

Global United Technology Services Co., Ltd.

Report No.: GTS201907000096F01

FCC Report (Bluetooth)

Applicant: Coros Wearables Inc.

Address of Applicant: 14511 FRANKLIN AVENUE SUITE 220, TUSTIN, CA 92780,

TUSTIN, United States

Manufacturer/Factory: Dongguan Yuanfeng Technology Co.,Ltd

Address of FL. 1-3 and 5 Building A ,No.18, Industrial East Rd., Songshan Lake Development Zone, Dongguan, China

Equipment Under Test (EUT)

Product Name: POD

Model No.: FD01

Trade Mark: COROS

FCC ID: 2AEHH-FD01

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: July 15, 2019

Date of Test: July 16-29, 2019

Date of report issued: July 29, 2019

Test Result: PASS *

Authorized Signature:

Robinson Lo Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	July 29, 2019	Original

Prepared By:	Bill. Yvan	Date:	July 29, 2019
	Project Engineer		
Olas I Po		Data	
Check By:	obinson	Date:	July 29, 2019

Reviewer

3 Contents

		Page
1	COVER PAGE	1
2	VERSION	2
3	CONTENTS	3
4	TEST SUMMARY	4
5	GENERAL INFORMATION	5
	5.1 GENERAL DESCRIPTION OF EUT	
	5.2 Test Mode	
	5.3 DESCRIPTION OF SUPPORT UNITS	7
	5.4 DEVIATION FROM STANDARDS	
	5.5 ABNORMALITIES FROM STANDARD CONDITIONS	7
	5.6 TEST FACILITY	7
	5.7 Test Location	7
6	TEST INSTRUMENTS LIST	8
7	TEST RESULTS AND MEASUREMENT DATA	10
	7.1 ANTENNA REQUIREMENT	
	7.2 CONDUCTED OUTPUT POWER	
	7.3 CHANNEL BANDWIDTH	
	7.4 Power Spectral Density	
	7.5 BAND EDGES	
	7.5.1 Conducted Emission Method	
	7.5.2 Radiated Emission Method	
	7.6 Spurious Emission	
	7.6.1 Conducted Emission Method	
	7.6.2 Radiated Emission Method	
8	TEST SETUP PHOTO	30
9	FUT CONSTRUCTIONAL DETAILS	30

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	N/A
Conducted Output Power	15.247 (b)(3)	Pass
Channel Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: Not applicable.
- 3. Test according to ANSI C63.10:2013

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes		
Radiated Emission	9kHz ~ 30MHz	± 3.80dB	(1)		
Radiated Emission	30MHz ~ 1000MHz	± 3.97dB	(1)		
Radiated Emission 1GHz \sim 26.5GHz \pm 4.29dB (1)					
Note (1): The measurement unce	ertainty is for coverage factor of ka	=2 and a level of confidence of 9	95%.		

5 General Information

5.1 General Description of EUT

•	
Product Name:	POD
Model No.:	FD01
Test sample(s) ID:	GTS201907000096-1
Sample(s) Status:	Engineer sample
Serial No.:	7D0A9E
Hardware version:	V2.0
Software version:	V1.2
Operation Frequency:	2402MHz~2480MHz
Channel Numbers:	40
Channel Separation:	2MHz
Modulation Type:	GFSK
Antenna Type:	PIFA Antenna
Antenna Gain:	-2.0dBi(Declared by applicant)
Power Supply:	DC 3.0V
1,1,7	200.01

Operation F	Operation Frequency each of channel						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
			• !	• !			• !
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2442MHz
The Highest channel	2480MHz

5.2 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode

Remark: During the test, New battery is used during all test.

5.3 Description of Support Units

None.

5.4 Deviation from Standards

None.

5.5 Abnormalities from Standard Conditions

None.

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 381383

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 381383.

• Industry Canada (IC) —Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2.

• NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP). LAB CODE:600179-0

5.7 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 301-309, 3/F, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Bacan District, Shenzhen, Guangdong, China 518102

Baoan District, Shenzhen, Guangdong, China 518102 Tel: 0755-27798480

Fax: 0755-27798960

6 Test Instruments list

Rad	Radiated Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 03 2015	July. 02 2020	
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A	
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 26 2019	June. 25 2020	
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 26 2019	June. 25 2020	
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 26 2019	June. 25 2020	
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 26 2019	June. 25 2020	
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
8	Coaxial Cable	GTS	N/A	GTS213	June. 26 2019	June. 25 2020	
9	Coaxial Cable	GTS	N/A	GTS211	June. 26 2019	June. 25 2020	
10	Coaxial cable	GTS	N/A	GTS210	June. 26 2019	June. 25 2020	
11	Coaxial Cable	GTS	N/A	GTS212	June. 26 2019	June. 25 2020	
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 26 2019	June. 25 2020	
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 26 2019	June. 25 2020	
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 26 2019	June. 25 2020	
15	Band filter	Amindeon	82346	GTS219	June. 26 2019	June. 25 2020	
16	Power Meter	Anritsu	ML2495A	GTS540	June. 26 2019	June. 25 2020	
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 26 2019	June. 25 2020	
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 26 2019	June. 25 2020	
19	Splitter	Agilent	11636B	GTS237	June. 26 2019	June. 25 2020	
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 26 2019	June. 25 2020	
21	Breitband hornantenne	SCHWARZBECK	BBHA 9170	GTS579	Oct. 20 2018	Oct. 19 2019	
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 20 2018	Oct. 19 2019	
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 20 2018	Oct. 19 2019	
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June. 26 2019	June. 25 2020	

RF C	RF Conducted Test:						
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 26 2019	June. 25 2020	
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 26 2019	June. 25 2020	
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 26 2019	June. 25 2020	
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 26 2019	June. 25 2020	
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 26 2019	June. 25 2020	
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 26 2019	June. 25 2020	
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 26 2019	June. 25 2020	
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 26 2019	June. 25 2020	

Gene	General used equipment:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 26 2019	June. 25 2020		
2	Barometer	ChangChun	DYM3	GTS255	June. 26 2019	June. 25 2020		

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

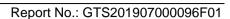
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

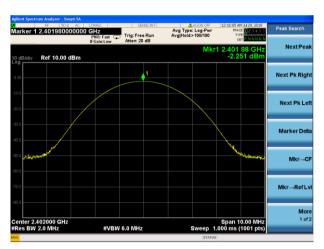
E.U.T Antenna:

The antenna is PIFA antenna, the best case gain of the antenna is -2.0dBi, reference to the appendix II for details.



7.2 Conducted Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)		
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05or02		
Limit:	30dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		


Measurement Data

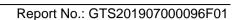
Test channel	Peak Output Power (dBm)	Limit(dBm)	Result
Lowest	-2.251		
Middle	-2.212	30.00	Pass
Highest	-2.162		

Test plot as follows:

Lowest channel

Middle channel

Highest channel



7.3 Channel Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)		
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05or02		
Limit:	>500KHz		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

Measurement Data

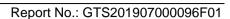
Test channel	Channel Bandwidth (MHz)	Limit(KHz)	Result
Lowest	0.6865		
Middle	0.6886	>500	Pass
Highest	0.6948		

Test plot as follows:

Lowest channel

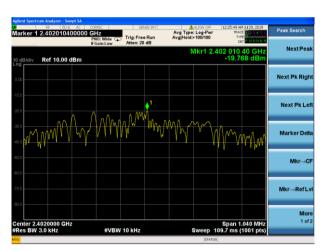
Middle channel

Highest channel



7.4 Power Spectral Density

Test Requirement:	FCC Part15 C Section 15.247 (e)		
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05or02		
Limit:	8dBm/3kHz		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		


Measurement Data

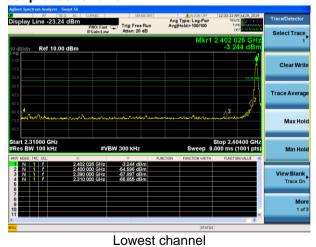
Test channel	Power Spectral Density (dBm/3kHz)	Limit(dBm/3kHz)	Result
Lowest	-19.768		
Middle	-19.815	8.00	Pass
Highest	-19.728		

Test plot as follows:

Lowest channel

Middle channel

Highest channel



7.5 Band edges

7.5.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)			
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05or02			
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.			
Test setup:	Spectrum Analyzer Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 6.0 for details			
Test mode:	Refer to section 5.2 for details			
Test results:	Pass			

Test plot as follows:

Highest channel

7.5.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209 and 15.205						
Test Method:	ANSI C63.10:2013						
Test Frequency Range:	All of the restric	t bands were	e tested, only	the worst ba	nd's (2310MHz to		
	2500MHz) data	was showed					
Test site:	Measurement D	istance: 3m					
Receiver setup:	Frequency	Detector	RBW	VBW	Value		
•		Peak	1MHz	3MHz	Peak		
	Above 1GHz	RMS	1MHz	3MHz	Average		
Limit:	Freque		Limit (dBuV		Value		
			54.0		Average		
	Above 1	GHZ	74.0		Peak		
	Tum Table	EUI+		Antenna-	Tr.		
Test Procedure:	the ground a determine th 2. The EUT wa antenna, whi tower. 3. The antenna ground to de horizontal an measuremer 4. For each sus and then the and the rota the maximum 5. The test-rece Specified Ba 6. If the emission the limit spec of the EUT whave 10dB mpeak or aver sheet. 7. The radiation	t a 3 meter case position of the position of the set 3 meters check was mount theight is varietermine the mid vertical political position. Spected emission antenna was table was turn reading. Server system with the position of the cified, then the political political position is a measurement of the political polit	amber. The tache highest racks away from the season away from the top feed from one reaximum valuarizations of the tuned to heigh hed from 0 de awas set to Pea Maximum Hole EUT in peak sting could be reted. Otherwischer e-tested of as specified and the season are performant and the season are performant.	ble was rotatediation. The interference of a variable meter to four the of the field she antenna at the antenna at the control of the field she antenna at the control of the control of the control of the emission of the reportmed in X, Y, X, and the control of	meters above the strength. Both re set to make the d to its worst case eter to 4 meters degrees to find action and OdB lower than I the peak values ons that did not ing peak, quasi-		
			ded in the repo				
Test Instruments:	Refer to section						
Test mode:	Refer to section	5.2 for detail	ls				
Test results:	Pass			·			

M	eas	ur	er	ne	nt	D	ata
---	-----	----	----	----	----	---	-----

Test channel:	Lowest
---------------	--------

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2310.00	39.02	27.59	5.38	30.18	41.81	74.00	-32.19	Horizontal
2400.00	53.25	27.58	5.40	30.18	56.05	74.00	-17.95	Horizontal
2310.00	39.20	27.59	5.38	30.18	41.99	74.00	-32.01	Vertical
2400.00	54.88	27.58	5.40	30.18	57.68	74.00	-16.32	Vertical

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2310.00	30.44	27.59	5.38	30.18	33.23	54.00	-20.77	Horizontal
2400.00	38.45	27.58	5.40	30.18	41.25	54.00	-12.75	Horizontal
2310.00	30.11	27.59	5.38	30.18	32.90	54.00	-21.10	Vertical
2400.00	38.33	27.58	5.40	30.18	41.13	54.00	-12.87	Vertical

Test channel:	Highest
rest chamer.	riigilest

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	40.66	27.53	5.47	29.93	43.73	74.00	-30.27	Horizontal
2500.00	40.57	27.55	5.49	29.93	43.68	74.00	-30.32	Horizontal
2483.50	40.86	27.53	5.47	29.93	43.93	74.00	-30.07	Vertical
2500.00	41.20	27.55	5.49	29.93	44.31	74.00	-29.69	Vertical

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	33.22	27.53	5.47	29.93	36.29	54.00	-17.71	Horizontal
2500.00	31.78	27.55	5.49	29.93	34.89	54.00	-19.11	Horizontal
2483.50	34.11	27.53	5.47	29.93	37.18	54.00	-16.82	Vertical
2500.00	31.38	27.55	5.49	29.93	34.49	54.00	-19.51	Vertical

Remarks:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.

7.6 Spurious Emission

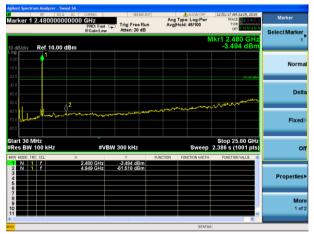
7.6.1 Conducted Emission Method


Test Requirement:	FCC Part15 C Section 15.247 (d)							
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05or02							
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.							
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane							
Test Instruments:	Refer to section 6.0 for details							
Test mode:	Refer to section 5.2 for details							
Test results:	Pass							

Test plot as follows:

Lowest channel

Report No.: GTS201907000096F01

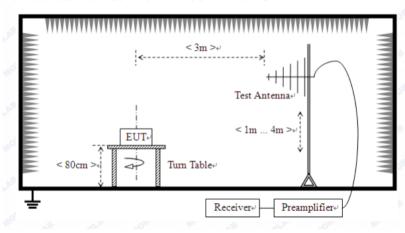

30MHz~25GHz

Middle channel

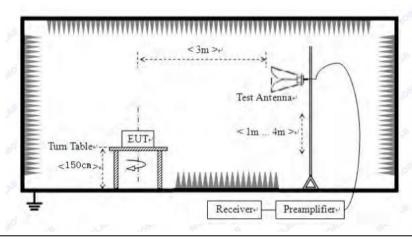
Highest channel

30MHz~25GHz

30MHz~25GHz


7.6.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209									
Test Method:	ANSI C63.10:2013									
Test Frequency Range:	9kHz to 25GHz									
Test site:	Measurement Distance: 3m									
Receiver setup:	Frequency		Detector	RBV	٧	VBW	Value			
	9KHz-150KHz	Qι	ıasi-peak	200H	Ηz	600Hz	Quasi-peak			
	150KHz-30MHz	Qι	ıasi-peak	9KH	z	30KHz	Quasi-peak			
	30MHz-1GHz	Qι	ıasi-peak	120K	Hz	300KH	z Quasi-peak			
	Above 10Uz		Peak	1MH	lz	3MHz	Peak			
	Above 1GHz		Peak	1MH	lz	10Hz	Average			
Limit:	Frequency		Limit (u\	//m)	V	'alue	Measurement Distance			
	0.009MHz-0.490M	lHz	2400/F(k	(Hz)		QP	300m			
	0.490MHz-1.705M	lHz	24000/F(KHz)		QP		30m			
	1.705MHz-30MH	1.705MHz-30MHz			QP		30m			
	30MHz-88MHz		100		QP					
	88MHz-216MHz	<u> </u>	150		QP					
	216MHz-960MH	Z	200		QP		3m			
	960MHz-1GHz		500		QP		SIII			
	Above 1GHz		500		Average					
	Above IGIIZ		5000		Peak					
Test setup:	For radiated emiss	sions	**********	z to 30	/ / / / / /	z				
	Tum Table	EUT		< 1m> +		Preamplifie				


Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

For radiated emissions from 30MHz to1GHz

For radiated emissions above 1GHz

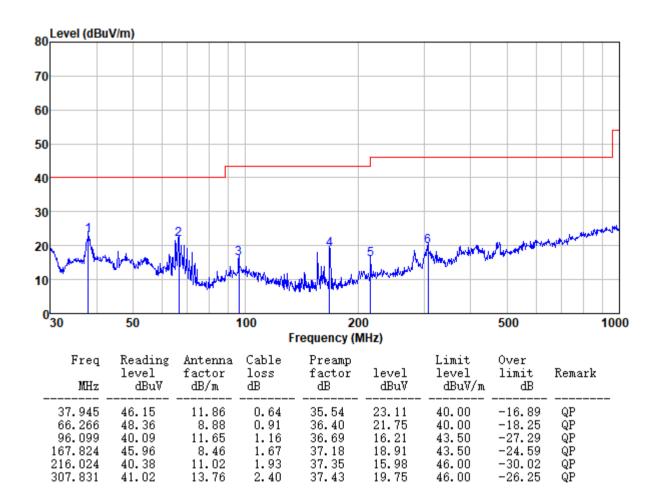
Test Procedure:

- 1. The EUT was placed on the top of a rotating table (0.8m for below 1G and 1.5m for above 1G) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. If the emission level of the EUT in peak mode was 10dB lower than the

	Report No.: GTS201907000096F01
	limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test voltage:	DC 3.0V
Test results:	Pass

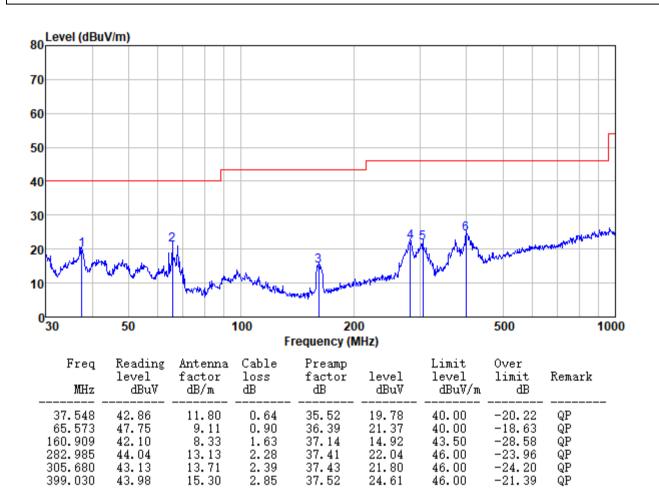
Measurement data:

Remark:


Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

■ 9kHz~30MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.



■ Below 1GHz

Mode: Transmitting mode Polarziation: Vertical

■ Above 1GHz

Report No.: GTS201907000096F01

Test channel:	Lowest
---------------	--------

Peak value: Read Antenna Cable Preamp Over Frequency Level Limit Line Factor Loss Factor Limit polarization Level (MHz) (dBuV/m) (dBuV/m) (dB/m) (dB) (dB) (dB) (dBuV) 4804.00 31.78 8.60 32.09 43.56 74.00 -30.44 Vertical 35.27 7206.00 46.28 74.00 Vertical 30.48 36.15 11.65 32.00 -27.72 9608.00 30.27 37.95 14.14 31.62 50.74 74.00 -23.26 Vertical 12010.00 74.00 Vertical 14412.00 Vertical 74.00 4804.00 31.78 8.60 32.09 47.44 74.00 -26.56 Horizontal 39.15 7206.00 32.06 36.15 11.65 32.00 47.86 74.00 -26.14 Horizontal 9608.00 29.50 37.95 14.14 31.62 49.97 74.00 -24.03 Horizontal 12010.00 74.00 Horizontal 14412.00 74.00 Horizontal

Average value:

Average var	ue.							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804.00	24.47	31.78	8.60	32.09	32.76	54.00	-21.24	Vertical
7206.00	19.40	36.15	11.65	32.00	35.20	54.00	-18.80	Vertical
9608.00	18.60	37.95	14.14	31.62	39.07	54.00	-14.93	Vertical
12010.00	*					54.00		Vertical
14412.00	*					54.00		Vertical
4804.00	28.48	31.78	8.60	32.09	36.77	54.00	-17.23	Horizontal
7206.00	21.44	36.15	11.65	32.00	37.24	54.00	-16.76	Horizontal
9608.00	18.16	37.95	14.14	31.62	38.63	54.00	-15.37	Horizontal
12010.00	*					54.00		Horizontal
14412.00	*					54.00		Horizontal

Remarks:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channe	st channel: Middle								
Peak value:				•					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Pream Facto (dB)	r	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4880.00	35.29	31.85	8.67	32.12	2	43.69	74.00	-30.31	Vertical
7320.00	30.50	36.37	11.72	31.89	9	46.70	74.00	-27.30	Vertical
9760.00	30.28	38.35	14.25	31.62	2	51.26	74.00	-22.74	Vertical
12200.00	*						74.00		Vertical
14640.00	*						74.00		Vertical
4880.00	39.17	31.85	8.67	32.12	2	47.57	74.00	-26.43	Horizontal
7320.00	32.07	36.37	11.72	31.89	9	48.27	74.00	-25.73	Horizontal
9760.00	29.51	38.35	14.25	31.62	2	50.49	74.00	-23.51	Horizontal
12200.00	*						74.00		Horizontal
14640.00	*						74.00		Horizontal
Average val	ue:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Pream Facto (dB)	or	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4880.00	24.49	31.85	8.67	32.12	2	32.89	54.00	-21.11	Vertical
7320.00	19.41	36.37	11.72	31.89	9	35.61	54.00	-18.39	Vertical
9760.00	18.61	38.35	14.25	31.62	2	39.59	54.00	-14.41	Vertical
12200.00	*						54.00		Vertical
14640.00	*						54.00		Vertical
4880.00	28.50	31.85	8.67	32.12	2	36.90	54.00	-17.10	Horizontal
7320.00	21.45	36.37	11.72	31.89	9	37.65	54.00	-16.35	Horizontal
9760.00	18.18	38.35	14.25	31.62	2	39.16	54.00	-14.84	Horizontal

Remarks:

12200.00

14640.00

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

54.00

54.00

Horizontal

Horizontal

Test channel	nnel: Highest								
Peak value:				·					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
4960.00	35.22	31.93	8.73	32.16	43.72	74.00	-30.28	Vertical	
7440.00	30.45	36.59	11.79	31.78	47.05	74.00	-26.95	Vertical	
9920.00	30.24	38.81	14.38	31.88	51.55	74.00	-22.45	Vertical	
12400.00	*					74.00		Vertical	
14880.00	*					74.00		Vertical	
4960.00	39.08	31.93	8.73	32.16	47.58	74.00	-26.42	Horizontal	
7440.00	32.02	36.59	11.79	31.78	48.62	74.00	-25.38	Horizontal	
9920.00	29.46	38.81	14.38	31.88	50.77	74.00	-23.23	Horizontal	
12400.00	*					74.00		Horizontal	
14880.00	*					74.00		Horizontal	
Average val	ue:								

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960.00	24.45	31.93	8.73	32.16	32.95	54.00	-21.05	Vertical
7440.00	19.38	36.59	11.79	31.78	35.98	54.00	-18.02	Vertical
9920.00	18.59	38.81	14.38	31.88	39.90	54.00	-14.10	Vertical
12400.00	*					54.00		Vertical
14880.00	*					54.00		Vertical
4960.00	28.45	31.93	8.73	32.16	36.95	54.00	-17.05	Horizontal
7440.00	21.42	36.59	11.79	31.78	38.02	54.00	-15.98	Horizontal
9920.00	18.15	38.81	14.38	31.88	39.46	54.00	-14.54	Horizontal
12400.00	*					54.00		Horizontal
14880.00	*					54.00		Horizontal

Remarks:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

8 Test Setup Photo

Reference to the appendix I for details.

9 EUT Constructional Details

Reference to the **appendix II** for details.