WaveLynx Technologies Corporation

TEST REPORT FOR

Ethos Models: ET10-2, ET10-3, ET10-6, and ET10-7

Tested To The Following Standards:

FCC Part 15 Subpart C Sections:

15.207 & 15.225 (13.110-14.010 MHz)

Report No.: 97029-15

Date of issue: May 24, 2016

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of EMC testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

This report contains a total of 83 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

TABLE OF CONTENTS

Administrative Information	3
Test Report Information	3
Report Authorization	3
Test Facility Information	4
Software Versions	4
Site Registration & Accreditation Information	4
Summary of Results	5
Modifications During Testing	5
Conditions During Testing	5
Equipment Under Test	6
General Product Information	7
FCC Part 15 Subpart C	8
15.215(c) Occupied Bandwidth (20dB BW)	8
15.225(a)-(c) Field Strength of Fundamental	13
15.225(e) Frequency Stability	30
15.225(d) Radiated Emissions	34
15.207 AC Conducted Emissions	49
Supplemental Information	82
Measurement Uncertainty	82
Emissions Test Details	82

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR:

WaveLynx Technologies Corporation 12303 Airport Way, Suite 200 Broomfield, CO 80021

REPRESENTATIVE: Daniel Field Customer Reference Number: CKPO030916

DATE OF EQUIPMENT RECEIPT: DATE(S) OF TESTING: **REPORT PREPARED BY:**

Terri Rayle CKC Laboratories, Inc. 5046 Sierra Pines Drive Mariposa, CA 95338

Project Number: 97029

March 15, 2016 March 15 – May 10 , 2016

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the sample equipment tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve 7 B

Steve Behm Director of Quality Assurance & Engineering Services CKC Laboratories, Inc.

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. 5046 Sierra Pines Drive Mariposa, CA 95338

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.03.02

Site Registration & Accreditation Information

Location	CB #	TAIWAN	CANADA	FCC	JAPAN
Mariposa A	US0103	SL2-IN-E-1147R	3082A-2	90477	A-0136
Mariposa D	US0103	SL2-IN-E-1147R	3082A-1	784962	A-0136

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C - 15.225

Test Procedure	Description	Modifications	Results
15.215(c)	Occupied Bandwidth	NA	Pass
15.225(a)-(c)	Field Strength of Fundamental	NA	Pass
15.225(e)	Frequency Stability	NA	Pass
15.225(d)	Field Strength of Spurious Emissions	NA	Pass
15.207	AC Conducted Emissions	NA	Pass

NA = Not Applicable

Modifications During Testing

This list is a summary of the modifications made to the equipment during testing.

Summary of Conditions

No modifications were made during testing.

Modifications listed above must be incorporated into all production units.

Conditions During Testing

This list is a summary of the conditions noted to the equipment during testing.

Summary of Conditions

None

EQUIPMENT UNDER TEST (EUT)

During testing numerous configurations may have been utilized. The configurations listed below support compliance to the standard(s) listed in the Summary of Results section.

Equipment Tested:			
Device	Manufacturer	Model #	S/N
Ethos	WaveLynx Technologies	ET10-2	NA
	Corporation		
Support Equipment:			
Device	Manufacturer	Model #	S/N
DC Power Supply	HP	6205C	2228A01775
Configuration 3			
Equipment Tested:			
Device	Manufacturer	Model #	S/N
Ethos	WaveLynx Technologies	ET10-3	NA
	Corporation		
Support Equipment:			
Device	Manufacturer	Model #	S/N
DC Power Supply	HP	6205C	2228A01775
Configuration 6			
Equipment Tested:			
Device	Manufacturer	Model #	S/N
Ethos	WaveLynx Technologies	ET10-6	NA
	Corporation		
Support Equipment:			
Device	Manufacturer	Model #	S/N
DC Power Supply	HP	6205C	2228A01775
Configuration 7			
Equipment Tested:			
Device	Manufacturer	Model #	S/N
Ethos	WaveLynx Technologies	ET10-7	NA
	Corporation		
Support Equipment:			
Device	Manufacturer	Model #	S/N
DC Power Supply	НР	6205C	2228A01775

Configuration 10

Equipment Tested:				
Device	Manufacturer	Model #	S/N	
Ethos	WaveLynx Technologies	ET10-2	NA	
	Corporation			
Ethos	WaveLynx Technologies	ET10-3	NA	
	Corporation			
Support Equipment:				
Device	Manufacturer	Model #	S/N	
DC Power Supply	HP	6205C	2228A01775	
Configuration 11 Equipment Tested:				
Device	Manufacturer	Model #	S/N	

Device	Manufacturer	woder #	5/ IN
Ethos	WaveLynx Technologies	ET10-6	NA
	Corporation		
Ethos	WaveLynx Technologies	ET10-7	NA
	Corporation		
Support Equipment:			
Device	Manufacturer	Model #	S/N
DC Power Supply	НР	6205C	2228A01775

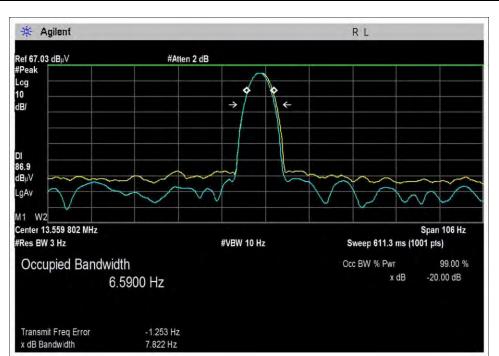
General Product Information:

Product Information	Manufacturer-Provided Details	
Equipment Type: (All 4 EUTs)	Stand-Alone Equipment	
Modulation Type(s): (All 4 EUTs)	ASK with an 847kHz Subcarrier	
	Configuration 2 = 65.83%	
Maximum Duty Cycle:	Configuration 3 = 65.12%	
(Measured)	Configuration 6 = 63.86%	
	Configuration 7 = 65.12%	
Antenna Type(s) and Gain: (All 4 EUTS)	PCB Trace Antenna 30mm x 95mm / 2dBi	
Antenna Connection Type: (All 4 EUTs)	Integral	
Nominal Input Voltage:		
(All 4 EUTs	12VDC	
Firmware / Software used for Test: (All 4 EUTs)	Wallmount Reader FCC LF Version 1	

FCC Part 15 Subpart C

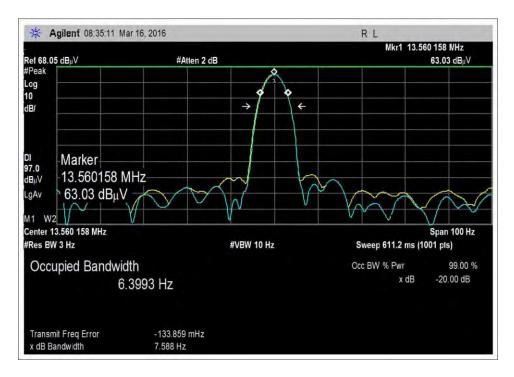
15.215(c) Occupied Bandwidth (20dB BW)

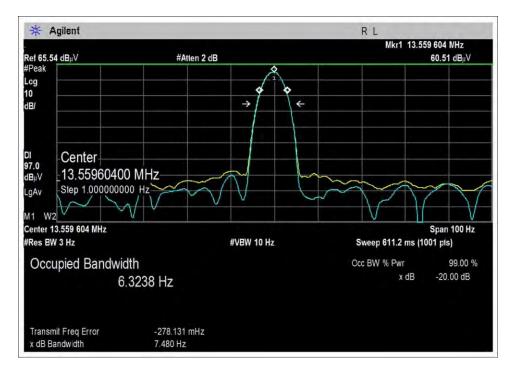
Test Location:Mariposa Lab DTest Engineer:Benny LovanTest Method:ANSI C63.10 (2013)Test Date(s):March 15 – 18, 2016Configuration:2, 3, 6 and 7Test Setup:Configuration 2 (13.56MHz Only) – Measured in Y-Axis Configuration 3 (Set for 13.56MHz) – Measured in X-Axis Configuration 6 (13.56 MHz Only) – Measured in X-Axis Configuration 7 (Set for 13.56 MHz) – Measured in X-Axis Configuration: ASK Modulation with an 847kHz subcarrier The EUT is powered by a DC power supply at 12VDC. Max power was measured in two orthogonalities.The manufacturer declares it will only ever be wall mounted in an upright (Y-axis) o sideways (X-axis) orientation.The OBW was performed in the worst case orientation observed during the fundamenta power measurements. The EUT is setup on an 80cm foam block. The EUT has been programmed to continuously transmit the RFID signal at 13.56MHz.		Test Setup	/ Conditions	
Configuration: 2, 3, 6 and 7 Test Setup: Configuration 2 (13.56MHz Only) – Measured in Y-Axis Configuration 3 (Set for 13.56MHz) – Measured in X-Axis Configuration 6 (13.56 MHz Only) – Measured in X-Axis Configuration 7 (Set for 13.56 MHz) – Measured in X-Axis Antenna Type: Integral Modulation: ASK Modulation with an 847kHz subcarrier The EUT is powered by a DC power supply at 12VDC. Max power was measured in two orthogonalities. The manufacturer declares it will only ever be wall mounted in an upright (Y-axis) o sideways (X-axis) orientation. The OBW was performed in the worst case orientation observed during the fundamenta power measurements. The EUT is setup on an 80cm foam block.	Test Location:	Mariposa Lab D	Test Engineer:	Benny Lovan
Test Setup:Configuration 2 (13.56MHz Only) – Measured in Y-Axis Configuration 3 (Set for 13.56MHz) – Measured in X-Axis Configuration 6 (13.56 MHz Only) – Measured in X-Axis Configuration 7 (Set for 13.56 MHz) – Measured in X-AxisAntenna Type: Integral Modulation: ASK Modulation with an 847kHz subcarrier The EUT is powered by a DC power supply at 12VDC. Max power was measured in two orthogonalities.The manufacturer declares it will only ever be wall mounted in an upright (Y-axis) o sideways (X-axis) orientation.The OBW was performed in the worst case orientation observed during the fundamenta power measurements. The EUT is setup on an 80cm foam block.	Test Method:	ANSI C63.10 (2013)	Test Date(s):	March 15 – 18, 2016
 Configuration 3 (Set for 13.56MHz) – Measured in X-Axis Configuration 6 (13.56 MHz Only) – Measured in X-Axis Configuration 7 (Set for 13.56 MHz) – Measured in X-Axis Antenna Type: Integral Modulation: ASK Modulation with an 847kHz subcarrier The EUT is powered by a DC power supply at 12VDC. Max power was measured in two orthogonalities. The manufacturer declares it will only ever be wall mounted in an upright (Y-axis) o sideways (X-axis) orientation. The OBW was performed in the worst case orientation observed during the fundamenta power measurements. The EUT is setup on an 80cm foam block. 	Configuration:	2, 3, 6 and 7		
Method: ANSI C63.10 2013		Configuration 2 (13.56MHz Only) Configuration 3 (Set for 13.56MHz Configuration 6 (13.56 MHz Only) Configuration 7 (Set for 13.56 MHz Antenna Type: Integral Modulation: ASK Modulation with The EUT is powered by a DC power Max power was measured in two The manufacturer declares it wis sideways (X-axis) orientation. The OBW was performed in the y power measurements. The EUT is setup on an 80cm foar The EUT has been programmed to	 z) – Measured in X-Ax Measured in X-Axis Iz) – Measured in X-Axis an 847kHz subcarrieder supply at 12VDC. orthogonalities. II only ever be wall worst case orientation n block. 	kis r mounted in an upright (Y-axis) or n observed during the fundamental


Environmental Conditions				
3/15/2016				
Temperature (^o C)	10	Relative Humidity (%):	85	
3/17/2016				
Temperature (^o C)	11	Relative Humidity (%):	83	
3/18/2016				
Temperature (^o C)	11	Relative Humidity (%):	85	

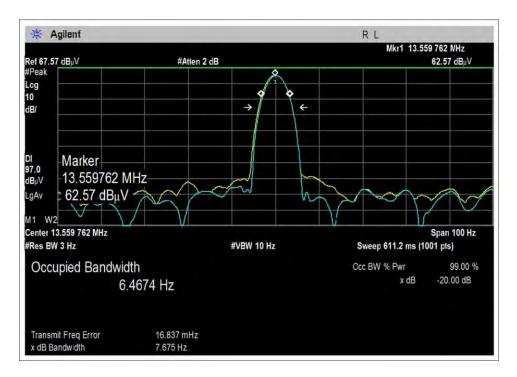
Test Equipment						
Asset#	Description	Manufacturer	Model	Cal Date	Cal Due	
ANSITED 3M	Cable	NA	NA	11/15/2014	11/15/2016	
ANP06884	Cable	TMS	LMR195-FR-4	10/27/2015	10/27/2017	
AN00226	Loop Antenna	EMCO	6502	3/28/2014	3/28/2016	

	Test Data Summary					
Frequency (MHz)	Antenna Port	Modulation	Measured (kHz)	Limit (kHz)	Results	
13.56MHz (Config. 2)	Integral	ASK Modulation with an 847kHz subcarrier	0.007822	None	NA	
13.56MHz (Config. 3)	Integral	ASK Modulation with an 847kHz subcarrier	0.007588	None	NA	
13.56MHz (Config. 6)	Integral	ASK Modulation with an 847kHz subcarrier	0.007480	None	NA	
13.56MHz (Config. 7)	Integral	ASK Modulation with an 847kHz subcarrier	0.007675	None	NA	


NA = Not Applicable


Plots

Configuration 2



Configuration 3

Configuration 6

Configuration 7

Test Setup Photos

X Axis

Y Axis

15.225(a)-(c) Field Strength of Fundamental

	Test Data Summary - Voltage Variations – Configuration 2						
Frequency (MHz)	Modulation / Ant Port	V _{Minimum} (dBuV/m)	V _{Nominal} (dBuV/m)	V _{Maximum} (dBuV/m)	Max Deviation from V _{Nominal} (dB)		
13.56 Parallel	ASK Modulation with an 847kHz subcarrier / Integral PCB Trace Antenna	32.7	32.8	32.7	0.1 dB		
13.56 Perpendicular	ASK Modulation with an 847kHz subcarrier / Integral PCB Trace Antenna	30.4	30.0	30.5	0.5 dB		

Test performed using operational mode with the highest output power, representing worst case. Worst case orientation for this unit was the X-Axis.

Test Data Summary - Voltage Variations – Configuration 3						
Frequency (MHz)	Modulation / Ant Port	V _{Minimum} (dBuV/m)	V _{Nominal} (dBuV/m)	V _{Maximum} (dBuV/m)	Max Deviation from V _{Nominal} (dB)	
13.56 Parallel	ASK Modulation with an 847kHz subcarrier / Integral PCB Trace Antenna	33.7	33.8	33.8	0.1 dB	
13.56 Perpendicular	ASK Modulation with an 847kHz subcarrier / Integral PCB Trace Antenna	30.2	30.3	30.2	0.1 dB	

Test performed using operational mode with the highest output power, representing worst case. Worst case orientation for this unit was the X-Axis.

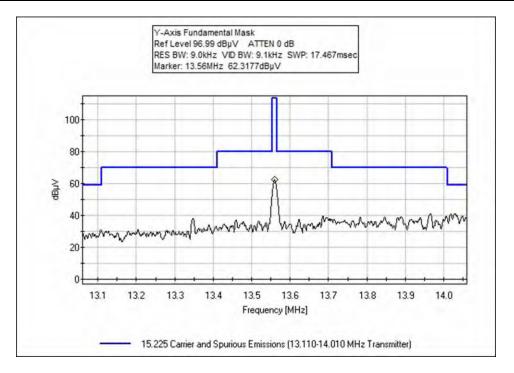
	Test Data Summary - Voltage Variations – Configuration 6						
Frequency (MHz)	Modulation / Ant Port	V _{Minimum} (dBuV/m)	V _{Nominal} (dBuV/m)	V _{Maximum} (dBuV/m)	Max Deviation from V _{Nominal} (dB)		
13.56 Parallel	ASK Modulation with an 847kHz subcarrier / Integral PCB Trace Antenna	32.7	32.6	32.7	0.1 dB		
13.56 Perpendicular	ASK Modulation with an 847kHz subcarrier / Integral PCB Trace Antenna	29.0	29.0	28.8	0.2 dB		

Test performed using operational mode with the highest output power, representing worst case. Worst case orientation for this unit was the X-Axis.

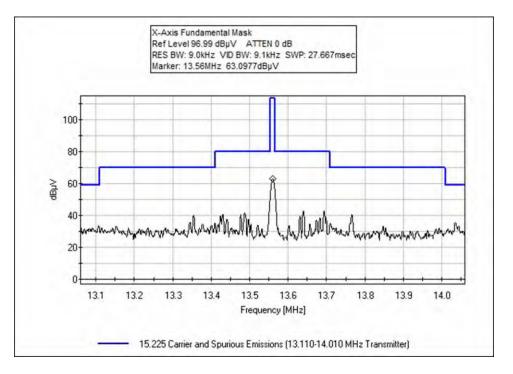
	Test Data Summary - Voltage Variations – Configuration 7							
Frequency (MHz)	Modulation / Ant Port	V _{Minimum} (dBuV/m)	V _{Nominal} (dBuV/m)	V _{Maximum} (dBuV/m)	Max Deviation from V _{Nominal} (dB)			
13.56 Parallel	ASK Modulation with an 847kHz subcarrier / Integral PCB Trace Antenna	33.2	33.4	33.2	0.2 dB			
13.56 Perpendicular	ASK Modulation with an 847kHz subcarrier / Integral PCB Trace Antenna	31.2	31.4	31.2	0.2 dB			

Test performed using operational mode with the highest output power, representing worst case. Worst case orientation for this unit was the X-Axis.

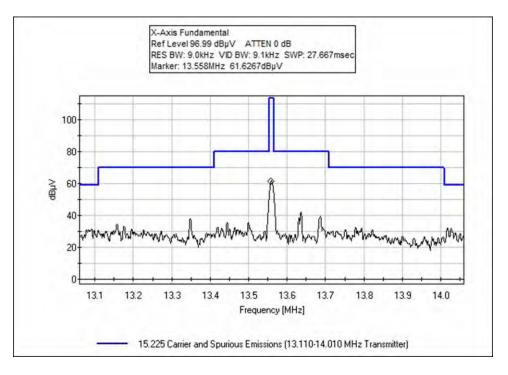
Parameter Definitions:


Measurements performed at input voltage Vnominal ± 15%.

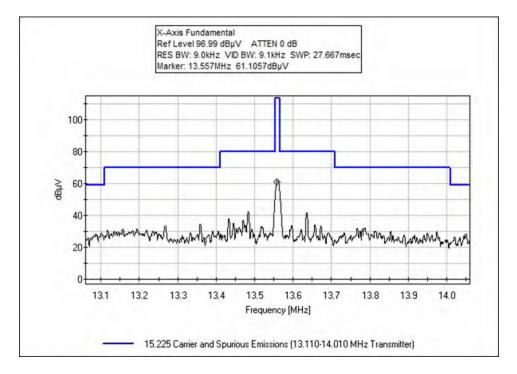
Parameter	Value
V _{Nominal} :	12.0 VAC
V _{Minimum} :	10.2 VAC
V _{Maximum} :	13.8 VAC


	Test Data Summary – Radiated Field Strength Measurement						
Frequency (MHz)	Modulation	Ant. Type	Measured (dBuV/m @ 30m)	Limit (dBuV/m @ 30m)	Results		
		Configur	ation 2				
13.560 (Parallel)	ASK Modulation with an 847kHz subcarrier	Integral PCB Trace	32.8	≤ 84	Pass		
13.560 (Perpendicular)	ASK Modulation with an 847kHz subcarrier	Integral PCB Trace	30.0	≤ 84	Pass		
		Configur	ation 3				
13.560 (Parallel)	ASK Modulation with an 847kHz subcarrier	Integral PCB Trace	33.8	≤ 84	Pass		
13.560 (Perpendicular)	ASK Modulation with an 847kHz subcarrier	Integral PCB Trace	30.3	≤ 84	Pass		
		Configur	ation 6				
13.560 (Parallel)	ASK Modulation with an 847kHz subcarrier	Integral PCB Trace	32.6	≤ 84	Pass		
13.560 (Perpendicular)	ASK Modulation with an 847kHz subcarrier	Integral PCB Trace	29.0	≤ 84	Pass		
	Configuration 7						
13.560 (Parallel)	ASK Modulation with an 847kHz subcarrier	Integral PCB Trace	33.4	≤ 84	Pass		
13.560 (Perpendicular)	ASK Modulation with an 847kHz subcarrier	Integral PCB Trace	31.4	≤ 84	Pass		

Emissions Mask Data



Configuration 2



Configuration 3

Configuration 6

Configuration 7

Test Setup / Conditions / Data

Test Location:	CKC Laboratories Inc. • 5046 Sierra Pines Dr. • Mariposa, CA 95338 • 209-966-5240				
Customer:	WaveLynx Technologies Corporation				
Specification:	15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter)				
Work Order #:	97029	Date:	3/15/2016		
Test Type:	Radiated Scan	Time:	15:16:50		
Tested By:	Benny Lovan	Sequence#:	1		
Software:	EMITest 5.03.02				

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 2			

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 2				

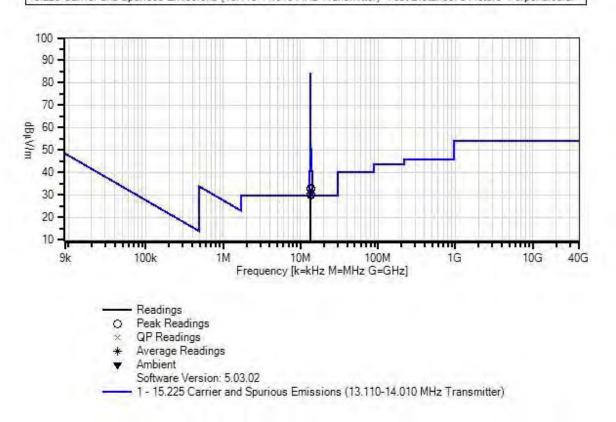
Test Conditions / Notes:

Radiated Emissions Fundamental Measurements

Temperature: 10°C Humidity: 85% Atmospheric Pressure: 97 kPa

Method: ANSI C63.10 2013

13.56MHz Only, Measured in Y-Axis Antenna Type: Integral Modulation: ASK Modulation with an 847kHz subcarrier


The EUT is powered by a DC power supply at 12VDC. Max power was measured in two orthogonalities. The manufacturer declares it will only ever be wall mounted in an upright (Y-axis) or sideways (X-axis) orientation. The Fundamental measurements were performed in both the X and Y axis orientations.

The EUT is setup on an 80cm foam block.

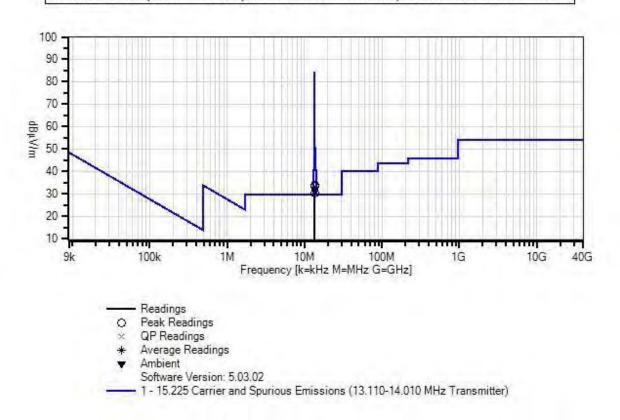
The EUT has been programmed to continuously transmit the RFID signal at 13.56MHz.

WaveLynx Technologies Corporation WO#: 97029 Sequence#: 1 Date: 3/15/2016 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter) Test Distance: 3 Meters Perpendicular

Test Equipment:

ID	Asset #		Descri	ption	Μ	odel		Calibratio	on Date	Cal Due D	ate
T1	ANSITE	D 3M	Cable					11/15/20	14	11/15/202	16
T2	ANP068	884	Cable		LN	/R195-	FR-4	10/27/20	15	10/27/202	17
Т3	AN0022	26	Loop A	Antenna	65	502		3/28/201	4	3/28/2016	5
Measure	ement Data:		eading list	ted by ma	ırgin.		Te	est Distanc	e: 3 Meters	k	
#	Freq	Rdng	T1	T2	Т3		Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant
1	13.560M	62.3	+0.7	+0.1	+9.7		-40.0	32.8	84.0 Y-Axis	-51.2	Paral
2	13.560M	62.3	+0.7	+0.1	+9.7		-40.0	32.8	84.0 X-axis	-51.2	Paral
3	13.560M	62.2	+0.7	+0.1	+9.7		-40.0	32.7	84.0 Y-Axis @ 13.8VDC	-51.3	Paral
4	13.560M	62.2	+0.7	+0.1	+9.7		-40.0	32.7	84.0 Y-Axis @ VDC	-51.3 10.2	Paral
5	13.560M	60.0	+0.7	+0.1	+9.7		-40.0	30.5	84.0 Y-Axis @ 13.8VDC	-53.5	Perpe
6	13.560M	59.9	+0.7	+0.1	+9.7		-40.0	30.4	84.0 Y-Axis @ VDC	-53.6 10.2	Perpe
7	13.559M	59.5	+0.7	+0.1	+9.7		-40.0	30.0	84.0 Y-Axis	-54.0	Perpe
8	13.560M	59.3	+0.7	+0.1	+9.7		-40.0	29.8	84.0 X-Axis	-54.2	Perpe

Test Location:	CKC Laboratories Inc. • 5046 Sierra Pines Dr. • Mariposa, CA 95338 • 209-966-5240				
Customer:	WaveLynx Technologies Corporation				
Specification:	15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter)				
Work Order #:	97029	Date:	3/17/2016		
Test Type:	Radiated Scan	Time:	14:24:19		
Tested By:	Benny Lovan	Sequence#:	1		
Software:	EMITest 5.03.02	-			


Equipment Tested:

Equipment Testeu.	M C	N	C/NI			
Device	Manufacturer	Model #	S/N			
Configuration 3						
Support Equipment	:					
Device	Manufacturer	Model #	S/N			
Configuration 3						
Test Conditions / N	otes:					
Radiated Emissions I	Fundamental Measurements					
Temperature: 11°C						
Humidity: 83%						
Atmospheric Pressur	e: 97.4 kPa					
1						
Method: ANSI C63.1	0 2013					
Set to 13.56MHz, Me	easured in X-Axis					
Antenna Type: Integr	al					
Modulation: ASK Modulation with an 847kHz subcarrier						
The EUT is powered by a DC power supply at 12VDC. Max power was measured in two orthogonalities.						
The manufacturer d	eclares it will only ever be	wall mounted in an u	pright (Y-axis) or sideways (X-axis)			
orientation. The Fun	damental measurements were	performed in both the X a	and Y axis orientations.			

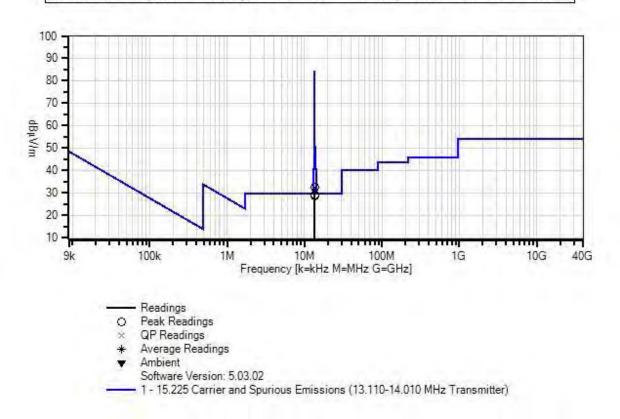
The EUT is setup on an 80cm foam block. The EUT has been programmed to continuously transmit the RFID signal at 13.56MHz.

WaveLynx Technologies Corporation WO#: 97029 Sequence#: 1 Date: 3/17/2016 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter) Test Distance: 3 Meters Parallel

Test Equipment:

ID	Asset #		Descri	ption	М	odel		Calibratio	on Date	Cal Due D	ate
T1	ANSITE	D 3M	Cable					11/15/20	14	11/15/202	16
T2	ANP068	384	Cable		LN	/IR195-	FR-4	10/27/20	15	10/27/202	17
Т3	AN0022	26	Loop A	Antenna	65	02		3/28/201	4	3/28/2016	5
Measure	ement Data:	Re	ading list	ted by ma	rgin.		Te	est Distanc	e: 3 Meters	5	
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	$dB\mu V/m$	dB	Ant
1	13.560M	63.3	+0.7	+0.1	+9.7		-40.0	33.8	84.0	-50.2	Paral
									X-Axis @ VDC	13.8	
2	13.560M	63.3	+0.7	+0.1	+9.7		-40.0	33.8	84.0	-50.2	Paral
									X-Axis		
3	13.560M	63.2	+0.7	+0.1	+9.7		-40.0	33.7	84.0	-50.3	Paral
									X-Axis @ VDC	10.2	
4	13.560M	62.7	+0.7	+0.1	+9.7		-40.0	33.2	84.0	-50.8	Paral
									Y-Axis		
5	13.559M	60.0	+0.7	+0.1	+9.7		-40.0	30.5	84.0	-53.5	Perpe
									Y-Axis		
6	13.560M	59.8	+0.7	+0.1	+9.7		-40.0	30.3	84.0	-53.7	Perpe
									X-Axis		
7	13.560M	59.7	+0.7	+0.1	+9.7		-40.0	30.2	84.0	-53.8	Perpe
									X-Axis @ 13.8VDC		
8	13.560M	59.7	+0.7	+0.1	+9.7		-40.0	30.2	84.0	-53.8	Perpe
									X-Axis @	10.2	
									VDC		

Test Location:		046 Sierra Pines Dr. • Mariposa, C	A 95338 • 209-966-5240
Customer:	WaveLynx Technologies	-	
Specification:	15.225 Carrier and Spuri	ous Emissions (13.110-14.010 N	MHz Transmitter)
Work Order #:	97029	Date:	3/18/2016
Test Type:	Radiated Scan	Time:	09:19:55
Tested By:	Benny Lovan	Sequence#:	1
Software:	EMITest 5.03.02	-	


Equipment Tested:

Equipment Testea.			
Device	Manufacturer	Model #	S/N
Configuration 6			
Support Equipment	t:		
Device	Manufacturer	Model #	S/N
Configuration 6			
Test Conditions / N	otes:		
Radiated Emissions	Fundamental Measurements		
Temperature: 11°C			
Humidity: 85%			
Atmospheric Pressur	re: 96.8 kPa		
Method: ANSI C63.	10 (2013)		
	E, Measured in X-Axis		
Antenna Type: Integ			
Modulation: ASK M	odulation with an 847kHz sub	carrier	
	by a DC power supply at 12V		
			pright (Y-axis) or sideways (X-axis)
orientation. The Fur	idamental measurements were	performed in both the X a	and Y axis orientations.

The EUT is setup on an 80cm foam block. The EUT has been programmed to continuously transmit the RFID signal at 13.56MHz.

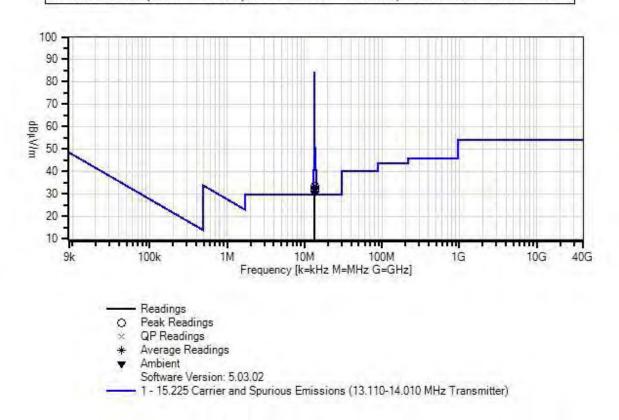
WaveLynx Technologies Corporation WO#: 97029 Sequence#: 1 Date: 3/18/2016 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter) Test Distance: 3 Meters Parallel

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANSITED 3M	Cable		11/15/2014	11/15/2016
T2	ANP06884	Cable	LMR195-FR-4	10/27/2015	10/27/2017
Т3	AN00226	Loop Antenna	6502	3/28/2014	3/28/2016

Measure	ement Data:	Re	ading list	ted by ma	argin.		Те	est Distanc	e: 3 Meters		
#	Freq	Rdng	T1	T2	Т3		Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	dBµV/m	dB	Ant
1	13.560M	62.2	+0.7	+0.1	+9.7		-40.0	32.7	84.0	-51.3	Paral
									X-Axis @ 10.2VDC		
2	13.560M	62.2	+0.7	+0.1	+9.7		-40.0	32.7	84.0	-51.3	Paral
									X-Axis @ 13.8VDC		
3	13.560M	62.1	+0.7	+0.1	+9.7		-40.0	32.6	84.0	-51.4	Paral
									X-Axis		
4	13.560M	61.8	+0.7	+0.1	+9.7		-40.0	32.3	84.0	-51.7	Paral
									Y-Axis		
5	13.560M	58.5	+0.7	+0.1	+9.7		-40.0	29.0	84.0	-55.0	Perpe
									X-Axis		
6	13.560M	58.5	+0.7	+0.1	+9.7		-40.0	29.0	84.0	-55.0	Perpe
									X-Axis @ VDC	10.2	
7	13.560M	58.4	+0.7	+0.1	+9.7		-40.0	28.9	84.0	-55.1	Perpe
									Y-Axis		
8	13.559M	58.3	+0.7	+0.1	+9.7		-40.0	28.8	84.0	-55.2	Perpe
									X-Axis @		
									13.8VDC		

Test Location:	CKC Laboratories Inc. • 5046 Sierra Pines Dr. • Mariposa, CA 95338 • 209-966-5240				
Customer:	WaveLynx Technologi	es Corporation			
Specification:	15.225 Carrier and Spi	urious Emissions (13.110-14.010 N	MHz Transmitter)		
Work Order #:	97029	Date:	3/18/2016		
Test Type:	Radiated Scan	Time:	10:57:47		
Tested By:	Benny Lovan	Sequence#:	1		
Software:	EMITest 5.03.02	-			


Equipment Tested:

Equipment Testea:			
Device	Manufacturer	Model #	S/N
Configuration 7			
Support Equipment	<i>t</i> :		
Device	Manufacturer	Model #	S/N
Configuration 7			
Test Conditions / N	otes:		
Radiated Emissions	Fundamental Measurements		
Temperature:11°C Humidity: 85% Atmospheric Pressur	e: 96.8 kPa		
Method: ANSI C63.	10 (2013)		
Antenna Type: Integ	th BLE, Measured in X-Axis ral odulation with an 847kHz sub	carrier	
The manufacturer of	by a DC power supply at 12V leclares it will only ever be adamental measurements were	wall mounted in an u	pright (Y-axis) or sideways (X-axi
The EUT is setup on	an 80cm foam block.		

The EUT is setup on an 80cm foam block. The EUT has been programmed to continuously transmit the RFID signal at 13.56MHz.

WaveLynx Technologies Corporation WO#: 97029 Sequence#: 1 Date: 3/18/2016 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter) Test Distance: 3 Meters Parallel

Test Equipment:

ID	Asset #	:	Descri	ption	М	odel		Calibratio	on Date	Cal Due D	ate
T1	ANSITE	D 3M	Cable					11/15/20	14	11/15/202	16
T2	ANP068	884	Cable		LN	/IR195-	FR-4	10/27/20	15	10/27/202	17
Т3	AN0022	26	Loop A	Antenna	65	602		3/28/201	4	3/28/2016	5
Measure	ement Data:	Re	eading list	ted by ma	argin.		Te	est Distanc	e: 3 Meters	5	
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	$dB\mu V/m$	dB	Ant
1	13.560M	62.9	+0.7	+0.1	+9.7		-40.0	33.4	84.0 X-Axis	-50.6	Paral
2	13.560M	62.8	+0.7	+0.1	+9.7		-40.0	33.3	84.0 Y-Axis	-50.7	Paral
3	13.560M	62.7	+0.7	+0.1	+9.7		-40.0	33.2	84.0 X-Axis @ VDC	-50.8 13.8	Paral
4	13.560M	62.7	+0.7	+0.1	+9.7		-40.0	33.2	84.0 X-Axis @ 10.2VDC	-50.8	Paral
5	13.560M	61.5	+0.7	+0.1	+9.7		-40.0	32.0	84.0 Y-Axis	-52.0	Perpe
6	13.559M	60.9	+0.7	+0.1	+9.7		-40.0	31.4	84.0 X-Axis	-52.6	Perpe
7	13.560M	60.7	+0.7	+0.1	+9.7		-40.0	31.2	84.0 X-Axis @ 13.8VDC	-52.8	Perpe
8	13.560M	60.7	+0.7	+0.1	+9.7		-40.0	31.2	84.0 X-Axis @ 10.2VDC	-52.8	Perpe

Test Setup Photos

X Axis

Y Axis

15.225(e) Frequency Stability

Test Setup / Conditions						
Test Location:	Mariposa Lab A	Test Engineer:	Benny Lovan			
Test Method:	ANSI C63.10 (2013)	Test Date(s):	April 4-5, 2016			
Configuration:	6 and 7					
Test Setup:	Configurations 6 and 7 were	e tested simultaneously w	ithin the temperature chamber.			
The manufacturer declares that Configurations 6 and 7 are worse case and testing						
	performed on these would	satisfy the testing for Cont	figurations 2 and 3.			

Environmental Conditions						
4/4/2016						
Temperature (ºC)	Temperature (°C) 19.5 Relative Humidity (%): 52					
	4/5/2016					
Temperature (°C) 19.5 Relative Humidity (%): 52						

	Test Equipment							
Asset#	Description	Manufacturer	Model	Cal Date	Cal Due			
03197	Multimeter	Extech	MM570A	9/14/2014	9/14/2016			
02668	Spectrum Analyzer	Agilent	E4446A	8/14/2015	8/14/2016			
02242	Thermometer	Omega	HH-26K	5/2/2014	5/2/2016			
01879	Temperature Chamber	Thermotron	S-1.2 Min.	12/5/2014	12/5/2016			
00170	Loop Antenna	Solar	7334-1	NCR	NCR			

NCR = No Calibration Required

	Frequency Stability Test Data Summary - Configuration 6							
Temperatu re (ºC)	Voltage	Frequency (MHz)	Deviation (%)	Limit (%)	Results			
-20	V _{Nominal}	13.5598	-0.00147	±0.01				
-10	V _{Nominal}	13.5598	-0.00147	±0.01				
0	V _{Nominal}	13.5597	-0.00221	±0.01				
10	V _{Nominal}	13.5597	-0.00221	±0.01				
20	V _{Minimum}	13.5597	-0.00221	±0.01	Pass			
20	V _{Nominal}	13.5596	-0.00295	±0.01	Pass			
20	V _{Maximum}	13.5596	-0.00295	±0.01				
30	V _{Nominal}	13.5596	-0.00295	±0.01				
40	V _{Nominal}	13.5596	-0.00295	±0.01				
50	V _{Nominal}	13.560	0.00000	±0.01				
Nominal	Frequency:	13.560000						

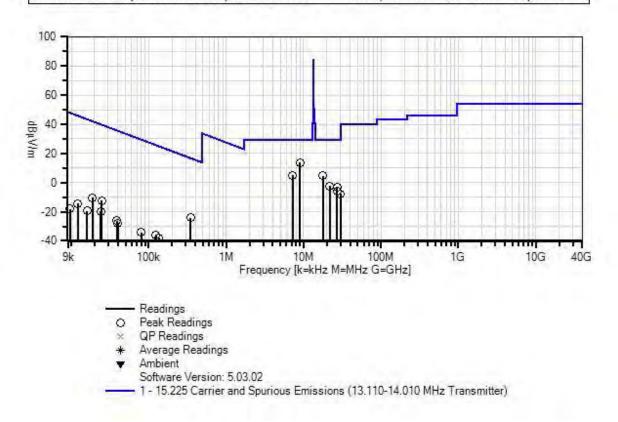
Frequency Stability Test Data Summary - Configuration 7							
Temperature (ºC)	Voltage	Frequency (MHz)	Deviation (%)	Limit (%)	Results		
-20	V _{Nominal}	13.5597	-0.00221	±0.01			
-10	V _{Nominal}	13.5600	0.00000	±0.01			
0	V _{Nominal}	13.5597	-0.00221	±0.01			
10	V _{Nominal}	13.5597	-0.00221	±0.01			
20	V _{Minimum}	13.5595	-0.00369	±0.01	Pass		
20	V _{Nominal}	13.5595	-0.00369	±0.01	PdSS		
20	V _{Maximum}	13.5594	-0.00442	±0.01			
30	V _{Nominal}	13.5595	-0.00369	±0.01			
40	V _{Nominal}	13.56	0.00000	±0.01			
50	V _{Nominal}	13.560	0.00000	±0.01			
Nominal Frequency:		13.560000					

<u>Parameter Definitions:</u> Measurements performed at input voltage Vnominal \pm 15%.

Parameter	Value			
V _{Nominal} :	12 VDC			
V _{Minimum} :	10.2 VDC			
V _{Maximum} :	13.8 VDC			

Test Setup Photos

15.225(d) Radiated Emissions


Test Setup / Conditions / Data

Test Location: Customer: Specification: Work Order #: Test Type: Tested By: Software:	CKC Laboratories Inc. • 5046 Sid WaveLynx Technologies Corport 15.225 Carrier and Spurious En 97029 Radiated Scan Benny Lovan EMITest 5.03.02	oration missions (13.110-14.01) Dat	0 MHz Transmitter) e: 3/22/2016 e: 10:52:30			
Equipment Tes						
Device Configuration 10	Manufacturer	Model #	S/N			
Support Equips	Manufacturer	Model #	S/N			
Configuration 10						
Test Conditions	/ Notes:					
Radiated Emission	ons Spurious Measurements 9kHz -	30MHz				
Temperature: 10 Humidity: 68% Atmospheric Pre						
Method: ANSI C	263.10 2013					
Highest Generated Frequency: 27.12 MHz Both EUTs are running at 13.56MHz.						
The EUT is powered by a DC power supply at 12VDC. Spurious was measured on two EUTs at one time. Configuration 10 is made up of Configuration 2 and Configuration 3 (Testing at the same time). Configuration 2 is in Y-axis and Configuration 3 is in the X-axis.						
Preliminary measurements of the fundamental were taken in two orientations. The orientation that displayed the highest emissions was the orientation used for radiated spurious emissions.						
The manufacturer declares it will only ever be wall mounted in an upright (Y-axis) or sideways (X-axis) orientation.						
The EUT is setup	o on an 0.80 meter foam block.					

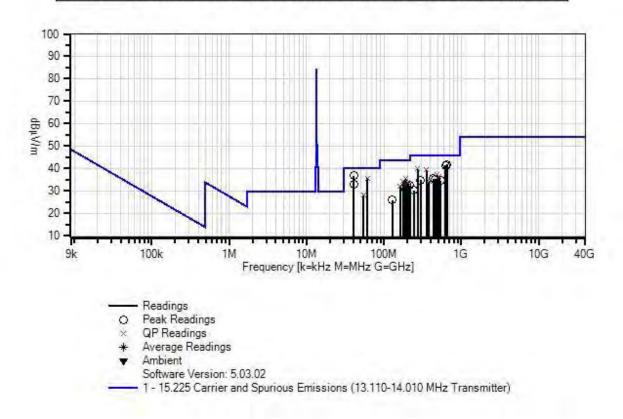
The EUT is setup to continuously transmit at 13.56MHz

WaveLynx Technologies Corporation WO#: 97029 Sequence#: 4 Date: 3/22/2016 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter) Test Distance: 3 Meters Perpendicular

Test Equipment:

ID T1 T2	Asset # ANSITE		Descri	ption	M	odel		Calibratio	n Date	Cal Due D	ate
	ANSITE	11 21/1	~								
I T2			Cable					11/15/201		11/15/20	
	ANP06884		Cable	Cable		LMR195-FR-4		10/27/2015		10/27/2017	
Т3	AN002	26	Loop A	Antenna	65	502		3/28/2014	1	3/28/2010	5
Measur	Measurement Data: Reading listed by margin. Test Distance: 3 Meters										
#	Freq	Rdng	T1	T2	Т3		Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	8.970M	43.1	+0.6	+0.1	+10.1		-40.0	13.9	29.5	-15.6	Perpe
2	7.243M	34.2	+0.5	+0.1	+10.1		-40.0	4.9	29.5	-24.6	Paral
3	17.654M	35.0	+0.8	+0.1	+8.8		-40.0	4.7	29.5	-24.8	Perpe
4	21.674M	28.7	+0.9	+0.1	+8.1		-40.0	-2.2	29.5	-31.7	Perpe
5	27.121M	28.7	+1.0	+0.1	+7.2		-40.0	-3.0	29.5	-32.5	Paral
6	27.124M	25.8	+1.0	+0.1	+7.2		-40.0	-5.9	29.5	-35.4	Perpe
7	29.916M	24.7	+1.0	+0.1	+6.5		-40.0	-7.7	29.5	-37.2	Paral
8	344.900k	45.5	+0.1	+0.0	+10.2		-80.0	-24.2	16.8	-41.0	Paral
9	24.825k	54.6	+0.0	+0.0	+13.0		-80.0	-12.4	39.7	-52.1	Perpe
10	18.615k	55.5	+0.0	+0.0	+14.2		-80.0	-10.3	42.2	-52.5	Perpe
11	23.965k	47.3	+0.0	+0.0	+13.1		-80.0	-19.6	40.0	-59.6	Paral
12	12.070k	49.3	+0.0	+0.0	+16.4		-80.0	-14.3	46.0	-60.3	Perpe
13	124.215k	33.0	+0.1	+0.0	+10.9		-80.0	-36.0	25.7	-61.7	Perpe
14	38.600k	42.2	+0.0	+0.0	+11.8		-80.0	-26.0	35.9	-61.9	Paral
15	135.340k	31.4	+0.1	+0.0	+10.7		-80.0	-37.8	25.0	-62.8	Perpe
16	15.960k	45.7	+0.0	+0.0	+15.0		-80.0	-19.3	43.5	-62.8	Paral
17	79.660k	35.0	+0.1	+0.0	+10.9		-80.0	-34.0	29.6	-63.6	Perpe
18	39.655k	40.1	+0.0	+0.0	+11.7		-80.0	-28.2	35.6	-63.8	Perpe
19	9.645k	44.6	+0.0	+0.0	+17.4		-80.0	-18.0	47.9	-65.9	Perpe

Test Location: Customer:		5046 Sierra Pines Dr. • Mariposa, C	A 95338 • 209-966-5240					
	waveLynx Technologies	WaveLynx Technologies Corporation						
Specification:	15.225 Carrier and Spur	ious Emissions (13.110-14.010 N	MHz Transmitter)					
Work Order #:	97029	Date:	4/1/2016					
Test Type:	Radiated Scan	Time:	16:06:26					
Tested By:	Benny Lovan	Sequence#:	6					
Software:	EMITest 5.03.02	-						


Equipment Tested:

Equipment resieu.			
Device	Manufacturer	Model #	S/N
Configuration 10			
Support Equipment:			
Device	Manufacturer	Model #	S/N
Configuration 10			
Test Conditions / Notes	:		
Radiated Emissions Spur	rious Measurements 30MH	Iz - 1GHz	
Temperature: 12.2°C Humidity: 64% Atmospheric Pressure: 9	8.5 kPa		
Method: ANSI C63.10 2	013		
Highest Generated Frequ Both EUTs are running a	2		
Spurious was measured of Configuration 10 is made	a DC power supply at 12V on two EUTs at one time. e up of Configuration 2 an axis and Configuration 3 is	d Configuration 3 (Testing	g at the same time).
	nts of the fundamental wer e orientation used for radi		. The orientation that displayed the
The manufacturer decla orientation.	ares it will only ever be	e wall mounted in an u	pright (Y-axis) or sideways (X-axis)
The EUT is setup on an	0.80 meter foam block.		

The EUT is setup of an 0.30 meter roam block. The EUT is setup to continuously transmit at 13.56MHz

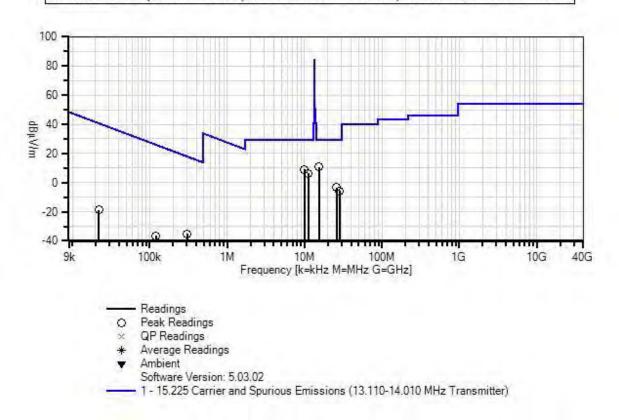
WaveLynx Technologies Corporation WO#: 97029 Sequence#: 6 Date: 4/1/2016 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter) Test Distance: 3 Meters Vert

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN00282	Preamp	8447D	4/7/2014	4/7/2016
T2	ANSITED 3M	Cable		11/15/2014	11/15/2016
Т3	ANP06884	Cable	LMR195-FR-4	10/27/2015	10/27/2017
T4	ANP06885	Cable	P06885	10/27/2015	10/27/2017
T5	AN01991	Biconilog Antenna	CBL6111C	3/11/2016	3/11/2018

Measu	rement Data:	R	eading lis	ted by ma	argin.		Те	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5								
	MHz	dBµV	dB	dB	dB	dB	Table		$dB\mu V/m$	dB	Ant
1	40.685M	49.2	-28.1	+1.2	+0.1	+0.2	+0.0	36.7	40.0	-3.3	Vert
			+14.1								
2	650.859M	43.2	-28.4	+5.3	+0.5	+0.5	+0.0	41.8	46.0	-4.2	Vert
			+20.7								
3	61.018M	55.9	-28.0	+1.5	+0.1	+0.2	+0.0	35.6	40.0	-4.4	Vert
-	QP		+5.9	. 1 . 7	. 0.1			264	10.0	2 (T T
^	61.013M	56.7	-28.0	+1.5	+0.1	+0.2	+0.0	36.4	40.0	-3.6	Vert
5	(22.720)/	42.2	+5.9	15.0	10.4	10.5		41.2	16.0	47	N 7 4
5	623.739M	43.3	-28.4	+5.2	+0.4	+0.5	+0.0	41.3	46.0	-4.7	Vert
6	271.193M	50.2	+20.3	+3.3	+0.3	+0.4	+0.0	39.8	46.0	-6.2	Vert
-	QP	50.2	-27.2 +12.8	+3.3	+0.3	+0.4	+0.0	39.8	46.0	-0.2	vert
^	271.194M	50.7	-27.2	+3.3	+0.3	+0.4	+0.0	40.3	46.0	-5.7	Vert
	2/1.1941	50.7	+12.8	13.5	10.5	10.4	10.0	40.5	40.0	-5.7	ven
8	352.548M	47.4	-27.5	+3.8	+0.4	+0.4	+0.0	39.4	46.0	-6.6	Vert
-	OP	-7/-7	+14.9	10.0	0.4	10.4	0.0	57.4	-10.0	0.0	vent
^	352.548M	49.6	-27.5	+3.8	+0.4	+0.4	+0.0	41.6	46.0	-4.4	Vert
	0021010111	.,,,,	+14.9	2.0	011	011	0.0				
10	40.681M	45.3	-28.1	+1.2	+0.1	+0.2	+0.0	32.8	40.0	-7.2	Vert
			+14.1								
11	189.838M	50.7	-27.5	+2.7	+0.3	+0.3	+0.0	35.5	43.5	-8.0	Vert
	QP		+9.0								
^	189.835M	51.5	-27.5	+2.7	+0.3	+0.3	+0.0	36.3	43.5	-7.2	Vert
			+9.0								
13	488.154M	42.3	-28.3	+4.5	+0.4	+0.5	+0.0	37.2	46.0	-8.8	Vert
	QP		+17.8								
^	488.152M	43.4	-28.3	+4.5	+0.4	+0.5	+0.0	38.3	46.0	-7.7	Vert
			+17.8								

15 17(000)	40.5	27.6	12.0	10.2	10.2		24.2	42.5	0.2	N 7 4
15 176.280M OP	49.5	-27.6	+2.6	+0.2	+0.3	+0.0	34.3	43.5	-9.2	Vert
	50 (+9.3	12.0	+0.2	+0.3		25.4	12 5	0.1	TT 4
^ 176.274M	50.6	-27.6	+2.6	+0.2	+0.3	+0.0	35.4	43.5	-8.1	Vert
17 515.272M	41.1	+9.3	+4.7	+0.4	+0.5	+0.0	36.6	46.0	-9.4	Vert
	41.1		+4./	± 0.4	+0.5	± 0.0	30.0	46.0	-9.4	vert
QP ^ 515.276M	42.0	+18.3	+4.7	+0.4	+0.5	+0.0	37.5	46.0	-8.5	Vert
515.270IVI	42.0	-28.4 +18.3	⊤4. /	+0.4	± 0.5	± 0.0	57.5	40.0	-0.3	vert
19 203.412M	48.8	-27.4	+2.8	+0.3	+0.3	+0.0	34.0	43.5	-9.5	Vert
	40.0		72.0	± 0.5	± 0.5	± 0.0	54.0	45.5	-9.5	vert
<u>QP</u> ^ 203.407M	51.4	+9.2	+2.8	+0.3	+0.3	+0.0	36.6	43.5	-6.9	Vert
205.407W	51.4	-27.4 +9.2	72.0	± 0.5	± 0.5	± 0.0	50.0	45.5	-0.9	vert
21 433.899M	41.5	-28.0	+4.2	+0.4	+0.5	+0.0	35.4	46.0	-10.6	Vert
21 455.899101	41.3	+16.8	⊤4. ∠	±0.4	± 0.5	± 0.0	55.4	40.0	-10.0	vert
22 196.619M	48.0	-27.4	+2.8	+0.3	+0.3	+0.0	32.9	43.5	-10.6	Vert
22 190.019lvi	46.0	+8.9	72.0	± 0.5	± 0.5	± 0.0	32.9	43.5	-10.0	ven
23 461.035M	40.8	-28.1	+4.4	+0.4	+0.5	+0.0	35.3	46.0	-10.7	Vert
25 401.055101	40.0	+17.3	⊤4.4	+0.4	+0.3	± 0.0	55.5	40.0	-10.7	ven
24 298.317M	44.5	-27.2	+3.4	+0.4	+0.4	+0.0	34.9	46.0	-11.1	Vert
24 296.51/IVI	44.3	+13.4	±3.4	+0.4	+0.4	± 0.0	54.9	40.0	-11.1	ven
25 542.392M	38.5	-28.5	+4.8	+0.4	+0.5	+0.0	34.6	46.0	-11.4	Vert
25 542.592101	56.5	+18.9	14.0	10.4	10.5	10.0	54.0	40.0	-11.4	ven
26 162.728M	46.1	-27.6	+2.5	+0.2	+0.3	+0.0	31.9	43.5	-11.6	Vert
OP	40.1	+10.4	12.5	10.2	10.5	10.0	51.7	чэ.э	-11.0	ven
^ 162.729M	47.0	-27.6	+2.5	+0.2	+0.3	+0.0	32.8	43.5	-10.7	Vert
102.727141	ч7.0	+10.4	12.5	10.2	10.5	10.0	52.0	чэ.э	-10.7	ven
28 183.054M	46.9	-27.5	+2.6	+0.2	+0.3	+0.0	31.7	43.5	-11.8	Vert
20 105.05 4141	40.7	+9.2	12.0	10.2	10.5	0.0	51.7	43.5	11.0	vent
29 379.674M	41.6	-27.7	+3.9	+0.4	+0.4	+0.0	34.2	46.0	-11.8	Vert
QP		+15.6	0.0	011	011	0.0	0		1110	
^ 379.675M	42.5	-27.7	+3.9	+0.4	+0.4	+0.0	35.1	46.0	-10.9	Vert
		+15.6	5.0	5					- 0.0	
31 54.238M	47.1	-28.0	+1.4	+0.1	+0.2	+0.0	28.1	40.0	-11.9	Vert
OP	.,	+7.3			•					
^ 54.234M	50.6	-28.0	+1.4	+0.1	+0.2	+0.0	31.6	40.0	-8.4	Vert
5	2 0.0	+7.3			•		• •		5	
33 216.946M	45.9	-27.3	+2.9	+0.3	+0.4	+0.0	32.3	46.0	-13.7	Vert
	'	+10.1	-							
34 244.082M	41.9	-27.3	+3.1	+0.3	+0.4	+0.0	30.3	46.0	-15.7	Vert
		+11.9					-			
35 128.804M	39.2	-27.8	+2.2	+0.2	+0.3	+0.0	25.8	43.5	-17.7	Vert
		+11.7								
L										

Test Location:	CKC Laboratories Inc. • 5046 Sierra Pines Dr. • Mariposa, CA 95338 • 209-966-5240							
Customer:	WaveLynx Technologies	Corporation						
Specification:	15.225 Carrier and Spuri	ous Emissions (13.110-14.010 N	MHz Transmitter)					
Work Order #:	97029	Date:	3/22/2016					
Test Type:	Radiated Scan	Time:	09:03:33					
Tested By:	Benny Lovan	Sequence#:	3					
Software:	EMITest 5.03.02							


Equipment Tested:

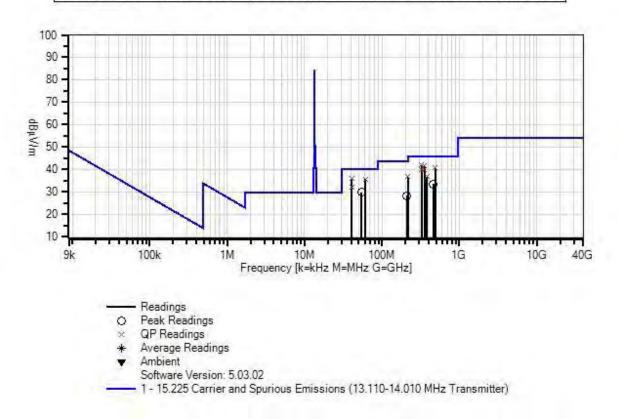
Equipment Testea.			
Device	Manufacturer	Model #	S/N
Configuration 11			
Support Equipment:			
Device	Manufacturer	Model #	S/N
Configuration 11			
Test Conditions / Not	es:		
Radiated Emissions Sp	ourious Measurements 9kHz -	– 30MHz	
Temperature: 10°C			
Humidity: 71%			
Atmospheric Pressure:	98.0 kPa		
1 101100 provine 1 1000 00101			
Method: ANSI C63.10	2013		
Highest Generated Fre			
Both EUTs are running	g at 13.56MHz.		
TI FIT '		DC	
	y a DC power supply at 12V d on two EUTs at one time.	DC.	
	ade up of Configuration 6 and	Configuration 7 (Testin	g at the same time)
	X-axis and Configuration 7 is		g at the same time).
	and and configuration (is		
Preliminary measurem	ents of the fundamental were	taken in two orientation	s. The orientation that displayed the
	the orientation used for radia		
	clares it will only ever be	wall mounted in an u	pright (Y-axis) or sideways (X-axis)
orientation.			
The EUT is setup on a	n 0.80 meter foam block		

The EUT is setup on an 0.80 meter foam block. The EUT is setup to continuously transmit at 13.56MHz

WaveLynx Technologies Corporation WO#: 97029 Sequence#: 3 Date: 3/22/2016 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter) Test Distance: 3 Meters Parallel

ID	Asset #	:	Descri	ption	Μ	odel		Calibratio	n Date	Cal Due D	ate
T1	ANSITE	D 3M	Cable					11/15/201	14	11/15/201	16
T2	ANP068	884	Cable	Cable		/R195-	FR-4	10/27/201	15	10/27/2017	
Т3	AN0022	26	Loop A	Antenna	65	502		3/28/2014	1	3/28/2016	5
Measurement Data: Reading listed by margin. Test Distance: 3 Meters											
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	15.440M	40.6	+0.7	+0.1	+9.5		-40.0	10.9	29.5	-18.6	Perpe
2	9.901M	38.2	+0.6	+0.1	+10.1		-40.0	9.0	29.5	-20.5	Paral
3	11.229M	35.6	+0.6	+0.1	+10.0		-40.0	6.3	29.5	-23.2	Perpe
4	25.813M	28.0	+0.9	+0.1	+7.6		-40.0	-3.4	29.5	-32.9	Perpe
5	28.379M	26.2	+1.0	+0.1	+6.9		-40.0	-5.8	29.5	-35.3	Paral
6	304.958k	34.5	+0.1	+0.0	+10.2		-80.0	-35.2	17.9	-53.1	Perpe
7	21.857k	47.9	+0.0	+0.0	+13.5		-80.0	-18.6	40.8	-59.4	Paral
8	120.320k	32.5	+0.1	+0.0	+10.9		-80.0	-36.5	26.0	-62.5	Paral

Test Location:	CKC Laboratories Inc. • 5046 Sierra Pines Dr. • Mariposa, CA 95338 • 209-966-5240						
Customer:	WaveLynx Technologie	s Corporation					
Specification:	15.225 Carrier and Sput	rious Emissions (13.110-14.010 N	AHz Transmitter)				
Work Order #:	97029	Date:	3/31/2016				
Test Type:	Radiated Scan	Time:	14:56:54				
Tested By:	Benny Lovan	Sequence#:	6				
Software:	EMITest 5.03.02						


Equipment Tested:

Equipment Testea:			
Device	Manufacturer	Model #	S/N
Configuration 11			
Support Equipment:			
Device	Manufacturer	Model #	S/N
Configuration 11			
Test Conditions / Note	es:		
Radiated Emissions Sp	urious Measurements 30MH	z - 1GHz	
Tommerstyne, 12 2°C			
Temperature: 12.2°C Humidity: 64%			
Atmospheric Pressure:	98 5 kPa		
runospherie i ressure.	50.5 KI U		
Method: ANSI C63.10	2013		
Highest Generated Free			
Both EUTs are running	; at 13.56MHz.		
		DC	
	y a DC power supply at 12V. I on two EUTs at one time.	DC.	
	de up of Configuration 6 and	Configuration 7 (Testin	g at the same time)
	-axis and Configuration 7 is		g at the same time).
Preliminary measureme	ents of the fundamental were	taken in two orientations	s. The orientation that displayed the
highest emissions was	the orientation used for radia	ted spurious emissions.	
	clares it will only ever be	wall mounted in an u	pright (Y-axis) or sideways (X-axis)
orientation.			
The EUT is setup on ar	n 0.80 meter foam block.		

The EUT is setup on an 0.80 meter foam block. The EUT is setup to continuously transmit at 13.56MHz

WaveLynx Technologies Corporation WO#: 97029 Sequence#: 6 Date: 3/31/2016 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter) Test Distance: 3 Meters Vert

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN00282	Preamp	8447D	4/7/2014	4/7/2016
T2	ANSITED 3M	Cable		11/15/2014	11/15/2016
Т3	ANP06884	Cable	LMR195-FR-4	10/27/2015	10/27/2017
T4	ANP06885	Cable	P06885	10/27/2015	10/27/2017
T5	AN01991	Biconilog Antenna	CBL6111C	3/11/2016	3/11/2018

Measu	rement Data:	<u> </u>			rgin.	Test Distance: 3 Meters					
#	Freq	Rdng	T1 T5	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	$dB\mu V/m$	dB	Ant
1	325.432M	50.9	-27.4	+3.6	+0.3	+0.4	+0.0	42.0	46.0	-4.0	Vert
	QP		+14.2								
^	325.431M	51.2	-27.4	+3.6	+0.3	+0.4	+0.0	42.3	46.0	-3.7	Vert
			+14.2								
3		48.3	-28.1	+1.2	+0.1	+0.2	+0.0	35.8	40.0	-4.2	Vert
	QP		+14.1								
4	61.020M	56.0	-28.0	+1.5	+0.1	+0.2	+0.0	35.7	40.0	-4.3	Vert
	QP		+5.9								
^	61.014M	56.6	-28.0	+1.5	+0.1	+0.2	+0.0	36.3	40.0	-3.7	Vert
			+5.9								
6	352.553M	49.6	-27.5	+3.8	+0.4	+0.4	+0.0	41.6	46.0	-4.4	Vert
-	QP		+14.9								
^	352.550M	50.2	-27.5	+3.8	+0.4	+0.4	+0.0	42.2	46.0	-3.8	Vert
	100 1 100 1		+14.9			~ -		10.6			
8	488.148M	45.7	-28.3	+4.5	+0.4	+0.5	+0.0	40.6	46.0	-5.4	Vert
	QP	16.7	+17.8		. 0. 1			41.4	16.0	1.6	* 7
^	488.136M	46.5	-28.3	+4.5	+0.4	+0.5	+0.0	41.4	46.0	-4.6	Vert
10	225 4223 (10.0	+17.8	12.0	10.2	10.4		40.1	16.0	5.0	TT '
10	325.433M	49.0	-27.4	+3.6	+0.3	+0.4	+0.0	40.1	46.0	-5.9	Horiz
^	<u>QP</u>	40.4	+14.2	12.0	10.2	10.4		40.5	16.0	<i></i>	TT '
	325.433M	49.4	-27.4 +14.2	+3.6	+0.3	+0.4	+0.0	40.5	46.0	-5.5	Horiz
12	352.551M	10.0		120	+0.4	+0.4		40.0	16.0	6.0	Horiz
12	QP	48.0	-27.5 +14.9	+3.8	+0.4	+0.4	+0.0	40.0	46.0	-6.0	HOLIZ
^	352.549M	48.4	+14.9 -27.5	+3.8	+0.4	+0.4	+0.0	40.4	46.0	-5.6	Horiz
	552.549M	40.4	-27.3 +14.9	±3.8	+0.4	⊤0.4	± 0.0	40.4	40.0	-3.0	HOLIZ
L			⊤14.9								

44.7	-28.1	+1.2	+0.1	+0.2	+0.0	32.2	40.0	-7.8	Vert
	+14.1								
51.0	-28.1	+1.2	+0.1	+0.2	+0.0	38.5	40.0	-1.5	Vert
	+14.1								
50.5	-28.1	+1.2	+0.1	+0.2	+0.0	38.0	40.0	-2.0	Vert
	+14.1								
50.5	-27.3	+2.9	+0.3	+0.4	+0.0	36.9	46.0	-9.1	Horiz
	+10.1								
50.7	-27.3	+2.9	+0.3	+0.4	+0.0	37.1	46.0	-8.9	Horiz
	+10.1								
44.2	-27.7	+3.9	+0.4	+0.4	+0.0	36.8	46.0	-9.2	Vert
	+15.6								
45.1	-27.7	+3.9	+0.4	+0.4	+0.0	37.7	46.0	-8.3	Vert
	+15.6								
48.7	-28.0	+1.4	+0.1	+0.2	+0.0	29.7	40.0	-10.3	Vert
	+7.3								
39.0	-28.1	+4.4	+0.4	+0.5	+0.0	33.5	46.0	-12.5	Vert
	+17.3								
42.5	-27.4	+2.9	+0.3	+0.3	+0.0	28.3	43.5	-15.2	Horiz
	+9.7								
	51.0 50.5 50.7 44.2 45.1 48.7	$\begin{array}{c c} +14.1 \\ \hline 51.0 & -28.1 \\ +14.1 \\ \hline 50.5 & -28.1 \\ +14.1 \\ \hline 50.5 & -27.3 \\ +10.1 \\ \hline 50.7 & -27.3 \\ +10.1 \\ \hline 50.7 & -27.3 \\ +10.1 \\ \hline 44.2 & -27.7 \\ +15.6 \\ \hline 45.1 & -27.7 \\ +15.6 \\ \hline 45.1 & -27.7 \\ +15.6 \\ \hline 48.7 & -28.0 \\ +7.3 \\ \hline 39.0 & -28.1 \\ +17.3 \\ \hline 42.5 & -27.4 \\ \end{array}$	$\begin{array}{c ccccc} +14.1 \\ \hline 51.0 & -28.1 & +1.2 \\ & +14.1 \\ \hline 50.5 & -28.1 & +1.2 \\ & +14.1 \\ \hline 50.5 & -27.3 & +2.9 \\ & +10.1 \\ \hline 50.7 & -27.3 & +2.9 \\ & +10.1 \\ \hline 44.2 & -27.7 & +3.9 \\ & +15.6 \\ \hline 45.1 & -27.7 & +3.9 \\ & +15.6 \\ \hline 48.7 & -28.0 & +1.4 \\ & +7.3 \\ \hline 39.0 & -28.1 & +4.4 \\ & +17.3 \\ \hline 42.5 & -27.4 & +2.9 \\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					

Test Setup Photos

Configuration 10

Configuration 11

15.207 AC Conducted Emissions

Test Setup / Conditions / Data

Test Location:	CKC Laboratories, Inc. • 5046 Sierra Pines D	rive • Mariposa	, CA 95338 • (209) 966-5240
Customer:	WaveLynx Technologies Corporation.		
Specification:	15.207 AC Mains - Average		
Work Order #:	97029	Date:	5/10/2016
Test Type:	Conducted Emissions	Time:	09:49:44
Tested By:	Skip Doyle / Benny Lovan	Sequence#:	4
Software:	EMITest 5.03.02	-	120V 60Hz

Equipment Tested:

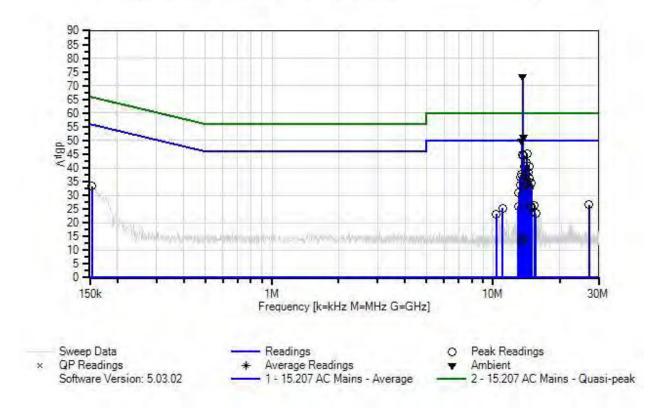
Device	Manufacturer	Model #	S/N
Configuration 2			

Support Equipment:

Device	Manufacturer	Model #	S/N
Configuration 2			

Test Conditions / Notes:

Test Method: ANSI C 63.10 2013


Frequency Range of Interest: 0.150-30MHz RBW = 9kHz; VBW > 9kHz

Environmental Conditions: Temperature: 21°C Relative Humidity: 67% Atmospheric Pressure: 97.5kPa

Highest Generated Frequency: 27.12 MHz The EUT is running at 13.56MHz.

WaveLynx Technologies Corporation. WO#: 97029 Sequence#: 4 Date: 5/10/2016 15.207 AC Mains - Average Test Lead: 120V 60Hz LINE

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP06770	Attenuator	PE7010-10	1/15/2015	1/15/2017
	AN01248	50uH LISN-Line 1 (Return) (dB)	8028-50-TS-24- BNC	1/4/2016	1/4/2017
T2	AN01248	50uH LISN-Line 2 (Line) (dB)	8028-50-TS-24- BNC	1/4/2016	1/4/2017
Т3	AN02609	High Pass Filter	HE9615-150K- 50-720B	2/18/2016	2/18/2018
T4	ANP06884	Cable	LMR195-FR-4	10/27/2015	10/27/2017
T5	ANMD INT	Cable	Underground cables only	3/17/2016	3/17/2018
Т6	AN02111	Spectrum Analyzer	8593EM	6/4/2015	6/4/2016
T7	ANP01153	Cable	NA	3/3/2016	3/3/2018

Measu	urement Data:	R	eading lis	ted by ma	argin.			Test Lea	ad: LINE		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	Τ7						
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	10.07201	62.2	+10.1	+0.3	+0.2	+0.1	+0.0	73.2	50.0	+23.2	LINE
	Ambient		+0.2	+0.0	+0.1				Fundamer		
2		40.4	+10.1	+0.3	+0.2	+0.1	+0.0	51.4	50.0	+1.4	LINE
	Ambient		+0.2	+0.0	+0.1				Fundamer		
3		38.9	+10.1	+0.3	+0.2	+0.1	+0.0	49.9	50.0	-0.1	LINE
	Ambient		+0.2	+0.0	+0.1				Fundamer		
4	14.212M	34.3	+10.1	+0.3	+0.2	+0.1	+0.0	45.3	50.0	-4.7	LINE
			+0.2	+0.0	+0.1						
5	13.635M	33.8	+10.1	+0.3	+0.2	+0.1	+0.0	44.8	50.0	-5.2	LINE
			+0.2	+0.0	+0.1						
6	13.779M	33.5	+10.1	+0.3	+0.2	+0.1	+0.0	44.5	50.0	-5.5	LINE
			+0.2	+0.0	+0.1						
7	14.140M	30.9	+10.1	+0.3	+0.2	+0.1	+0.0	41.9	50.0	-8.1	LINE
			+0.2	+0.0	+0.1						
8	13.852M	29.7	+10.1	+0.3	+0.2	+0.1	+0.0	40.7	50.0	-9.3	LINE
			+0.2	+0.0	+0.1						
9	14.501M	29.6	+10.1	+0.3	+0.2	+0.1	+0.0	40.6	50.0	-9.4	LINE
1.0			+0.2	+0.0	+0.1						
10	14.429M	27.3	+10.1	+0.3	+0.2	+0.1	+0.0	38.3	50.0	-11.7	LINE
11	12 4003 6	26.6	+0.2	+0.0	+0.1	10.1		27.6	50.0	10.4	LDIE
11	13.409M	26.6	+10.1	+0.3	+0.2	+0.1	+0.0	37.6	50.0	-12.4	LINE
10	140(0) (26.6	+0.2	+0.0	+0.1	10.1		27.6	50.0	10.4	LDIE
12	14.068M	26.6	+10.1	+0.3	+0.2	+0.1	+0.0	37.6	50.0	-12.4	LINE
12	12.02414	25.9	+0.2	+0.0	+0.1	+0.1		26.0	50.0	12.0	LINIE
13	13.924M	25.8	+10.1	+0.3	+0.2	+0.1	+0.0	36.8	50.0	-13.2	LINE
1.4	12 265M	25.5	+0.2	+0.0	+0.1	+0.1	+0.0	265	50.0	-13.5	LINIE
14	13.265M	25.5	$^{+10.1}_{+0.2}$	+0.3 +0.0	+0.2 +0.1	+0.1	± 0.0	36.5	50.0	-13.3	LINE
15	14.573M	25.4		+0.0 +0.3		10.1	+0.0	36.4	50.0	-13.6	LINE
15	14.3/3M	23.4	+10.1	+0.3 +0.0	+0.2	+0.1	± 0.0	30.4	30.0	-13.0	LINE
16	14.934M	23.5	+0.2	+0.0 +0.3	+0.1	±0.1		34.5	50.0	-15.5	LINE
16	14.934M	23.3	+10.1		+0.2	+0.1	+0.0	34.3	50.0	-15.5	LINE
L			+0.2	+0.0	+0.1						

17	14 20514	22.4	+ 10.1	10.2	10.2	+0.1		24.4	50.0	15 (LINE
17	14.285M	23.4	$^{+10.1}_{+0.2}$	+0.3 +0.0	$^{+0.2}_{+0.1}$	+0.1	+0.0	34.4	50.0	-15.6	LINE
18	13.996M	22.9	+0.2 +10.1	+0.0 $+0.3$	+0.1 +0.2	+0.1	+0.0	33.9	50.0	-16.1	LINE
10	15.990101	22.9	+0.2	+0.3	+0.2 $+0.1$	+0.1	10.0	55.9	50.0	-10.1	LINE
19	13.337M	22.7	+10.1	+0.0 $+0.3$	+0.1 +0.2	+0.1	+0.0	33.7	50.0	-16.3	LINE
17	15.557101	22.1	+0.2	+0.0	+0.2 $+0.1$	10.1	10.0	55.7	50.0	-10.5	LINL
20	14.646M	21.7	+10.1	+0.3	+0.1 $+0.2$	+0.1	+0.0	32.7	50.0	-17.3	LINE
20	1 1.0 10101	21.7	+0.2	+0.0	+0.1	. 0.1	. 0.0	52.7	50.0	17.5	LINE
21	13.049M	20.1	+10.1	+0.3	+0.2	+0.1	+0.0	31.1	50.0	-18.9	LINE
	101019111	2001	+0.2	+0.0	+0.1	0.11	0.0	0111	2010	1000	DII (D
22	153.637k	21.6	+10.1	+0.1	+1.5	+0.0	+0.0	33.3	55.8	-22.5	LINE
			+0.0	+0.0	+0.0						
23	27.124M	15.6	+10.1	+0.1	+0.3	+0.1	+0.0	26.6	50.0	-23.4	LINE
			+0.2	+0.0	+0.2						
24	15.376M	15.3	+10.1	+0.4	+0.2	+0.1	+0.0	26.4	50.0	-23.6	LINE
			+0.2	+0.0	+0.1						
25	12.976M	15.0	+10.1	+0.3	+0.2	+0.1	+0.0	26.0	50.0	-24.0	LINE
			+0.2	+0.0	+0.1						
26	14.718M	15.0	+10.1	+0.3	+0.2	+0.1	+0.0	26.0	50.0	-24.0	LINE
			+0.2	+0.0	+0.1						
27	14.862M	15.0	+10.1	+0.3	+0.2	+0.1	+0.0	26.0	50.0	-24.0	LINE
			+0.2	+0.0	+0.1						
28	11.046M	14.4	+10.1	+0.2	+0.2	+0.1	+0.0	25.3	50.0	-24.7	LINE
			+0.2	+0.0	+0.1						
29	15.593M	12.3	+10.1	+0.4	+0.2	+0.1	+0.0	23.4	50.0	-26.6	LINE
20	10.21514	10.4	+0.2	+0.0	+0.1	+0.1			50.0	26.0	
30	10.315M	12.4	+10.1	+0.2	+0.2	+0.1	+0.0	23.2	50.0	-26.8	LINE
31	13.572M	3.4	+0.1 +10.1	+0.0 +0.3	+0.1 +0.2	+0.1	+0.0	14.4	50.0	-35.6	LINE
51	15.572101	5.4	+10.1 +0.2	+0.3 +0.0	+0.2 +0.1	± 0.1	± 0.0	14.4	Antenna	-55.0	LINE
			10.2	10.0	10.1				Disconnect	ed and	
									replaced wi		
32	13.707M	2.8	+10.1	+0.3	+0.2	+0.1	+0.0	13.8	50.0	-36.2	LINE
	101,0111	2.0	+0.2	+0.0	+0.1		0.0	10.0	Antenna	20.2	2
					***				Disconnect	ed and	
									replaced wi		
33	13.482M	2.6	+10.1	+0.3	+0.2	+0.1	+0.0	13.6	50.0	-36.4	LINE
			+0.2	+0.0	+0.1				Antenna		
									Disconnect		
									replaced wi	th load	

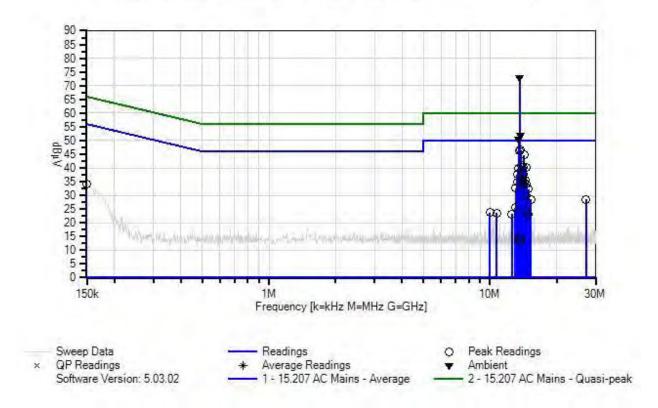
Test Location: Customer: Specification: Work Order #: Test Type: Tested By: Software:	CKC Laboratories, Inc. • 5046 Sien WaveLynx Technologies Corpora 15.207 AC Mains - Average 97029 Conducted Emissions Skip Doyle / Benny Lovan EMITest 5.03.02	ation. Date:	5/10/2016 09:41:38	240
Equipment Test	ed:			
Device	Manufacturer	Model #	S/N	
Configuration 2				

Support Equipment:

Support Equipment				
Device	Manufacturer	Model #	S/N	
Configuration 2				

Test Conditions / Notes:

Test Method: ANSI C 63.10 2013


Frequency Range of Interest: 0.150-30MHz RBW = 9kHz; VBW > 9kHz

Environmental Conditions: Temperature: 21°C Relative Humidity: 67% Atmospheric Pressure: 97.5kPa

Highest Generated Frequency: 27.12 MHz The EUT is running at 13.56MHz.

WaveLynx Technologies Corporation. WO#: 97029 Sequence#: 3 Date: 5/10/2016 15.207 AC Mains - Average Test Lead: 120V 60Hz RETURN

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP06770	Attenuator	PE7010-10	1/15/2015	1/15/2017
T2	AN01248	50uH LISN-Line 1 (Return) (dB)	8028-50-TS-24- BNC	1/4/2016	1/4/2017
	AN01248	50uH LISN-Line 2 (Line) (dB)	8028-50-TS-24- BNC	1/4/2016	1/4/2017
Т3	AN02609	High Pass Filter	HE9615-150K- 50-720B	2/18/2016	2/18/2018
T4	ANP06884	Cable	LMR195-FR-4	10/27/2015	10/27/2017
T5	ANMD INT	Cable	Underground cables only	3/17/2016	3/17/2018
T6	AN02111	Spectrum Analyzer	8593EM	6/4/2015	6/4/2016
T7	ANP01153	Cable	NA	3/3/2016	3/3/2018

Measu	rement Data:	Re	eading lis	ted by ma	argin.			Test Lea	d: RETUR	N	
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	Τ7						
	MHz	dBµV	dB	dB	dB	dB	Table	dBμV	dBµV	dB	Ant
1	10.07200	62.0	+10.1	+0.4	+0.2	+0.1	+0.0	73.1	50.0	+23.1	RETUR
	Ambient		+0.2	+0.0	+0.1				Fundamen		
2		40.7	+10.1	+0.4	+0.2	+0.1	+0.0	51.8	50.0	+1.8	RETUR
	Ambient		+0.2	+0.0	+0.1				Fundamen		
3		39.4	+10.1	+0.4	+0.2	+0.1	+0.0	50.5	50.0	+0.5	RETUR
	Ambient		+0.2	+0.0	+0.1				Fundamen		
4	13.779M	35.4	+10.1	+0.4	+0.2	+0.1	+0.0	46.5	50.0	-3.5	RETUR
			+0.2	+0.0	+0.1						
5	13.635M	35.3	+10.1	+0.4	+0.2	+0.1	+0.0	46.4	50.0	-3.6	RETUR
			+0.2	+0.0	+0.1						
6	14.212M	33.6	+10.1	+0.4	+0.2	+0.1	+0.0	44.7	50.0	-5.3	RETUR
			+0.2	+0.0	+0.1						
7	13.852M	29.8	+10.1	+0.4	+0.2	+0.1	+0.0	40.9	50.0	-9.1	RETUR
-			+0.2	+0.0	+0.1						
8	14.140M	29.1	+10.1	+0.4	+0.2	+0.1	+0.0	40.2	50.0	-9.8	RETUR
			+0.2	+0.0	+0.1						
9	14.501M	29.1	+10.1	+0.4	+0.2	+0.1	+0.0	40.2	50.0	-9.8	RETUR
			+0.2	+0.0	+0.1						
10	13.418M	28.6	+10.1	+0.4	+0.2	+0.1	+0.0	39.7	50.0	-10.3	RETUR
			+0.2	+0.0	+0.1						
11	13.274M	26.6	+10.1	+0.4	+0.2	+0.1	+0.0	37.7	50.0	-12.3	RETUR
10			+0.2	+0.0	+0.1						
12	14.068M	26.5	+10.1	+0.4	+0.2	+0.1	+0.0	37.6	50.0	-12.4	RETUR
10	10.0000	245	+0.2	+0.0	+0.1	1		25.0		110	DETUD
13	13.996M	24.7	+10.1	+0.4	+0.2	+0.1	+0.0	35.8	50.0	-14.2	RETUR
1.4	14 40015	24.5	+0.2	+0.0	+0.1	10.1		255	50.0	14.2	DETUD
14	14.429M	24.6	+10.1	+0.4	+0.2	+0.1	+0.0	35.7	50.0	-14.3	RETUR
1.7	12.02.43.5	24.5	+0.2	+0.0	+0.1	10.1		25.5	50.0	14.4	DETUD
15	13.924M	24.5	+10.1	+0.4	+0.2	+0.1	+0.0	35.6	50.0	-14.4	RETUR
1.6	12.24(2)5	22.0	+0.2	+0.0	+0.1	10.1		25.0	50.0	15.0	DETUD
16	13.346M	23.9	+10.1	+0.4	+0.2	+0.1	+0.0	35.0	50.0	-15.0	RETUR
			+0.2	+0.0	+0.1						

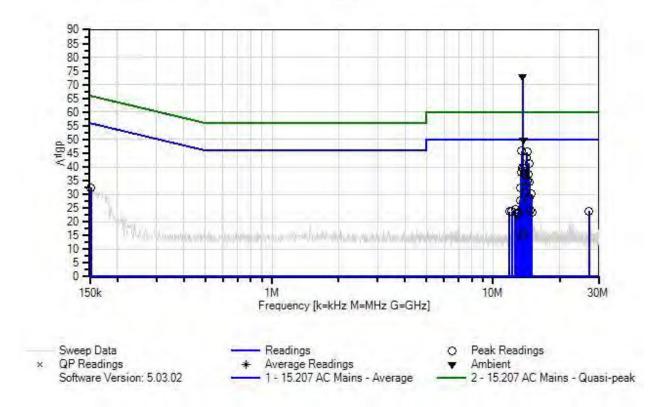
-											
17	14.285M	23.5	+10.1	+0.4	+0.2	+0.1	+0.0	34.6	50.0	-15.4	RETUR
10	14 5703 6	22.2	+0.2	+0.0	+0.1	10.1		24.2	50.0	157	
18	14.573M	23.2	+10.1	+0.4	+0.2	+0.1	+0.0	34.3	50.0	-15.7	RETUR
10	12 0 103 5		+0.2	+0.0	+0.1	1			7 0 0	15.0	DETUD
19	13.049M	21.7	+10.1	+0.3	+0.2	+0.1	+0.0	32.7	50.0	-17.3	RETUR
• •			+0.2	+0.0	+0.1						
20	14.934M	21.1	+10.1	+0.4	+0.2	+0.1	+0.0	32.2	50.0	-17.8	RETUR
		10 -	+0.2	+0.0	+0.1			• • • •		• • •	
21	14.646M	18.7	+10.1	+0.4	+0.2	+0.1	+0.0	29.8	50.0	-20.2	RETUR
			+0.2	+0.0	+0.1						
22	15.331M	17.5	+10.1	+0.4	+0.2	+0.1	+0.0	28.6	50.0	-21.4	RETUR
			+0.2	+0.0	+0.1						
23	27.124M	16.9	+10.1	+0.7	+0.3	+0.1	+0.0	28.5	50.0	-21.5	RETUR
			+0.2	+0.0	+0.2						
24	150.001k	22.0	+10.1	+0.1	+2.0	+0.0	+0.0	34.2	56.0	-21.8	RETUR
			+0.0	+0.0	+0.0						
25	12.976M	14.5	+10.1	+0.3	+0.2	+0.1	+0.0	25.5	50.0	-24.5	RETUR
			+0.2	+0.0	+0.1						
26	14.718M	13.0	+10.1	+0.4	+0.2	+0.1	+0.0	24.1	50.0	-25.9	RETUR
			+0.2	+0.0	+0.1						
27	9.963M	12.8	+10.1	+0.3	+0.2	+0.1	+0.0	23.7	50.0	-26.3	RETUR
			+0.1	+0.0	+0.1						
28	10.694M	12.6	+10.1	+0.3	+0.2	+0.1	+0.0	23.5	50.0	-26.5	RETUR
			+0.1	+0.0	+0.1						
29	12.543M	12.3	+10.1	+0.3	+0.2	+0.1	+0.0	23.3	50.0	-26.7	RETUR
			+0.2	+0.0	+0.1						
30	14.862M	12.2	+10.1	+0.4	+0.2	+0.1	+0.0	23.3	50.0	-26.7	RETUR
			+0.2	+0.0	+0.1						
31	13.491M	3.2	+10.1	+0.4	+0.2	+0.1	+0.0	14.3	50.0	-35.7	RETUR
			+0.2	+0.0	+0.1				Antenna		
									disconnecte		
									port Loaded		
32	13.572M	2.8	+10.1	+0.4	+0.2	+0.1	+0.0	13.9	50.0	-36.1	RETUR
			+0.2	+0.0	+0.1				Antenna		
									disconnecte		
									port Loaded		
33	13.707M	2.7	+10.1	+0.4	+0.2	+0.1	+0.0	13.8	50.0	-36.2	RETUR
			+0.2	+0.0	+0.1				Antenna		
									disconnecte		
									port Loaded	1	
											-

Test Type: Tested By:	Conducted Emissions Skip Doyle / Benny Lovan	Time: Sequence#:	09:55:30 5	
Software:	EMITest 5.03.02	Sequence.	120V 60Hz	
Equipment Tes	ted:			
Device	Manufacturer	Model #	S/N	
Configuration 3				
Support Equips	nent:			
Device	Manufacturer	Model #	S/N	

Configuration 3

Test Conditions / Notes:

Test Method: ANSI C 63.10 2013


Frequency Range of Interest: 0.150-30MHz RBW = 9kHz; VBW > 9kHz

Environmental Conditions: Temperature: 21°C Relative Humidity: 67% Atmospheric Pressure: 97.5kPa

Highest Generated Frequency: 27.12 MHz The EUT is running at 13.56MHz.

WaveLynx Technologies Corporation. WO#: 97029 Sequence#: 5 Date: 5/10/2016 15:207 AC Mains - Average Test Lead: 120V 60Hz LINE

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP06770	Attenuator	PE7010-10	1/15/2015	1/15/2017
	AN01248	50uH LISN-Line 1	8028-50-TS-24-	1/4/2016	1/4/2017
		(Return) (dB)	BNC		
T2	AN01248	50uH LISN-Line 2	8028-50-TS-24-	1/4/2016	1/4/2017
		(Line) (dB)	BNC		
Т3	AN02609	High Pass Filter	HE9615-150K-	2/18/2016	2/18/2018
			50-720B		
T4	ANP06884	Cable	LMR195-FR-4	10/27/2015	10/27/2017
T5	ANMD INT	Cable	Underground	3/17/2016	3/17/2018
			cables only		
Т6	AN02111	Spectrum Analyzer	8593EM	6/4/2015	6/4/2016
T7	ANP01153	Cable	NA	3/3/2016	3/3/2018

Measu	rement Data:	Re	eading list	ted by ma	ırgin.			Test Lea	ad: LINE		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	Τ7						
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	13.572M	62.0	+10.1	+0.3	+0.2	+0.1	+0.0	73.0	50.0	+23.0	LINE
	Ambient		+0.2	+0.0	+0.1				Fundamer		
2		38.7	+10.1	+0.3	+0.2	+0.1	+0.0	49.7	50.0	-0.3	LINE
	Ambient		+0.2	+0.0	+0.1				Fundamer		
3	13.482M	34.8	+10.1	+0.3	+0.2	+0.1	+0.0	45.8	50.0	-4.2	LINE
			+0.2	+0.0	+0.1						
4	14.212M	34.5	+10.1	+0.3	+0.2	+0.1	+0.0	45.5	50.0	-4.5	LINE
			+0.2	+0.0	+0.1						
5	14.140M	32.5	+10.1	+0.3	+0.2	+0.1	+0.0	43.5	50.0	-6.5	LINE
			+0.2	+0.0	+0.1						
6	14.501M	30.4	+10.1	+0.3	+0.2	+0.1	+0.0	41.4	50.0	-8.6	LINE
			+0.2	+0.0	+0.1						
7	13.626M	28.9	+10.1	+0.3	+0.2	+0.1	+0.0	39.9	50.0	-10.1	LINE
			+0.2	+0.0	+0.1						
8	13.770M	28.6	+10.1	+0.3	+0.2	+0.1	+0.0	39.6	50.0	-10.4	LINE
			+0.2	+0.0	+0.1						
9	13.843M	27.5	+10.1	+0.3	+0.2	+0.1	+0.0	38.5	50.0	-11.5	LINE
			+0.2	+0.0	+0.1						
10	13.400M	27.1	+10.1	+0.3	+0.2	+0.1	+0.0	38.1	50.0	-11.9	LINE
			+0.2	+0.0	+0.1						
11	14.059M	26.8	+10.1	+0.3	+0.2	+0.1	+0.0	37.8	50.0	-12.2	LINE
			+0.2	+0.0	+0.1						
12	13.915M	26.4	+10.1	+0.3	+0.2	+0.1	+0.0	37.4	50.0	-12.6	LINE
			+0.2	+0.0	+0.1						
13	14.429M	26.3	+10.1	+0.3	+0.2	+0.1	+0.0	37.3	50.0	-12.7	LINE
			+0.2	+0.0	+0.1						
14	14.285M	23.7	+10.1	+0.3	+0.2	+0.1	+0.0	34.7	50.0	-15.3	LINE
			+0.2	+0.0	+0.1						
15	14.573M	23.6	+10.1	+0.3	+0.2	+0.1	+0.0	34.6	50.0	-15.4	LINE
			+0.2	+0.0	+0.1						
16	13.328M	21.2	+10.1	+0.3	+0.2	+0.1	+0.0	32.2	50.0	-17.8	LINE
			+0.2	+0.0	+0.1						

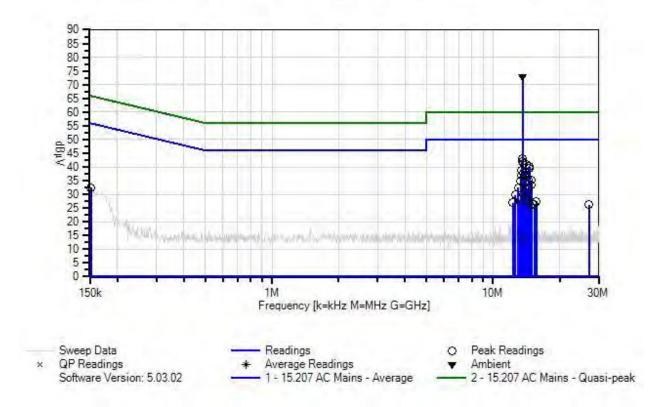
17	13.987M	19.8	+10.1	+0.3	+0.2	+0.1	+0.0	30.8	50.0	-19.2	LINE
			+0.2	+0.0	+0.1						
18	14.943M	19.2	+10.1	+0.3	+0.2	+0.1	+0.0	30.2	50.0	-19.8	LINE
			+0.2	+0.0	+0.1						
19	14.646M	17.7	+10.1	+0.3	+0.2	+0.1	+0.0	28.7	50.0	-21.3	LINE
			+0.2	+0.0	+0.1						
20	13.256M	16.8	+10.1	+0.3	+0.2	+0.1	+0.0	27.8	50.0	-22.2	LINE
			+0.2	+0.0	+0.1						
21	151.819k	20.4	+10.1	+0.1	+1.8	+0.0	+0.0	32.4	55.9	-23.5	LINE
			+0.0	+0.0	+0.0						
22	12.597M	13.7	+10.1	+0.3	+0.2	+0.1	+0.0	24.7	50.0	-25.3	LINE
			+0.2	+0.0	+0.1						
23	14.727M	13.3	+10.1	+0.3	+0.2	+0.1	+0.0	24.3	50.0	-25.7	LINE
			+0.2	+0.0	+0.1						
24	27.124M	13.0	+10.1	+0.1	+0.3	+0.1	+0.0	24.0	50.0	-26.0	LINE
			+0.2	+0.0	+0.2						
25	12.155M	12.9	+10.1	+0.3	+0.1	+0.1	+0.0	23.8	50.0	-26.2	LINE
			+0.2	+0.0	+0.1						
26	11.867M	12.8	+10.1	+0.3	+0.1	+0.1	+0.0	23.7	50.0	-26.3	LINE
			+0.2	+0.0	+0.1						
27	13.040M	12.5	+10.1	+0.3	+0.2	+0.1	+0.0	23.5	50.0	-26.5	LINE
			+0.2	+0.0	+0.1						
28	15.015M	12.4	+10.1	+0.3	+0.2	+0.1	+0.0	23.4	50.0	-26.6	LINE
			+0.2	+0.0	+0.1						
29	12.967M	12.3	+10.1	+0.3	+0.2	+0.1	+0.0	23.3	50.0	-26.7	LINE
			+0.2	+0.0	+0.1						
30	12.895M	11.6	+10.1	+0.3	+0.2	+0.1	+0.0	22.6	50.0	-27.4	LINE
	10 60 60 6		+0.2	+0.0	+0.1						
31	13.696M	4.7	+10.1	+0.3	+0.2	+0.1	+0.0	15.7	50.0	-34.3	LINE
			+0.2	+0.0	+0.1				Antenna		
									disconnecte		
- 20	10 5 (0) 5	4.0	. 10.1	.0.2	10.2	10.1		15.0	replaced wi		TDIE
32	13.563M	4.2	+10.1	+0.3	+0.2	+0.1	+0.0	15.2	50.0	-34.8	LINE
			+0.2	+0.0	+0.1				Antenna	1 1	
									disconnecte		
									replaced wi	ith load	

Test Location: Customer: Specification:	CKC Laboratories, Inc. • 5046 Si WaveLynx Technologies Corpo 15.207 AC Mains - Average	-	, CA 95338 • (209) 966-5240
Work Order #:	97029	Date:	5/10/2016
Test Type:	Conducted Emissions	Time:	10:00:58
Tested By:	Skip Doyle / Benny Lovan	Sequence#:	6
Software:	EMITest 5.03.02	-	120V 60Hz
Equipment Test	ted:		
Device	Manufacturer	Model #	S/N
Configuration 3			
Support Equipn	nent:		

Support Equipment:				
Device	Manufacturer	Model #	S/N	
Configuration 3				

Test Conditions / Notes:

Test Method: ANSI C 63.10 2013


Frequency Range of Interest: 0.150-30MHz RBW = 9kHz; VBW > 9kHz

Environmental Conditions: Temperature: 21°C Relative Humidity: 67% Atmospheric Pressure: 97.5kPa

Highest Generated Frequency: 27.12 MHz The EUT is running at 13.56MHz.

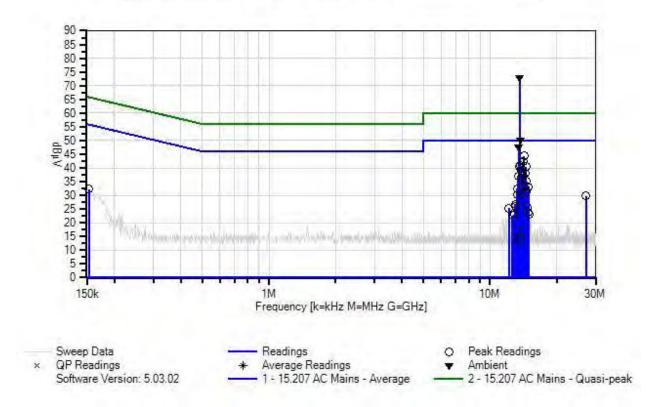
WaveLynx Technologies Corporation. WO#: 97029 Sequence#: 6 Date: 5/10/2016 15.207 AC Mains - Average Test Lead: 120V 60Hz RETURN

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP06770	Attenuator	PE7010-10	1/15/2015	1/15/2017
T2	AN01248	50uH LISN-Line 1 (Return) (dB)	8028-50-TS-24- BNC	1/4/2016	1/4/2017
	AN01248	50uH LISN-Line 2 (Line) (dB)	8028-50-TS-24- BNC	1/4/2016	1/4/2017
Т3	AN02609	High Pass Filter	HE9615-150K- 50-720B	2/18/2016	2/18/2018
T4	ANP06884	Cable	LMR195-FR-4	10/27/2015	10/27/2017
T5	ANMD INT	Cable	Underground cables only	3/17/2016	3/17/2018
T6	AN02111	Spectrum Analyzer	8593EM	6/4/2015	6/4/2016
T7	ANP01153	Cable	NA	3/3/2016	3/3/2018

Measu	rement Data:	Re	eading lis	ted by ma	argin.			Test Lea	d: RETUR	N	
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	Τ7						
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	13.572M	62.0	+10.1	+0.4	+0.2	+0.1	+0.0	73.1	50.0	+23.1	RETUR
	Ambient		+0.2	+0.0	+0.1				Fundamen		
2	13.608M	31.8	+10.1	+0.4	+0.2	+0.1	+0.0	42.9	50.0	-7.1	RETUR
			+0.2	+0.0	+0.1						
3	13.536M	30.9	+10.1	+0.4	+0.2	+0.1	+0.0	42.0	50.0	-8.0	RETUR
			+0.2	+0.0	+0.1						
4	13.680M	30.2	+10.1	+0.4	+0.2	+0.1	+0.0	41.3	50.0	-8.7	RETUR
			+0.2	+0.0	+0.1						
5	14.122M	29.8	+10.1	+0.4	+0.2	+0.1	+0.0	40.9	50.0	-9.1	RETUR
			+0.2	+0.0	+0.1						
6	14.637M	29.0	+10.1	+0.4	+0.2	+0.1	+0.0	40.1	50.0	-9.9	RETUR
			+0.2	+0.0	+0.1						
7	14.564M	28.5	+10.1	+0.4	+0.2	+0.1	+0.0	39.6	50.0	-10.4	RETUR
			+0.2	+0.0	+0.1						
8	13.464M	27.7	+10.1	+0.4	+0.2	+0.1	+0.0	38.8	50.0	-11.2	RETUR
			+0.2	+0.0	+0.1						
9	13.761M	26.7	+10.1	+0.4	+0.2	+0.1	+0.0	37.8	50.0	-12.2	RETUR
			+0.2	+0.0	+0.1						
10	13.391M	26.0	+10.1	+0.4	+0.2	+0.1	+0.0	37.1	50.0	-12.9	RETUR
			+0.2	+0.0	+0.1						
11	13.834M	25.9	+10.1	+0.4	+0.2	+0.1	+0.0	37.0	50.0	-13.0	RETUR
			+0.2	+0.0	+0.1						
12	14.492M	24.1	+10.1	+0.4	+0.2	+0.1	+0.0	35.2	50.0	-14.8	RETUR
			+0.2	+0.0	+0.1						
13	14.925M	24.0	+10.1	+0.4	+0.2	+0.1	+0.0	35.1	50.0	-14.9	RETUR
			+0.2	+0.0	+0.1						
14	13.319M	23.7	+10.1	+0.4	+0.2	+0.1	+0.0	34.8	50.0	-15.2	RETUR
			+0.2	+0.0	+0.1						
15	13.906M	23.4	+10.1	+0.4	+0.2	+0.1	+0.0	34.5	50.0	-15.5	RETUR
			+0.2	+0.0	+0.1						
16	14.853M	22.5	+10.1	+0.4	+0.2	+0.1	+0.0	33.6	50.0	-16.4	RETUR
			+0.2	+0.0	+0.1						

17	13.021M	21.4	+10.1	+0.3	+0.2	+0.1	+0.0	32.4	50.0	-17.6	RETUR
			+0.2	+0.0	+0.1						
18	14.411M	21.0	+10.1	+0.4	+0.2	+0.1	+0.0	32.1	50.0	-17.9	RETUR
			+0.2	+0.0	+0.1						
19	14.194M	20.7	+10.1	+0.4	+0.2	+0.1	+0.0	31.8	50.0	-18.2	RETUR
			+0.2	+0.0	+0.1						
20	14.267M	18.8	+10.1	+0.4	+0.2	+0.1	+0.0	29.9	50.0	-20.1	RETUR
			+0.2	+0.0	+0.1						
21	12.588M	18.8	+10.1	+0.3	+0.2	+0.1	+0.0	29.8	50.0	-20.2	RETUR
			+0.2	+0.0	+0.1						
22	14.050M	17.2	+10.1	+0.4	+0.2	+0.1	+0.0	28.3	50.0	-21.7	RETUR
			+0.2	+0.0	+0.1						
23	13.247M	16.9	+10.1	+0.4	+0.2	+0.1	+0.0	28.0	50.0	-22.0	RETUR
			+0.2	+0.0	+0.1						
24	15.683M	16.4	+10.1	+0.4	+0.2	+0.1	+0.0	27.5	50.0	-22.5	RETUR
			+0.2	+0.0	+0.1						
25	12.291M	16.1	+10.1	+0.3	+0.1	+0.1	+0.0	27.0	50.0	-23.0	RETUR
			+0.2	+0.0	+0.1						
26	14.997M	15.5	+10.1	+0.4	+0.2	+0.1	+0.0	26.6	50.0	-23.4	RETUR
			+0.2	+0.0	+0.1						
27	151.819k	20.4	+10.1	+0.1	+1.8	+0.0	+0.0	32.4	55.9	-23.5	RETUR
			+0.0	+0.0	+0.0						
28	15.385M	15.3	+10.1	+0.4	+0.2	+0.1	+0.0	26.4	50.0	-23.6	RETUR
			+0.2	+0.0	+0.1						
29	27.124M	14.6	+10.1	+0.7	+0.3	+0.1	+0.0	26.2	50.0	-23.8	RETUR
			+0.2	+0.0	+0.2						
30	14.709M	14.7	+10.1	+0.4	+0.2	+0.1	+0.0	25.8	50.0	-24.2	RETUR
			+0.2	+0.0	+0.1						
31	13.572M	2.8	+10.1	+0.4	+0.2	+0.1	+0.0	13.9	50.0	-36.1	RETUR
			+0.2	+0.0	+0.1				Antenna		
									disconnecte		
									replaced wi	th load	

Test Location: Customer:	WaveLynx Technologies Corpora	ra Pines Drive • Mariposa, CA 95338 • (209) 966-5240 ation.
Specification:	15.207 AC Mains - Average	
Work Order #:	97029	Date: 5/10/2016
Test Type:	Conducted Emissions	Time: 10:31:54
Tested By:	Skip Doyle / Benny Lovan	Sequence#: 12
Software:	EMITest 5.03.02	120V 60Hz
Equipment Test	ted:	


Device	Manufacturer	Model #	S/N						
Configuration 6									
Support Equipment	t:								
Device	Manufacturer	Model #	S/N						
Configuration 6									
Test Conditions / N	otes:								
Test Method: ANSI	C 63.10 2013								
Frequency Range of	Interest:								
0.150-30MHz									
RBW = 9kHz; VBW	>9 kHz								

Environmental Conditions: Temperature: 21°C Relative Humidity: 67% Atmospheric Pressure: 97.5kPa

Highest Generated Frequency: 27.12 MHz The EUT is running at 13.56MHz.

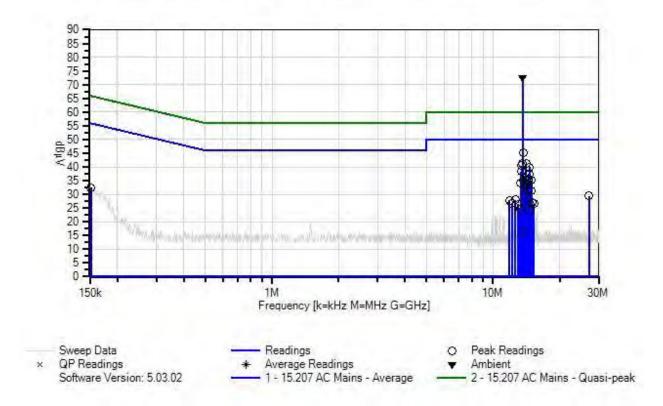
WaveLynx Technologies Corporation. WO#: 97029 Sequence#: 12 Date: 5/10/2016 15:207 AC Mains - Average Test Lead: 120V 60Hz LINE

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP06770	Attenuator	PE7010-10	1/15/2015	1/15/2017
	AN01248	50uH LISN-Line 1	8028-50-TS-24-	1/4/2016	1/4/2017
		(Return) (dB)	BNC		
T2	AN01248	50uH LISN-Line 2	8028-50-TS-24-	1/4/2016	1/4/2017
		(Line) (dB)	BNC		
Т3	AN02609	High Pass Filter	HE9615-150K-	2/18/2016	2/18/2018
			50-720B		
T4	ANP06884	Cable	LMR195-FR-4	10/27/2015	10/27/2017
T5	ANMD INT	Cable	Underground	3/17/2016	3/17/2018
			cables only		
Т6	AN02111	Spectrum Analyzer	8593EM	6/4/2015	6/4/2016
T7	ANP01153	Cable	NA	3/3/2016	3/3/2018

	urement Data:	R	eading lis	ted by ma	argin.			Test Lea	ad: LINE		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7						
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	10.072111	62.0	+10.1	+0.3	+0.2	+0.1	+0.0	73.0	50.0	+23.0	LINE
	Ambient		+0.2	+0.0	+0.1				Fundamer		
2		39.1	+10.1	+0.3	+0.2	+0.1	+0.0	50.1	50.0	+0.1	LINE
	Ambient		+0.2	+0.0	+0.1				Fundamer		
3		36.5	+10.1	+0.3	+0.2	+0.1	+0.0	47.5	50.0	-2.5	LINE
	Ambient		+0.2	+0.0	+0.1				Fundamer		
4	14.212M	33.3	+10.1	+0.3	+0.2	+0.1	+0.0	44.3	50.0	-5.7	LINE
			+0.2	+0.0	+0.1						
5	14.140M	31.4	+10.1	+0.3	+0.2	+0.1	+0.0	42.4	50.0	-7.6	LINE
			+0.2	+0.0	+0.1						
6	13.770M	29.9	+10.1	+0.3	+0.2	+0.1	+0.0	40.9	50.0	-9.1	LINE
			+0.2	+0.0	+0.1						
7	13.626M	29.5	+10.1	+0.3	+0.2	+0.1	+0.0	40.5	50.0	-9.5	LINE
			+0.2	+0.0	+0.1						
8	14.501M	29.5	+10.1	+0.3	+0.2	+0.1	+0.0	40.5	50.0	-9.5	LINE
			+0.2	+0.0	+0.1						
9	13.843M	27.7	+10.1	+0.3	+0.2	+0.1	+0.0	38.7	50.0	-11.3	LINE
1.0			+0.2	+0.0	+0.1			• • • •		10.0	
10	14.429M	27.0	+10.1	+0.3	+0.2	+0.1	+0.0	38.0	50.0	-12.0	LINE
	10 1001 5	0.01	+0.2	+0.0	+0.1	. 0.1			= 0 0	12.0	LDIE
11	13.409M	26.1	+10.1	+0.3	+0.2	+0.1	+0.0	37.1	50.0	-12.9	LINE
10	1400016		+0.2	+0.0	+0.1	. 0.1		260	= 0 0	10.1	LDIE
12	14.068M	25.9	+10.1	+0.3	+0.2	+0.1	+0.0	36.9	50.0	-13.1	LINE
12	12 01 51 6	25.2	+0.2	+0.0	+0.1	+0.1		262	50.0	12.7	LINE
13	13.915M	25.3	+10.1	+0.3	+0.2	+0.1	+0.0	36.3	50.0	-13.7	LINE
1.4	14.573M	24.1	+0.2	+0.0 +0.3	+0.1	10.1	+0.0	35.1	50.0	-14.9	LINIE
14	14.3/3M	24.1	$^{+10.1}_{+0.2}$	+0.3 +0.0	$^{+0.2}_{+0.1}$	+0.1	± 0.0	33.1	30.0	-14.9	LINE
1.5	14 02414	22.2				10.1		33.2	50.0	16.0	LINE
15	14.934M	22.2	+10.1	+0.3	+0.2	+0.1	+0.0	55.2	50.0	-16.8	LINE
17	14 20514	22.1	+0.2	+0.0	+0.1	10.1		22.1	50.0	16.0	LINE
16	14.285M	22.1	+10.1	+0.3	+0.2	+0.1	+0.0	33.1	50.0	-16.9	LINE
			+0.2	+0.0	+0.1						

1.7	12 2 (2) 5	<u>.</u>	. 10.1			. 0 1		20 ·	7 0 0	15 (TDIE
17	13.265M	21.4	+10.1	+0.3 +0.0	+0.2	+0.1	+0.0	32.4	50.0	-17.6	LINE
10	14 (46) [20.4	+0.2		+0.1	10.1		21.4	50.0	10.0	
18	14.646M	20.4	+10.1	+0.3	+0.2	+0.1	+0.0	31.4	50.0	-18.6	LINE
10	12.00714	10.0	+0.2	+0.0	+0.1	+0.1		20.6	50.0	10.4	INF
19	13.987M	19.6	+10.1	+0.3	+0.2	+0.1	+0.0	30.6	50.0	-19.4	LINE
20	12 22714	10.2	+0.2	+0.0	+0.1	+0.1		20.2	50.0	10.7	LDIE
20	13.337M	19.3	+10.1	+0.3	+0.2	+0.1	+0.0	30.3	50.0	-19.7	LINE
21	27.124M	18.8	+0.2 +10.1	+0.0 +0.1	+0.1 +0.3	+0.1	+0.0	29.8	50.0	-20.2	LINE
21	27.124IVI	10.0	+10.1 +0.2	+0.1 +0.0	+0.3 +0.2	± 0.1	± 0.0	29.8	30.0	-20.2	LINE
22	12.967M	15.8	+0.2 +10.1	+0.0 +0.3	+0.2 +0.2	+0.1	+0.0	26.8	50.0	-23.2	LINE
22	12.90/101	13.8	+10.1 +0.2	+0.3 +0.0	+0.2 +0.1	± 0.1	± 0.0	20.8	50.0	-23.2	LINE
23	153.637k	20.6	+0.2 +10.1	+0.0	+0.1 +1.5	+0.0	+0.0	32.3	55.8	-23.5	LINE
25	1 <i>33.</i> 0 <i>3</i> / K	20.0	+0.0	+0.1 +0.0	+1.3 +0.0	10.0	10.0	52.5	55.0	-25.5	LINE
24	13.040M	14.9	+10.1	+0.0	+0.0	+0.1	+0.0	25.9	50.0	-24.1	LINE
27	15.040101	14.9	+0.2	+0.0	+0.1	0.1	0.0	25.7	50.0	27.1	LINE
25	14.718M	14.7	+10.1	+0.3	+0.2	+0.1	+0.0	25.7	50.0	-24.3	LINE
20	1 11, 10101	11.7	+0.2	+0.0	+0.1	. 0.11	0.0	20.7	2010	21.3	LINE
26	12.164M	14.4	+10.1	+0.3	+0.1	+0.1	+0.0	25.3	50.0	-24.7	LINE
			+0.2	+0.0	+0.1						
27	14.862M	12.7	+10.1	+0.3	+0.2	+0.1	+0.0	23.7	50.0	-26.3	LINE
			+0.2	+0.0	+0.1						
28	12.895M	12.1	+10.1	+0.3	+0.2	+0.1	+0.0	23.1	50.0	-26.9	LINE
			+0.2	+0.0	+0.1						
29	15.015M	12.0	+10.1	+0.3	+0.2	+0.1	+0.0	23.0	50.0	-27.0	LINE
			+0.2	+0.0	+0.1						
30	12.606M	11.7	+10.1	+0.3	+0.2	+0.1	+0.0	22.7	50.0	-27.3	LINE
			+0.2	+0.0	+0.1						
31	13.572M	5.9	+10.1	+0.3	+0.2	+0.1	+0.0	16.9	50.0	-33.1	LINE
			+0.2	+0.0	+0.1				Antenna		
									disconnecte		
									replaced wi		
32	13.698M	3.2	+10.1	+0.3	+0.2	+0.1	+0.0	14.2	50.0	-35.8	LINE
			+0.2	+0.0	+0.1				Antenna		
									disconnecte		
	12 4023 5	2.0	10.1	10.2	10.0	10.1		14.0	replaced wi		TDT
33	13.482M	3.0	+10.1	+0.3	+0.2	+0.1	+0.0	14.0	50.0	-36.0	LINE
			+0.2	+0.0	+0.1				Antenna	d and	
									disconnecte		
									replaced wi	ui ioau	

Test Location:	CKC Laboratories, Inc. • 5046 Sierra	-	, CA 95338 • (209) 966-5240
Customer:	WaveLynx Technologies Corporat	lon.	
Specification:	15.207 AC Mains - Average		
Work Order #:	97029	Date:	5/10/2016
Test Type:	Conducted Emissions	Time:	10:20:05
Tested By:	Skip Doyle / Benny Lovan	Sequence#:	11
Software:	EMITest 5.03.02		120V 60Hz


Equipment Tested:

Equipment Tested	Manufacturer	Model #	S/N	
Configuration 6			DIT	
Support Equipmer	nt:			
Device	Manufacturer	Model #	S/N	
Configuration 6				
Test Conditions / 1	Notes:			
Test Method: ANSI	C 63.10 2013			
Frequency Range of 0.150-30MHz RBW = 9kHz; VBV				
Environmental Con	ditions:			
Temperature: 21°C				
Relative Humidity:				
Atmospheric Pressu	ire: 97.5kPa			
Highest Generated 1	Frequency: 27.12 MHz			

The EUT is running at 13.56MHz.

WaveLynx Technologies Corporation. WO#: 97029 Sequence#: 11 Date: 5/10/2016 15:207 AC Mains - Average Test Lead: 120V 60Hz RETURN

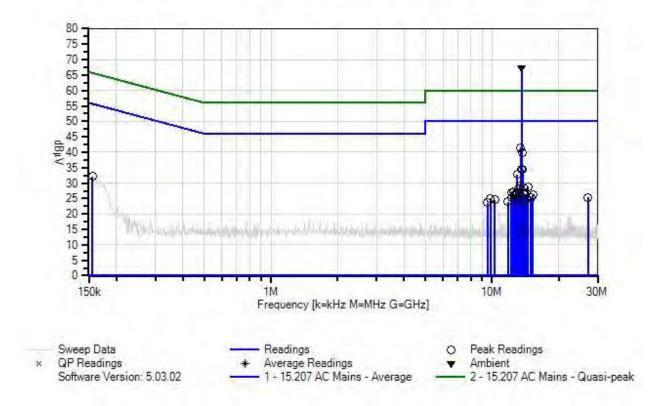
ID	Asset #	Description	Model	Calibration Date	Cal Due Date
		-			
T1	ANP06770	Attenuator	PE7010-10	1/15/2015	1/15/2017
T2	AN01248	50uH LISN-Line 1	8028-50-TS-24-	1/4/2016	1/4/2017
		(Return) (dB)	BNC		
	AN01248	50uH LISN-Line 2	8028-50-TS-24-	1/4/2016	1/4/2017
		(Line) (dB)	BNC		
Т3	AN02609	High Pass Filter	HE9615-150K-	2/18/2016	2/18/2018
			50-720B		
T4	ANP06884	Cable	LMR195-FR-4	10/27/2015	10/27/2017
T5	ANMD INT	Cable	Underground	3/17/2016	3/17/2018
			cables only		
T6	AN02111	Spectrum Analyzer	8593EM	6/4/2015	6/4/2016
T7	ANP01153	Cable	NA	3/3/2016	3/3/2018

Measu	rement Data:	Re	eading lis	ted by ma	argin.			Test Lea	d: RETUR	N	
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	Τ7						
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	13.572M	61.5	+10.1	+0.4	+0.2	+0.1	+0.0	72.6	50.0	+22.6	RETUR
	Ambient		+0.2	+0.0	+0.1				Fundamen		
2	13.689M	34.2	+10.1	+0.4	+0.2	+0.1	+0.0	45.3	50.0	-4.7	RETUR
			+0.2	+0.0	+0.1						
3	13.617M	30.3	+10.1	+0.4	+0.2	+0.1	+0.0	41.4	50.0	-8.6	RETUR
			+0.2	+0.0	+0.1						
4	14.131M	30.0	+10.1	+0.4	+0.2	+0.1	+0.0	41.1	50.0	-8.9	RETUR
			+0.2	+0.0	+0.1						
5	13.473M	29.4	+10.1	+0.4	+0.2	+0.1	+0.0	40.5	50.0	-9.5	RETUR
			+0.2	+0.0	+0.1						
6	14.637M	28.8	+10.1	+0.4	+0.2	+0.1	+0.0	39.9	50.0	-10.1	RETUR
			+0.2	+0.0	+0.1						
7	13.400M	27.3	+10.1	+0.4	+0.2	+0.1	+0.0	38.4	50.0	-11.6	RETUR
			+0.2	+0.0	+0.1						
8	14.564M	26.3	+10.1	+0.4	+0.2	+0.1	+0.0	37.4	50.0	-12.6	RETUR
			+0.2	+0.0	+0.1						
9	14.420M	24.6	+10.1	+0.4	+0.2	+0.1	+0.0	35.7	50.0	-14.3	RETUR
			+0.2	+0.0	+0.1						
10	13.761M	24.0	+10.1	+0.4	+0.2	+0.1	+0.0	35.1	50.0	-14.9	RETUR
			+0.2	+0.0	+0.1						
11	14.203M	24.0	+10.1	+0.4	+0.2	+0.1	+0.0	35.1	50.0	-14.9	RETUR
			+0.2	+0.0	+0.1						
12	14.934M	24.0	+10.1	+0.4	+0.2	+0.1	+0.0	35.1	50.0	-14.9	RETUR
			+0.2	+0.0	+0.1						
13	14.492M	23.9	+10.1	+0.4	+0.2	+0.1	+0.0	35.0	50.0	-15.0	RETUR
			+0.2	+0.0	+0.1						
14	13.328M	22.9	+10.1	+0.4	+0.2	+0.1	+0.0	34.0	50.0	-16.0	RETUR
			+0.2	+0.0	+0.1						
15	13.906M	22.9	+10.1	+0.4	+0.2	+0.1	+0.0	34.0	50.0	-16.0	RETUR
			+0.2	+0.0	+0.1						
16	13.834M	21.8	+10.1	+0.4	+0.2	+0.1	+0.0	32.9	50.0	-17.1	RETUR
			+0.2	+0.0	+0.1						

17	14.853M	20.3	+10.1	+0.4	+0.2	+0.1	+0.0	31.4	50.0	-18.6	RETUR
			+0.2	+0.0	+0.1						
18	14.276M	20.2	+10.1	+0.4	+0.2	+0.1	+0.0	31.3	50.0	-18.7	RETUR
			+0.2	+0.0	+0.1						
19	14.059M	18.9	+10.1	+0.4	+0.2	+0.1	+0.0	30.0	50.0	-20.0	RETUR
			+0.2	+0.0	+0.1						
20	27.124M	17.8	+10.1	+0.7	+0.3	+0.1	+0.0	29.4	50.0	-20.6	RETUR
			+0.2	+0.0	+0.2						
21	12.597M	17.1	+10.1	+0.3	+0.2	+0.1	+0.0	28.1	50.0	-21.9	RETUR
			+0.2	+0.0	+0.1						
22	11.867M	17.0	+10.1	+0.3	+0.1	+0.1	+0.0	27.9	50.0	-22.1	RETUR
			+0.2	+0.0	+0.1						
23	15.006M	15.8	+10.1	+0.4	+0.2	+0.1	+0.0	26.9	50.0	-23.1	RETUR
			+0.2	+0.0	+0.1						
24	12.155M	15.8	+10.1	+0.3	+0.1	+0.1	+0.0	26.7	50.0	-23.3	RETUR
			+0.2	+0.0	+0.1						
25	151.819k	20.5	+10.1	+0.1	+1.8	+0.0	+0.0	32.5	55.9	-23.4	RETUR
			+0.0	+0.0	+0.0						
26	15.322M	15.5	+10.1	+0.4	+0.2	+0.1	+0.0	26.6	50.0	-23.4	RETUR
			+0.2	+0.0	+0.1						
27	13.031M	15.4	+10.1	+0.3	+0.2	+0.1	+0.0	26.4	50.0	-23.6	RETUR
			+0.2	+0.0	+0.1						
28	14.709M	15.3	+10.1	+0.4	+0.2	+0.1	+0.0	26.4	50.0	-23.6	RETUR
			+0.2	+0.0	+0.1						
29	13.256M	13.5	+10.1	+0.4	+0.2	+0.1	+0.0	24.6	50.0	-25.4	RETUR
			+0.2	+0.0	+0.1						
30	14.781M	13.2	+10.1	+0.4	+0.2	+0.1	+0.0	24.3	50.0	-25.7	RETUR
			+0.2	+0.0	+0.1						
31	13.572M	5.2	+10.1	+0.4	+0.2	+0.1	+0.0	16.3	50.0	-33.7	RETUR
			+0.2	+0.0	+0.1				Antenna		
									disconnecte		
									replaced wi	th load	

Test Location: Customer:	CKC Laboratories, Inc. • 5046 Sierr WaveLynx Technologies Corpora	•	, CA 95338 • (209) 966-5240
Specification:	15.207 AC Mains - Average		
Work Order #:	97029	Date:	5/10/2016
Test Type:	Conducted Emissions	Time:	10:38:50
Tested By:	Skip Doyle / Benny Lovan	Sequence#:	13
Software:	EMITest 5.03.02		120V 60Hz
F i i i	4 J.		

Equipment Tested:


Equipment Testeu	•			
Device	Manufacturer	Model #	S/N	
Configuration 7				
Support Equipmen	nt:			
Device	Manufacturer	Model #	S/N	
Configuration 7				
Test Conditions / 1	Notes:			
Test Method: ANSI	C 63.10 2013			
Frequency Range of	f Interest:			
0.150-30MHz				
RBW = 9kHz; VBW	V > 9 kHz			
Engline and the Com	1:4:			
Environmental Con	ditions:			
Temperature: 21°C				
Relative Humidity:	67%			

Relative Humidity: 67% Atmospheric Pressure: 97.5kPa

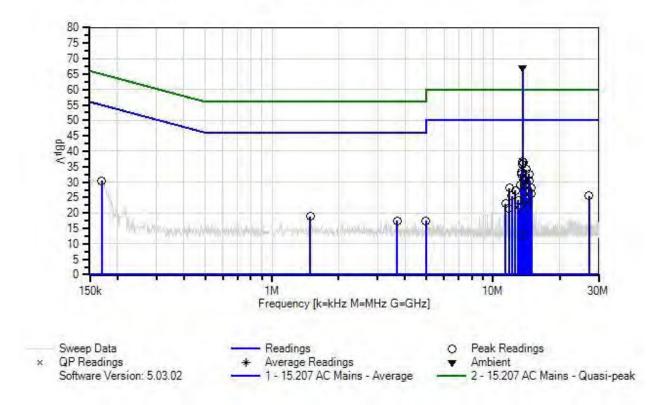
Highest Generated Frequency: 27.12 MHz The EUT is running at 13.56MHz.

WaveLynx Technologies Corporation. WO#: 97029 Sequence#: 13 Date: 5/10/2016 15.207 AC Mains - Average Test Lead: 120V 60Hz LINE

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP06770	Attenuator	PE7010-10	1/15/2015	1/15/2017
	AN01248	50uH LISN-Line 1	8028-50-TS-24-	1/4/2016	1/4/2017
		(Return) (dB)	BNC		
T2	AN01248	50uH LISN-Line 2	8028-50-TS-24-	1/4/2016	1/4/2017
		(Line) (dB)	BNC		
Т3	AN02609	High Pass Filter	HE9615-150K-	2/18/2016	2/18/2018
			50-720B		
T4	ANP06884	Cable	LMR195-FR-4	10/27/2015	10/27/2017
T5	ANMD INT	Cable	Underground	3/17/2016	3/17/2018
			cables only		
Т6	AN02111	Spectrum Analyzer	8593EM	6/4/2015	6/4/2016
T7	ANP01153	Cable	NA	3/3/2016	3/3/2018

Measu	rement Data:	Re	eading lis	ted by ma	rgin.			Test Lea	ad: LINE		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7						
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	13.572M	56.5	+10.1	+0.3	+0.2	+0.1	+0.0	67.5	50.0	+17.5	LINE
	Ambient		+0.2	+0.0	+0.1				Fundamer		
2	13.455M	30.5	+10.1	+0.3	+0.2	+0.1	+0.0	41.5	50.0	-8.5	LINE
			+0.2	+0.0	+0.1						
3	13.671M	28.7	+10.1	+0.3	+0.2	+0.1	+0.0	39.7	50.0	-10.3	LINE
			+0.2	+0.0	+0.1						
4	13.527M	23.5	+10.1	+0.3	+0.2	+0.1	+0.0	34.5	50.0	-15.5	LINE
			+0.2	+0.0	+0.1						
5	13.743M	23.4	+10.1	+0.3	+0.2	+0.1	+0.0	34.4	50.0	-15.6	LINE
			+0.2	+0.0	+0.1						
6	13.012M	21.8	+10.1	+0.3	+0.2	+0.1	+0.0	32.8	50.0	-17.2	LINE
			+0.2	+0.0	+0.1						
7	13.382M	18.0	+10.1	+0.3	+0.2	+0.1	+0.0	29.0	50.0	-21.0	LINE
			+0.2	+0.0	+0.1						
8	13.815M	17.8	+10.1	+0.3	+0.2	+0.1	+0.0	28.8	50.0	-21.2	LINE
			+0.2	+0.0	+0.1						
9	14.546M	17.8	+10.1	+0.3	+0.2	+0.1	+0.0	28.8	50.0	-21.2	LINE
			+0.2	+0.0	+0.1						
10	13.229M	17.1	+10.1	+0.3	+0.2	+0.1	+0.0	28.1	50.0	-21.9	LINE
			+0.2	+0.0	+0.1						
11	12.507M	16.1	+10.1	+0.3	+0.2	+0.1	+0.0	27.1	50.0	-22.9	LINE
			+0.2	+0.0	+0.1						
12	12.209M	16.1	+10.1	+0.3	+0.1	+0.1	+0.0	27.0	50.0	-23.0	LINE
- 10			+0.2	+0.0	+0.1						
13	12.940M	15.7	+10.1	+0.3	+0.2	+0.1	+0.0	26.7	50.0	-23.3	LINE
1.4	10.00016	1.5.6	+0.2	+0.0	+0.1	. 0.1			= 0 0		LDIE
14	13.888M	15.6	+10.1	+0.3	+0.2	+0.1	+0.0	26.6	50.0	-23.4	LINE
	1 5 5 4 5 5 1	20.0	+0.2	+0.0	+0.1						LDIE
15	155.455k	20.8	+10.1	+0.1	+1.2	+0.0	+0.0	32.2	55.7	-23.5	LINE
	1418615		+0.0	+0.0	+0.0				5 0 C		LDIE
16	14.176M	15.4	+10.1	+0.3	+0.2	+0.1	+0.0	26.4	50.0	-23.6	LINE
			+0.2	+0.0	+0.1						

17	12.579M	15.3	+10.1	+0.3	+0.2	+0.1	+0.0	26.3	50.0	-23.7	LINE
			+0.2	+0.0	+0.1						
18	15.268M	15.2	+10.1	+0.3	+0.2	+0.1	+0.0	26.2	50.0	-23.8	LINE
			+0.2	+0.0	+0.1						
19	12.724M	14.8	+10.1	+0.3	+0.2	+0.1	+0.0	25.8	50.0	-24.2	LINE
			+0.2	+0.0	+0.1						
20	13.310M	14.5	+10.1	+0.3	+0.2	+0.1	+0.0	25.5	50.0	-24.5	LINE
			+0.2	+0.0	+0.1						
21	27.124M	14.4	+10.1	+0.1	+0.3	+0.1	+0.0	25.4	50.0	-24.6	LINE
			+0.2	+0.0	+0.2						
22	14.979M	14.3	+10.1	+0.3	+0.2	+0.1	+0.0	25.3	50.0	-24.7	LINE
			+0.2	+0.0	+0.1						
23	12.291M	14.3	+10.1	+0.3	+0.1	+0.1	+0.0	25.2	50.0	-24.8	LINE
			+0.2	+0.0	+0.1						
24	9.837M	14.2	+10.1	+0.2	+0.2	+0.1	+0.0	25.0	50.0	-25.0	LINE
			+0.1	+0.0	+0.1						
25	14.249M	13.9	+10.1	+0.3	+0.2	+0.1	+0.0	24.9	50.0	-25.1	LINE
			+0.2	+0.0	+0.1						
26	10.279M	13.8	+10.1	+0.2	+0.2	+0.1	+0.0	24.6	50.0	-25.4	LINE
			+0.1	+0.0	+0.1						
27	14.104M	13.5	+10.1	+0.3	+0.2	+0.1	+0.0	24.5	50.0	-25.5	LINE
			+0.2	+0.0	+0.1						
28	11.776M	13.0	+10.1	+0.3	+0.1	+0.1	+0.0	23.9	50.0	-26.1	LINE
			+0.2	+0.0	+0.1						
29	9.548M	12.8	+10.1	+0.2	+0.2	+0.1	+0.0	23.6	50.0	-26.4	LINE
			+0.1	+0.0	+0.1						
30	13.085M	12.5	+10.1	+0.3	+0.2	+0.1	+0.0	23.5	50.0	-26.5	LINE
			+0.2	+0.0	+0.1						
31	13.572M	3.2	+10.1	+0.3	+0.2	+0.1	+0.0	14.2	50.0	-35.8	LINE
			+0.2	+0.0	+0.1				Antenna		
									disconnecte		
									replaced wi	th a load	

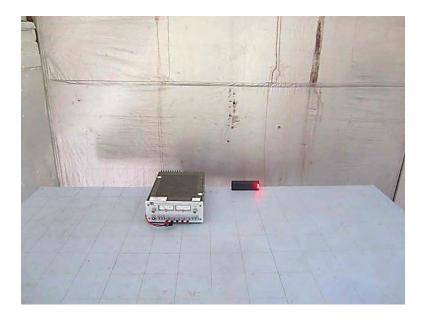

Test Location: Customer:	CKC Laboratories, Inc. • 5046 Sierra WaveLynx Technologies Corporat	-	, CA 95338 • (209)	966-5240
Specification:	15.207 AC Mains - Average			
Work Order #:	97029	Date:	5/10/2016	
Test Type:	Conducted Emissions	Time:	10:42:12	
Tested By:	Skip Doyle / Benny Lovan	Sequence#:	14	
Software:	EMITest 5.03.02		120V 60Hz	
Equipment Test	ted:			

Device Manufacturer Model # S/N Configuration 7 Support Equipment: Manufacturer Model # S/N Device Configuration 7 Test Conditions / Notes: Test Method: ANSI C 63.10 2013 Frequency Range of Interest: 0.150-30MHz RBW = 9kHz; VBW > 9kHzEnvironmental Conditions: Temperature: 21°C Relative Humidity: 67% Atmospheric Pressure: 97.5kPa

Highest Generated Frequency: 27.12 MHz The EUT is running at 13.56MHz.

WaveLynx Technologies Corporation. WO#: 97029 Sequence#: 14 Date: 5/10/2016 15:207 AC Mains - Average Test Lead: 120V 60Hz RETURN

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP06770	Attenuator	PE7010-10	1/15/2015	1/15/2017
T2	AN01248	50uH LISN-Line 1 (Return) (dB)	8028-50-TS-24- BNC	1/4/2016	1/4/2017
	AN01248	50uH LISN-Line 2 (Line) (dB)	8028-50-TS-24- BNC	1/4/2016	1/4/2017
Т3	AN02609	High Pass Filter	HE9615-150K- 50-720B	2/18/2016	2/18/2018
T4	ANP06884	Cable	LMR195-FR-4	10/27/2015	10/27/2017
T5	ANMD INT	Cable	Underground cables only	3/17/2016	3/17/2018
T6	AN02111	Spectrum Analyzer	8593EM	6/4/2015	6/4/2016
T7	ANP01153	Cable	NA	3/3/2016	3/3/2018


Measu	rement Data:	Re	eading lis	ted by ma	ırgin.	Test Lead: RETURN					
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	Τ7						
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	13.572M	56.0	+10.1	+0.4	+0.2	+0.1	+0.0	67.1	50.0	+17.1	RETUR
	Ambient		+0.2	+0.0	+0.1				Fundamen		
2	13.617M	25.7	+10.1	+0.4	+0.2	+0.1	+0.0	36.8	50.0	-13.2	RETUR
			+0.2	+0.0	+0.1						
3	13.689M	25.2	+10.1	+0.4	+0.2	+0.1	+0.0	36.3	50.0	-13.7	RETUR
			+0.2	+0.0	+0.1						
4	13.536M	24.6	+10.1	+0.4	+0.2	+0.1	+0.0	35.7	50.0	-14.3	RETUR
			+0.2	+0.0	+0.1						
5	14.122M	23.0	+10.1	+0.4	+0.2	+0.1	+0.0	34.1	50.0	-15.9	RETUR
			+0.2	+0.0	+0.1						
6	13.464M	22.0	+10.1	+0.4	+0.2	+0.1	+0.0	33.1	50.0	-16.9	RETUR
			+0.2	+0.0	+0.1						
7	13.391M	21.5	+10.1	+0.4	+0.2	+0.1	+0.0	32.6	50.0	-17.4	RETUR
			+0.2	+0.0	+0.1						
8	14.555M	21.5	+10.1	+0.4	+0.2	+0.1	+0.0	32.6	50.0	-17.4	RETUR
			+0.2	+0.0	+0.1						
9	13.761M	19.7	+10.1	+0.4	+0.2	+0.1	+0.0	30.8	50.0	-19.2	RETUR
			+0.2	+0.0	+0.1						
10	14.637M	19.4	+10.1	+0.4	+0.2	+0.1	+0.0	30.5	50.0	-19.5	RETUR
			+0.2	+0.0	+0.1						
11	13.834M	19.3	+10.1	+0.4	+0.2	+0.1	+0.0	30.4	50.0	-19.6	RETUR
			+0.2	+0.0	+0.1						
12	13.319M	18.0	+10.1	+0.4	+0.2	+0.1	+0.0	29.1	50.0	-20.9	RETUR
			+0.2	+0.0	+0.1						
13	13.906M	17.9	+10.1	+0.4	+0.2	+0.1	+0.0	29.0	50.0	-21.0	RETUR
			+0.2	+0.0	+0.1						
14	14.853M	17.1	+10.1	+0.4	+0.2	+0.1	+0.0	28.2	50.0	-21.8	RETUR
			+0.2	+0.0	+0.1						
15	11.867M	17.1	+10.1	+0.3	+0.1	+0.1	+0.0	28.0	50.0	-22.0	RETUR
			+0.2	+0.0	+0.1						
16	12.597M	16.2	+10.1	+0.3	+0.2	+0.1	+0.0	27.2	50.0	-22.8	RETUR
			+0.2	+0.0	+0.1						

17	14.483M	15.7	+10.1	+0.4	+0.2	+0.1	+0.0	26.8	50.0	-23.2	RETUR
			+0.2	+0.0	+0.1						
18	14.925M	15.3	+10.1	+0.4	+0.2	+0.1	+0.0	26.4	50.0	-23.6	RETUR
			+0.2	+0.0	+0.1						
19	27.124M	14.0	+10.1	+0.7	+0.3	+0.1	+0.0	25.6	50.0	-24.4	RETUR
			+0.2	+0.0	+0.2						
20	169.999k	19.9	+10.1	+0.1	+0.4	+0.0	+0.0	30.5	55.0	-24.5	RETUR
			+0.0	+0.0	+0.0						
21	12.155M	14.6	+10.1	+0.3	+0.1	+0.1	+0.0	25.5	50.0	-24.5	RETUR
			+0.2	+0.0	+0.1						
22	14.194M	13.7	+10.1	+0.4	+0.2	+0.1	+0.0	24.8	50.0	-25.2	RETUR
			+0.2	+0.0	+0.1						
23	13.031M	13.1	+10.1	+0.3	+0.2	+0.1	+0.0	24.1	50.0	-25.9	RETUR
			+0.2	+0.0	+0.1						
24	11.379M	12.0	+10.1	+0.3	+0.2	+0.1	+0.0	23.0	50.0	-27.0	RETUR
			+0.2	+0.0	+0.1						
25	1.491M	8.4	+10.1	+0.1	+0.2	+0.0	+0.0	18.9	46.0	-27.1	RETUR
			+0.1	+0.0	+0.0						
26	14.267M	11.5	+10.1	+0.4	+0.2	+0.1	+0.0	22.6	50.0	-27.4	RETUR
			+0.2	+0.0	+0.1						
27	13.247M	10.7	+10.1	+0.4	+0.2	+0.1	+0.0	21.8	50.0	-28.2	RETUR
			+0.2	+0.0	+0.1						
28	11.794M	10.7	+10.1	+0.3	+0.1	+0.1	+0.0	21.6	50.0	-28.4	RETUR
			+0.2	+0.0	+0.1						
29	3.692M	7.0	+10.1	+0.1	+0.1	+0.0	+0.0	17.5	46.0	-28.5	RETUR
			+0.1	+0.0	+0.1						
30	4.964M	7.0	+10.1	+0.1	+0.1	+0.0	+0.0	17.5	46.0	-28.5	RETUR
			+0.1	+0.0	+0.1						
31	13.572M	1.9	+10.1	+0.4	+0.2	+0.1	+0.0	13.0	50.0	-37.0	RETUR
			+0.2	+0.0	+0.1				Antenna		
									disconnecte		
									replaced wi	th a load	

Test Setup Photos

Page 81 of 83 Report No.: 97029-15

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in dB μ V/m, the spectrum analyzer reading in dB μ V was corrected by using the following formula. This reading was then compared to the applicable specification limit. Individual measurements were compared with the displayed limit value in the margin column. The margin was calculated based on the limit value subtracting the corrected measured value; a negative margin represents a measurement less than the limit while a positive margin represents a measurement exceeding the limit.

SAMPLE CALCULATIONS							
	Meter reading (dBµV)						
+	Antenna Factor	(dB/m)					
+	Cable Loss	(dB)					
-	Distance Correction	(dB)					
-	Preamplifier Gain	(dB)					
=	Corrected Reading	(dBµV/m)					

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE							
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING				
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz				
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz				
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz				
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz				
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz				

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or caret ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.