1	LINE
			+0.1	+0.2	+0.2						
4	158.726k	27.6	+10.1	+0.1	+0.8	+0.0	+0.0	38.6	55.5	-16.9	LINE
			+0.0	+0.0	+0.0						
5	20.337M	20.7	+10.1	+0.4	+0.2	+0.0	+0.0	31.9	50.0	-18.1	LINE
			+0.1	+0.2	+0.2						
6	183.451k	24.6	+10.1	+0.1	+0.3	+0.0	+0.0	35.1	54.3	-19.2	LINE
			+0.0	+0.0	+0.0						
7	532.510k	15.8	+10.1	+0.1	+0.3	+0.0	+0.0	26.3	46.0	-19.7	LINE
			+0.0	+0.0	+0.0						
8	663.407k	15.1	+10.1	+0.2	+0.3	+0.0	+0.0	25.7	46.0	-20.3	LINE
			+0.0	+0.0	+0.0						
9	683.041k	14.7	+10.1	+0.2	+0.3	+0.0	+0.0	25.3	46.0	-20.7	LINE
			+0.0	+0.0	+0.0						
10	27.122M	18.2	+10.1	+0.1	+0.3	+0.0	+0.0	29.2	50.0	-20.8	LINE
			+0.1	+0.2	+0.2						

11	1.192M	13.8	+10.1	+0.4	+0.2	+0.0	+0.0	24.6	46.0	-21.4	LINE
			+0.0	+0.1	+0.0						
12	1.247M	13.6	+10.1	+0.4	+0.2	+0.0	+0.0	24.4	46.0	-21.6	LINE
			+0.0	+0.1	+0.0						
13	1.473M	13.3	+10.1	+0.4	+0.2	+0.0	+0.0	24.1	46.0	-21.9	LINE
			+0.0	+0.1	+0.0						
14	1.558M	13.1	+10.1	+0.4	+0.2	+0.0	+0.0	23.9	46.0	-22.1	LINE
			+0.0	+0.1	+0.0						
15	1.889M	13.0	+10.1	+0.4	+0.2	+0.0	+0.0	23.8	46.0	-22.2	LINE
			+0.0	+0.1	+0.0						
16	15.000M	16.2	+10.1	+0.3	+0.2	+0.0	+0.0	27.2	50.0	-22.8	LINE
			+0.1	+0.2	+0.1						
17	11.760M	15.6	+10.1	+0.3	+0.1	+0.0	+0.0	26.5	50.0	-23.5	LINE
			+0.1	+0.2	+0.1						
18	13.560M	13.5	+10.1	+0.3	+0.2	+0.0	+0.0	24.5	50.0	-25.5	LINE
			+0.1	+0.2	+0.1				Fundament	al -	
									antenna		
									disconnecte	ed, under	
									load		

Test Location:	CKC Laboratories, Inc. • 5046 Sierra Pines Da	rive • Mariposa	, CA 95338 • (209) 966-5240
Customer:	WaveLynx Technologies Corporation.		
Specification:	15.207 AC Mains - Average		
Work Order #:	97757	Date:	5/3/2016
Test Type:	Conducted Emissions	Time:	13:41:59
Tested By:	Skip Doyle	Sequence#:	23
Software:	EMITest 5.03.02	_	115V 60Hz

Device	Manufacturer	Model #	S/N	
Configuration 16				

Support Equipment:

Device	Manufacturer	Model #	S/N
Configuration 16			

Test Conditions / Notes:

Testing the 115VAC/60Hz input to the 12VDC power supply

Test Method: ANSI C 63.4 2014

Frequency Range of Interest: 0.150-30MHz

RBW = 9kHz; VBW > 9kHz

Environmental Conditions: Temperature: 20°C Relative Humidity: 35% Atmospheric Pressure: 97.1kPa

The EUTs are powered by a DC power supply at 12VDC. The manufacturer declares it will only ever be wall mounted in an upright/vertical (Y-axis) orientation.

It has been programmed to continuously transmit the RFID signal at 13.56MHz.

Configuration 16 is made up of Configurations 5, 6, 7 and 8. All were tested simultaneously. A quick "preview" of one-unit vs four units connected to the LISN was performed while the measuring instrument was set to a wide span, there was no difference in the rescan emission observed.

WaveLynx Technologies Corporation. WO#: 97757 Sequence#: 23 Date: 5/3/2016 15.207 AC Mains - Average Test Lead: 115V 60Hz RETURN

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP06770	Attenuator	PE7010-10	1/15/2015	1/15/2017
T2	AN01248	50uH LISN-Line 1	8028-50-TS-24-	1/4/2016	1/4/2017
		(Return) (dB)	BNC		
	AN01248	50uH LISN-Line 2	8028-50-TS-24-	1/4/2016	1/4/2017
		(Line) (dB)	BNC		
Т3	AN02609	High Pass Filter	HE9615-150K-	2/18/2016	2/18/2018
			50-720B		
T4	AN02668	Spectrum Analyzer	E4446A	8/14/2015	8/14/2016
T5	ANP06884	Cable	LMR195-FR-4	10/27/2015	10/27/2017
T6	ANMD INT	Cable	Underground	3/17/2016	3/17/2018
			cables only		
T7	ANP01153	Cable	NA	3/3/2016	3/3/2018

Measurement Data:		Reading listed by margin.			Test Lead: RETURN						
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7						
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	13.560M	67.1	+10.1	+0.4	+0.2	+0.0	+0.0	78.2	50.0	+28.2	RETUR
	Ambient		+0.1	+0.2	+0.1				Fundamen	ıtal	
2	704.340k	16.6	+10.1	+0.1	+0.3	+0.0	+0.0	27.1	46.0	-18.9	RETUR
			+0.0	+0.0	+0.0						
3	161.640k	24.5	+10.1	+0.1	+0.6	+0.0	+0.0	35.3	55.4	-20.1	RETUR
			+0.0	+0.0	+0.0						
4	168.660k	23.7	+10.1	+0.1	+0.4	+0.0	+0.0	34.3	55.0	-20.7	RETUR
			+0.0	+0.0	+0.0						
5	171.290k	23.3	+10.1	+0.1	+0.4	+0.0	+0.0	33.9	54.9	-21.0	RETUR
			+0.0	+0.0	+0.0						
6	1.090M	13.8	+10.1	+0.1	+0.2	+0.0	+0.0	24.3	46.0	-21.7	RETUR
			+0.0	+0.1	+0.0						
7	4.357M	13.3	+10.1	+0.1	+0.1	+0.0	+0.0	23.8	46.0	-22.2	RETUR
			+0.0	+0.1	+0.1						
8	209.840k	18.7	+10.1	+0.1	+0.2	+0.0	+0.0	29.1	53.2	-24.1	RETUR
			+0.0	+0.0	+0.0						
9	11.780M	14.3	+10.1	+0.3	+0.1	+0.0	+0.0	25.2	50.0	-24.8	RETUR
			+0.1	+0.2	+0.1						
10	15.000M	14.1	+10.1	+0.4	+0.2	+0.0	+0.0	25.2	50.0	-24.8	RETUR
			+0.1	+0.2	+0.1						
11	13.450M	12.7	+10.1	+0.4	+0.2	+0.0	+0.0	23.8	50.0	-26.2	RETUR
			+0.1	+0.2	+0.1						
12	13.560M	12.6	+10.1	+0.4	+0.2	+0.0	+0.0	23.7	50.0	-26.3	RETUR
			+0.1	+0.2	+0.1		Fundamental -				
									antenna		
							disconnected, under				
									load		

Test Setup Photos

Page 100 of 102 Report No.: 97757-40

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in dB μ V/m, the spectrum analyzer reading in dB μ V was corrected by using the following formula. This reading was then compared to the applicable specification limit. Individual measurements were compared with the displayed limit value in the margin column. The margin was calculated based on subtracting the limit value from the corrected measurement value; a positive margin represents a measurement exceeding the limit, while a negative margin represents a measurement less than the limit.

SAMPLE CALCULATIONS					
	Meter reading	(dBµV)			
+	Antenna Factor	(dB/m)			
+	Cable Loss	(dB)			
-	Distance Correction	(dB)			
-	Preamplifier Gain	(dB)			
=	Corrected Reading	(dBµV/m)			

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE						
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING			
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz			
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz			
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz			
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz			
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz			

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or caret ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.