

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE190714301

FCC REPORT (BLE)

Applicant: ilumi solutions inc.

Address of Applicant: 17330 Preston Road, Ste. 140A, Dallas, TX 75252, USA

Equipment Under Test (EUT)

Product Name: MeshTek Gateway

MTGW01W-X (X can be any letter representing color of the

Model No.: enclosure. MTGW01W is default model no. without -X; it

indicates enclosure is of White color)

Trade mark: MeshTek

FCC ID: 2AEHU-MTGW01W

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 09 Aug., 2019

Date of Test: 09 Aug., to 15 Aug., 2019

Date of report issued: 16 Aug., 2019

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	16 Aug., 2019	Original

Test Engineer

Reviewed by: Date: 16 Aug., 2019

Project Engineer

3 Contents

			Page
1	CO	VER PAGE	1
2	VEF	RSION	2
3	COI	NTENTS	3
4		.2 Radiated Emission Method	
5	GEI	NERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T	5
	5.3	TEST ENVIRONMENT AND TEST MODE	6
	5.4	DESCRIPTION OF SUPPORT UNITS	6
	5.5		
	5.6	LABORATORY FACILITY	6
	5.7	LABORATORY LOCATION	6
	5.8	TEST INSTRUMENTS LIST	7
6	TES	ST RESULTS AND MEASUREMENT DATA	8
	6.1	ANTENNA REQUIREMENT:	8
	6.2	CONDUCTED EMISSION	9
	6.3	CONDUCTED OUTPUT POWER	12
	6.4		
	6.5	POWER SPECTRAL DENSITY	14
	6.6	BAND EDGE	15
	6.6.	1 Conducted Emission Method	15
	6.6.	2 Radiated Emission Method	16
	6.7	Spurious Emission	21
	6.7.		
	6.7.	2 Radiated Emission Method	22
7	TES	ST SETUP PHOTO	27
R	FUT	CONSTRUCTIONAL DETAILS	29

4 Test Summary

Test Items	Section in CFR 47	Result
Antenna requirement	15.203 & 15.247 (b)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass*
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass*
Power Spectral Density	15.247 (e)	Pass*
Band Edge	15.247 (d)	Pass*
Spurious Emission	15.205 & 15.209	Pass

All measurement data were performed in accordance with ANSI C63.10: 2013 and KDB 558074 D01 15.247 Meas Guidance v05r02 of test method.

Remark:

- 1. N/A: Not Applicable.
- 2. Pass*: The test data refer to FCC ID: 2AEHU-MESHTEK-H52.

5 General Information

5.1 Client Information

Applicant:	ilumi solutions inc.
Address:	17330 Preston Road, Ste. 140A, Dallas, TX 75252, USA
Manufacturer/Factory:	Ningbo Dongxing Electric Co., Ltd.
Address of Manufacturer/ Factory:	FENGLIN INDUSTRIAL DEVELOPMENT ZONE, QIAO TOU TOWN CIXI, NINGBO, P.R. CHINA 315317

5.2 General Description of E.U.T.

Product Name:	MeshTek Gateway
Model No.:	MTGW01W-X (X can be any letter representing color of the enclosure. MTGW01W is default model no. without -X; it indicates enclosure is of White color)
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Internal Antenna
Antenna gain:	0 dBi
AC adapter:	Model: RWX-AA050120U Input: AC100-240V 50/60Hz 0.4A Output: DC 5.0V, 1200mA
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test. Channel No. 0, 20 & 39 were selected as Lowest, Middle and Highest channel.

5.3 Test environment and test mode

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Transmitting mode	Keep the EUT in continuous transmitting with modulation

Report No: CCISE190714301

The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.38 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.36 dB (k=2)

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

● FCC - Designation No.: CN1211

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

● ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.7 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.8 Test Instruments list

Radiated Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020	
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-18-2019	03-17-2020	
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-18-2019	03-17-2020	
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-18-2019	03-17-2020	
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2017	06-21-2020	
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-21-2018	11-20-2019	
EMI Test Software	AUDIX	E3	Version: 6.110919b		b	
Pre-amplifier	HP	8447D	2944A09358	03-18-2019	03-17-2020	
Pre-amplifier	CD	PAP-1G18	11804	03-18-2019	03-17-2020	
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-18-2019	03-17-2020	
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-21-2018	11-20-2019	
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-18-2019	03-17-2020	
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-18-2019	03-17-2020	
Cable	MICRO-COAX	MFR64639	K10742-5	03-18-2019	03-17-2020	
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-18-2019	03-17-2020	
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A	
Test Software	MWRFTEST	MTS8200	Version: 2.0.0.0			

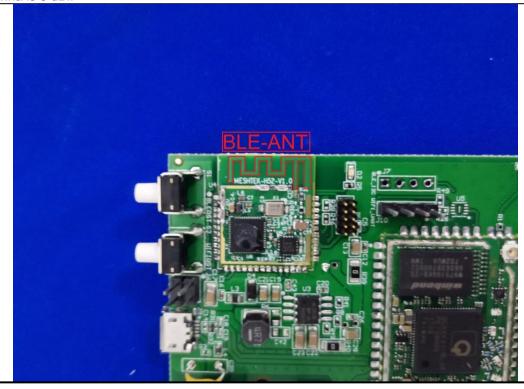
Conducted Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-18-2019	03-17-2020	
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-18-2019	03-17-2020	
LISN	CHASE	MN2050D	1447	03-18-2019	03-17-2020	
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2018	07-20-2019	
Cable	HP	10503A	N/A	03-18-2019	03-17-2020	
EMI Test Software	AUDIX	E3	\	Version: 6.110919	b	

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(b)

15.203 requirement:

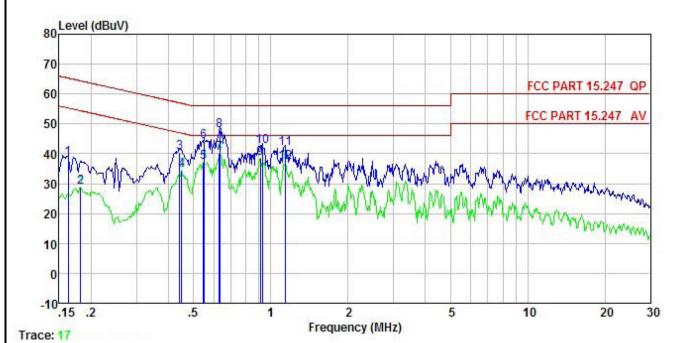

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

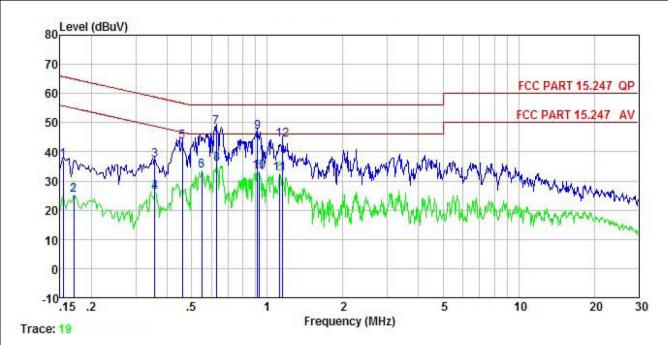
The BLE antenna is an Internal antenna which cannot replace by end-user, the best-case gain of the antenna is 0 dBi.


6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15.207			
Test Frequency Range:	150 kHz to 30 MHz			
Class / Severity:	Class B			
Receiver setup:	RBW=9kHz, VBW=30kHz			
Limit:		Limit (dRuV)		
	Frequency range (MHz)	Quasi-peak	Average	
	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5	56	46	
	5-30	60	50	
	* Decreases with the logar	•		
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement. 			
Test setup:	Reference Plane LISN 40cm 80cm Filter AC power Equipment Test table/Insulation plane Remark E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m			
Test Instruments:	Refer to section 5.8 for de	tails		
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Measurement Data:

Product name:	MeshTek Gateway	Product model:	MTGW01W
Test by:	Mike	Test mode:	BLE Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%


	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
1.20	MHz	dBu∀	₫B	₫B	dBu₹	₫₿u₹	<u>d</u> B	9 <u>2,000</u> 0000
1	0.162	28.09	-0.44	10.77	38.42	65.34	-26.92	QP
2	0.182	18.47	-0.42	10.77	28.82	54.42	-25.60	Average
2 3 4 5 6 7 8 9	0.442	30.22	-0.38	10.74	40.58	57.02	-16.44	QP
4	0.449	24.29	-0.38	10.74	34.65	46.89	-12.24	Average
5	0.546	26.81	-0.39	10.76	37.18	46.00	-8.82	Average
6	0.549	33.62	-0.39	10.76	43.99	56.00	-12.01	QP
7	0.630	29.74	-0.38	10.77	40.13	46.00	-5.87	Average
8	0.634	37.38	-0.38	10.77	47.77	56.00		
9	0.909	28.06	-0.38	10.84	38.52	46.00	-7.48	Average
10	0.928	31.84	-0.38	10.85	42.31	56.00	-13.69	QP
11	1.135	31.16	-0.39	10.89	41.66	56.00	-14.34	QP
12	1.141	26.66	-0.39	10.89	37.16	46.00	-8.84	Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Product name:	MeshTek Gateway	Product model:	MTGW01W
Test by:	Mike	Test mode:	BLE Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∜	<u>dB</u>	<u>ab</u>	—dBu⊽	dBu∜	<u>ab</u>	
1	0.154	27.06	-0.68	10.78	37.16	65.78	-28.62	QP
2	0.170	14.97	-0.68	10.77	25.06	54.94	-29.88	Average
3	0.358	26.99	-0.64	10.73	37.08	58.78	-21.70	QP
2 3 4 5 6 7	0.358	16.16	-0.64	10.73	26.25	48.78	-22.53	Average
5	0.459	33.50	-0.65	10.74	43.59	56.71	-13.12	QP
6	0.549	23.40	-0.65	10.76	33.51	46.00	-12.49	Average
7	0.627	38.39	-0.64	10.77	48.52	56.00	-7.48	QP
8	0.630	25.82	-0.64	10.77	35.95	46.00	-10.05	Average
8	0.914	36.74	-0.63	10.84	46.95	56.00	-9.05	QP
10	0.933	22.90	-0.63	10.85	33.12	46.00	-12.88	Average
11	1.123	22.17	-0.64	10.88	32.41	46.00	-13.59	Average
12	1.153	33.98	-0.64	10.89	44.23		-11.77	

Notes

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)					
Limit:	30dBm					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.8 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Refer to FCC ID: 2AEHU-MESHTEK-H52					

6.4 Occupy Bandwidth

	,						
Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)						
Test Method:	ANSI C63.10:2013 and KDB 558074						
Limit:	>500kHz						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 5.8 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Refer to FCC ID: 2AEHU-MESHTEK-H52						

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)				
Limit:	8 dBm				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.8 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Refer to FCC ID: 2AEHU-MESHTEK-H52				

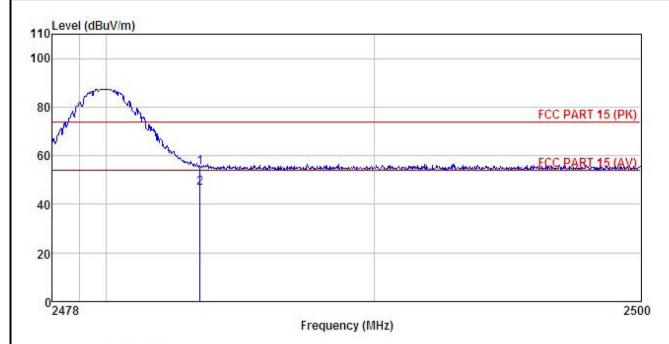
6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spresspectrum intentional radiator is operating, the radio frequency power the is produced by the intentional radiator shall be at least 20 dB below that the 100 kHz bandwidth within the band that contains the highest level the desired power, based on either an RF conducted or a radiate measurement.					
Test setup:	Spectrum Analyzer					
	E.U.T					
	Non-Conducted Table					
	Ground Reference Plane					
Test Instruments:	Refer to section 5.8 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Refer to FCC ID: 2AEHU-MESHTEK-H52					

6.6.2 Radiated Emission Method

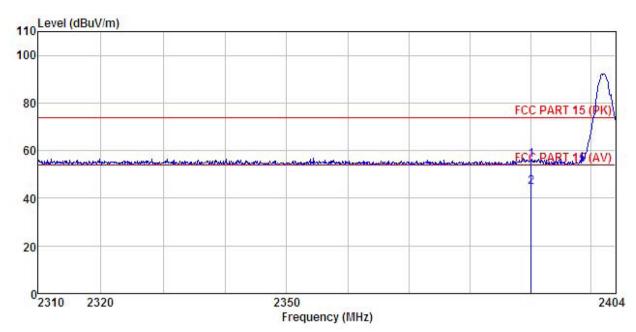
0.0.2	5.6.2 Radiated Emission Method								
7	Test Requirement:	FCC Part 15 C Section 15.205 and 15.209							
7	Test Frequency Range:	2.3GHz to 2.5	2.3GHz to 2.5GHz						
Т	Test Distance:	3m							
F	Receiver setup:	Frequency	Detector	RBW	VBW	Remark			
		Above 1GHz	Peak	1MHz	3MHz	Peak Value			
			RMS	1MHz	3MHz	Average Value			
L	_imit:	Frequen	icy L	mit (dBuV/m @3 54.00		Remark			
		Above 10	GHz —	74.00		verage Value Peak Value			
1	Test Procedure:	the groun to determ 2. The EUT antenna, tower. 3. The anter the groun Both horiz make the 4. For each case and meters ar to find the Specified 6. If the emisthe limit sof the EU have 10 ce	d at a 3 meterine the position was set 3 meterine which was more and height is with the analysis of the analys	placed on the top of a rotating table 1.5 meters above a 3 meter camber. The table was rotated 360 degrees be position of the highest radiation. Set 3 meters away from the interference-receiving in was mounted on the top of a variable-height antennate eight is varied from one meter to four meters above determine the maximum value of the field strength. If and vertical polarizations of the antenna are set to surement. Sected emission, the EUT was arranged to its worst the antenna was tuned to heights from 1 meter to 4 arota table was turned from 0 degrees to 360 degrees imum reading. For system was set to Peak Detect Function and dwidth with Maximum Hold Mode. I level of the EUT in peak mode was 10 dB lower than led, then testing could be stopped and the peak value and be reported. Otherwise the emissions that did not argin would be re-tested one by one using peak, quasing method as specified and then reported in a data					
1	Гest setup:	Horn Anlenna Tower Ground Reference Plane Test Receiver Amplifier Controller							
7	Fest Instruments:	Refer to section	n 5.8 for deta	ils					
7	Test mode:	Refer to section	n 5.3 for deta	ils					
7	Test results:	Passed							


Product Name:	MeshTek Gateway		Р	roduct Mc	del:	MTGW0	1W	
Test By: Mike			Т	Test mode: BLE Tx mod		node		
Test Channel:	Lowest channel		Р	olarization	ո։	Vertical		
Test Voltage:	AC 120/60Hz		E	nvironme	nt:	Temp: 24	4℃ Huni	: 57%
110 Level (dBuV/m)								
80	\					FCC	PART 15 (P	K)
60	Mountaine	to and the later of the later o	marine Carle	Production of the product	a contraggloss (september 1981)	num FGC	PART 15 (A	<u>V)</u>
40								
20								
02478		Freque	ency (MH	z)				2500
Freq	ReadAntenna Level Factor	Cable Part Loss F	reamp actor	Level	Limit Line	Over Limit	Remark	
MHz	$\frac{-dBuV}{dB/m}$		₫B	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>ab</u>		
1 2483.500 2 2483.500	26.97 25.66 19.18 25.66	4.81 4.81			74.00 54.00	-16.56		

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

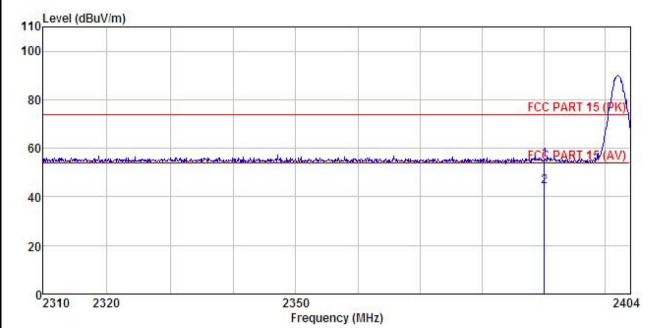
Product Name:	MeshTek Gateway	Product Model:	MTGW01W
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%


Freq		Antenna Factor					Remark
MHz	dBu∜	<u>d</u> B/π	 <u>ab</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
2483.500 2483.500							

Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	MeshTek Gateway	Product Model:	MTGW01W
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%


	Freq		Antenna Factor					
2	MHz	dBu∜	<u>dB</u> /π	 <u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>ab</u>	
	2390.000 2390.000							

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	MeshTek Gateway	Product Model:	MTGW01W
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%
	•		

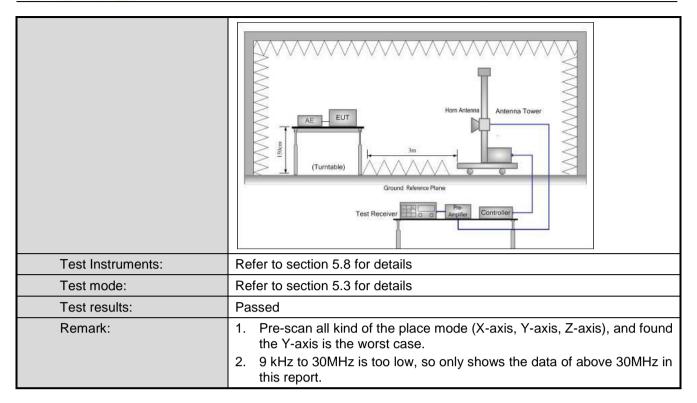
	Freq			ReadAntenna Cable Preamp Freq Level Factor Loss Factor					
,	MHz	—dBu∀	<u>dB</u> /m	āB	<u>ab</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1 2	2390.000 2390.000					55.25 44.32			

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

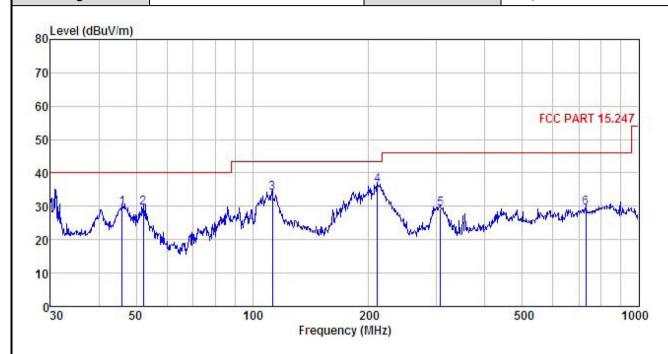
6.7 Spurious Emission

6.7.1 Conducted Emission Method


Test Requirement:	FCC Part 15 C Section 15.247 (d)
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.8 for details
Test mode:	Refer to section 5.3 for details
Test results:	Refer to FCC ID: 2AEHU-MESHTEK-H52

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C	Section 15.20	05 and 15.209				
Test Frequency Range:	9kHz to 25GHz						
Test Distance:	3m						
Receiver setup:	Frequency	Detector	tor RBW		3W	Remark	
,	30MHz-1GHz	Quasi-peak	120KHz	3001	KHz	Quasi-peak Value	
	Above 1GHz	Peak	1MHz	3M	Hz	Peak Value	
	Above IGHZ	RMS	S 1MHz		Hz	Average Value	
Limit:	Frequency	y Li	imit (dBuV/m @	23m)		Remark	
	30MHz-88M	Hz	40.0		C	Quasi-peak Value	
	88MHz-216N	ИHz	43.5		C	Quasi-peak Value	
	216MHz-960I		46.0			Quasi-peak Value	
	960MHz-1G	Hz	54.0		C	Quasi-peak Value	
	Above 1GH	ız 🗀	54.0			Average Value	
Test Procedure:	 The EUT was placed on the top of a rotating table 0.8m(below 1GHz)/1.5m(above 1GHz) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data 						
Test setup:	Below 1GHz Turn Table Ground Plane Above 1GHz	4m 4m 0.8m			Antenna Search Antenn Test zeiver —	1	

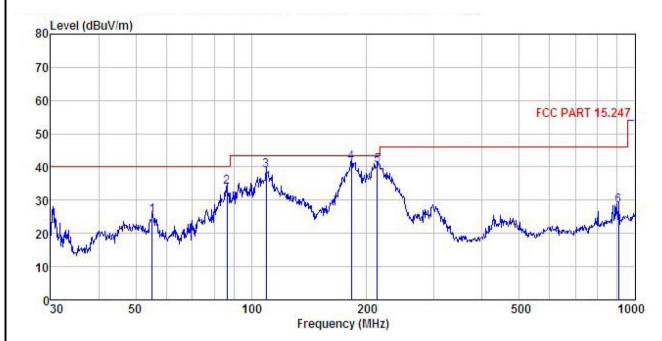


Measurement Data (worst case):

Below 1GHz:

Product Name:	MeshTek Gateway	Product Model:	MTGW01W
Test By:	Mike	Test mode:	BLE Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∜	<u>dB</u> /π	<u>ab</u>	<u>ab</u>	$\overline{dB} \overline{uV/m}$	$\overline{dBuV/m}$	<u>ab</u>	
§ 1	46.016	45.94	12.26	1.28	29.85	29.63	40.00	-10.37	QP
2	52.208	46.14	11.87	1.29	29.81	29.49	40.00	-10.51	QP
2 3	112.524	49.83	11.45	2.08	29.44	33.92	43.50	-9.58	QP
4	210.786	51.16	11.08	2.86	28.76	36.34	43.50	-7.16	QP
5	306.754	41.01	13.76	2.96	28.47	29.26	46.00	-16.74	QP
6	729.358	33.17	20.52	4.29	28.56	29.42	46.00	-16.58	QP


Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	MeshTek Gateway	Product Model:	MTGW01W
Test By:	Mike	Test mode:	BLE Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Freq		Intenna Factor				Limit Line		Remark
_	MHz	—dBu∜	<u>dB</u> /m	d <u>B</u>	<u>ab</u>	$\overline{dB} \overline{uV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1	55.221	42.27	11.59	1.36	29.80	25.42	40.00	-14.58	QP
1 2 3 4 5 6	86.503	52.60	9.07	1.91	29.59	33.99	40.00	-6.01	QP
3	109.412	54.68	11.71	2.04	29.46	38.97	43.50	-4.53	QP
4	182.559	57.47	10.06	2.75	28.95	41.33	43.50	-2.17	QP
5	213.015	55.22	11.19	2.85	28.75	40.51	43.50	-2.99	QP
6	906.482	29.82	22.53	3.78	27.86	28.27	46.00	-17.73	QP

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Above 1GHz

Test channel: Lowest channel									
				tector: Peak					
		T		1	t value			1	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4804.00	51.98	35.99	6.80	41.81	52.96	74.00	-21.04	Vertical	
4804.00	50.56	35.99	6.80	41.81	51.54	74.00	-22.46	Horizontal	
			Dete	ector: Avera	ge Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4804.00	42.52	35.99	6.80	41.81	43.50	54.00	-10.50	Vertical	
4804.00	43.77	35.99	6.80	41.81	44.75	54.00	-9.25	Horizontal	
	Test channel: Middle channel								
				tector: Peak					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4884.00	49.37	36.38	6.86	41.84	50.77	74.00	-23.23	Vertical	
4884.00	47.16	36.38	6.86	41.84	48.56	74.00	-25.44	Horizontal	
			Dete	ector: Avera	ge Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4884.00	39.68	36.38	6.86	41.84	41.08	54.00	-12.92	Vertical	
4884.00	38.62	36.38	6.86	41.84	40.02	54.00	-13.98	Horizontal	
			Test ch	annel: High	est channel				
			De	tector: Peak	v Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4960.00	50.40	36.71	6.91	41.87	52.15	74.00	-21.85	Vertical	
	i	l .	i	1	1	i l	i	1	

	Detector. Fear value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4960.00	50.40	36.71	6.91	41.87	52.15	74.00	-21.85	Vertical			
4960.00	47.95	36.71	6.91	41.87	49.70	74.00	-24.30	Horizontal			
			Dete	ector: Avera	ge Value						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4960.00	40.63	36.71	6.91	41.87	42.38	54.00	-11.62	Vertical			
4960.00	39.67	36.71	6.91	41.87	41.42	54.00	-12.58	Horizontal			

Remark.

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.