WaveLynx Technologies Corporation

TEST REPORT FOR
Ethos
Models: ET10-1, ET10-3, ET10-5, and ET10-7

Tested To The Following Standards:

FCC Part 15 Subpart C Sections:
15.207 \& 15.209

Report No.: 97029-32

Date of issue: May 24, 2016

Testing Certificates: 803.01,803.02, 803.05, 803.06

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of EMC testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

TABLE OF CONTENTS
Administrative Information 3
Test Report Information 3
Report Authorization 3
Test Facility Information 4
Software Versions 4
Site Registration \& Accreditation Information 4
Summary of Results5
Modifications During Testing 5
Conditions During Testing 5
Equipment Under Test 6
General Product Information 7
FCC Part 15 Subpart C 8
15.215(c) Occupied Bandwidth (20dB BW) 8
15.209 Field Strength of Fundamental 13
15.209 Radiated Emissions 28
15.207 AC Conducted Emissions 43
Supplemental Information 76
Measurement Uncertainty 76
Emissions Test Details 76

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR:

WaveLynx Technologies Corporation
12303 Airport Way, Suite 200
Broomfield, CO 80021

REPRESENTATIVE: Daniel Field
Customer Reference Number: CKPO030916

DATE OF EQUIPMENT RECEIPT:
DATE(S) OF TESTING:

REPORT PREPARED BY:

Terri Rayle
CKC Laboratories, Inc.
5046 Sierra Pines Drive
Mariposa, CA 95338

Project Number: 97029

March 14, 2016
March 14 - May 10, 2016

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the sample equipment tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm
Director of Quality Assurance \& Engineering Services CKC Laboratories, Inc.

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S):
CKC Laboratories, Inc.
5046 Sierra Pines Drive
Mariposa, CA 95338

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.03 .02

Site Registration \& Accreditation Information

Location	CB \#	TAIWAN	CANADA	FCC	JAPAN
Mariposa D	USO103	SL2-IN-E-1147R	$3082 A-1$	784962	A-0136

LABORATORIES, INC.

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C - $\mathbf{1 5 . 2 0 9}$

Test Procedure	Description	Modifications	Results
$15.215(\mathrm{c})$	Occupied Bandwidth	NA	Pass
15.209	Field Strength of Fundamental	NA	Pass
15.209	Field Strength of Spurious Emissions	NA	Pass
15.207	AC Conducted Emissions	NA	Pass

NA = Not Applicable

Modifications During Testing

This list is a summary of the modifications made to the equipment during testing.

Summary of Conditions

No modifications were made during testing.

Modifications listed above must be incorporated into all production units.

Conditions During Testing

This list is a summary of the conditions noted to the equipment during testing.

Summary of Conditions

None

EQUIPMENT UNDER TEST (EXT)

During testing numerous configurations may have been utilized. The configurations listed below support compliance to the standards) listed in the Summary of Results section.

Configuration 1

Equipment Tested:

Device	Manufacturer	Model \#	S/N
Ethos	WaveLynx Technologies Corporation	ET10-1	NA

Support Equipment:

Device	Manufacturer	Model \#	S/N
DC Power Supply	HP	6205C	2228A01775

Configuration 3

Equipment Tested:

Device	Manufacturer	Model \#	S/N
Ethos	WaveLynx Technologies Corporation	ET10-3	NA

Support Equipment:

Device	Manufacturer	Model \#	S/N
DC Power Supply	HP	6205C	$2228 A 01775$

Configuration 5

Equipment Tested:

Device	Manufacturer	Model \#	S/N
Ethos	WaveLynx Technologies Corporation	ET10-5	NA

Support Equipment:

Device	Manufacturer	Model \#	S/N
DC Power Supply	HP	6205 C	2228A01775

Configuration 7

Equipment Tested:

Device	Manufacturer	Model \#	SN
Ethos	WaveLynx Technologies Corporation	ET10-7	NA

Support Equipment:

Device	Manufacturer	Model \#	S/N
DC Power Supply	HP	6205 C	2228A01775

LABORATORIES, INC.

Configuration 8

Equipment Tested:

Device	Manufacturer Model \# S/N Ethos WaveLynx Technologies Corporation ET10-1	NA	
Ethos	WaveLynx Technologies Corporation	ET10-3	NA

Support Equipment:

Device	Manufacturer	Model \#	S/N
DC Power Supply	HP	6205 C	2228A01775

Configuration 9

Equipment Tested:

Device	Manufacturer	Model \#	S/N
Ethos	WaveLynx Technologies Corporation	ET10-5	NA
Ethos	WaveLynx Technologies Corporation	ET10-7	NA

Support Equipment:

Device	Manufacturer	Model \#	S/N
DC Power Supply	HP	$6205 C$	$2228 A 01775$

General Product Information:

Product Information	Manufacturer-Provided Details
Equipment Type (All 4 EUTs):	Stand-Alone Equipment
Modulation Type(s) (All 4 EUTs):	CW
Maximum Duty Cycle (Measured):	Configuration $1=17.13 \%$ Configuration $3=5.7 \%$ Configuration $5=17.13 \%$ Configuration $7=5.7 \%$
Antenna Type(s) and Gain:	Configurations 1 and 5 = Coil Antenna 90mm $\times 32 \mathrm{~mm} / 2 \mathrm{dBi}$ Configuration 3 and $7=$ Coil Antenna $90 \mathrm{~mm} \times 30 \mathrm{~mm} / 2 \mathrm{dBi}$
Antenna Connection Type (All 4 EUTs):	Integral
Nominal Input Voltage (All 4 EUTs):	Wallmount Reader FCC LF Version 1
Firmware / Software used for Test (All 4 EUTs):	

FCC Part 15 Subpart C

15.215(c) Occupied Bandwidth (20dB BW)

Test Setup/Conditions

Test Location:	Mariposa Lab D	Test Engineer:	Benny Lovan
Test Method:	ANSI C63.10 (2013)	Test Date(s):	March 14-18, 2016
Configuration:	$1,3,5$ and 7		
Test Setup:	Configuration 1 (125kHz Only) - Measured in X-Axis Configuration 3 (Set for 125kHz) - Measured in Y-Axis Configuration 5 (125 kHz Only) - Measured in Y-Axis Configuration 7 (Set for 125kHz) - Measured in X-Axis Antenna Type: Integral Modulation: CW		

The EUT is powered by a DC power supply at 12 VDC .
Max power was measured in two orthogonalities.
The manufacturer declares it will only ever be wall mounted in an upright (Y-axis) or sideways (X-axis) orientation.

The OBW was performed in the worst case orientation observed during the fundamental power measurements.

The EUT is setup on an 80 cm foam block.
The EUT has been programmed to continuously transmit the RFID signal at 125 kHz .

Environmental Conditions				
$3 / 14 / 2016$				
Temperature (으)	10	Relative Humidity (\%):	86	
$3 / 15 / 2016$				
Temperature (으)	10	Relative Humidity (\%):	85	
$3 / 18 / 2016$				
Temperature (으)	11	Relative Humidity (\%):	85	

Test Equipment

Asset\# / Serial\#	Description	Manufacturer	Model	Cal Date	Cal Due
ANSITED 3M	Cable	None	None	$11 / 15 / 14$	$11 / 15 / 2016$
ANP06884	Cable	TMS	LMR195-FR-4	$10 / 27 / 15$	$10 / 27 / 2017$
AN00226	Loop Antenna	EMCO	6502	$03 / 28 / 14$	$3 / 28 / 2016$

Test Data Summary					
Frequency (MHz)	Antenna Port	Modulation	Measured $\mathbf{(k H z)}$	Limit $(\mathbf{k H z})$	Results
125 kHz $($ Config. 1)	Integral	CW	0.073251	None	NA
125 kHz $($ Config. 3)	Integral	cW	0.113982	None	NA
125 kHz $($ Config. 5)	Integral	CW	0.103982	None	NA
125 kHz $($ Config. 7$)$	Integral	CW	0.090895	None	NA

Plots

Configuration 1

Configuration 3

Configuration 5

Configuration 7

Test Setup Photos

LABORATORIES, INC.

15.209 Field Strength of Fundamental

Test Data Summary - Voltage Variations - Configuration 1						
Frequency (MHz)	Modulation / Ant Port	$\mathbf{V}_{\text {Minimum }}$ $(\mathrm{dBuV} / \mathrm{m})$	$\mathbf{V}_{\text {Nominal }}$ $(\mathrm{dBuV} / \mathrm{m})$	$\mathbf{V}_{\text {Maximum }}$ $(\mathrm{dBBV} / \mathrm{m})$	Max Deviation from V Nominal $^{(d B)}$	
0.125 Parallel	$\mathrm{CW} /$ Integral Antenna	-6.6	-6.4	-6.7	0.3	
0.125 Perpendicular	$\mathrm{CW} /$ Integral Antenna	-13.4	-13.3	-13.3	0.1	

Test performed using operational mode with the highest output power, representing worst case. Worst case orientation for this unit was the X-Axis.

Test Data Summary - Voltage Variations - Configuration 3

Frequency $(\mathbf{M H z})$	Modulation / Ant Port	$\mathbf{V}_{\text {Minimum }}$ $(\mathrm{dBuV} / \mathrm{m})$	$\mathbf{V}_{\text {Nominal }}$ $(\mathrm{dBuV} / \mathrm{m})$	$\mathbf{V}_{\text {Maximum }}$ $(\mathrm{dBuV} / \mathrm{m})$	Max Deviation from V $_{\text {Nominal }}(\mathrm{dB})$
0.125 Parallel	CW / Integral Antenna	-7.6	-6.9	-7.1	0.7 dB
0.125 Perpendicular	CW / Integral Antenna	-12.5	-9.8	-12	2.7 dB

Test performed using operational mode with the highest output power, representing worst case. Worst case orientation for this unit was the Y -Axis.

Test Data Summary - Voltage Variations - Configuration 5						
Frequency (MHz)	Modulation / Ant Port	$\mathbf{V}_{\text {Minimum }}$ $(\mathrm{dBuV} / \mathrm{m})$	$\mathbf{V}_{\text {Nominal }}$ $(\mathrm{dBuV} / \mathrm{m})$	$\mathbf{V}_{\text {Maximum }}$ $(\mathrm{dBuV} / \mathrm{m})$	Max Deviation from $\mathbf{V}_{\text {Nominal }}(\mathrm{dB})$	
0.125 Parallel	CW / Integral Antenna	-5.8	-5.0	-6.0	1.0 dB	
0.125 Perpendicular	CW / Integral Antenna	-10.2	-9.0	-10.3	1.3 dB	

Test performed using operational mode with the highest output power, representing worst case. Worst case orientation for this unit was the Y-Axis.

Test Data Summary - Voltage Variations - Configuration 7

Test Data Summary - Voltage Variations - Configuration 7						
Frequency (MHz)	Modulation / Ant Port	$\mathbf{V}_{\text {Minimum }}$ $(\mathrm{dBuV} / \mathrm{m})$	$\mathbf{V}_{\text {Nominal }}$ $(\mathrm{dBuV} / \mathrm{m})$	$\mathbf{V}_{\text {Maximum }}$ $(\mathrm{dBuV} / \mathrm{m})$	Max Deviation from V $_{\text {Nominal }}(\mathrm{dB})$	
0.125 Parallel	$\mathrm{CW} /$ Integral Antenna	-7.1	-6.6	-7.1	0.5 dB	
0.125 Perpendicular	CW / Integral Antenna	-12.5	-11.9	-12.4	0.6 dB	

Test performed using operational mode with the highest output power, representing worst case. Worst case orientation for this unit was the Y -Axis.

Parameter Definitions:

Measurements performed at input voltage Vnominal $\pm 15 \%$.

Test Data Summary - Radiated Field Strength Measurement

Test Setup / Conditions / Data

Test Location: CKC Laboratories Inc. • 5046 Sierra Pines Dr. • Mariposa, CA 95338 • 209-966-5240
Customer: WaveLynx Technologies Corporation
Specification: 15.209 Radiated Emissions
Work Order \#: 97029
Test Type:
Tested By:
Software:

Radiated Scan
Benny Lovan
EMITest 5.03.02

Date: 3/14/2016
Time: 11:41:38
Sequence\#: 1

Equipment Tested:

Device	Manufacturer	Model \#	S/N
Configuration 1			

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1		S/N

Test Conditions / Notes:

Radiated Emissions Fundamental Measurements

Temperature: $10^{\circ} \mathrm{C}$
Humidity:86\%
Atmospheric Pressure: 98.0 kPa
Method: ANSI C63.10 2013

Antenna Type: Integral
Modulation: CW
The EUT is powered by a DC power supply at 12 VDC .
Max power was measured in two orthogonalities.
125 kHz Only - Measured in X-Axis
The Fundamental measurements were performed in the worst case orientation observed during the fundamental power measurements.

The manufacturer declares it will only ever be wall mounted in an upright (Y-axis) or sideways (X-axis) orientation.

The EUT is setup on an 80 cm foam block.
The EUT has been programmed to continuously transmit the RFID signal at 125 kHz .
Measurements will be made in both orientations as well as with the voltage variation of 11.2 VDC and 13.8 VDC (+/-15\% of nominal).

WaveLynx Technologies Corporation WO\#: 97029 Sequence\#: 1 Date: 3/14/2016 15.209 Radiated Emissions Test Distance: 10 Meters Parallel

_ Readings	O Peak Readings	\times
Average Readings	QP Readings	
* Ambient		
Software Version: 5.03 .02		

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	ANSITED 3M	Cable		$11 / 15 / 2014$	$11 / 15 / 2016$
T2	ANP06884	Cable	LMR195-FR-4	$10 / 27 / 2015$	$10 / 27 / 2017$
T3	AN00226	Loop Antenna	6502	$3 / 28 / 2014$	$3 / 28 / 2016$

Measurement Data: \quad Reading listed by margin. Test Distance: 10 Meters

\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \text { T3 } \\ & \text { dB } \end{aligned}$	dB	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \\ \hline \end{gathered}$	Margin dB	Polar Ant
1	124.460k	41.7	+0.1	+0.0	+10.9		-59.1	-6.4	25.7	-32.1	Paral
							X-Axis				
2	124.414 k	41.7	+0.1	+0.0	+10.9		-59.1	-6.4	25.7	-32.1	Paral
							Y-Axis				
3	124.442k	41.5	+0.1	+0.0	+10.9		-59.1	-6.6	25.7	-32.3	Paral
							$\begin{aligned} & \text { X-Axis@ } 10.2 \\ & \text { VDC } \end{aligned}$				
4	124.481k	41.4	+0.1	$+0.0$	+10.9		-59.1	-6.7	25.7	-32.4	Paral
							$\begin{aligned} & \text { X-Axis@ } 13.8 \\ & \text { VDC } \end{aligned}$				
5	124.465k	34.8	+0.1	+0.0	+10.9		-59.1	-13.3	25.7	-39.0	Perpe
							X-Axis				
6	124.513 k	34.8	+0.1	+0.0	+10.9		-59.1	-13.3	25.7	-39.0	Perpe
							$\begin{aligned} & \text { X-Axis@ } \\ & \text { 13.8VDC } \end{aligned}$				
7	124.448k	34.7	+0.1	+0.0	+10.9		-59.1	-13.4	25.7	-39.1	Perpe
							X-Axis @ 10.2				
							VDC				
8	124.509 k	34.0	+0.1	+0.0	+10.9		-59.1	-14.1	25.7	-39.8	Perpe
							Y-Axis				

Test Location: CKC Laboratories Inc. • 5046 Sierra Pines Dr. • Mariposa, CA 95338 • 209-966-5240
Customer: WaveLynx Technologies Corporation
Specification:
Work Order \#:
Test Type:
Tested By:
15.209 Radiated Emissions
15.209
97029

Radiated Scan
Benny Lovan
Date: 3/15/2016
Time: 09:09:09
Sequence\#: 2
Software: EMITest 5.03.02

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 3		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 3		S/N

Test Conditions / Notes:

Radiated Emissions Fundamental Measurements
Temperature: $10^{\circ} \mathrm{C}$
Humidity:85\%
Atmospheric Pressure: 101.0 kPa
Method: ANSI C63.10 2013
Antenna Type: Integral
Modulation: CW
The EUT is powered by a DC power supply at 12 VDC .
Max power was measured in two orthogonalities.
Set for 125 kHz - Measured in Y-Axis
The Fundamental measurements were performed in the worst case orientation observed during the fundamental power measurements.

The manufacturer declares it will only ever be wall mounted in an upright (Y-axis) or sideways (X-axis) orientation.

The EUT is setup on an 80 cm foam block.
The EUT has been programmed to continuously transmit the RFID signal at 125 kHz .
Measurements will be made in both orientations as well as with the voltage variation of 11.2 VDC and 13.8 VDC ($+/-15 \%$ of nominal).

WaveLynx Technologies Corporation WO\#: 97029 Sequence\#: 2 Date: 3/15/2016 15.209 Radiated Emissions Test Distance: 3 Meters Parallel

Readings	O Peak Readings	\times
Average Readings	QP Readings	
* Ambient		
Software Version: 5.03 .02		

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	ANSITED 3M	Cable		$11 / 15 / 2014$	$11 / 15 / 2016$
T2	ANP06884	Cable	LMR195-FR-4	$10 / 27 / 2015$	$10 / 27 / 2017$
T3	AN00226	Loop Antenna	6502	$3 / 28 / 2014$	$3 / 28 / 2016$

Measurement Data: \quad Reading listed by margin. Test Distance: 3 Meters

Test Location: CKC Laboratories Inc. • 5046 Sierra Pines Dr. • Mariposa, CA 95338 • 209-966-5240
Customer: WaveLynx Technologies Corporation
Specification:
15.209 Radiated Emissions

Work Order \#: 97029
Test Type:
Tested By:
Radiated Scan
Benny Lovan
Date: 3/15/2016
Time: 11:22:20
Sequence\#: 3
Software: EMITest 5.03.02
Equipment Tested:

Device	Manufacturer	Model \#
Configuration 5		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 5		S/N

Test Conditions / Notes:
Radiated Emissions Fundamental Measurements
Temperature: $10^{\circ} \mathrm{C}$
Humidity: 85\%
Atmospheric Pressure: 101.0 kPa
Method: ANSI C63.10 2013
Antenna Type: Integral
Modulation: CW
The EUT is powered by a DC power supply at 12 VDC .
Max power was measured in two orthogonalities.
125 kHz Only- Measured in Y-Axis
The Fundamental measurements were performed in the worst case orientation observed during the fundamental power measurements.

The manufacturer declares it will only ever be wall mounted in an upright (Y-axis) or sideways (X-axis) orientation.

The EUT is setup on an 80 cm foam block.
The EUT has been programmed to continuously transmit the RFID signal at 125 kHz .
Measurements will be made in both orientations as well as with the voltage variation of 11.2 VDC and 13.8 VDC ($+/-15 \%$ of nominal).

WaveLynx Technologies Corporation WO\#: 97029 Sequence\#: 3 Date: 3/15/2016 15.209 Radiated Emissions Test Distance: 3 Meters Parallel

_ Readings	O Peak Readings	\times
Average Readings	QP Readings	
* Ambient		
Software Version: 5.03 .02		

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	ANSITED 3M	Cable		$11 / 15 / 2014$	$11 / 15 / 2016$
T2	ANP06884	Cable	LMR195-FR-4	$10 / 27 / 2015$	$10 / 27 / 2017$
T3	AN00226	Loop Antenna	6502	$3 / 28 / 2014$	$3 / 28 / 2016$

Measurement Data: \quad Reading listed by margin. Test Distance: 3 Meters

\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 3 \\ & \text { dB } \end{aligned}$	dB	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \\ \hline \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \\ \hline \end{gathered}$	Margin dB	Polar Ant
1	124.735 k	64.0	+0.1	+0.0	+10.9		-80.0	-5.0	25.7	-30.7	Paral
							Y-axis				
2	124.705k	63.2	+0.1	+0.0	+10.9		-80.0	-5.8	25.7	-31.5	Paral
							$\begin{aligned} & \text { Y-Axis@ } 10.2 \\ & \text { VDC } \end{aligned}$				
3	124.730k	63.0	+0.1	+0.0	+10.9		-80.0	-6.0	25.7	-31.7	Paral
							$\begin{aligned} & \text { Y-Axis@ } 13.8 \\ & \text { VDC } \end{aligned}$				
4	124.715 k	62.9	+0.1	+0.0	+10.9		-80.0	-6.1	25.7	-31.8	Paral
							X-Axis				
5	124.710k	60.0	+0.1	+0.0	+10.9		-80.0	-9.0	25.7	-34.7	Perpe
							Y-axis				
6	124.685k	58.8	+0.1	+0.0	+10.9		-80.0	-10.2	25.7	-35.9	Perpe
							Y-Axis@ 10.2VDC				
7	124.700k	58.7	+0.1	+0.0	+10.9		-80.0	-10.3	25.7	-36.0	Perpe
							$\begin{aligned} & \text { Y-Axis@ } \\ & \text { 13.8VDC } \end{aligned}$				
8	124.715 k	58.0	+0.1	+0.0	+10.9		-80.0	-11.0	25.7	-36.7	Perpe
							X-Axis				

Test Location: CKC Laboratories Inc. • 5046 Sierra Pines Dr. • Mariposa, CA 95338 • 209-966-5240
Customer: WaveLynx Technologies Corporation
Specification:
15.209 Radiated Emissions

Work Order \#: 97029
Test Type:
Tested By:
Radiated Scan
Benny Lovan
Date: 3/18/2016
Time: 11:43:46
Sequence\#: 4
Software: EMITest 5.03.02
Equipment Tested:

Device	Manufacturer	Model \#
Configuration 7		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 7		S/N

Test Conditions / Notes:

Radiated Emissions Fundamental Measurements
Temperature: $11^{\circ} \mathrm{C}$
Humidity: 85\%
Atmospheric Pressure: 100.8 kPa
Method: ANSI C63.10 2013
Antenna Type: Integral
Modulation: CW
The EUT is powered by a DC power supply at 12 VDC .
Max power was measured in two orthogonalities.
Set for $125 \mathrm{kHz}-$ Measured in X-Axis
The Fundamental measurements were performed in the worst case orientation observed during the fundamental power measurements.

The manufacturer declares it will only ever be wall mounted in an upright (Y-axis) or sideways (X-axis) orientation.

The EUT is setup on an 80 cm foam block. This EUT has both 125 kHz and 13.56 MHz .
The EUT has been programmed to continuously transmit the RFID signal at 125 kHz .
Measurements will be made in both orientations as well as with the voltage variation of 11.2 VDC and 13.8 VDC ($+/-15 \%$ of nominal)..

> | WaveLynx Technologies Corporation WO\#: 97029 Sequence\#: 4 Date: 3/18/2016 |
| :--- |
| 15.209 Radiated Emissions Test Distance: 3 Meters Parallel |

_ Readings	O Peak Readings	\times
Average Readings	QP Readings	
* Ambient		
Software Version: 5.03 .02		

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	ANSITED 3M	Cable		$11 / 15 / 2014$	$11 / 15 / 2016$
T2	ANP06884	Cable	LMR195-FR-4	$10 / 27 / 2015$	$10 / 27 / 2017$
T3	AN00226	Loop Antenna	6502	$3 / 28 / 2014$	$3 / 28 / 2016$

Measurement Data: \quad Reading listed by margin. Test Distance: 3 Meters

Test Setup Photos

LABORATORIES, INC.

15.209 Radiated Emissions

Test Setup / Conditions / Data

Test Location: CKC Laboratories Inc. • 5046 Sierra Pines Dr. • Mariposa, CA 95338 • 209-966-5240
Customer: WaveLynx Technologies Corporation
Specification:
Work Order \#:
Test Type:
Tested By:
Software:
15.209 Radiated Emissions

97029
Radiated Scan
Benny Lovan
EMITest 5.03.02

Date: 3/22/2016
Time: 12:03:29
Sequence\#: 5

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 8		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 8		S/N

Test Conditions / Notes:

Radiated Emissions Spurious Measurements $9 \mathrm{kHz}-30 \mathrm{MHz}$
Temperature: $10.6^{\circ} \mathrm{C}$
Humidity: 62\%
Atmospheric Pressure: 98.2 kPa

Method: ANSI C63.10 2013

Highest Generated Frequency (Configuration 1): 8 MHz
Highest Generated Frequency (Configuration 3): 27.12 MHz

Both EUTs are running at 125 kHz .
The EUT is powered by a DC power supply at 12 VDC .
Spurious was measured on two EUTs at one time.
Configuration 8 is made up of Configuration 1 and Configuration 3 (Testing at the same time).
Configuration 1 is in X -axis and Configuration 3 is in the Y -axis.
Preliminary measurements of the fundamental were taken in two orientations. The orientation that displayed the highest emissions was the orientation used for radiated spurious emissions.

The manufacturer declares it will only ever be wall mounted in an upright (Y-axis) or sideways (X-axis) orientation.

The EUT is setup on an 0.80 meter foam block.
The EUT is setup to continuously transmit at 125 kHz

> WaveLynx Technologies Corporation WO\#: 97029 Sequence\#: 5 Date: 3/22/2016 15.209 Radiated Emissions Test Distance: 3 Meters Parallel

Readings

* Average Readings

1-15.209 Radiated Emissions

0 Peak Readings

- Ambient
\times QPReadings
Software Version: 5.03.02

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	ANSITED 3M	Cable		$11 / 15 / 2014$	$11 / 15 / 2016$
T2	ANP06884	Cable	LMR195-FR-4	$10 / 27 / 2015$	$10 / 27 / 2017$
T3	AN00226	Loop Antenna	6502	$3 / 28 / 2014$	$3 / 28 / 2016$

Measurement Data: \quad Reading listed by margin. Test Distance: 3 Meters
$\left.\begin{array}{|ccccccccccc|}\hline \# & \begin{array}{c}\text { Freq } \\ \mathrm{MHz}\end{array} & \begin{array}{c}\text { Rdng } \\ \mathrm{dB} \mu \mathrm{V}\end{array} & \begin{array}{c}\mathrm{T} 1 \\ \mathrm{~dB}\end{array} & \begin{array}{c}\mathrm{T} 2 \\ \mathrm{~dB}\end{array} & \begin{array}{c}\mathrm{T} 3 \\ \mathrm{~dB}\end{array} & \mathrm{~dB} & \begin{array}{c}\text { Dist } \\ \mathrm{Table}\end{array} & \begin{array}{c}\text { Corr } \\ \mathrm{dB} \mu \mathrm{V} / \mathrm{m}\end{array} & \begin{array}{c}\text { Spec } \\ \mathrm{dB} \mu \mathrm{V} / \mathrm{m}\end{array} & \begin{array}{c}\text { Margin } \\ \mathrm{dB}\end{array} \\ \hline 1 & 15.439 \mathrm{M} & 43.0 & +0.7 & +0.1 & +9.5 & -40.0 & 13.3 & 29.5 & -16.2 & \text { Polar } \\ \text { Ant }\end{array}\right]$

Test Location: CKC Laboratories Inc. • 5046 Sierra Pines Dr. • Mariposa, CA 95338 • 209-966-5240
Customer: WaveLynx Technologies Corporation
Specification:
15.209 Radiated Emissions

Work Order \#: 97029
Test Type: Radiated Scan
Tested By: Benny Lovan
Benny Lovan
EMITest 5.03.02

Date: 3/23/2016
Time: 11:17:01
Sequence\#: 6

Software: EMITest 5.03.02
Equipment Tested:

Device	Manufacturer	Model \#
Configuration 8		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 8		S/N

Test Conditions / Notes:
Radiated Emissions Spurious Measurements $30 \mathrm{MHz}-1 \mathrm{GHz}$
Temperature: $10.5^{\circ} \mathrm{C}$
Humidity: 57\%
Atmospheric Pressure: 98.5 kPa

Method: ANSI C63.10 2013
Highest Generated Frequency (Configuration 1): 8 MHz
Highest Generated Frequency (Configuration 3): 27.12 MHz
Both EUTs are running at 125 kHz .
The EUT is powered by a DC power supply at 12VDC.
Spurious was measured on two EUTs at one time.
Configuration 8 is made up of Configuration 1 and Configuration 3 (Testing at the same time).
Configuration 1 is in X -axis and Configuration 3 is in the Y -axis.
Preliminary measurements of the fundamental were taken in two orientations. The orientation that displayed the highest emissions was the orientation used for radiated spurious emissions.

The manufacturer declares it will only ever be wall mounted in an upright (Y-axis) or sideways (X-axis) orientation.

The EUT is setup on an 0.80 meter foam block.
The EUT is setup to continuously transmit at 125 kHz

WaveLynx Technologies Corporation WO\#: 97029 Sequence\#: 6 Date: 3/23/2016 15.209 Radiated Emissions Test Distance: 3 Meters Horiz

Readings

* Average Readings

1-15.209 Radiated Emissions

0 Peak Readings

- Ambient
\times QP Readings
Software Version: 5.03.02

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN00282	Preamp	8447D	$4 / 7 / 2014$	$4 / 7 / 2016$
T2	ANSITED 3M	Cable		$11 / 15 / 2014$	$11 / 15 / 2016$
T3	ANP06884	Cable	LMR195-FR-4	$10 / 27 / 2015$	$10 / 27 / 2017$
T4	ANP06885	Cable	P06885	$10 / 27 / 2015$	$10 / 27 / 2017$
T5	AN01991	Biconilog Antenna	CBL6111C	$3 / 11 / 2016$	$3 / 11 / 2018$

20	250.854M	40.1	$\begin{array}{r} -27.3 \\ +12.3 \end{array}$	+3.1	+0.3	+0.4	+0.0	28.9	46.0	-17.1	Vert
21	379.667M	35.7	$\begin{array}{r} \hline-27.7 \\ +15.6 \end{array}$	+3.9	+0.4	+0.4	+0.0	28.3	46.0	-17.7	Vert
22	338.994M	36.2	$\begin{array}{r} -27.4 \\ +14.5 \end{array}$	+3.7	+0.4	+0.4	+0.0	27.8	46.0	-18.2	Vert
23	67.808M	40.7	$\begin{array}{r} -27.9 \\ +6.8 \end{array}$	+1.6	$+0.1$	+0.2	+0.0	21.5	40.0	-18.5	Vert
24	230.514M	39.4	$\begin{array}{r} \hline-27.3 \\ +11.1 \end{array}$	+3.0	+0.3	+0.4	+0.0	26.9	46.0	-19.1	Vert
25	345.774M	35.0	$\begin{array}{r} -27.5 \\ +14.7 \end{array}$	+3.7	+0.4	+0.4	+0.0	26.7	46.0	-19.3	Vert
26	54.298M	39.6	$\begin{array}{r} -28.0 \\ +7.3 \\ \hline \end{array}$	+1.4	+0.1	+0.2	$+0.0$	20.6	40.0	-19.4	Horiz
27	216.933M	40.0	$\begin{array}{r} -27.3 \\ +10.1 \end{array}$	+2.9	${ }^{+0.3}$	+0.4	+0.0	26.4	46.0	-19.6	Vert
28	223.734M	39.3	$\begin{array}{r} -27.3 \\ +10.6 \\ \hline \end{array}$	+2.9	+0.3	+0.4	$+0.0$	26.2	46.0	-19.8	Vert
29	77.978M	38.6	$\begin{array}{r} \\ \hline-27.9 \\ +6.9 \end{array}$	+1.7	${ }^{+0.2}$	+0.2	$+0.0$	19.7	40.0	-20.3	Vert
30	108.490M	37.2	$\begin{array}{r} -27.9 \\ +10.7 \\ \hline \end{array}$	+2.0	+0.2	+0.3	+0.0	22.5	43.5	-21.0	Vert
31	257.634M	35.6	$\begin{array}{r} -27.3 \\ +12.5 \\ \hline \end{array}$	+3.2	${ }^{+0.3}$	+0.4	+0.0	24.7	46.0	-21.3	Vert
32	169.487M	36.7	$\begin{array}{r} 127.6 \\ \hline-27.6 \\ +9.8 \end{array}$	+2.5	$+0.2$	+0.3	$+0.0$	21.9	43.5	-21.6	Horiz
33	237.287M	35.7	$\begin{array}{r} -27.3 \\ +11.5 \\ \hline \end{array}$	+3.0	${ }^{+0.3}$	+0.4	+0.0	23.6	46.0	-22.4	Horiz
34	115.268M	34.1	$\begin{array}{r} -27.8 \\ +11.2 \end{array}$	+2.1	+0.2	+0.3	+0.0	20.1	43.5	-23.4	Vert
35	74.568M	35.0	$\begin{array}{r} -27.9 \\ +7.0 \end{array}$	+1.6	+0.2	+0.2	+0.0	16.1	40.0	-23.9	Horiz
36	81.348M	34.6	$\begin{array}{r} -27.9 \\ +7.2 \end{array}$	+1.7	${ }^{+0.2}$	+0.2	+0.0	16.0	40.0	-24.0	Horiz

Test Location: CKC Laboratories Inc. • 5046 Sierra Pines Dr. • Mariposa, CA 95338 • 209-966-5240
Customer: WaveLynx Technologies Corporation
Specification:
15.209 Radiated Emissions

Work Order \#:
Test Type:
Tested By:
97029
Radiated Scan
Benny Lovan
Date: 3/22/2016
Time: 14:17:51
Sequence\#: 7
Software: EMITest 5.03.02
Equipment Tested:

Device	Manufacturer	Model \#
Configuration 9		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 9		S/N

Test Conditions / Notes:

Radiated Emissions Spurious Measurements $9 \mathrm{kHz}-30 \mathrm{MHz}$
Temperature: $10.6^{\circ} \mathrm{C}$
Humidity: 62\%
Atmospheric Pressure: 98.2 kPa

Method: ANSI C63.10 2013
Highest Generated Frequency (Configuration 5): 8 MHz
Highest Generated Frequency (Configuration 7): 27.12 MHz
Both EUTs running at 125 kHz .

The EUT is powered by a DC power supply at 12VDC.
Spurious was measured on two EUTs at one time.
Configuration 9 is made up of Configuration 5 and Configuration 7 (Testing at the same time).
Configuration 5 is in Y -axis and Configuration -7 is in the X -axis.
Preliminary measurements of the fundamental were taken in two orientations. The orientation that displayed the highest emissions was the orientation used for radiated spurious emissions.

The manufacturer declares it will only ever be wall mounted in an upright (Y-axis) or sideways (X-axis) orientation.

The EUT is setup on an 0.80 meter foam block.
The EUT is setup to continuously transmit at 125 kHz

> | WaveLynx Technologies Corporation WO\#: 97029 Sequence\#: 7 Date: 3/22/2016 |
| :--- |
| 15.209 Radiated Emissions Test Distance: 3 Meters Perpendicular |

Readings

* Average Readings

1-15.209 Radiated Emissions

0 Peak Readings

- Ambient
\times QPReadings
Software Version: 5.03.02

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	ANSITED 3M	Cable		$11 / 15 / 2014$	$11 / 15 / 2016$
T2	ANP06884	Cable	LMR195-FR-4	$10 / 27 / 2015$	$10 / 27 / 2017$
T3	AN00226	Loop Antenna	6502	$3 / 28 / 2014$	$3 / 28 / 2016$

Measurement Data: \quad Reading listed by margin. Test Distance: 3 Meters

\#	Freq MHz	$\begin{aligned} & \hline \text { Rdng } \\ & \mathrm{dB} \mu \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \text { T3 } \\ & \text { dB } \end{aligned}$	dB	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	Margin dB	Polar Ant
1	17.527M	44.2	+0.8	+0.1	+8.8		-40.0	13.9	29.5	-15.6	Paral
2	9.027 M	42.5	+0.6	+0.1	+10.1		-40.0	13.3	29.5	-16.2	Perpe
3	14.999M	40.7	+0.7	+0.1	+9.6		-40.0	11.1	29.5	-18.4	Perpe
4	8.683 M	39.8	+0.6	+0.1	+10.1		-40.0	10.6	29.5	-18.9	Paral
5	5.596 M	39.5	+0.5	+0.1	+10.1		-40.0	10.2	29.5	-19.3	Paral
6	11.325 M	37.9	+0.6	+0.1	+9.9		-40.0	8.5	29.5	-21.0	Perpe
7	15.441M	37.8	+0.7	+0.1	+9.5		-40.0	8.1	29.5	-21.4	Paral
8	124.660k	70.3	+0.1	+0.0	+10.9		-80.0	1.3	25.7	-24.4	Paral
9	21.676 M	34.7	+0.9	+0.1	+8.1		-40.0	3.8	29.5	-25.7	Paral
10	27.083 M	33.9	+1.0	+0.1	+7.2		-40.0	2.2	29.5	-27.3	Paral
11	324.610k	58.5	+0.1	+0.0	+10.2		-80.0	-11.2	17.4	-28.6	Paral
12	21.673 M	31.8	+0.9	+0.1	+8.1		-40.0	0.9	29.5	-28.6	Perpe
13	17.803M	29.3	+0.8	+0.1	+8.8		-40.0	-1.0	29.5	-30.5	Perpe
14	124.620k	61.3	+0.1	+0.0	+10.9		-80.0	-7.7	25.7	-33.4	Perpe
15	24.780k	53.6	+0.0	+0.0	+13.0		-80.0	-13.4	39.7	-53.1	Perpe
16	10.625k	56.7	+0.0	+0.0	+17.1		-80.0	-6.2	47.1	-53.3	Paral
17	21.390k	52.8	+0.0	+0.0	+13.6		-80.0	-13.6	41.0	-54.6	Paral
18	9.420 k	46.5	+0.0	+0.0	+17.5		-80.0	-16.0	48.1	-64.1	Paral

Test Location: CKC Laboratories Inc. • 5046 Sierra Pines Dr. • Mariposa, CA 95338 • 209-966-5240
Customer: WaveLynx Technologies Corporation
Specification:
15.209 Radiated Emissions

Work Order \#: 97029
Test Type:
Tested By:
Radiated Scan
Benny Lovan
Date: 3/23/2016
Time: 09:43:02
Sequence\#: 8
Software: EMITest 5.03.02
Equipment Tested:

Device	Manufacturer	Model \#
Configuration 9		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 9		S/N

Test Conditions / Notes:
Radiated Emissions Spurious Measurements 30MHz -1GHz
Temperature: $10.5^{\circ} \mathrm{C}$
Humidity: 57\%
Atmospheric Pressure: 98.5 kPa

Method: ANSI C63.10 2013
Highest Generated Frequency (Configuration 5): 8 MHz
Highest Generated Frequency (Configuration 7): 27.12 MHz
Both EUTs are running at 125 kHz .

The EUT is powered by a DC power supply at 12VDC.
Spurious was measured on two EUTs at one time.
Configuration 9 is made up of Configuration 5 and Configuration 7 (Testing at the same time).
Configuration 5 is in Y -axis and Configuration -7 is in the X -axis.
Preliminary measurements of the fundamental were taken in two orientations. The orientation that displayed the highest emissions was the orientation used for radiated spurious emissions.

The manufacturer declares it will only ever be wall mounted in an upright (Y-axis) or sideways (X-axis) orientation.

The EUT is setup on an 0.80 meter foam block.
The EUT is setup to continuously transmit at 125 kHz

> WaveLynx Technologies Corporation WO\#: 97029 Sequence\#: 8 Date: 3/23/2016 15.209 Radiated Emissions Test Distance: 3 Meters Horiz

Readings

* Average Readings

1-15.209 Radiated Emissions

0 Peak Readings

- Ambient
\times QP Readings
Software Version: 5.03.02

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN00282	Preamp	8447D	$4 / 7 / 2014$	$4 / 7 / 2016$
T2	ANSITED 3M	Cable		$11 / 15 / 2014$	$11 / 15 / 2016$
T3	ANP06884	Cable	LMR195-FR-4	$10 / 27 / 2015$	$10 / 27 / 2017$
T4	ANP06885	Cable	P06885	$10 / 27 / 2015$	$10 / 27 / 2017$
T5	AN01991	Biconilog Antenna	CBL6111C	$3 / 11 / 2016$	$3 / 11 / 2018$

20	311.892M	38.4	$\begin{array}{r} -27.3 \\ +13.8 \end{array}$	+3.5	${ }^{+0.3}$	${ }^{+0.4}$	+0.0	29.1	46.0	-16.9	Vert
21	284.761M	38.8	$\begin{array}{r} -27.2 \\ +13.1 \end{array}$	+3.3	${ }^{+0.3}$	$+0.4$	+0.0	28.7	46.0	-17.3	Vert
22	250.880M	38.9	$\begin{array}{r} -27.3 \\ +12.3 \end{array}$	+3.1	+0.3	+0.4	+0.0	27.7	46.0	-18.3	Vert
23	239.997M	38.5	$\begin{array}{r} -27.3 \\ +11.7 \end{array}$	+3.1	+0.3	+0.4	+0.0	26.7	46.0	-19.3	Vert
24	257.712M	37.5	$\begin{array}{r} -27.3 \\ +12.5 \end{array}$	+3.2	$+0.3$	${ }^{+0.4}$	+0.0	26.6	46.0	-19.4	Vert
25	210.150M	38.0	$\begin{array}{r} -27.4 \\ +9.7 \\ \hline \end{array}$	+2.9	+0.3	$+0.3$	+0.0	23.8	43.5	-19.7	Vert
26	108.497M	38.5	$\begin{array}{r} -27.9 \\ +10.7 \\ \hline \end{array}$	+2.0	+0.2	$+0.3$	+0.0	23.8	43.5	-19.7	Vert
27	216.950M	39.6	$\begin{array}{r} -27.3 \\ +10.1 \end{array}$	+2.9	+0.3	$+0.4$	$+0.0$	26.0	46.0	-20.0	Vert
28	54.313M	38.9	$\begin{array}{r} -28.0 \\ +7.3 \end{array}$	+1.4	+0.1	$+0.2$	+0.0	19.9	40.0	-20.1	Horiz
29	486.846M	30.7	$\begin{array}{r} -28.2 \\ +17.8 \\ \hline \end{array}$	+4.5	+0.4	${ }^{+0.5}$	+0.0	25.7	46.0	-20.3	Horiz
30	257.610M	36.5	$\begin{array}{r} -27.3 \\ +12.5 \\ \hline \end{array}$	+3.2	$+0.3$	$+0.4$	$+0.0$	25.6	46.0	-20.4	Vert
31	271.220M	35.5	$\begin{array}{r} \hline-27.2 \\ +12.8 \\ \hline \end{array}$	+3.3	${ }^{+0.3}$	$+0.4$	+0.0	25.1	46.0	-20.9	Vert
32	257.733M	33.5	$\begin{array}{r} -27.3 \\ +12.5 \\ \hline \end{array}$	+3.2	+0.3	$+0.4$	+0.0	22.6	46.0	-23.4	Horiz
33	267.264M	33.0	$\begin{array}{r} -27.2 \\ +12.7 \\ \hline \end{array}$	+3.2	+0.3	$+0.4$	+0.0	22.4	46.0	-23.6	Vert
34	264.420M	32.7	$\begin{array}{r} -27.2 \\ +12.6 \\ \hline \end{array}$	+3.2	$+0.3$	$+0.4$	$+0.0$	22.0	46.0	-24.0	Vert
35	237.420M	34.1	$\begin{array}{r} -27.3 \\ +11.5 \\ \hline \end{array}$	+3.0	${ }^{+0.3}$	$+0.4$	+0.0	22.0	46.0	-24.0	Vert
36	229.092M	34.4	$\begin{array}{r} -27.3 \\ +11.0 \\ \hline \end{array}$	+3.0	${ }^{+0.3}$	$+0.4$	+0.0	21.8	46.0	-24.2	Horiz
37	229.093M	33.6	$\begin{array}{r} -27.3 \\ +11.0 \\ \hline \end{array}$	+3.0	+0.3	$+0.4$	$+0.0$	21.0	46.0	-25.0	Horiz
38	238.636M	31.0	$\begin{array}{r} -27.3 \\ +11.6 \\ \hline \end{array}$	+3.0	${ }^{+0.3}$	$+0.4$	$+0.0$	19.0	46.0	-27.0	Vert

Configuration 8

Configuration 9

15.207 AC Conducted Emissions

Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 5046 Sierra Pines Drive • Mariposa, CA 95338 • (209) 966-5240
Customer: WaveLynx Technologies Corporation.
Specification

Work Order \#:
Test Type:
Tested By:
Software:
15.207 AC Mains - Average

97029
Conducted Emissions
Skip Doyle / Benny Lovan
EMITest 5.03.02

Date: 5/10/2016
Time: 9:25:27 AM
Sequence\#: 1
120 V 60 Hz

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1		S/N

Test Conditions / Notes:
Test Method: ANSI C63.10 (2013)
Frequency Range of Interest:
$0.150-30 \mathrm{MHz}$
RBW $=9 \mathrm{kHz} ; \mathrm{VBW}>9 \mathrm{kHz}$

Environmental Conditions:
Temperature: $21^{\circ} \mathrm{C}$
Relative Humidity: 67\%
Atmospheric Pressure: 97.5 kPa

Highest Generated Frequency: 27.12 MHz
The EUT is running at 125 kHz .
The EUT is powered by a DC power supply at 12VDC.
The EUT is setup to continuously transmit at 125 kHz .
AC Conducted Emissions is being performed on the AC portion of the AC/DC supply.

WaveLynx Technologies Corporation. WO\#: 97029 Sequence\#: 1 Date: 5/10/2016 15.207 AC Mains - Average Test Lead: 120 V 60 Hz Line

[^0]Readings
Average Readings
1-15.207 AC Mains - Average

O Peak Readings

- Ambient

2-15.207 AC Mains - Quasi-peak

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	ANP06770	Attenuator	PE7010-10	$1 / 15 / 2015$	$1 / 15 / 2017$
	AN01248	50uH LISN-Line 1 (Return) (dB)	$8028-50-T S-24-$ BNC	$1 / 4 / 2016$	$1 / 4 / 2017$
T2	AN01248	50uH LISN-Line 2 $($ Line) (dB)	$8028-50-T S-24-$ BNC	$1 / 4 / 2016$	$1 / 4 / 2017$
T3	AN02609	High Pass Filter	HE9615-150K- $50-720 B$	$2 / 18 / 2016$	$2 / 18 / 2018$
T4	ANP06884	Cable	LMR195-FR-4	$10 / 27 / 2015$	$10 / 27 / 2017$
T5	ANMD INT	Cable	Underground cables only	$3 / 17 / 2016$	$3 / 17 / 2018$
	AN02111	Spectrum Analyzer	$8593 E M$	$6 / 4 / 2015$	$6 / 4 / 2016$
T6	ANP01153	Cable	NA	$3 / 3 / 2016$	$3 / 3 / 2018$

Measurement Data: \quad Reading listed by margin. Test Lead: Line

\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \text { T5 } \\ & \text { dB } \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~T} 6 \\ & \text { dB } \end{aligned}$	$\begin{aligned} & \mathrm{T} 3 \\ & \mathrm{~dB} \end{aligned}$	T4 dB	Dist Table	Corr $\mathrm{dB} \mu \mathrm{V}$	Spec $\mathrm{dB} \mu \mathrm{V}$	Margin dB	Polar Ant
1	153.637 k	21.7	$\begin{array}{r} \hline+10.1 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \end{aligned}$	+1.5	+0.0	+0.0	33.4	55.8	-22.4	Line
2	22.297 M	15.3	$\begin{array}{r} \hline+10.1 \\ +0.2 \end{array}$	$\begin{aligned} & \hline+0.6 \\ & +0.2 \end{aligned}$	+0.3	+0.1	+0.0	26.8	50.0	-23.2	Line
3	22.531 M	14.9	$\begin{array}{r} \hline+10.1 \\ +0.2 \end{array}$	$\begin{aligned} & \hline+0.6 \\ & +0.2 \end{aligned}$	+0.3	+0.1	+0.0	26.4	50.0	-23.6	Line
4	22.170 M	14.9	$\begin{array}{r} \hline+10.1 \\ +0.2 \end{array}$	$\begin{aligned} & +0.5 \\ & +0.2 \end{aligned}$	+0.3	+0.1	+0.0	26.3	50.0	-23.7	Line
5	22.784 M	14.8	$\begin{array}{r} \hline+10.1 \\ +0.2 \end{array}$	$\begin{aligned} & \hline+0.6 \\ & +0.2 \end{aligned}$	+0.3	+0.1	+0.0	26.3	50.0	-23.7	Line
6	22.658 M	14.7	$\begin{array}{r} \hline+10.1 \\ +0.2 \end{array}$	$\begin{aligned} & \hline+0.6 \\ & +0.2 \end{aligned}$	+0.3	+0.1	+0.0	26.2	50.0	-23.8	Line
7	23.036 M	14.3	$\begin{array}{r} \hline+10.1 \\ +0.2 \end{array}$	$\begin{aligned} & +0.6 \\ & +0.2 \\ & \hline \end{aligned}$	+0.3	+0.1	+0.0	25.8	50.0	-24.2	Line
8	22.423 M	14.2	$\begin{array}{r} \hline+10.1 \\ +0.2 \end{array}$	$\begin{aligned} & \hline+0.6 \\ & +0.2 \end{aligned}$	+0.3	+0.1	+0.0	25.7	50.0	-24.3	Line
9	22.910 M	13.9	$\begin{array}{r} \hline+10.1 \\ +0.2 \end{array}$	$\begin{aligned} & \hline+0.6 \\ & +0.2 \end{aligned}$	+0.3	+0.1	+0.0	25.4	50.0	-24.6	Line
10	23.289M	13.8	$\begin{array}{r} \hline+10.1 \\ +0.2 \end{array}$	$\begin{aligned} & \hline+0.6 \\ & +0.2 \end{aligned}$	+0.3	+0.1	+0.0	25.3	50.0	-24.7	Line
11	23.163 M	13.6	$\begin{array}{r} \hline+10.1 \\ +0.2 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.6 \\ & +0.2 \end{aligned}$	+0.3	+0.1	+0.0	25.1	50.0	-24.9	Line
12	22.053 M	13.4	$\begin{array}{r} \hline+10.1 \\ +0.2 \end{array}$	$\begin{aligned} & \hline+0.5 \\ & +0.2 \end{aligned}$	+0.3	+0.1	+0.0	24.8	50.0	-25.2	Line
13	21.800 M	13.1	$\begin{array}{r} \hline+10.1 \\ +0.2 \end{array}$	$\begin{aligned} & +0.5 \\ & +0.2 \end{aligned}$	+0.2	+0.1	+0.0	24.4	50.0	-25.6	Line
14	23.542 M	12.7	$\begin{array}{r} \hline+10.1 \\ +0.2 \\ \hline \end{array}$	$\begin{array}{r} +0.7 \\ +0.2 \\ \hline \end{array}$	+0.3	+0.1	+0.0	24.3	50.0	-25.7	Line
15	23.406M	12.3	$\begin{array}{r} \hline+10.1 \\ +0.2 \end{array}$	$\begin{aligned} & \hline+0.7 \\ & +0.2 \end{aligned}$	+0.3	+0.1	+0.0	23.9	50.0	-26.1	Line
16	23.794 M	12.3	$\begin{array}{r} \hline+10.1 \\ +0.2 \end{array}$	$\begin{aligned} & \hline+0.6 \\ & +0.2 \end{aligned}$	+0.3	$+0.1$	+0.0	23.8	50.0	-26.2	Line

Page 45 of 77

17	21.927 M	12.3	$\begin{array}{r} \hline+10.1 \\ +0.2 \end{array}$	$\begin{aligned} & \hline+0.5 \\ & +0.2 \end{aligned}$	+0.2	+0.1	+0.0	23.6	50.0	-26.4	Line
18	23.659 M	11.8	$\begin{array}{r} \hline+10.1 \\ +0.2 \end{array}$	$\begin{aligned} & \hline+0.7 \\ & +0.2 \end{aligned}$	+0.3	+0.1	+0.0	23.4	50.0	-26.6	Line
19	21.674 M	12.0	$\begin{array}{r} \hline+10.1 \\ +0.2 \end{array}$	$\begin{aligned} & +0.5 \\ & +0.2 \end{aligned}$	+0.2	+0.1	+0.0	23.3	50.0	-26.7	Line
20	21.430 M	11.8	$\begin{array}{r} \hline+10.1 \\ +0.2 \end{array}$	$\begin{aligned} & \hline+0.5 \\ & +0.2 \end{aligned}$	+0.2	+0.1	+0.0	23.1	50.0	-26.9	Line
21	21.548 M	11.8	$\begin{array}{r} \hline+10.1 \\ +0.2 \end{array}$	$\begin{aligned} & +0.5 \\ & +0.2 \end{aligned}$	+0.2	+0.1	+0.0	23.1	50.0	-26.9	Line
22	488.150k	8.8	$\begin{array}{r} \hline+10.1 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \end{aligned}$	+0.2	+0.0	+0.0	19.2	46.2	-27.0	Line
23	24.164 M	11.6	$\begin{array}{r} \hline+10.1 \\ +0.2 \end{array}$	$\begin{aligned} & \hline+0.5 \\ & +0.2 \end{aligned}$	+0.3	+0.1	+0.0	23.0	50.0	-27.0	Line
24	24.291 M	11.6	$\begin{array}{r} \hline+10.1 \\ +0.2 \end{array}$	$\begin{aligned} & \hline+0.5 \\ & +0.2 \end{aligned}$	+0.3	+0.1	+0.0	23.0	50.0	-27.0	Line
25	1.491 M	8.1	$\begin{array}{r} \hline+10.1 \\ +0.1 \end{array}$	$\begin{aligned} & \hline+0.4 \\ & +0.0 \end{aligned}$	+0.2	+0.0	+0.0	18.9	46.0	-27.1	Line
26	21.304 M	11.6	$\begin{array}{r} \hline+10.1 \\ +0.2 \end{array}$	$\begin{aligned} & +0.5 \\ & +0.2 \end{aligned}$	+0.2	+0.1	+0.0	22.9	50.0	-27.1	Line
27	21.052 M	11.5	$\begin{array}{r} \hline+10.1 \\ +0.2 \end{array}$	$\begin{aligned} & \hline+0.5 \\ & +0.2 \end{aligned}$	+0.2	+0.1	+0.0	22.8	50.0	-27.2	Line
28	21.178 M	11.2	$\begin{array}{r} \hline+10.1 \\ +0.2 \end{array}$	$\begin{aligned} & \hline+0.5 \\ & +0.2 \end{aligned}$	+0.2	+0.1	+0.0	22.5	50.0	-27.5	Line
29	24.038 M	11.1	$\begin{array}{r} \hline+10.1 \\ +0.2 \end{array}$	$\begin{aligned} & +0.5 \\ & +0.2 \end{aligned}$	+0.3	+0.1	+0.0	22.5	50.0	-27.5	Line
30	23.912 M	10.8	$\begin{array}{r} \hline+10.1 \\ +0.2 \end{array}$	$\begin{aligned} & \hline+0.6 \\ & +0.2 \\ & \hline \end{aligned}$	+0.3	+0.1	+0.0	22.3	50.0	-27.7	Line

Test Location: CKC Laboratories, Inc. • 5046 Sierra Pines Drive • Mariposa, CA 95338 • (209) 966-5240
Manufacturer:
Specification:
Work Order \#:
Test Type:
Tested By:
Software:
WaveLynx Technologies Corporation.
15.207 AC Mains - Average

97029
Conducted Emissions
Skip Doyle / Benny Lovan
EMITest 5.03.02

Date: 5/10/2016
Time: 9:32:48 AM
Sequence\#: 2
120 V 60 Hz

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1		S/N

Test Conditions / Notes:

Test Method: ANSI C63.10 (2013)
Frequency Range of Interest:
$0.150-30 \mathrm{MHz}$
RBW $=9 \mathrm{kHz}$; VBW $>9 \mathrm{kHz}$
Environmental Conditions:
Temperature: $21^{\circ} \mathrm{C}$
Relative Humidity: 67%
Atmospheric Pressure: 97.5 kPa
Highest Generated Frequency: 27.12 MHz
The EUT is running at 125 kHz .
The EUT is powered by a DC power supply at 12 VDC .
The EUT is setup to continuously transmit at 125 kHz .
AC Conducted Emissions is being performed on the AC portion of the AC/DC supply.

WaveLynx Technologies Corporation. WO\#: 97029 Sequence\#: 2 Date: 5/10/2016 15.207 AC Mains - Average Test Lead: 120 V 60 Hz RETURN

[^1]Readings
Average Readings
1-15.207 AC Mains - Average
0 Peak Readings

- Ambient
2-15.207 AC Mains - Quasi-peak

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	ANP06770	Attenuator	PE7010-10	$1 / 15 / 2015$	$1 / 15 / 2017$
T2	AN01248	50uH LISN-Line 1 (Return) (dB)	$8028-50-T S-24-$ BNC	$1 / 4 / 2016$	$1 / 4 / 2017$
	AN01248	50uH LISN-Line 2 $($ Line) (dB)	$8028-50-T S-24-$ BNC	$1 / 4 / 2016$	$1 / 4 / 2017$
T3	AN02609	High Pass Filter	HE9615-150K- $50-720 B$	$2 / 18 / 2016$	$2 / 18 / 2018$
T4	ANP06884	Cable	LMR195-FR-4	$10 / 27 / 2015$	$10 / 27 / 2017$
T5	ANMD INT	Cable	Underground cables only	$3 / 17 / 2016$	$3 / 17 / 2018$
	AN02111	Spectrum Analyzer	$8593 E M$	$6 / 4 / 2015$	$6 / 4 / 2016$
T6	ANP01153	Cable	NA	$3 / 3 / 2016$	$3 / 3 / 2018$

Measu	ment Data	Reading listed by margin.				Test Lead: RETURN					
\#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	$\mathrm{dB} \mu \mathrm{V}$	dB	dB	dB	dB	Table	$\mathrm{dB} \mu \mathrm{V}$	dB $\mu \mathrm{V}$	dB	Ant
1	153.637k	20.3	+10.1	+0.1	+1.5	+0.0	+0.0	32.0	55.8	-23.8	RETUR
			+0.0	+0.0							
2	22.793 M	13.1	+10.1	+0.6	+0.3	+0.1	+0.0	24.6	50.0	-25.4	RETUR
			+0.2	+0.2							
3	22.658 M	13.0	+10.1	+0.6	+0.3	+0.1	+0.0	24.5	50.0	-25.5	RETUR
			+0.2	+0.2							
4	22.197 M	12.8	+10.1	+0.6	+0.3	+0.1	+0.0	24.3	50.0	-25.7	RETUR
			+0.2	+0.2							
5	22.540 M	12.7	+10.1	+0.6	+0.3	+0.1	+0.0	24.2	50.0	-25.8	RETUR
			+0.2	+0.2							
6	404.522k	10.8	+10.1	+0.1	+0.2	+0.0	+0.0	21.2	47.8	-26.6	RETUR
			+0.0	+0.0							
7	23.045 M	11.9	+10.1	+0.6	+0.3	+0.1	+0.0	23.4	50.0	-26.6	RETUR
			+0.2	+0.2							
8	22.071 M	11.8	+10.1	+0.6	+0.3	+0.1	+0.0	23.3	50.0	-26.7	RETUR
			+0.2	+0.2							
9	22.919 M	11.6	+10.1	+0.6	+0.3	+0.1	+0.0	23.1	50.0	-26.9	RETUR
			+0.2	+0.2							
10	23.298 M	11.6	+10.1	+0.6	+0.3	+0.1	+0.0	23.1	50.0	-26.9	RETUR
			$+0.2$	+0.2							
11	23.542 M	11.5	+10.1	+0.6	+0.3	+0.1	+0.0	23.0	50.0	-27.0	RETUR
			+0.2	+0.2							
12	22.324 M	11.3	+10.1	+0.6	+0.3	+0.1	$+0.0$	22.8	50.0	-27.2	RETUR
			+0.2	+0.2							
13	23.172 M	11.3	+10.1	+0.6	+0.3	+0.1	+0.0	22.8	50.0	-27.2	RETUR
			+0.2	+0.2							
14	22.441 M	11.1	+10.1	+0.6	+0.3	+0.1	+0.0	22.6	50.0	-27.4	RETUR
			+0.2	+0.2							
15	23.424 M	11.0	+10.1	+0.6	+0.3	+0.1	+0.0	22.5	50.0	-27.5	RETUR
			+0.2	+0.2							
16	21.936 M	10.6	+10.1	+0.6	+0.2	+0.1	+0.0	22.0	50.0	-28.0	RETUR
			+0.2	+0.2							

17	24.047M	10.5	+10.1	+0.6	+0.3	+0.1	+0.0	22.0	50.0	-28.0	RETUR
			+0.2	+0.2							
18	21.809M	10.5	+10.1	+0.6	+0.2	+0.1	$+0.0$	21.9	50.0	-28.1	RETUR
			+0.2	+0.2							
19	21.566M	10.4	+10.1	+0.6	+0.2	+0.1	$+0.0$	21.8	50.0	-28.2	RETUR
			$+0.2$	+0.2							
20	23.794M	10.3	+10.1	+0.6	+0.3	+0.1	$+0.0$	21.8	50.0	-28.2	RETUR
			+0.2	+0.2							
21	408.158k	8.9	+10.1	+0.1	${ }^{+0.2}$	+0.0	$+0.0$	19.3	47.7	-28.4	RETUR
			+0.0	+0.0							
22	23.677M	10.0	+10.1	+0.6	+0.3	+0.1	$+0.0$	21.5	50.0	-28.5	RETUR
			+0.2	+0.2							
23	24.552M	10.0	+10.1	+0.6	+0.3	+0.1	$+0.0$	21.5	50.0	-28.5	RETUR
			+0.2	+0.2							
24	1.491M	6.9	+10.1	+0.1	${ }^{+0.2}$	+0.0	$+0.0$	17.4	46.0	-28.6	RETUR
			+0.1	+0.0							
25	24.300M	9.6	+10.1	+0.6	+0.3	+0.1	+0.0	21.1	50.0	-28.9	RETUR
			+0.2	+0.2							
26	23.921M	9.5	+10.1	+0.6	${ }^{+0.3}$	+0.1	$+0.0$	21.0	50.0	-29.0	RETUR
			$+0.2$	+0.2							
27	21.692M	9.5	+10.1	+0.6	+0.2	+0.1	+0.0	20.9	50.0	-29.1	RETUR
			+0.2	+0.2							
28	24.164M	9.4	+10.1	+0.6	${ }^{+0.3}$	+0.1	$+0.0$	20.9	50.0	-29.1	RETUR
			$+0.2$	+0.2							
29	24.417M	9.2	+10.1	+0.6	+0.3	+0.1	$+0.0$	20.7	50.0	-29.3	RETUR
			+0.2	+0.2							
30	25.184M	9.2	+10.1	+0.6	${ }^{+0.3}$	+0.1	$+0.0$	20.7	50.0	-29.3	RETUR
			$+0.2$	+0.2							

Test Location: CKC Laboratories, Inc. • 5046 Sierra Pines Drive • Mariposa, CA 95338 • (209) 966-5240

Customer:
Specification:
Work Order \#:
Test Type:
Tested By:
Software:

WaveLynx Technologies Corporation.
15.207 AC Mains - Average

97029
Conducted Emissions
Skip Doyle / Benny Lovan
EMITest 5.03.02

Date: 5/10/2016
Time: 10:04:57 AM
Sequence\#: 8
120 V 60 Hz

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 3		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 3		S/N

Test Conditions / Notes:

Test Method: ANSI C63.10 (2013)
Frequency Range of Interest:
$0.150-30 \mathrm{MHz}$
RBW $=9 \mathrm{kHz}$; VBW $>9 \mathrm{kHz}$
Environmental Conditions:
Temperature: $21^{\circ} \mathrm{C}$
Relative Humidity: 67%
Atmospheric Pressure: 97.5 kPa
Highest Generated Frequency: 27.12 MHz
The EUT is running at 125 kHz .
The EUT is powered by a DC power supply at 12 VDC .
The EUT is setup to continuously transmit at 125 kHz .
AC Conducted Emissions is being performed on the AC portion of the AC/DC supply.

WaveLynx Technologies Corporation. WO\#: 97029 Sequence\#: 8 Date: 5/10/2016 15.207 AC Mains - Average Test Lead: 120 V 60 Hz LINE

[^2]Readings
Average Readings
1-15.207 AC Mains - Average

O Peak Readings
Ambient
2-15.207 AC Mains - Quasi-peak

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	ANP06770	Attenuator	PE7010-10	$1 / 15 / 2015$	$1 / 15 / 2017$
	AN01248	50uH LISN-Line 1 (Return) (dB)	$8028-50-T S-24-$ BNC	$1 / 4 / 2016$	$1 / 4 / 2017$
T2	AN01248	50uH LISN-Line 2 (Line) (dB)	$8028-50-T S-24-$ BNC	$1 / 4 / 2016$	$1 / 4 / 2017$
T3	AN02609	High Pass Filter	HE9615-150K- 50-720B	$2 / 18 / 2016$	$2 / 18 / 2018$
T4	ANP06884	Cable	LMR195-FR-4	$10 / 27 / 2015$	$10 / 27 / 2017$
T5	ANMD INT	Cable	Underground cables only	$3 / 17 / 2016$	$3 / 17 / 2018$
		Spectrum Analyzer	8593EM	$6 / 4 / 2015$	$6 / 4 / 2016$
	AN02111	Cable	NA	$3 / 3 / 2016$	$3 / 3 / 2018$
T6	ANP01153				

Measurement Data: Reading listed by margin. Test Lead: LINE

\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~T} 5 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~T} 6 \\ & \text { dB } \end{aligned}$	$\begin{array}{r} \mathrm{T} 3 \\ \mathrm{~dB} \end{array}$	T4 dB	$\begin{aligned} & \text { Dist } \\ & \text { Table } \end{aligned}$	Corr $\mathrm{dB} \mu \mathrm{V}$	Spec $\mathrm{dB} \mu \mathrm{V}$	Margin dB	Polar Ant
1	153.637 k	19.9	$\begin{array}{r} \hline+10.1 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \end{aligned}$	+1.5	+0.0	+0.0	31.6	55.8	-24.2	LINE
2	22.513 M	12.3	$\begin{array}{r} \hline+10.1 \\ +0.2 \end{array}$	$\begin{aligned} & \hline+0.6 \\ & +0.2 \end{aligned}$	+0.3	+0.1	+0.0	23.8	50.0	-26.2	LINE
3	22.730 M	11.7	$\begin{array}{r} \hline+10.1 \\ +0.2 \end{array}$	$\begin{aligned} & \hline+0.6 \\ & +0.2 \end{aligned}$	+0.3	$+0.1$	$+0.0$	23.2	50.0	-26.8	LINE
4	22.008 M	11.6	$\begin{array}{r} \hline+10.1 \\ +0.2 \end{array}$	$\begin{aligned} & \hline+0.5 \\ & +0.2 \end{aligned}$	+0.3	+0.1	+0.0	23.0	50.0	-27.0	LINE
5	21.764 M	11.7	$\begin{array}{r} \hline+10.1 \\ +0.2 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.5 \\ & +0.2 \end{aligned}$	+0.2	+0.1	+0.0	23.0	50.0	-27.0	LINE
6	27.124M	11.8	$\begin{array}{r} \hline+10.1 \\ +0.2 \end{array}$	$\begin{aligned} & \hline+0.1 \\ & +0.2 \end{aligned}$	+0.3	+0.1	+0.0	22.8	50.0	-27.2	LINE
7	493.604k	8.3	$\begin{array}{r} \hline+10.1 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \end{aligned}$	+0.2	+0.0	+0.0	18.7	46.1	-27.4	LINE
8	22.603 M	11.1	$\begin{array}{r} \hline+10.1 \\ +0.2 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.6 \\ & +0.2 \end{aligned}$	+0.3	+0.1	+0.0	22.6	50.0	-27.4	LINE
9	1.491 M	7.7	$\begin{array}{r} \hline+10.1 \\ +0.1 \end{array}$	$\begin{aligned} & \hline+0.4 \\ & +0.0 \end{aligned}$	+0.2	+0.0	+0.0	18.5	46.0	-27.5	LINE
10	23.235 M	11.0	$\begin{array}{r} \hline+10.1 \\ +0.2 \end{array}$	$\begin{aligned} & \hline+0.6 \\ & +0.2 \end{aligned}$	+0.3	+0.1	+0.0	22.5	50.0	-27.5	LINE
11	22.261 M	9.9	$\begin{array}{r} \hline+10.1 \\ +0.2 \end{array}$	$\begin{aligned} & +0.6 \\ & +0.2 \\ & \hline \end{aligned}$	+0.3	+0.1	+0.0	21.4	50.0	-28.6	LINE
12	4.414M	6.7	$\begin{array}{r} \hline+10.1 \\ +0.1 \end{array}$	$\begin{aligned} & +0.1 \\ & +0.1 \end{aligned}$	+0.1	+0.0	+0.0	17.2	46.0	-28.8	LINE
13	1.743 M	6.1	$\begin{array}{r} \hline+10.1 \\ +0.1 \end{array}$	$\begin{aligned} & \hline+0.6 \\ & +0.0 \end{aligned}$	$+0.2$	$+0.0$	$+0.0$	17.1	46.0	-28.9	LINE
14	22.991 M	9.6	$\begin{array}{r} \hline+10.1 \\ +0.2 \end{array}$	$\begin{aligned} & \hline+0.6 \\ & +0.2 \end{aligned}$	+0.3	+0.1	+0.0	21.1	50.0	-28.9	LINE
15	3.394 M	6.2	$\begin{array}{r} \hline+10.1 \\ +0.1 \\ \hline \end{array}$	$\begin{array}{r} +0.1 \\ +0.1 \\ \hline \end{array}$	+0.1	+0.0	+0.0	16.7	46.0	-29.3	LINE
16	1.220 M	5.8	$\begin{array}{r} \hline+10.1 \\ +0.1 \end{array}$	$\begin{aligned} & \hline+0.4 \\ & +0.0 \end{aligned}$	+0.2	+0.0	+0.0	16.6	46.0	-29.4	LINE

Page 53 of 77

17	2.194M	6.1	$+10.1$	$+0.1$	${ }^{+0.2}$	+0.0	+0.0	16.6	46.0	-29.4	LINE
18	25.229M	9.4			+0.3	+0.1	+0.0	20.5	50.0	-29.5	LINE
			$\begin{array}{r} +10.1 \\ +0.2 \\ \hline \end{array}$	$\begin{array}{r} +0.2 \\ +0.2 \\ \hline \end{array}$							
19	3.620 M	5.9	+10.1	+0.1	+0.1	+0.0	$+0.0$	16.4	46.0	-29.6	LINE
			+0.1	+0.1							
20	23.984 M	8.9	+10.1	+0.6	+0.3	+0.1	+0.0	20.4	50.0	-29.6	LINE
			+0.2	+0.2							
21	766.306k	5.7	+10.1	+0.2	+0.3	+0.0	$+0.0$	16.3	46.0	-29.7	LINE
			$+0.0$	+0.0							
22	1.058M	5.6	+10.1	+0.3	+0.2	+0.0	+0.0	16.3	46.0	-29.7	LINE
			+0.1	+0.0							
23	21.521 M	9.0	+10.1	+0.5	+0.2	+0.1	+0.0	20.3	50.0	-29.7	LINE
			$+0.2$	+0.2							
24	23.740M	8.8	+10.1	+0.6	+0.3	+0.1	+0.0	20.3	50.0	-29.7	LINE
			+0.2	+0.2							
25	2.528M	5.8	+10.1	+0.1	+0.1	+0.0	$+0.0$	16.2	46.0	-29.8	LINE
			+0.1	+0.0							
26	4.811 M	5.6	+10.1	+0.1	$+0.1$	$+0.0$	$+0.0$	16.1	46.0	-29.9	LINE
			+0.1	+0.1							
27	21.268M	8.8	+10.1	+0.5	+0.2	+0.1	$+0.0$	20.1	50.0	-29.9	LINE
			+0.2	+0.2							
28	3.503M	5.5	+10.1	+0.1	+0.1	+0.0	+0.0	16.0	46.0	-30.0	LINE
			+0.1	+0.1							
29	3.773M	5.5	+10.1	+0.1	+0.1	+0.0	+0.0	16.0	46.0	-30.0	LINE
			+0.1	+0.1							
30	4.567M	5.5	+10.1	+0.1	+0.1	+0.0	+0.0	16.0	46.0	-30.0	LINE
			$+0.1$	+0.1							

Test Location: CKC Laboratories, Inc. • 5046 Sierra Pines Drive • Mariposa, CA 95338 • (209) 966-5240

Customer:
Specification:
Work Order \#:
Test Type:
Tested By:
Software:

WaveLynx Technologies Corporation.
15.207 AC Mains - Average

97029
Conducted Emissions
Skip Doyle / Benny Lovan
EMITest 5.03.02

Date: 5/10/2016
Time: 10:01:48 AM
Sequence\#: 7
120 V 60 Hz

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 3		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 3		S/N

Test Conditions / Notes:

Test Method: ANSI C63.10 (2013)
Frequency Range of Interest:
$0.150-30 \mathrm{MHz}$
RBW $=9 \mathrm{kHz}$; VBW $>9 \mathrm{kHz}$
Environmental Conditions:
Temperature: $21^{\circ} \mathrm{C}$
Relative Humidity: 67%
Atmospheric Pressure: 97.5 kPa
Highest Generated Frequency: 27.12 MHz
The EUT is running at 125 kHz .
The EUT is powered by a DC power supply at 12 VDC .
The EUT is setup to continuously transmit at 125 kHz .
AC Conducted Emissions is being performed on the AC portion of the AC/DC supply.

WaveLynx Technologies Corporation. WO\#: 97029 Sequence\#: 7 Date: 5/10/2016 15.207 AC Mains - Average Test Lead: 120 V 60 Hz RETURN

[^3]Readings
Average Readings
1-15.207 AC Mains - Average
O Peak Readings

- Ambient
2-15.207 AC Mains - Quasi-peak

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	ANP06770	Attenuator	PE7010-10	$1 / 15 / 2015$	$1 / 15 / 2017$
T2	AN01248	50uH LISN-Line 1 (Return) (dB)	$8028-50-T S-24-$ BNC	$1 / 4 / 2016$	$1 / 4 / 2017$
	AN01248	50uH LISN-Line 2 $($ Line) (dB)	$8028-50-T S-24-$ BNC	$1 / 4 / 2016$	$1 / 4 / 2017$
T3	AN02609	High Pass Filter	HE9615-150K- $50-720 B$	$2 / 18 / 2016$	$2 / 18 / 2018$
T4	ANP06884	Cable	LMR195-FR-4	$10 / 27 / 2015$	$10 / 27 / 2017$
T5	ANMD INT	Cable	Underground cables only	$3 / 17 / 2016$	$3 / 17 / 2018$
	AN02111	Spectrum Analyzer	$8593 E M$	$6 / 4 / 2015$	$6 / 4 / 2016$
T6	ANP01153	Cable	NA	$3 / 3 / 2016$	$3 / 3 / 2018$

Measu	ement Data:	Reading listed by margin.				Test Lead: RETURN					
\#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
		$\mathrm{dB} \mu \mathrm{V}$	T5	T6							
	MHz	$\mathrm{dB} \mu \mathrm{V}$	dB	dB	dB	dB	Table	$\mathrm{dB} \mu \mathrm{V}$	$\mathrm{dB} \mu \mathrm{V}$	dB	Ant
1	151.819k	19.2	+10.1	+0.1	+1.8	+0.0	+0.0	31.2	55.9	-24.7	RETUR
			+0.0	+0.0							
2	497.240k	9.2	+10.1	+0.1	+0.2	$+0.0$	+0.0	19.6	46.0	-26.4	RETUR
			+0.0	+0.0							
3	1.491 M	8.8	+10.1	+0.1	+0.2	$+0.0$	+0.0	19.3	46.0	-26.7	RETUR
			+0.1	+0.0							
4	27.124 M	11.1	+10.1	+0.7	+0.3	+0.1	+0.0	22.7	50.0	-27.3	RETUR
			+0.2	+0.2							
5	371.798 k	10.2	+10.1	+0.1	+0.2	+0.0	+0.0	20.6	48.5	-27.9	RETUR
			+0.0	+0.0							
6	22.504 M	10.1	+10.1	+0.6	+0.3	+0.1	+0.0	21.6	50.0	-28.4	RETUR
			+0.2	+0.2							
7	23.226 M	9.9	+10.1	+0.6	+0.3	+0.1	+0.0	21.4	50.0	-28.6	RETUR
			+0.2	+0.2							
8	22.721 M	9.8	+10.1	+0.6	+0.3	+0.1	+0.0	21.3	50.0	-28.7	RETUR
			$+0.2$	+0.2							
9	477.242 k	7.2	+10.1	+0.1	+0.2	+0.0	+0.0	17.6	46.4	-28.8	RETUR
			$+0.0$	+0.0							
10	3.683 M	6.4	+10.1	+0.1	+0.1	+0.0	+0.0	16.9	46.0	-29.1	RETUR
			+0.1	+0.1							
11	457.244 k	7.1	+10.1	+0.1	+0.2	+0.0	+0.0	17.5	46.7	-29.2	RETUR
			+0.0	+0.0							
12	442.700k	7.2	+10.1	+0.1	+0.2	$+0.0$	$+0.0$	17.6	47.0	-29.4	RETUR
			+0.0	+0.0							
13	2.303 M	5.8	+10.1	+0.1	+0.2	$+0.0$	+0.0	16.3	46.0	-29.7	RETUR
			+0.1	+0.0							
14	24.480M	8.8	+10.1	+0.6	+0.3	+0.1	+0.0	20.3	50.0	-29.7	RETUR
			+0.2	+0.2							
15	417.248k	7.3	+10.1	+0.1	+0.2	+0.0	+0.0	17.7	47.5	-29.8	RETUR
			+0.0	+0.0							
16	224.539k	12.4	+10.1	+0.1	+0.2	+0.0	+0.0	22.8	52.6	-29.8	RETUR
			+0.0	+0.0							

17	22.261M	8.6	+10.1	+0.6	+0.3	+0.1	+0.0	20.1	50.0	-29.9	RETUR	
			+0.2	+0.2								
18	1.112M	5.5	+10.1	+0.1	+0.2	+0.0	$+0.0$	16.0	46.0	-30.0	RETUR	
			+0.1	+0.0								
19	967.430k	5.5	+10.1	+0.1	$+0.2$	+0.0	$+0.0$	15.9	46.0	-30.1	RETUR	
			+0.0	+0.0								
20	931.340k	5.5	+10.1	+0.1	+0.2	+0.0	$+0.0$	15.9	46.0	-30.1	RETUR	
			+0.0	+0.0								
21	22.982M	8.4	+10.1	+0.6	+0.3	+0.1	$+0.0$	19.9	50.0	-30.1	RETUR	
			+0.2	+0.2								
22	22.603M	8.4	+10.1	+0.6	+0.3	+0.1	$+0.0$	19.9	50.0	-30.1	RETUR	
			+0.2	+0.2								
23	411.794k	7.0	+10.1	+0.1	+0.2	+0.0	$+0.0$	17.4	47.6	-30.2	RETUR	
			+0.0	+0.0								
24	4.622M	5.2	+10.1	+0.1	+0.1	+0.0	$+0.0$	15.7	46.0	-30.3	RETUR	
			+0.1	+0.1								
25	22.008M	8.2	+10.1	+0.6	${ }^{+0.3}$	+0.1	$+0.0$	19.7	50.0	-30.3	RETUR	
			+0.2	+0.2								
26	284.533k	9.9	+10.1	+0.1	+0.2	+0.0	$+0.0$	20.3	50.7	-30.4	RETUR	
			$+0.0$	+0.0								
27	25.716M	8.0	+10.1	+0.7	+0.3	+0.1	$+0.0$	19.6	50.0	-30.4	RETUR	
			+0.2	+0.2								
28	23.722M	8.0	+10.1	+0.6	+0.3	+0.1	$+0.0$	19.5	50.0	-30.5	RETUR	
			+0.2	$+0.2$								
29	246.355k	10.9	+10.1	+0.1	+0.2	+0.0	$+0.0$	21.3	51.9	-30.6	RETUR	
			+0.0	+0.0								
30	21.268M	8.0	+10.1	+0.6	+0.2	+0.1	$+0.0$	19.4	50.0	-30.6 RETUR		
			+0.2	+0.2								

Test Location: CKC Laboratories, Inc. • 5046 Sierra Pines Drive • Mariposa, CA 95338 • (209) 966-5240

Customer:
Specification:
Work Order \#:
Test Type:
Tested By:
Software:

WaveLynx Technologies Corporation.
15.207 AC Mains - Average

97029
Conducted Emissions
Skip Doyle / Benny Lovan
EMITest 5.03.02

Date: 5/10/2016
Time: 10:08:10 AM
Sequence\#: 9
120 V 60 Hz

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 5		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 5		S/N

Test Conditions / Notes:

Test Method: ANSI C63.10 (2013)
Frequency Range of Interest:
$0.150-30 \mathrm{MHz}$
RBW $=9 \mathrm{kHz}$; VBW $>9 \mathrm{kHz}$
Environmental Conditions:
Temperature: $21^{\circ} \mathrm{C}$
Relative Humidity: 67%
Atmospheric Pressure: 97.5 kPa
Highest Generated Frequency: 27.12 MHz
The EUT is running at 125 kHz .
The EUT is powered by a DC power supply at 12 VDC .
The EUT is setup to continuously transmit at 125 kHz .
AC Conducted Emissions is being performed on the AC portion of the AC/DC supply.

WaveLynx Technologies Corporation. WO\#: 97029 Sequence\#: 9 Date: 5/10/2016 15.207 AC Mains - Average Test Lead: 120 V 60 Hz LINE

[^4]0 Peak Readings

- Ambient

2-15.207 AC Mains - Quasi-peak

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	ANP06770	Attenuator	PE7010-10	$1 / 15 / 2015$	$1 / 15 / 2017$
	AN01248	50uH LISN-Line 1 (Return) (dB)	$8028-50-T S-24-$ BNC	$1 / 4 / 2016$	$1 / 4 / 2017$
T2	AN01248	50uH LISN-Line 2 (Line) (dB)	$8028-50-T S-24-$ BNC	$1 / 4 / 2016$	$1 / 4 / 2017$
T3	AN02609	High Pass Filter	HE9615-150K- 50-720B	$2 / 18 / 2016$	$2 / 18 / 2018$
T4	ANP06884	Cable	LMR195-FR-4	$10 / 27 / 2015$	$10 / 27 / 2017$
T5	ANMD INT	Cable	Underground cables only	$3 / 17 / 2016$	$3 / 17 / 2018$
		Spectrum Analyzer	8593EM	$6 / 4 / 2015$	$6 / 4 / 2016$
	AN02111	Cable	NA	$3 / 3 / 2016$	$3 / 3 / 2018$
T6	ANP01153				

Measurement Data: Reading listed by margin. Test Lead: LINE

\#	$\begin{aligned} & \text { Freq } \\ & \mathrm{MHz} \end{aligned}$	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~T} 5 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~T} 6 \\ & \text { dB } \end{aligned}$	$\begin{array}{r} \mathrm{T} 3 \\ \mathrm{~dB} \end{array}$	T4 dB	$\begin{aligned} & \text { Dist } \\ & \text { Table } \end{aligned}$	Corr $\mathrm{dB} \mu \mathrm{V}$	Spec $\mathrm{dB} \mu \mathrm{V}$	Margin dB	Polar Ant
1	153.637 k	19.7	$\begin{array}{r} \hline+10.1 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \end{aligned}$	+1.5	+0.0	+0.0	31.4	55.8	-24.4	LINE
2	22.549 M	13.1	$\begin{array}{r} \hline+10.1 \\ +0.2 \end{array}$	$\begin{aligned} & \hline+0.6 \\ & +0.2 \end{aligned}$	+0.3	+0.1	+0.0	24.6	50.0	-25.4	LINE
3	22.333 M	12.0	$\begin{array}{r} \hline+10.1 \\ +0.2 \end{array}$	$\begin{aligned} & \hline+0.6 \\ & +0.2 \end{aligned}$	+0.3	$+0.1$	$+0.0$	23.5	50.0	-26.5	LINE
4	1.491 M	8.6	$\begin{array}{r} \hline+10.1 \\ +0.1 \end{array}$	$\begin{aligned} & \hline+0.4 \\ & +0.0 \end{aligned}$	+0.2	$+0.0$	+0.0	19.4	46.0	-26.6	LINE
5	22.802 M	11.7	$\begin{array}{r} \hline+10.1 \\ +0.2 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.6 \\ & +0.2 \end{aligned}$	+0.3	+0.1	+0.0	23.2	50.0	-26.8	LINE
6	22.450 M	10.9	$\begin{array}{r} \hline+10.1 \\ +0.2 \end{array}$	$\begin{aligned} & \hline+0.6 \\ & +0.2 \end{aligned}$	+0.3	+0.1	+0.0	22.4	50.0	-27.6	LINE
7	23.307 M	10.2	$\begin{array}{r} \hline+10.1 \\ +0.2 \end{array}$	$\begin{aligned} & \hline+0.6 \\ & +0.2 \end{aligned}$	+0.3	+0.1	+0.0	21.7	50.0	-28.3	LINE
8	22.080 M	10.3	$\begin{array}{r} \hline+10.1 \\ +0.2 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.5 \\ & +0.2 \end{aligned}$	+0.3	+0.1	+0.0	21.7	50.0	-28.3	LINE
9	22.937 M	9.9	$\begin{array}{r} \hline+10.1 \\ +0.2 \end{array}$	$\begin{aligned} & \hline+0.6 \\ & +0.2 \end{aligned}$	+0.3	+0.1	+0.0	21.4	50.0	-28.6	LINE
10	23.055 M	9.9	$\begin{array}{r} \hline+10.1 \\ +0.2 \end{array}$	$\begin{aligned} & \hline+0.6 \\ & +0.2 \end{aligned}$	+0.3	+0.1	+0.0	21.4	50.0	-28.6	LINE
11	21.827 M	10.1	$\begin{array}{r} \hline+10.1 \\ +0.2 \end{array}$	$\begin{aligned} & +0.5 \\ & +0.2 \\ & \hline \end{aligned}$	+0.2	+0.1	+0.0	21.4	50.0	-28.6	LINE
12	21.954M	9.9	$\begin{array}{r} \hline+10.1 \\ +0.2 \end{array}$	$\begin{aligned} & \hline+0.5 \\ & +0.2 \end{aligned}$	+0.2	$+0.1$	+0.0	21.2	50.0	-28.8	LINE
13	2.050 M	6.5	$\begin{array}{r} \hline+10.1 \\ +0.1 \end{array}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \end{aligned}$	$+0.2$	$+0.0$	$+0.0$	17.0	46.0	-29.0	LINE
14	22.685 M	9.5	$\begin{array}{r} \hline+10.1 \\ +0.2 \end{array}$	$\begin{aligned} & \hline+0.6 \\ & +0.2 \end{aligned}$	+0.3	+0.1	+0.0	21.0	50.0	-29.0	LINE
15	22.197 M	9.4	$\begin{array}{r} \hline+10.1 \\ +0.2 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.6 \\ & +0.2 \end{aligned}$	+0.3	+0.1	+0.0	20.9	50.0	-29.1	LINE
16	2.700 M	6.3	$\begin{array}{r} \hline+10.1 \\ +0.1 \end{array}$	$\begin{aligned} & \hline+0.1 \\ & +0.1 \end{aligned}$	+0.1	+0.0	+0.0	16.8	46.0	-29.2	LINE

Page 61 of 77

17	820.846k	6.1	+10.1	+0.2	+0.3	+0.0	$+0.0$	16.7	46.0	-29.3	LINE
			+0.0	+0.0							
18	1.545M	5.9	+10.1	+0.4	+0.2	+0.0	$+0.0$	16.7	46.0	-29.3	LINE
			+0.1	+0.0							
19	3.891M	6.2	+10.1	+0.1	+0.1	+0.0	$+0.0$	16.7	46.0	-29.3	LINE
			+0.1	+0.1							
20	21.584M	9.4	+10.1	+0.5	$+0.2$	+0.1	$+0.0$	20.7	50.0	-29.3	LINE
			+0.2	+0.2							
21	4.062M	6.1	+10.1	+0.1	+0.1	+0.0	$+0.0$	16.6	46.0	-29.4	LINE
			+0.1	+0.1							
22	722.674k	5.8	+10.1	+0.2	+0.3	+0.0	$+0.0$	16.4	46.0	-29.6	LINE
			+0.0	+0.0							
23	23.560M	8.8	+10.1	+0.7	+0.3	+0.1	$+0.0$	20.4	50.0	-29.6	LINE
			$+0.2$	+0.2							
24	4.161M	5.9	+10.1	+0.1	+0.1	+0.0	$+0.0$	16.4	46.0	-29.6	LINE
			+0.1	+0.1							
25	3.016M	5.9	+10.1	+0.1	+0.1	+0.0	+0.0	16.4	46.0	-29.6	LINE
			+0.1	+0.1							
26	2.312M	5.9	+10.1	+0.1	+0.2	+0.0	$+0.0$	16.4	46.0	-29.6	LINE
			$+0.1$	+0.0							
27	4.261M	5.7	+10.1	+0.1	+0.1	+0.0	$+0.0$	16.2	46.0	-29.8	LINE
			+0.1	+0.1							
28	20.952M	8.9	+10.1	+0.5	${ }^{+0.2}$	+0.1	$+0.0$	20.2	50.0	-29.8	LINE
			+0.2	+0.2							
29	21.458M	8.7	+10.1	+0.5	${ }^{+0.2}$	+0.1	$+0.0$	20.0	50.0	-30.0	LINE
			+0.2	+0.2							
30	21.701M	8.7	+10.1	+0.5	+0.2	+0.1	$+0.0$	20.0	50.0	-30.0	LINE
			$+0.2$	$+0.2$							

Test Location: CKC Laboratories, Inc. • 5046 Sierra Pines Drive • Mariposa, CA 95338 • (209) 966-5240

Customer:
Specification:
Work Order \#:
Test Type:
Tested By:
Software:

WaveLynx Technologies Corporation.
15.207 AC Mains - Average

97029
Conducted Emissions
Skip Doyle / Benny Lovan
EMITest 5.03.02

Date: 5/10/2016
Time: 10:11:39 AM
Sequence\#: 10
120 V 60 Hz

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 5		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 5		S/N

Test Conditions / Notes:

Test Method: ANSI C63.10 (2013)
Frequency Range of Interest:
$0.150-30 \mathrm{MHz}$
RBW $=9 \mathrm{kHz}$; VBW $>9 \mathrm{kHz}$
Environmental Conditions:
Temperature: $21^{\circ} \mathrm{C}$
Relative Humidity: 67%
Atmospheric Pressure: 97.5 kPa
Highest Generated Frequency: 27.12 MHz
The EUT is running at 125 kHz .
The EUT is powered by a DC power supply at 12 VDC .
The EUT is setup to continuously transmit at 125 kHz .
AC Conducted Emissions is being performed on the AC portion of the AC/DC supply.

WaveLynx Technologies Corporation. WO\#: 97029 Sequence\#: 10 Date: 5/10/2016 15.207 AC Mains - Average Test Lead: 120 V 60 Hz RETURN

[^5]0 Peak Readings
Ambient
2-15.207 AC Mains - Quasi-peak

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	ANP06770	Attenuator	PE7010-10	$1 / 15 / 2015$	$1 / 15 / 2017$
T2	AN01248	50uH LISN-Line 1 (Return) (dB)	$8028-50-T S-24-$ BNC	$1 / 4 / 2016$	$1 / 4 / 2017$
	AN01248	50uH LISN-Line 2 (Line) (dB)	$8028-50-T S-24-$ BNC	$1 / 4 / 2016$	$1 / 4 / 2017$
T3	AN02609	High Pass Filter	HE9615-150K- 50-720B	$2 / 18 / 2016$	$2 / 18 / 2018$
T4	ANP06884	Cable	LMR195-FR-4	$10 / 27 / 2015$	$10 / 27 / 2017$
T5	ANMD INT	Cable	Underground cables only	$3 / 17 / 2016$	$3 / 17 / 2018$
		Spectrum Analyzer	8593EM	$6 / 4 / 2015$	$6 / 4 / 2016$
	AN02111	Cable	NA	$3 / 3 / 2016$	$3 / 3 / 2018$
T6	ANP01153				

Measu	ment Data	Reading listed by margin.				Test Lead: RETURN					
\#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	$\mathrm{dB} \mu \mathrm{V}$			dB	dB	Table	$\mathrm{dB} \mu \mathrm{V}$	dB $\mu \mathrm{V}$	dB	
1	157.273k	19.3	+10.1	+0.1	+1.0	$+0.0$	+0.0	30.5	55.6	-25.1	RETUR
			+0.0	+0.0							
2	179.089k	16.9	+10.1	+0.1	+0.3	+0.0	+0.0	27.4	54.5	-27.1	RETUR
			+0.0	+0.0							
3	1.491 M	7.6	+10.1	+0.1	+0.2	+0.0	+0.0	18.1	46.0	-27.9	RETUR
			+0.1	+0.0							
4	22.540 M	10.1	+10.1	+0.6	+0.3	+0.1	+0.0	21.6	50.0	-28.4	RETUR
			+0.2	+0.2							
5	1.951 M	6.8	+10.1	+0.1	+0.2	+0.0	+0.0	17.3	46.0	-28.7	RETUR
			+0.1	+0.0							
6	475.424k	7.0	+10.1	+0.1	+0.2	+0.0	+0.0	17.4	46.4	-29.0	RETUR
			+0.0	+0.0							
7	633.591k	6.5	+10.1	+0.1	+0.3	+0.0	+0.0	17.0	46.0	-29.0	RETUR
			+0.0	+0.0							
8	22.324 M	9.4	+10.1	+0.6	+0.3	+0.1	+0.0	20.9	50.0	-29.1	RETUR
			+0.2	+0.2							
9	464.516k	6.9	+10.1	+0.1	+0.2	+0.0	+0.0	17.3	46.6	-29.3	RETUR
			+0.0	+0.0							
10	531.783k	6.2	+10.1	+0.1	+0.3	+0.0	+0.0	16.7	46.0	-29.3	RETUR
			$+0.0$	+0.0							
11	22.441 M	9.1	+10.1	+0.6	+0.3	+0.1	+0.0	20.6	50.0	-29.4	RETUR
			+0.2	+0.2							
12	22.784 M	9.1	+10.1	+0.6	+0.3	+0.1	+0.0	20.6	50.0	-29.4	RETUR
			+0.2	+0.2							
13	657.225 k	5.9	+10.1	+0.1	+0.3	+0.0	+0.0	16.4	46.0	-29.6	RETUR
			+0.0	+0.0							
14	10.730 M	9.5	+10.1	+0.3	+0.2	+0.1	+0.0	20.4	50.0	-29.6	RETUR
			+0.1	+0.1							
15	21.692 M	8.8	+10.1	+0.6	+0.2	+0.1	+0.0	20.2	50.0	-29.8	RETUR
			+0.2	+0.2							
16	709.948k	5.7	+10.1	+0.1	+0.3	+0.0	+0.0	16.2	46.0	-29.8	RETUR
			+0.0	+0.0							

17	4.378M	5.7	$+10.1$	$+0.1$	+0.1	+0.0	+0.0	16.2	46.0	-29.8	RETUR
18	793.576k	5.6	+10.1	+0.1	+0.3	+0.0	+0.0	16.1	46.0	-29.9	RETUR
			+0.0	+0.0							
19	671.769k	5.6	+10.1	+0.1	+0.3	+0.0	+0.0	16.1	46.0	-29.9	RETUR
			+0.0	+0.0							
20	23.036M	8.6	+10.1	+0.6	+0.3	+0.1	+0.0	20.1	50.0	-29.9	RETUR
			+0.2	+0.2							
21	22.667M	8.6	+10.1	+0.6	+0.3	+0.1	$+0.0$	20.1	50.0	-29.9	RETUR
			+0.2	+0.2							
22	4.603M	5.5	+10.1	+0.1	+0.1	+0.0	$+0.0$	16.0	46.0	-30.0	RETUR
			+0.1	+0.1							
23	2.943M	5.4	+10.1	+0.1	+0.1	+0.0	$+0.0$	15.9	46.0	-30.1	RETUR
			+0.1	+0.1							
24	204.541k	12.9	+10.1	+0.1	+0.2	+0.0	$+0.0$	23.3	53.4	-30.1	RETUR
			+0.0	+0.0							
25	4.459M	5.4	+10.1	+0.1	+0.1	+0.0	$+0.0$	15.9	46.0	-30.1	RETUR
			+0.1	+0.1							
26	8.844M	9.1	+10.1	+0.2	$+0.2$	$+0.1$	$+0.0$	19.9	50.0	-30.1	RETUR
			+0.1	+0.1							
27	8.339M	9.1	+10.1	$+0.2$	+0.2	+0.1	$+0.0$	19.9	50.0	-30.1	RETUR
			+0.1	+0.1							
28	2.772M	5.3	+10.1	+0.1	+0.1	+0.0	+0.0	15.8	46.0	-30.2	RETUR
			+0.1	+0.1							
29	4.080M	5.3	+10.1	+0.1	+0.1	$+0.0$	$+0.0$	15.8	46.0	-30.2	RETUR
			+0.1	+0.1							
30	23.172M	8.2	+10.1	+0.6	$+0.3$	+0.1	+0.0	19.7	50.0	-30.3	RETUR
			+0.2	$+0.2$							

Test Location: CKC Laboratories, Inc. • 5046 Sierra Pines Drive • Mariposa, CA 95338 • (209) 966-5240

Customer:
Specification:
Work Order \#:
Test Type:
Tested By:
Software:

WaveLynx Technologies Corporation.
15.207 AC Mains - Average

97029
Conducted Emissions
Skip Doyle / Benny Lovan
EMITest 5.03.02

Date: 5/10/2016
Time: 10:45:42 AM
Sequence\#: 16
120 V 60 Hz

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 7		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 7		S/N

Test Conditions / Notes:

Test Method: ANSI C63.10 (2013)
Frequency Range of Interest:
$0.150-30 \mathrm{MHz}$
RBW $=9 \mathrm{kHz}$; VBW $>9 \mathrm{kHz}$
Environmental Conditions:
Temperature: $21^{\circ} \mathrm{C}$
Relative Humidity: 67%
Atmospheric Pressure: 97.5 kPa
Highest Generated Frequency: 27.12 MHz
The EUT is running at 125 kHz .
The EUT is powered by a DC power supply at 12 VDC .
The EUT is setup to continuously transmit at 125 kHz .
AC Conducted Emissions is being performed on the AC portion of the AC/DC supply.

WaveLynx Technologies Corporation. WO\#: 97029 Sequence\#\# 16 Date: 5/10/2016 15.207 AC Mains - Average Test Lead: 120 V 60 Hz LINE

Sweep Data
$\times \quad$ QP Readings

Software Version: 5.03 .02
Readings

* Average Readings
$\quad 1-15.207$ AC Mains - Average
O Peak Readings
- Ambient

2-15.207 AC Mains - Quasi-peak

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	ANP06770	Attenuator	PE7010-10	$1 / 15 / 2015$	$1 / 15 / 2017$
	AN01248	50uH LISN-Line 1 (Return) (dB)	$8028-50-T S-24-$ BNC	$1 / 4 / 2016$	$1 / 4 / 2017$
T2	AN01248	50uH LISN-Line 2 (Line) (dB)	$8028-50-T S-24-$ BNC	$1 / 4 / 2016$	$1 / 4 / 2017$
T3	AN02609	High Pass Filter	HE9615-150K- 50-720B	$2 / 18 / 2016$	$2 / 18 / 2018$
T4	ANP06884	Cable	LMR195-FR-4	$10 / 27 / 2015$	$10 / 27 / 2017$
T5	ANMD INT	Cable	Underground cables only	$3 / 17 / 2016$	$3 / 17 / 2018$
		Spectrum Analyzer	8593EM	$6 / 4 / 2015$	$6 / 4 / 2016$
	AN02111	Cable	NA	$3 / 3 / 2016$	$3 / 3 / 2018$
T6	ANP01153				

Measurement Data: Reading listed by margin. Test Lead: LINE

\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~T} 5 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~T} 6 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	T3 dB	T4 dB	Dist Table	Corr $\mathrm{dB} \mu \mathrm{V}$	Spec $\mathrm{dB} \mu \mathrm{V}$	Margin dB	Polar Ant
1	151.819k	19.0	$\begin{array}{r} \hline+10.1 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \end{aligned}$	+1.8	+0.0	+0.0	31.0	55.9	-24.9	LINE
2	1.491 M	9.3	$\begin{array}{r} \hline+10.1 \\ +0.1 \end{array}$	$\begin{aligned} & \hline+0.4 \\ & +0.0 \end{aligned}$	+0.2	$+0.0$	+0.0	20.1	46.0	-25.9	LINE
3	22.369 M	12.2	$\begin{array}{r} \hline+10.1 \\ +0.2 \end{array}$	$\begin{aligned} & +0.6 \\ & +0.2 \end{aligned}$	+0.3	$+0.1$	$+0.0$	23.7	50.0	-26.3	LINE
4	499.058k	8.9	$\begin{array}{r} \hline+10.1 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \end{aligned}$	+0.2	$+0.0$	+0.0	19.3	46.0	-26.7	LINE
5	22.847 M	11.5	$\begin{array}{r} \hline+10.1 \\ +0.2 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.6 \\ & +0.2 \end{aligned}$	+0.3	+0.1	+0.0	23.0	50.0	-27.0	LINE
6	22.116 M	11.5	$\begin{array}{r} \hline+10.1 \\ +0.2 \end{array}$	$\begin{aligned} & \hline+0.5 \\ & +0.2 \end{aligned}$	+0.3	+0.1	+0.0	22.9	50.0	-27.1	LINE
7	21.620 M	10.7	$\begin{array}{r} \hline+10.1 \\ +0.2 \end{array}$	$\begin{aligned} & +0.5 \\ & +0.2 \end{aligned}$	+0.2	+0.1	+0.0	22.0	50.0	-28.0	LINE
8	22.594 M	10.4	$\begin{array}{r} \hline+10.1 \\ +0.2 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.6 \\ & +0.2 \end{aligned}$	+0.3	+0.1	+0.0	21.9	50.0	-28.1	LINE
9	27.124M	10.9	$\begin{array}{r} \hline+10.1 \\ +0.2 \end{array}$	$\begin{aligned} & \hline+0.1 \\ & +0.2 \end{aligned}$	+0.3	+0.1	+0.0	21.9	50.0	-28.1	LINE
10	23.596M	9.8	$\begin{array}{r} \hline+10.1 \\ +0.2 \end{array}$	$\begin{aligned} & \hline+0.7 \\ & +0.2 \end{aligned}$	+0.3	+0.1	+0.0	21.4	50.0	-28.6	LINE
11	188.179k	14.8	$\begin{array}{r} \hline+10.1 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.1 \\ +0.0 \\ \hline \end{array}$	+0.3	+0.0	$+0.0$	25.3	54.1	-28.8	LINE
12	2.997M	6.7	$\begin{array}{r} \hline+10.1 \\ +0.1 \\ \hline \end{array}$	$\begin{aligned} & +0.1 \\ & +0.1 \end{aligned}$	+0.1	$+0.0$	$+0.0$	17.2	46.0	-28.8	LINE
13	4.188M	6.6	$\begin{array}{r} \hline+10.1 \\ +0.1 \end{array}$	$\begin{aligned} & \hline+0.1 \\ & +0.1 \end{aligned}$	+0.1	$+0.0$	$+0.0$	17.1	46.0	-28.9	LINE
14	23.343 M	9.6	$\begin{array}{r} \hline+10.1 \\ +0.2 \end{array}$	$\begin{aligned} & \hline+0.6 \\ & +0.2 \end{aligned}$	+0.3	+0.1	+0.0	21.1	50.0	-28.9	LINE
15	457.244k	7.2	$\begin{array}{r} \hline+10.1 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.1 \\ +0.0 \\ \hline \end{array}$	+0.2	+0.0	+0.0	17.6	46.7	-29.1	LINE
16	21.873 M	9.5	$\begin{array}{r} \hline+10.1 \\ +0.2 \end{array}$	$\begin{aligned} & \hline+0.5 \\ & +0.2 \end{aligned}$	+0.2	+0.1	+0.0	20.8	50.0	-29.2	LINE

Page 69 of 77

17	848.116k	6.2	$\begin{array}{r} +10.1 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.2 \\ & +0.0 \end{aligned}$	+0.3	$+0.0$	+0.0	16.8	46.0	-29.2	LINE
18	4.576M	6.3	+10.1	+0.1	+0.1	+0.0	+0.0	16.8	46.0	-29.2	LINE
			+0.1	+0.1							
19	4.712M	6.2	+10.1	+0.1	+0.1	+0.0	+0.0	16.7	46.0	-29.3	LINE
			+0.1	+0.1							
20	2.474 M	6.3	+10.1	+0.1	+0.1	+0.0	+0.0	16.7	46.0	-29.3	LINE
			+0.1	+0.0							
21	769.942k	5.8	+10.1	+0.2	+0.3	+0.0	+0.0	16.4	46.0	-29.6	LINE
			+0.0	+0.0							
22	3.791 M	5.8	+10.1	+0.1	+0.1	+0.0	+0.0	16.3	46.0	-29.7	LINE
			$+0.1$	+0.1							
23	2.898M	5.5	+10.1	+0.1	+0.1	+0.0	+0.0	16.0	46.0	-30.0	LINE
			+0.1	+0.1							
24	589.959k	5.4	+10.1	+0.1	${ }^{+0.3}$	+0.0	+0.0	15.9	46.0	-30.1	LINE
			+0.0	$+0.0$							
25	666.315k	5.3	+10.1	+0.2	+0.3	+0.0	+0.0	15.9	46.0	-30.1	LINE
			+0.0	+0.0							
26	21.376M	8.5	+10.1	+0.5	+0.2	+0.1	+0.0	19.8	50.0	-30.2	LINE
			+0.2	+0.2							
27	23.091M	8.2	+10.1	+0.6	+0.3	+0.1	+0.0	19.7	50.0	-30.3	LINE
			+0.2	+0.2							
28	24.101M	8.3	+10.1	+0.5	+0.3	+0.1	+0.0	19.7	50.0	-30.3	LINE
			+0.2	+0.2							
29	25.355M	8.4	+10.1	+0.1	+0.3	+0.1	+0.0	19.4	50.0	-30.6	LINE
			+0.2	+0.2							
30	24.850M	8.1	+10.1	+0.3	+0.3	+0.1	+0.0	19.3	50.0	-30.7	LINE
			+0.2	+0.2							

Test Location: CKC Laboratories, Inc. • 5046 Sierra Pines Drive • Mariposa, CA 95338 • (209) 966-5240

Customer:
Specification:
Work Order \#:
Test Type:
Tested By:
Software:

WaveLynx Technologies Corporation.
15.207 AC Mains - Average

97029
Conducted Emissions
Skip Doyle / Benny Lovan
EMITest 5.03.02

Date: 5/10/2016
Time: 10:43:12 AM
Sequence\#: 15
120 V 60 Hz

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 7		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 7		S/N

Test Conditions / Notes:

Test Method: ANSI C63.10 (2013)
Frequency Range of Interest:
$0.150-30 \mathrm{MHz}$
RBW $=9 \mathrm{kHz}$; VBW $>9 \mathrm{kHz}$
Environmental Conditions:
Temperature: $21^{\circ} \mathrm{C}$
Relative Humidity: 67%
Atmospheric Pressure: 97.5 kPa
Highest Generated Frequency: 27.12 MHz
The EUT is running at 125 kHz .
The EUT is powered by a DC power supply at 12 VDC .
The EUT is setup to continuously transmit at 125 kHz .
AC Conducted Emissions is being performed on the AC portion of the AC/DC supply.

WaveLynx Technologies Corporation. WO\#: 97029 Sequence\#\# 15 Date: 5/10/2016 15.207 AC Mains - Average Test Lead: 120 V 60 Hz RETURN

[^6]Readings
Average Readings
1-15.207 AC Mains - Average

O Peak Readings

- Ambient
2-15.207 AC Mains - Quasi-peak

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	ANP06770	Attenuator	PE7010-10	$1 / 15 / 2015$	$1 / 15 / 2017$
T2	AN01248	50uH LISN-Line 1 (Return) (dB)	$8028-50-T S-24-$ BNC	$1 / 4 / 2016$	$1 / 4 / 2017$
	AN01248	50uH LISN-Line 2 (Line) (dB)	$8028-50-T S-24-$ BNC	$1 / 4 / 2016$	$1 / 4 / 2017$
T3	AN02609	High Pass Filter	HE9615-150K- 50-720B	$2 / 18 / 2016$	$2 / 18 / 2018$
T4	ANP06884	Cable	LMR195-FR-4	$10 / 27 / 2015$	$10 / 27 / 2017$
T5	ANMD INT	Cable	Underground cables only	$3 / 17 / 2016$	$3 / 17 / 2018$
		Spectrum Analyzer	8593EM	$6 / 4 / 2015$	$6 / 4 / 2016$
	AN02111	Cable	NA	$3 / 3 / 2016$	$3 / 3 / 2018$
T6	ANP01153				

Measurement Data: \quad Reading listed by margin. \quad Test Lead: RETURN

\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~T} 5 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~T} 6 \\ & \mathrm{~dB} \end{aligned}$	$\begin{array}{r} \mathrm{T} 3 \\ \mathrm{~dB} \\ \hline \end{array}$	T4 dB	Dist Table	Corr $\mathrm{dB} \mu \mathrm{V}$	Spec $\mathrm{dB} \mu \mathrm{V}$	Margin	Polar Ant
1	155.455 k	19.3	$\begin{array}{r} \hline+10.1 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \end{aligned}$	+1.2	+0.0	+0.0	30.7	55.7	-25.0	RETUR
2	22.847 M	12.4	$\begin{array}{r} \hline+10.1 \\ +0.2 \end{array}$	$\begin{aligned} & \hline+0.6 \\ & +0.2 \end{aligned}$	+0.3	+0.1	+0.0	23.9	50.0	-26.1	RETUR
3	500.876k	9.0	$\begin{array}{r} \hline+10.1 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \end{aligned}$	+0.2	+0.0	+0.0	19.4	46.0	-26.6	RETUR
4	27.124M	10.9	$\begin{array}{r} \hline+10.1 \\ +0.2 \end{array}$	$\begin{aligned} & \hline+0.7 \\ & +0.2 \end{aligned}$	+0.3	+0.1	+0.0	22.5	50.0	-27.5	RETUR
5	1.491 M	7.3	$\begin{array}{r} \hline+10.1 \\ +0.1 \\ \hline \end{array}$	$\begin{array}{r} \hline+0.1 \\ +0.0 \\ \hline \end{array}$	+0.2	+0.0	+0.0	17.8	46.0	-28.2	RETUR
6	873.568k	7.2	$\begin{array}{r} \hline+10.1 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \end{aligned}$	+0.2	+0.0	+0.0	17.6	46.0	-28.4	RETUR
7	22.125 M	9.8	$\begin{array}{r} \hline+10.1 \\ +0.2 \end{array}$	$\begin{aligned} & +0.6 \\ & +0.2 \end{aligned}$	+0.3	+0.1	+0.0	21.3	50.0	-28.7	RETUR
8	779.032k	6.6	$\begin{array}{r} \hline+10.1 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \end{aligned}$	+0.3	$+0.0$	+0.0	17.1	46.0	-28.9	RETUR
9	375.434k	8.7	$\begin{array}{r} \hline+10.1 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \end{aligned}$	+0.2	+0.0	+0.0	19.1	48.4	-29.3	RETUR
10	985.475 k	6.2	$\begin{array}{r} \hline+10.1 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \end{aligned}$	+0.2	+0.0	+0.0	16.6	46.0	-29.4	RETUR
11	817.210k	6.0	$\begin{array}{r} +10.1 \\ +0.0 \end{array}$	$\begin{array}{r} +0.1 \\ +0.0 \\ \hline \end{array}$	+0.3	$+0.0$	+0.0	16.5	46.0	-29.5	RETUR
12	4.125 M	6.0	$\begin{array}{r} \hline+10.1 \\ +0.1 \end{array}$	$\begin{array}{r} +0.1 \\ +0.1 \\ \hline \end{array}$	+0.1	+0.0	+0.0	16.5	46.0	-29.5	RETUR
13	2.158 M	5.8	$\begin{array}{r} \hline+10.1 \\ +0.1 \end{array}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \end{aligned}$	+0.2	+0.0	+0.0	16.3	46.0	-29.7	RETUR
14	2.267 M	5.8	$\begin{array}{r} \hline+10.1 \\ +0.1 \end{array}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \end{aligned}$	+0.2	$+0.0$	+0.0	16.3	46.0	-29.7	RETUR
15	4.973 M	5.8	$\begin{array}{r} \hline+10.1 \\ +0.1 \\ \hline \end{array}$	$\begin{array}{r} +0.1 \\ +0.1 \\ \hline \end{array}$	+0.1	+0.0	+0.0	16.3	46.0	-29.7	RETUR
16	1.283 M	5.8	$\begin{array}{r} \hline+10.1 \\ +0.1 \end{array}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \end{aligned}$	+0.2	+0.0	+0.0	16.3	46.0	-29.7	RETUR

Page 73 of 77

17	22.369 M	8.7	$\begin{array}{r} \hline+10.1 \\ +0.2 \end{array}$	$\begin{aligned} & \hline+0.6 \\ & +0.2 \end{aligned}$	+0.3	+0.1	$+0.0$	20.2	50.0	-29.8	RETUR
18	23.596 M	8.7	+10.1	+0.6	$+0.3$	+0.1	+0.0	20.2	50.0	-29.8	RETUR
			+0.2	+0.2							
19	1.707M	5.6	+10.1	+0.1	+0.2	+0.0	+0.0	16.1	46.0	-29.9	RETUR
			+0.1	+0.0							
20	2.492 M	5.7	+10.1	+0.1	$+0.1$	+0.0	+0.0	16.1	46.0	-29.9	RETUR
			+0.1	+0.0							
21	22.594 M	8.6	+10.1	+0.6	$+0.3$	+0.1	+0.0	20.1	50.0	-29.9	RETUR
			+0.2	+0.2							
22	23.343M	8.5	+10.1	+0.6	+0.3	+0.1	+0.0	20.0	50.0	-30.0	RETUR
			+0.2	+0.2							
23	1.888 M	5.4	+10.1	+0.1	+0.2	+0.0	+0.0	15.9	46.0	-30.1	RETUR
			+0.1	+0.0							
24	24.101M	8.4	+10.1	+0.6	+0.3	$+0.1$	+0.0	19.9	50.0	-30.1	RETUR
			+0.2	+0.2							
25	1.455 M	5.3	+10.1	+0.1	+0.2	$+0.0$	+0.0	15.8	46.0	-30.2	RETUR
			+0.1	+0.0							
26	3.268 M	5.3	+10.1	+0.1	+0.1	+0.0	+0.0	15.8	46.0	-30.2	RETUR
			+0.1	+0.1							
27	4.297 M	5.3	+10.1	+0.1	$+0.1$	+0.0	+0.0	15.8	46.0	-30.2	RETUR
			+0.1	+0.1							
28	2.303 M	5.2	+10.1	+0.1	+0.2	+0.0	+0.0	15.7	46.0	-30.3	RETUR
			+0.1	+0.0							
29	2.754 M	5.2	+10.1	+0.1	+0.1	+0.0	+0.0	15.7	46.0	-30.3	RETUR
			+0.1	+0.1							
30	2.898 M	5.2	+10.1	+0.1	$+0.1$	+0.0	+0.0	15.7	46.0	-30.3	RETUR
			+0.1	+0.1							

Test Setup Photos

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of $\mathrm{k}=2$. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS
Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$, the spectrum analyzer reading in $\mathrm{dB} \mu \mathrm{V}$ was corrected by using the following formula. This reading was then compared to the applicable specification limit. Individual measurements were compared with the displayed limit value in the margin column. The margin was calculated based on the limit value subtracting the corrected measured value; a negative margin represents a measurement less than the limit while a positive margin represents a measurement exceeding the limit.

SAMPLE CALCULATIONS			
	Meter reading	$(\mathrm{dB} \mu \mathrm{V})$	
+	Antenna Factor	$(\mathrm{dB} / \mathrm{m})$	
+	Cable Loss	(dB)	
-	Distance Correction	(dB)	
-	Preamplifier Gain	(dB)	
$=$	Corrected Reading	$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE			
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz
RADIATED EMISSIONS	1000 MHz	$>1 \mathrm{GHz}$	1 MHz

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or caret (" \wedge ") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.

[^0]: \times QPReadings
 Software Version: 5.03.02

[^1]: \times QP Readings
 Software Version: 5.03.02

[^2]: Sweep Data
 \times QP Readings
 Software Version: 5.03.02

[^3]: \times QPReadings
 Software Version: 5.03.02

[^4]: Sweep Data
 \times QP Readings
 Software Version: 5.03.02

[^5]: Sweep Data
 \times QP Readings
 Software Version: 5.03.02

[^6]: \times QPReadings
 Software Version: 5.03.02

