

🧲 Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE190714302

FCC REPORT

Applicant: ilumi solutions inc.

Address of Applicant: 17330 Preston Road, Ste. 140A, Dallas, TX 75252, USA

Equipment Under Test (EUT)

Product Name: MeshTek Gateway

MTGW01W-X (X can be any letter representing color of the

Model No.: enclosure. MTGW01W is default model no. without -X; it

indicates enclosure is of White color)

Trade mark: MeshTek

FCC ID: 2AEHU-MTGW01W

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 09 Aug., 2019

Date of Test: 09 Aug., to 15 Aug., 2019

Date of report issued: 16 Aug., 2019

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	16 Aug., 2019	Original

Tested by:

Test Engineer

Date: 16 Aug., 2019

Reviewed by: Date: 16 Aug., 2019

Project Engineer

3 Contents

			Page
1	CO	VER PAGE	1
2	VEI	RSION	2
3	CO	NTENTS	3
4		ST SUMMARY	
5	GE	NERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T	5
	5.3	TEST ENVIRONMENT AND TEST MODE	6
	5.4	DESCRIPTION OF SUPPORT UNITS	6
	5.5	MEASUREMENT UNCERTAINTY	
	5.6	LABORATORY FACILITY	
	5.7	LABORATORY LOCATION	
	5.8	TEST INSTRUMENTS LIST	7
6	TES	ST RESULTS AND MEASUREMENT DATA	8
	6.1	ANTENNA REQUIREMENT	
	6.2	CONDUCTED EMISSION	9
	6.3	CONDUCTED OUTPUT POWER	
	6.4	OCCUPY BANDWIDTH	
	6.5	POWER SPECTRAL DENSITY	
	6.6	BAND EDGE	
	6.6.		
	6.6.		
	6.7	Spurious Emission	
	6.7.		
	6.7.		
7	TES	ST SETUP PHOTO	42
Q	EII.	T CONSTRUCTIONAL DETAILS	//3

4 Test Summary

Test Items	Section in CFR 47	Result
Antenna requirement	15.203 & 15.247 (b)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass*
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass*
Power Spectral Density	15.247 (e)	Pass*
Band Edge	15.247 (d)	Pass*
Spurious Emission	15.205 & 15.209	Pass

All measurement data were performed in accordance with ANSI C63.10: 2013 and KDB 558074 D01 15.247 Meas Guidance v05r02 of test method.

Remark

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: Not Applicable.
- 3. Pass*: The test data refer to FCC ID: Z9W-CM4.

5 General Information

5.1 Client Information

Applicant:	ilumi solutions inc.
Address:	17330 Preston Road, Ste. 140A, Dallas, TX 75252, USA
Manufacturer/Factory:	Ningbo Dongxing Electric Co., Ltd.
Address of Manufacturer/ Factory:	FENGLIN INDUSTRIAL DEVELOPMENT ZONE, QIAO TOU TOWN CIXI, NINGBO, P.R. CHINA 315317

5.2 General Description of E.U.T.

Product Name:	MeshTek Gateway
Model No.:	MTGW01W-X (X can be any letter representing color of the enclosure. MTGW01W is default model no. without -X; it indicates enclosure is of White color)
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(H20)) 2422MHz~2452MHz (802.11n(H40))
Channel numbers:	11 for 802.11b/802.11g/802.11(H20) 7 for 802.11n(H40)
Channel separation:	5MHz
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps
Data speed (IEEE 802.11n):	Up to 300Mbps
Antenna Type:	Integral Antenna
Antenna gain:	3 dBi
AC adapter:	Model: RWX-AA050120U Input: AC100-240V 50/60Hz 0.4A Output: DC 5.0V, 1200mA
Test Sample Condition:	The test samples were provided in good working order with no visible defects.
Remark:	802.11b/g/n all support 2x2 MIMO

Operation Frequency each of channel for 802.11b/g/n(H20)							
Channel Frequency Channel Frequency Channel Frequency Channel Frequency							Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

- 1. For 802.11n-HT40 mode, the channel number is from 3 to 9;
- 2. Channel 1, 6 & 11 selected for 802.11b/g/n-HT20 as Lowest, Middle and Highest channel. Channel 3, 6 & 9 selected for 802.11n-HT40 as Lowest, Middle and Highest channel, Channel.

NOTE. Because the transmit signals are completely uncorrelated, so the Directional gain = GANT.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 5 of 43

Report No: CCISE190714302

5.3 Test environment and test mode

Operating Environment:			
Temperature:	24.0 °C		
Humidity:	54 % RH		
Atmospheric Pressure:	1010 mbar		
Test mode:			

Transmitting mode Ke	eep the EUT in continuous MIMO transmitting with modulation (Dutycycle>98%)
----------------------	---

The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate, the follow list were the worst case.				
Mode Data rate				
802.11b	1Mbps			
802.11g	6Mbps			
802.11n(H20)	6.5Mbps			
802.11n(H40)	13.5Mbps			

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.38 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.36 dB (k=2)

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Designation No.: CN1211

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.7 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

5.8 Test Instruments list

Radiated Emission:							
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020		
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-18-2019	03-17-2020		
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-18-2019	03-17-2020		
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-18-2019	03-17-2020		
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2017	06-21-2020		
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-21-2018	11-20-2019		
EMI Test Software	AUDIX	E3	\	Version: 6.110919b			
Pre-amplifier	HP	8447D	2944A09358	03-18-2019	03-17-2020		
Pre-amplifier	CD	PAP-1G18	11804	03-18-2019	03-17-2020		
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-18-2019	03-17-2020		
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-21-2018	11-20-2019		
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-18-2019	03-17-2020		
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-18-2019	03-17-2020		
Cable	MICRO-COAX	MFR64639	K10742-5	03-18-2019	03-17-2020		
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-18-2019	03-17-2020		
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A		
Test Software	MWRFTEST	MTS8200	Version: 2.0.0.0				

Conducted Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-18-2019	03-17-2020	
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-18-2019	03-17-2020	
LISN	CHASE	MN2050D	1447	03-18-2019	03-17-2020	
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2019	07-20-2020	
Cable	HP	10503A	N/A	03-18-2019	03-17-2020	
EMI Test Software	AUDIX	E3	Version: 6.110919b			

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement:

FCC Part 15 C Section 15.203 /247(b)

15.203 requirement:

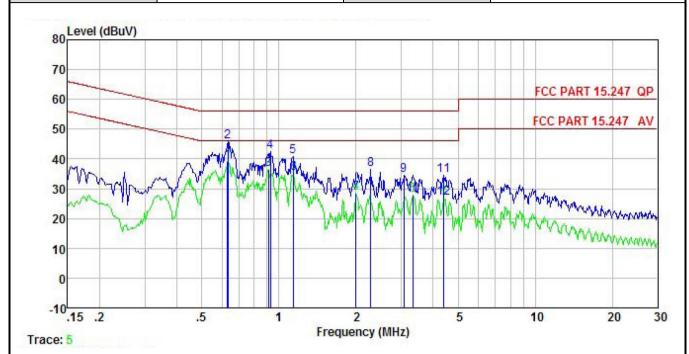
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

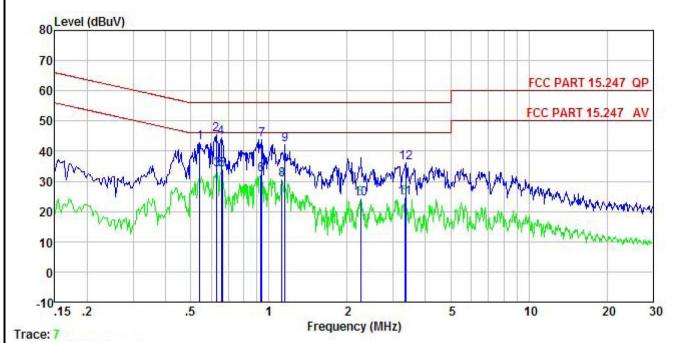
The Wi-Fi antenna is an Internal antenna which cannot replace by end-user, the best case gain of the antenna is 3.0 dBi.


6.2 Conducted Emission

T. (D	E00 De (45 0 0 e)	5.007				
Test Requirement:	FCC Part 15 C Section 15.207					
Test Frequency Range:	150 kHz to 30 MHz					
Class / Severity:	Class B					
Receiver setup:	RBW=9 kHz, VBW=30 kHz					
Limit:	Frequency range	Limit (d	dBuV)			
	(MHz)	Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
Test procedure	* Decreases with the logarity 1. The E.U.T and simulations	arithm of the frequency. Ilators are connected to the				
	 line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement. 					
Test setup:		Reference Plane				
	AUX Equipment Test table/Insulat Remark E.U.T: Equipment Under T LISN: Line Impedence Sta	E.U.T EMI Receiver	I Her — AC power			
Test Instruments:	Refer to section 5.8 for d	letails				
Test mode:	Refer to section 5.3 for d	letails				
Test results:	Passed					

Measurement Data:

Product name:	MeshTek Gateway	Product model:	MTGW01W
Test by:	Mike	Test mode:	Wi-Fi Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%


	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
2	MHz	dBu∜	<u>ab</u>	₫B	dBu₹	dBu∜	<u>ab</u>	<u> </u>
1	0.630	28.74	-0.38	10.77	39.13	46.00	-6.87	Average
2	0.634	35.38	-0.38	10.77	45.77	56.00	-10.23	QP
3	0.909	26.06	-0.38	10.84	36.52	46.00	-9.48	Average
4	0.928	31.84	-0.38	10.85	42.31	56.00	-13.69	QP
5	1.135	30.16	-0.39	10.89	40.66	56.00	-15.34	QP
6	1.141	24.66	-0.39	10.89	35.16	46.00	-10.84	Average
7	2.001	17.90	-0.41	10.96	28.45			Average
8	2.285	25.96	-0.42	10.95	36.49		-19.51	
234 567 89	3.074	23.99	-0.44	10.92	34.47		-21.53	(CH - C - C - C - C - C - C - C - C - C -
10	3.346	17.36	-0.45	10.91	27.82			Average
11	4.407	23.99	-0.47	10.87	34.39		-21.61	
12	4.407	16.43	-0.47	10.87	26.83			Äverage

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Product name:	MeshTek Gateway	Product model:	MTGW01W
Test by:	Mike	Test mode:	Wi-Fi Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBuV	<u>dB</u>	₫B	dBu₹	₫₿u₹	<u>ab</u>	
1	0.541	32.56	-0.65	10.76	42.67	56.00	-13.33	QP
2	0.627	35.39	-0.64	10.77	45.52	56.00	-10.48	QP
3	0.630	23.82	-0.64	10.77	33.95	46.00	-12.05	Average
1 2 3 4 5 6 7	0.654	34.35	-0.64	10.77	44.48	56.00	-11.52	QP
5	0.661	23.74	-0.64	10.77	33.87	46.00	-12.13	Average
6	0.933	21.90	-0.63	10.85	32.12			Average
7	0.938	33.73	-0.63	10.85	43.95	56.00	-12.05	QP
8	1.123	20.17	-0.64	10.88	30.41	46.00	-15.59	Average
8 9	1.153	31.98	-0.64	10.89	42.23	56.00	-13.77	QP
10	2.249	13.93	-0.67	10.95	24.21	46.00	-21.79	Average
11	3.328	14.25	-0.68	10.91	24.48			Average
12	3.364	25.99	-0.68	10.91	36.22		-19.78	

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)			
Limit:	30dBm			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 5.8 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Refer to FCC ID: Z9W-CM4			

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)				
Limit:	>500kHz				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table				
	Ground Reference Plane				
Test Instruments:	Refer to section 5.8 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Refer to FCC ID: Z9W-CM4				

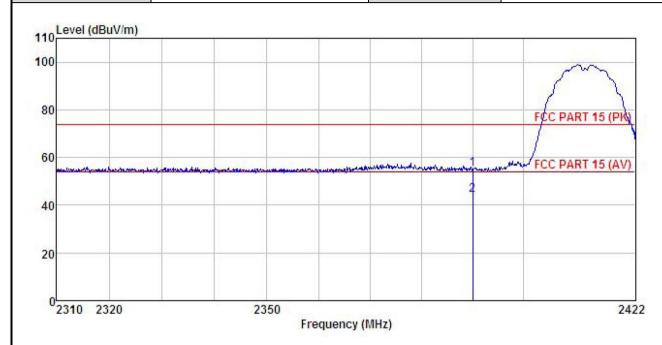
6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)		
•			
Limit:	8dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.8 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Refer to FCC ID: Z9W-CM4		

6.6 Band Edge

6.6.1 Conducted Emission Method

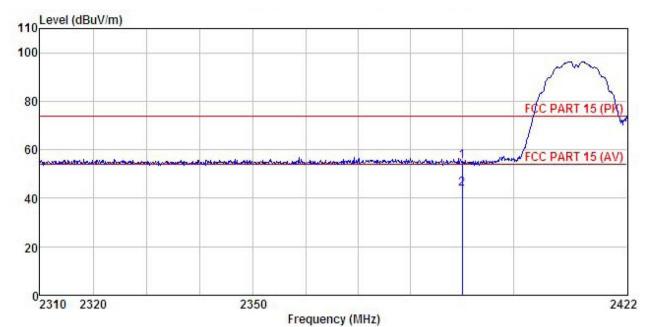
0.0.1 Oolidabtea Elilloololi					
Test Requirement:	FCC Part 15 C Section 15.247 (d)				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.8 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Refer to FCC ID: Z9W-CM4				


6.6.2 Radiated Emission Method

0.0.2	Radiated Emission W	etilou							
	Test Requirement:	FCC Part 15 C	FCC Part 15 C Section 15.209 and 15.205						
	Test Frequency Range:	2.3GHz to 2.5G	Hz						
	Test Distance:	3m			1				
	Receiver setup:	Frequency	Detector	RBW	VBW	Remark			
		Above 1GHz	Peak	1MHz	3MHz	Peak Value			
	119	Fraguana	RMS	1MHz .imit (dBuV/m @	3MHz	Average Value Remark			
	Limit:	Frequency		54.00		Average Value			
		Above 1GH	Hz ├─	74.00		Peak Value			
	Test Procedure:	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. 							
	Test setup:	150cm	AE EUT (Turntable)	Ground Reference Plane Test Receiver	orn Antenna The An	Tower W			
	Test Instruments:	Refer to section	5.8 for deta	ails					
	Test mode:	Refer to section							
	Test results:	Passed							

802.11b mode:

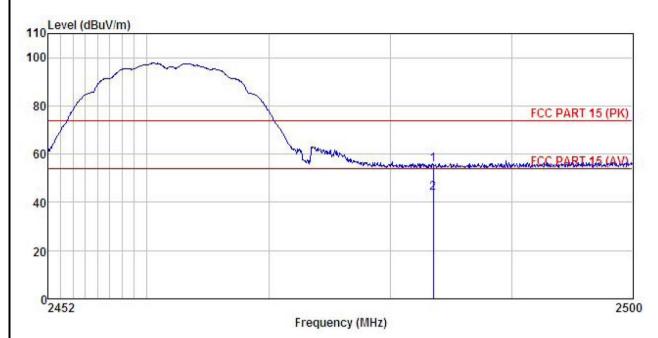
Product Name:	MeshTek Gateway	Product Model:	MTGW01W
Test By:	Mike	Test mode:	802.11b Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%


	Freq	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark
2	MHz	dBu₹	<u>dB</u> /m		<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
	2390.000 2390.000								

Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

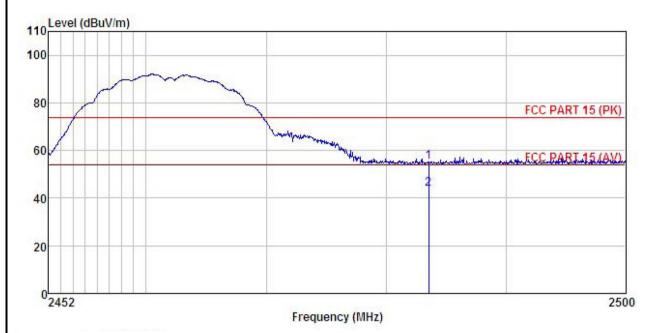
Product Name:	MeshTek Gateway	Product Model:	MTGW01W
Test By:	Mike	Test mode:	802.11b Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%



	Freq		Antenna Factor							
MHz	dBu∜	i⊽ —dB/m	<u>ab</u>	<u>ab</u>	dBuV/m	$\overline{\mathtt{dBuV/m}}$	<u>ab</u>			
1 2	2390.000 2390.000					55.34 43.82				

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

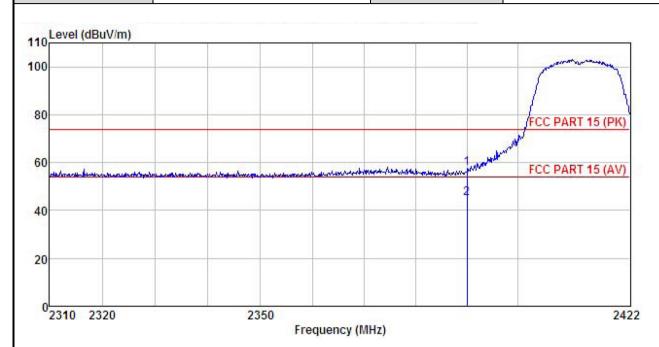
Product Name:	MeshTek Gateway	Product Model:	MTGW01W		
Test By:	Mike	Test mode:	802.11b Tx mode		
Test Channel:	Highest channel	Polarization:	Vertical		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%		



	Freq		Antenna Factor					
3	MHz	dBu∜	— <u>d</u> B/π	 <u>ab</u>	$\overline{dBuV/m}$	$\overline{\mathtt{dBuV/m}}$	<u>dB</u>	
1 2	2483.500 2483.500							

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

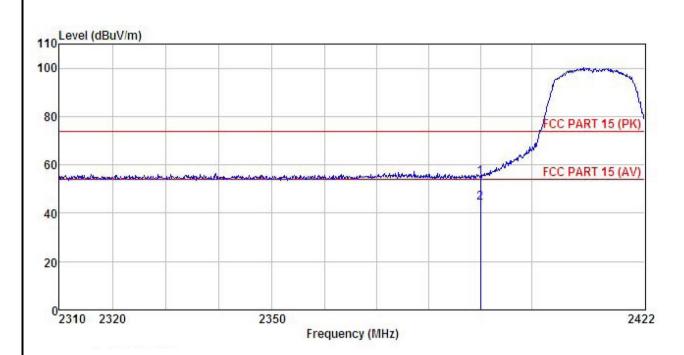
Product Name:	MeshTek Gateway	Product Model:	MTGW01W
Test By:	Mike	Test mode:	802.11b Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%


Freq		Antenna Factor						
MHz	dBu⊽	dB/m	<u>dB</u>	<u>ab</u>	dBuV/m	$\overline{dBuV/m}$	<u>ab</u>	 3
2483.500 2483.500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11g mode:

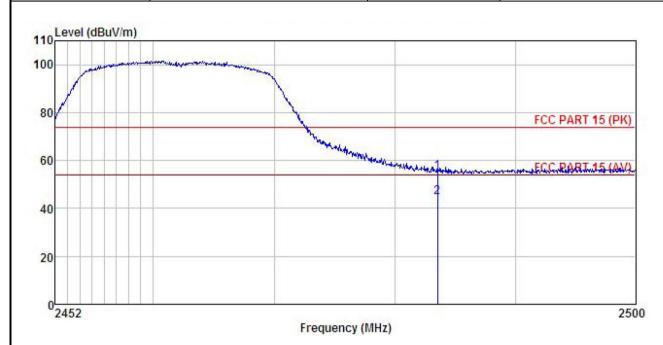
Product Name:	MeshTek Gateway	Product Model:	MTGW01W
Test By:	Mike	Test mode:	802.11g Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%


	Freq	Read/ Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark
-	MHz	dBu∇	— <u>dB</u> /π		<u>ab</u>	$\overline{dB}\overline{uV/m}$	dBuV/m	<u>ab</u>	
1 2	2390.000 2390.000	27.43 14.94	25.45 25.45	4.69 4.69	0.00 0.00	57.57 45.08	74.00 54.00	-16.43 -8.92	Peak Average

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

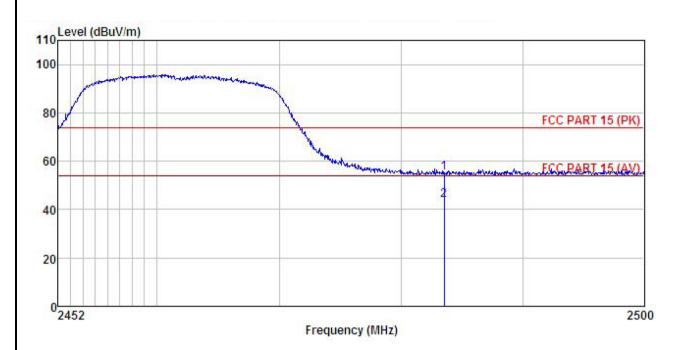
Product Name:	MeshTek Gateway	Product Model:	MTGW01W
Test By:	Mike	Test mode:	802.11g Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%



	Freq		Antenna Factor					
-	MHz	dBu∇	— <u>d</u> B/m	 <u>ab</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
	2390.000 2390.000							

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	MeshTek Gateway	Product Model:	MTGW01W
Test By:	Mike	Test mode:	802.11g Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

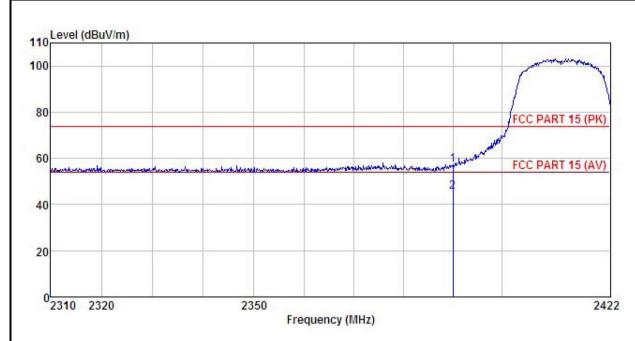


		ReadAnten Freq Level Fact							Remark	
		dBu∜	<u>dB</u> /π	<u>d</u> B	<u>d</u> B	$\overline{dB} \overline{uV/m}$	$\overline{dBuV/m}$	<u>dB</u>		2
	2483.500 2483.500									

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

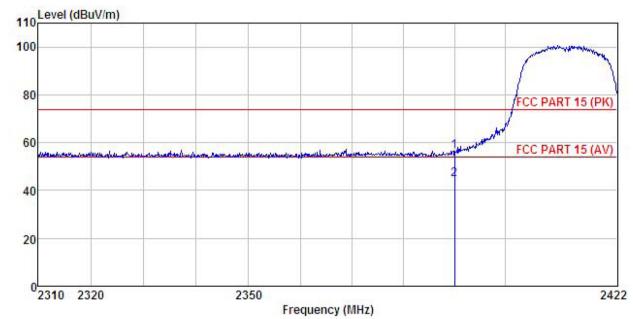
Product Name:	MeshTek Gateway	Product Model:	MTGW01W		
Test By:	Mike	Test mode:	802.11g Tx mode		
Test Channel:	Highest channel	Polarization:	Horizontal		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%		

	Freq		Antenna Factor					
2	MHz	dBu∜	<u>dB</u> /π	 <u>ab</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
	2483.500 2483.500							


- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n(HT20):

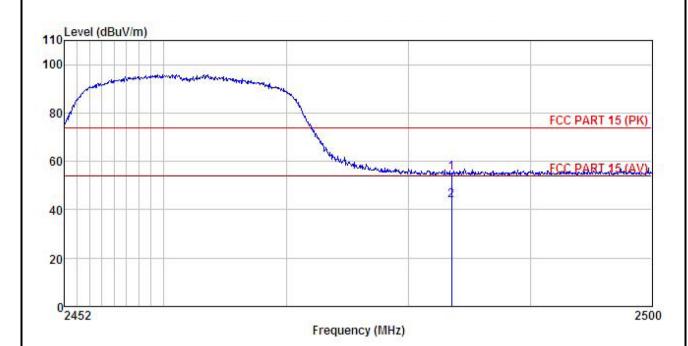
Product Name:	MeshTek Gateway	Product Model:	MTGW01W		
Test By:	Mike	Test mode:	802.11n(HT20) Tx mode		
Test Channel:	Lowest channel	Polarization:	Vertical		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%		


	Freq		Antenna Factor						
	MHz	—dBuV	— <u>d</u> B/m	<u>d</u> B	<u>d</u> B	dBuV/m	dBuV/m	<u>dB</u>	
1 2	2390.000 2390.000								

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

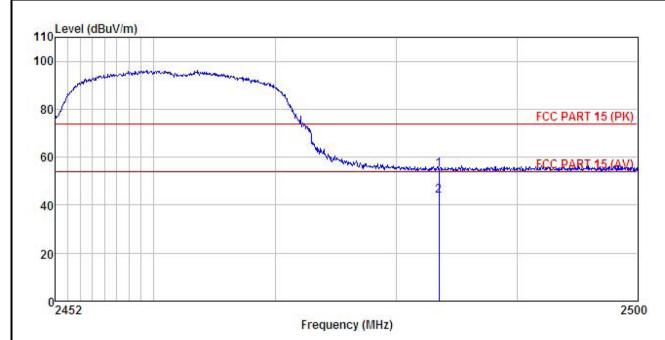
Product Name:	MeshTek Gateway	Product Model:	MTGW01W		
Test By:	Mike	Test mode:	802.11n(HT20) Tx mode		
Test Channel:	Lowest channel	Polarization:	Horizontal		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%		



	Freq		Antenna Factor					
	MHz	MHz dBuV	<u>dB</u> /m	 <u>ab</u>	dBuV/m	$\overline{\mathtt{dBuV/m}}$	<u>d</u> B	 -
1 2	2390.000 2390.000							

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

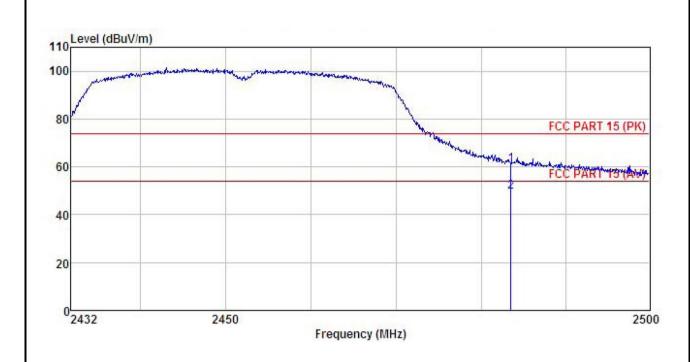
Product Name:	MeshTek Gateway	Product Model:	MTGW01W		
Test By:	Mike	Test mode:	802.11n(HT20) Tx mode		
Test Channel:	Highest channel	Polarization:	Vertical		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%		


	Freq		Antenna Factor					
	MHz	dBu∇	— <u>d</u> B/m	 <u>ab</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1 2	2483.500 2483.500							

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	MeshTek Gateway	Product Model:	MTGW01W
Test By:	Mike	Test mode:	802.11n(HT20) Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

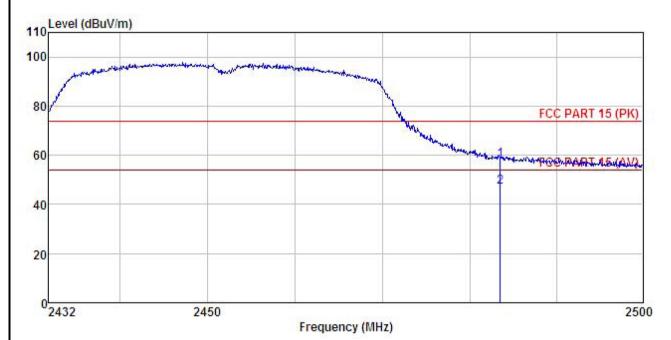

	Freq		Antenna Factor					
-	MHz	—dBu₹	<u>dB</u> /m	 <u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1 2	2483.500 2483.500							

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n(HT40):

Product Name:	MeshTek Gateway	Product Model:	MTGW01W		
Test By:	Mike	Test mode:	802.11n(HT40) Tx mode		
Test Channel:	Lowest channel	Polarization:	Vertical		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%		

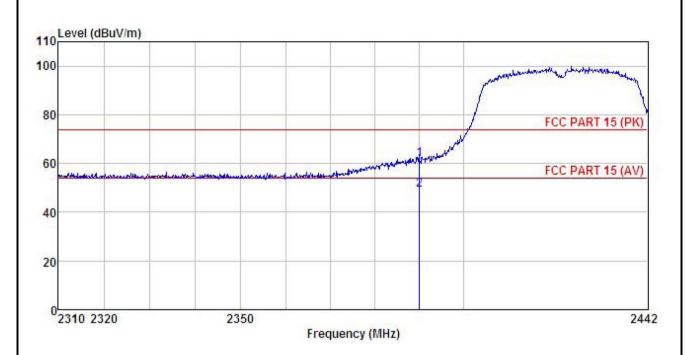
	Freq	Read/ Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark
-	MHz	dBu∜	<u>dB</u> /π	<u>d</u> B	<u>ab</u>	$\overline{dB}\overline{uV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
	2483.500 2483.500								


Remark

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	MeshTek Gateway	Product Model:	MTGW01W
Test By:	Mike	Test mode:	802.11n(HT40) Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%



	Freq		Intenna Factor					
2	MHz	dBu∀	<u>dB</u> /m	 <u>ab</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	 -
1 2	2483.500 2483.500							

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	MeshTek Gateway	Product Model:	MTGW01W
Test By:	Mike	Test mode:	802.11n(HT40) Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

	Freq		Intenna Factor						
-	MHz	dBu∀	<u>dB</u> /m	<u>dB</u>	<u>ap</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1 2	2390.000 2390.000								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

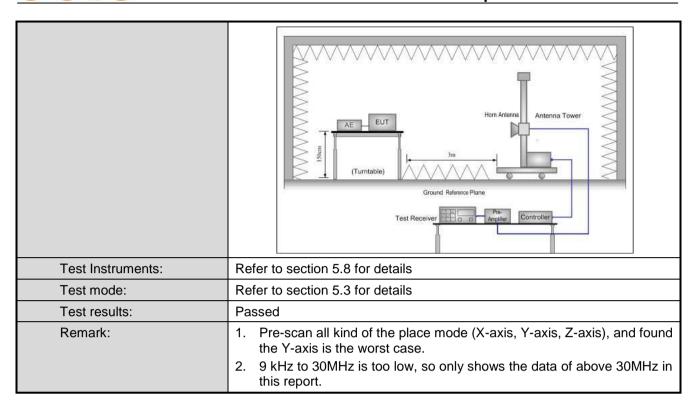
oduct Name: MeshTek Gateway Product Model:		MTGW01W	MTGW01W					
Mike			Test mo	ode:	802.11n(HT40	802.11n(HT40) Tx mode		
Highest	channel		Polariza	ation:	Horizontal			
AC 120/	/60Hz		Environ	nment:	Temp: 24℃	Huni: 57%		
n)								
11)			7					
					No commence - No commence	6.1.		
				perma	Market Market Company	- Andrew Proposition of		
				1				
					FCC PAR	T 15 (PK)		
			1					
and the second second second	ية مروونان المراسيات	Warmer or was the work of the state of	of the state of the state of the	nhit.	FCC PAR	T 15 (AV)		
			2					
	2350					2442		
	2330	Frequency	(MHz)			2442		
	Mike Highest AC 120/	Mike Highest channel AC 120/60Hz	Mike Highest channel AC 120/60Hz	Mike Test mo Highest channel Polariza AC 120/60Hz Enviror	Mike Test mode: Highest channel Polarization: AC 120/60Hz Environment:	Mike Test mode: 802.11n(HT40 Highest channel Polarization: Horizontal AC 120/60Hz Environment: Temp: 24°C		

	Freq		Antenna Factor					
	MHz	—dBu∇	— <u>d</u> B/π	 <u>d</u> B	$\overline{dBuV/m}$	$\overline{\mathtt{dBuV/m}}$	<u>ab</u>	
1 2	2390.000 2390.000							

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

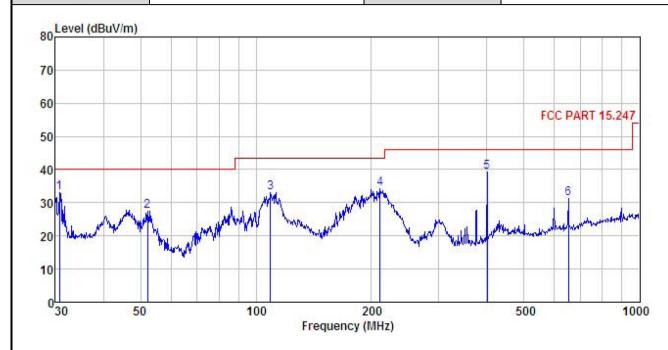
6.7 Spurious Emission

6.7.1 Conducted Emission Method


0.7.1 Conducted Linission	
Test Requirement:	FCC Part 15 C Section 15.247 (d)
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
Test setup:	
	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.8 for details
Test mode:	Refer to section 5.3 for details
Test results:	Refer to FCC ID: Z9W-CM4

6.7.2 Radiated Emission Method

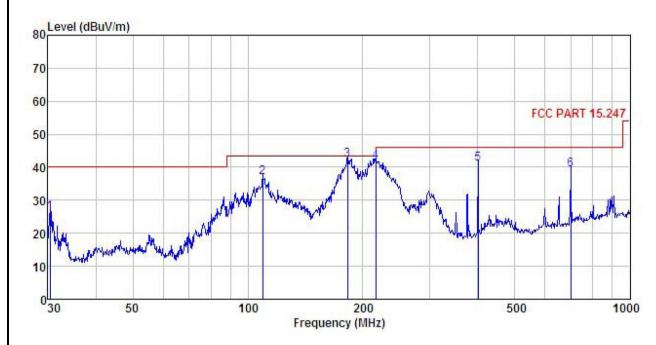
6.7.2 Radiated Emissi	on Method							
Test Requirement:	FCC Part 15 C S	FCC Part 15 C Section 15.209 and 15.205						
Test Frequency Rang	e: 9kHz to 25GHz							
Test Distance:	3m							
Receiver setup:	Frequency	Detector	ector RBW		3W	Remark		
	30MHz-1GHz	Quasi-peak	120KHz	300k	KHz	Quasi-peak Value		
	Above 1GHz	Peak	1MHz	3M		Peak Value		
		RMS	1MHz	3M	lHz	Average Value		
Limit:	Frequency		t (dBuV/m @3	m)		Remark		
	30MHz-88MH		40.0			uasi-peak Value		
	88MHz-216MH 216MHz-960M		43.5 46.0			uasi-peak Value uasi-peak Value		
	960MHz-1GH		54.0			uasi-peak Value		
			54.0			Average Value		
	Above 1GHz	Above 1GHz 74.0 Pe						
	The table was highest radia 2. The EUT was antenna, who tower. 3. The antennathe ground the same terms and the find the meters and the find the meters and the find the meters and the find the ground to find the ground to find the ground to find the ground the gro	as rotated 360 ation. as set 3 meters ich was mount a height is vario o determine that and vertical and vertical and vertical and the rotal table was in the antennative rota table was in the rota ta	degrees to degrees to degrees to degrees to degrees to degree ted on the top ded from one remaximum val polarization degree to degree to degree to degree de	he interpretation of a very meter to value of a very meter to value of as of the was also heightom 0 deak Detection of a very mode as stoppes the cone by the cone	erferent variable to four of the fee ante rrange nts fron legrees ect Fulle was 1 ed and emissi one us	meters above field strength. In a are set to set to its worst m 1 meter to 4 s to 360 degrees anction and odB lower than d the peak values ions that did not sing peak, quasi-		
Test setup:	Below 1GHz EUT Turn Table Ground I	0.811			_			



Measurement Data (worst case):

Below 1GHz:

Product Name:	MeshTek Gateway	Product Model:	MTGW01W
Test By:	Mike	Test mode:	Wi-Fi Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%


	Freq		intenna Factor				Limit Line		Remark
	MHz	dBu₹		<u>ap</u>	<u>ab</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>ab</u>	
1	30.745	51.57	10.70	0.78	29.98	33.07	40.00	-6.93	QP
2	52.208	44.14	11.87	1.29	29.81	27.49	40.00	-12.51	QP
3	109.029	48.85	11.75	2.04	29.46	33.18	43.50	-10.32	QP
4	210.786	49.16	11.08	2.86	28.76	34.34	43.50	-9.16	QP
5	400.432	49.78	15.30	3.08	28.78	39.38	46.00	-6.62	QP
2 3 4 5 6	651.942	36.32	19.74	3.87	28.77	31.16	46.00	-14.84	QP

Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	MeshTek Gateway	Product Model:	MTGW01W
Test By:	Mike	Test mode:	Wi-Fi Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%
			I .

	Freq		intenna Factor				Limit Line		
	MHz	dBu₹	dB/m		<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>d</u> B	
1	30.424	44.70	10.65	0.78	29.98	26.15	40.00	-13.85	QP
1 2 3 4 5	109.412	52.68	11.71	2.04	29.46	36.97	43.50	-6.53	QP
3	182.559	58.47	10.06	2.75	28.95	42.33	43.50	-1.17	QP
4	216.024	56.33	11.31	2.85	28.73	41.76	46.00	-4.24	QP
5	400.432	51.44	15.30	3.08	28.78	41.04	46.00	-4.96	QP
6	699.305	43.45	20.40	4.17	28.67	39.35	46.00	-6.65	QP

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Above 1GHz

Above 1GHz									
				802.11b					
			Test ch	nannel: Lowe	est channel				
			De	tector: Peak	Value		T		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4824.00	56.89	36.06	6.81	41.82	57.94	74.00	-16.06	Vertical	
4824.00	51.87	36.06	6.81	41.82	52.92	74.00	-21.08	Horizontal	
Detector: Average Value									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4824.00	51.46	36.06	6.81	41.82	52.51	54.00	-1.49	Vertical	
4824.00	46.74	36.06	6.81	41.82	47.79	54.00	-6.21	Horizontal	
			Test ch	nannel: Mido	lle channel				
				tector: Peak					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4874.00	59.10	36.32	6.85	41.84	60.43	74.00	-13.57	Vertical	
4874.00	54.19	36.32	6.85	41.84	55.52	74.00	-18.48	Horizontal	
			Dete	ector: Avera	ge Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4874.00	52.14	36.32	6.85	41.84	53.47	54.00	-0.53	Vertical	
4874.00	46.39	36.32	6.85	41.84	47.72	54.00	-6.28	Horizontal	
			Test ch	annel: High	est channel				
				tector: Peak					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4924.00	53.26	36.58	6.89	41.86	54.87	74.00	-19.13	Vertical	
4924.00	50.52	36.58	6.89	41.86	52.13	74.00	-21.87	Horizontal	
			Dete	ector: Avera	ge Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4924.00	43.25	36.58	6.89	41.86	44.86	54.00	-9.14	Vertical	
4924.00	42.55	36.58	6.89	41.86	44.16	54.00	-9.84	Horizontal	

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11g									
Test channel: Lowest channel									
Detector: Peak Value									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4824.00	55.75	36.06	6.81	41.82	56.80	74.00	-17.20	Vertical	
4824.00	52.06	36.06	6.81	41.82	53.11	74.00	-20.89	Horizontal	
Detector: Average Value									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4824.00	45.67	36.06	6.81	41.82	46.72	54.00	-7.28	Vertical	
4824.00	42.62	36.06	6.81	41.82	43.67	54.00	-10.33	Horizontal	
T4 -b									
Test channel: Middle channel Detector: Peak Value									
Frequency	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over	Polarization	
(MHz)	(dBuV)	(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	Limit (dB)		
4874.00	53.14	36.32	6.85	41.84	54.47	74.00	-19.53	Vertical	
4874.00	50.20	36.32	6.85	41.84	51.53	74.00	-22.47	Horizontal	
			Dete	ector: Avera	ge Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4874.00	43.52	36.32	6.85	41.84	44.85	54.00	-9.15	Vertical	
4874.00	42.23	36.32	6.85	41.84	43.56	54.00	-10.44	Horizontal	
			Test ch	annel: High	est channel				
			De	tector: Peak	v Value		T		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4924.00	50.80	36.58	6.89	41.86	52.41	74.00	-21.59	Vertical	
4924.00	48.66	36.58	6.89	41.86	50.27	74.00	-23.73	Horizontal	
Detector: Average Value									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4924.00	41.86	36.58	6.89	41.86	43.47	54.00	-10.53	Vertical	
4924.00	38.21	36.58	6.89	41.86	39.82	54.00	-14.18	Horizontal	
Remark:									
1 Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor									

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n(HT20)										
Test channel: Lowest channel										
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4824.00	54.43	36.06	6.81	41.82	55.48	74.00	-18.52	Vertical		
4824.00	49.14	36.06	6.81	41.82	50.19	74.00	-23.81	Horizontal		
Detector: Average Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4824.00	44.72	36.06	6.81	41.82	45.77	54.00	-8.23	Vertical		
4824.00	41.26	36.06	6.81	41.82	42.31	54.00	-11.69	Horizontal		
	Test channel: Middle channel									
			De	tector: Peak	k Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4874.00	54.19	36.32	6.85	41.84	55.52	74.00	-18.48	Vertical		
4874.00	52.69	36.32	6.85	41.84	54.02	74.00	-19.98	Horizontal		
			Dete	ctor: Avera	ge Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4874.00	45.26	36.32	6.85	41.84	46.59	54.00	-7.41	Vertical		
4874.00	46.78	36.32	6.85	41.84	48.11	54.00	-5.89	Horizontal		
			Test ch	annel: High	est channel					
			De	tector: Peak	v Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4924.00	51.20	36.58	6.89	41.86	52.81	74.00	-21.19	Vertical		
4924.00	48.38	36.58	6.89	41.86	49.99	74.00	-24.01	Horizontal		
Detector: Average Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4924.00	42.59	36.58	6.89	41.86	44.20	54.00	-9.80	Vertical		
4924.00	38.65	36.58	6.89	41.86	40.26	54.00	-13.74	Horizontal		
Remark:	Remark: 1 Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor									

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n(HT40)										
Test channel: Lowest channel										
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4844.00	51.47	36.06	6.81	41.82	52.52	74.00	-21.48	Vertical		
4844.00	50.57	36.06	6.81	41.82	51.62	74.00	-22.38	Horizontal		
Detector: Average Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4844.00	42.73	36.06	6.81	41.82	43.78	54.00	-10.22	Vertical		
4844.00	41.05	36.06	6.81	41.82	42.10	54.00	-11.90	Horizontal		
	Test channel: Middle channel									
				tector: Peak						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4874.00	50.54	36.32	6.85	41.84	51.87	74.00	-22.13	Vertical		
4874.00	49.22	36.32	6.85	41.84	50.55	74.00	-23.45	Horizontal		
				ector: Avera						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4874.00	41.78	36.32	6.85	41.84	43.11	54.00	-10.89	Vertical		
4874.00	40.26	36.32	6.85	41.84	41.59	54.00	-12.41	Horizontal		
			Test ch	annel: High	est channel					
		,	De	tector: Peal	Value Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4904.00	49.79	36.45	6.87	41.85	51.26	74.00	-22.74	Vertical		
4904.00	48.46	36.45	6.87	41.85	49.93	74.00	-24.07	Horizontal		
Detector: Average Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4904.00	39.59	36.45	6.87	41.85	41.06	54.00	-12.94	Vertical		
4904.00	39.62	36.45	6.87	41.85	41.09	54.00	-12.91	Horizontal		
Remark:	Remark: 1									

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.