

GTS Global United Technology Services Co., Ltd.

Report No.: GTS201907000202F01

FCC Report (Bluetooth)

Applicant:	Coros Wearables Inc.
Address of Applicant:	14511 FRANKLIN AVENUE SUITE 220, TUSTIN, CA 92780, TUSTIN, United States
Manufacturer/Factory:	Dongguan Yuanfeng Technology Co.,Ltd
Address of Manufacturer/Factory:	FL. 1-3 and 5 Building A ,No.18, Industrial East Rd., Songshan Lake Development Zone, Dongguan, China
Equipment Under Test (E	EUT)
Product Name:	APEX Pro
Model No.:	B17
Trade Mark:	COROS
FCC ID:	2AEHH-B17
Applicable standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247
Date of sample receipt:	August 01, 2019
Date of Test:	August 02-09, 2019
Date of report issued:	August 09, 2019
Test Result :	PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Robinson Lo Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

2 Version

Version No.	Date	Description
00	August 09, 2019	Original

Prepared By:

Bill. yuan

Date:

August 09, 2019

August 09, 2019

Project Engineer

Check By:

Date: obinson

Reviewer

3 Contents

		Page
1	COVER PAGE	1
2	VERSION	2
3	CONTENTS	3
4	TEST SUMMARY	4
5	GENERAL INFORMATION	5
	 5.1 GENERAL DESCRIPTION OF EUT 5.2 TEST MODE 5.3 DESCRIPTION OF SUPPORT UNITS 	7
	5.4 Deviation from Standards 5.5 Abnormalities from Standard Conditions 5.6 Test Facility 5.7 Test Location	7 7
6		
7	TEST RESULTS AND MEASUREMENT DATA	10
	7.1 ANTENNA REQUIREMENT	11 14 16 18 20 20
	7.7 Spurious Emission 7.7.1 Conducted Emission Method 7.7.2 Radiated Emission Method	 23 23
8	TEST SETUP PHOTO	32
9	EUT CONSTRUCTIONAL DETAILS	32

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Output Power	15.247 (b)(3)	Pass
Channel Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes			
Radiated Emission	9kHz ~ 30MHz	±3.80dB	(1)			
Radiated Emission	30MHz ~ 1000MHz	\pm 3.97dB	(1)			
Radiated Emission	1GHz ~ 26.5GHz	± 4.29dB	(1)			
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	± 3.44dB	(1)			
Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.						

5 General Information

5.1 General Description of EUT

Product Name:	APEX Pro	
Model No.:	B17	
Test sample(s) ID:	GTS201907000202-1	
Sample(s) Status:	Engineer sample	
Serial No.:	565D0F	
Hardware version:	V1.50	
Software version:	V1.33.0629	
Operation Frequency:	2402MHz~2480MHz	
Channel Numbers:	40	
Channel Separation:	2MHz	
Modulation Type:	GFSK	
Antenna Type: Integral Antenna		
Antenna Gain:	-1.38dBi(Declared by applicant)	
Power Supply:	Battery: DC 3.8V, 330mAh	

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32 24	2464MHz
	·	•				•	
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency		
The lowest channel	2402MHz		
The middle channel	2442MHz		
The Highest channel	2480MHz		

5.2 Test mode

Transmitting mode	Keep the EUT in continuously transmitting mode
u	the test voltage was tuned from 85% to 115% of the nominal rated supply he worst case was under the nominal rated supply condition. So the report just ata.

5.3 Description of Support Units

Manufacturer Description		Model	Serial Number	
AoHai Adapter USB Charger		A9A-050100U-US1	N/A	

5.4 Deviation from Standards

None.

5.5 Abnormalities from Standard Conditions

None.

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC — Registration No.: 381383

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 381383.

• NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP). LAB CODE:600179-0

5.7 Test Location

All tests were performed at: Global United Technology Services Co., Ltd. Address: No. 301-309, 3/F, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Tel: 0755-27798480 Fax: 0755-27798960

٦

6 Test Instruments list

Radiated	Emission:

Rad	iated Emission:					
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 03 2015	July. 02 2020
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 26 2019	June. 25 2020
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 26 2019	June. 25 2020
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 26 2019	June. 25 2020
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 26 2019	June. 25 2020
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
8	Coaxial Cable	GTS	N/A	GTS213	June. 26 2019	June. 25 2020
9	Coaxial Cable	GTS	N/A	GTS211	June. 26 2019	June. 25 2020
10	Coaxial cable	GTS	N/A	GTS210	June. 26 2019	June. 25 2020
11	Coaxial Cable	GTS	N/A	GTS212	June. 26 2019	June. 25 2020
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 26 2019	June. 25 2020
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 26 2019	June. 25 2020
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 26 2019	June. 25 2020
15	Band filter	Amindeon	82346	GTS219	June. 26 2019	June. 25 2020
16	Power Meter	Anritsu	ML2495A	GTS540	June. 26 2019	June. 25 2020
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 26 2019	June. 25 2020
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 26 2019	June. 25 2020
19	Splitter	Agilent	11636B	GTS237	June. 26 2019	June. 25 2020
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 26 2019	June. 25 2020
21	Breitband hornantenne	SCHWARZBECK	BBHA 9170	GTS579	Oct. 20 2018	Oct. 19 2019
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 20 2018	Oct. 19 2019
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 20 2018	Oct. 19 2019
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June. 26 2019	June. 25 2020

Con	Conducted Emission					
tem	Toot Fauliament	Test Equipment Manufacturer Model No.	Madal Na	Inventory	Cal.Date	Cal.Due date
lem	rest Equipment		No.	(mm-dd-yy)	(mm-dd-yy)	
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.15 2019	May.14 2022
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 26 2019	June. 25 2020
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June. 26 2019	June. 25 2020
4	Artificial Mains Network	SCHWARZBECK MESS	NSLK8127	GTS226	June. 26 2019	June. 25 2020
5	Coaxial Cable	GTS	N/A	GTS227	June. 26 2019	June. 25 2020
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
7	Thermo meter	KTJ	TA328	GTS233	June. 26 2019	June. 25 2020
8	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	June. 26 2019	June. 25 2020
9	ISN	SCHWARZBECK	NTFM 8158	GTD565	June. 26 2019	June. 25 2020

Global United Technology Services Co., Ltd. No.301-309, 3/F Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

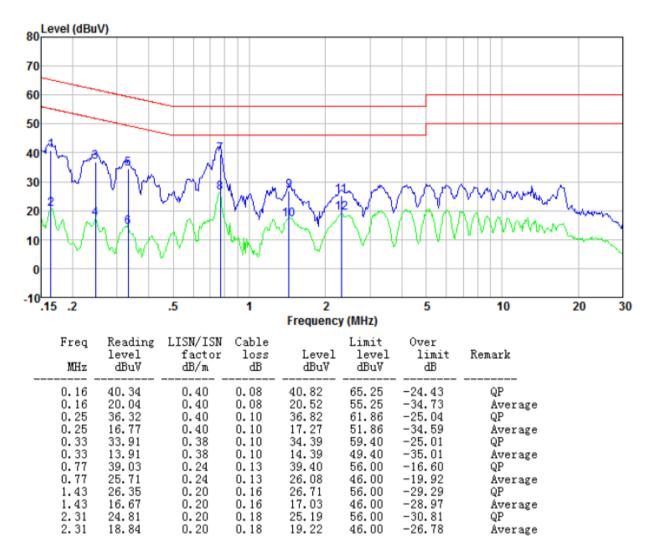
RF C	RF Conducted Test:					
ltem	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 26 2019	June. 25 2020
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 26 2019	June. 25 2020
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 26 2019	June. 25 2020
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 26 2019	June. 25 2020
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 26 2019	June. 25 2020
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 26 2019	June. 25 2020
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 26 2019	June. 25 2020
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 26 2019	June. 25 2020

Gene	General used equipment:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 26 2019	June. 25 2020
2	Barometer	ChangChun	DYM3	GTS255	June. 26 2019	June. 25 2020

7 Test results and Measurement Data

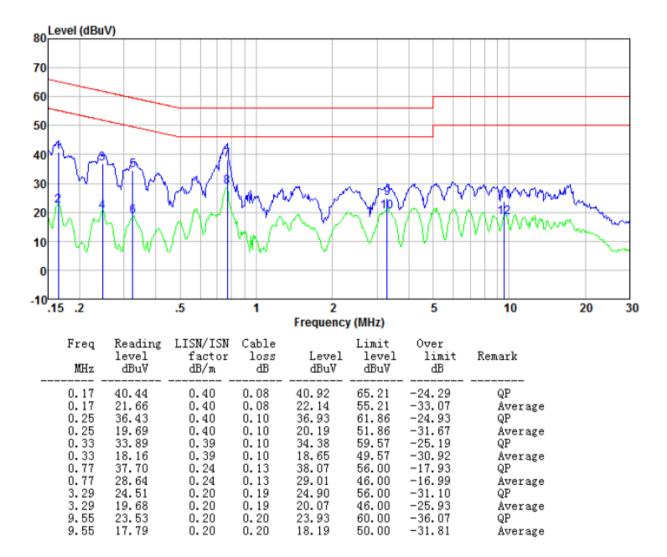
7.1 Antenna requirement

Standard requirement:	FCC Part15 C Section 15.203 /247(c)				
15.203 requirement:					
responsible party shall be us antenna that uses a unique	be designed to ensure that no antenna other than that furnished by the sed with the device. The use of a permanently attached antenna or of an coupling to the intentional radiator, the manufacturer may design the unit n be replaced by the user, but the use of a standard antenna jack or bited.				
15.247(c) (1)(i) requiremen	t:				
operations may employ trans	2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point smitting antennas with directional gain greater than 6dBi provided the power of the intentional radiator is reduced by 1 dB for every 3 dB that the na exceeds 6dBi.				
E.U.T Antenna:	E.U.T Antenna:				
The antenna is Loop antenna, the best case gain of the antenna is -1.38dBi, reference to the appendix II for details.					


7.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207				
Test Method:		ANSI C63.10:2013			
Test Frequency Range:	150KHz to 30MHz				
		- Owene tim			
Receiver setup:	RBW=9KHz, VBW=30KH	z, Sweep tir			
Limit:	Frequency range (MHz	7)		t (dBuV)	
		Q	lasi-peak		rage
	0.15-0.5	6	6 to 56*		o 46*
	0.5-5		56		6
	5-30		60	50	
	* Decreases with the loga	rithm of the	frequency.		
Test setup:	Reference I	Plane			
	LISN 40cm 80cm Filter AC power AUX Equipment E.U.T Filter AC power Equipment E.U.T EMI Receiver Remark E.U.T. Equipment Under Test LISN Line impedence Stabilization Network Test table height=0.8m Sm Sm				
Test Instruments:	Refer to section 6.0 for de	etails			
Test mode:	Refer to section 5.2 for details				
Test environment:	Temp.: 25 °C	Humid.:	52%	Press.:	1012mbar
Test voltage:	AC 120V, 60Hz				
Test results:	Pass				

GTS


Measurement data Line:

Report No.: GTS201907000202F01

Neutral:

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

7.3 Conducted Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)		
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05or02		
Limit:	30dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

Measurement Data

Test channel	Peak Output Power (dBm)	Limit(dBm)	Result
Lowest	-1.040		
Middle	-1.097	30.00	Pass
Highest	-0.928		

Test plot as follows:

Report No.: GTS201907000202F01

Lowest channel

Middle channel

Highest channel

7.4 Channel Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)		
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05or02		
Limit:	>500KHz		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

Measurement Data

Test channel	Channel Bandwidth (MHz)	Limit(KHz)	Result
Lowest	0.6958		
Middle	0.6941	>500	Pass
Highest	0.6937		

Test plot as follows:

Report No.: GTS201907000202F01

Lowest channel

Middle channel

Highest channel

7.5 Power Spectral Density

Test Requirement:	FCC Part15 C Section 15.247 (e)		
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05or02		
Limit:	8dBm/3kHz		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

Measurement Data

Test channel	Power Spectral Density (dBm/3kHz)	Limit(dBm/3kHz)	Result
Lowest	-18.898		
Middle	-18.615	8.00	Pass
Highest	-19.016		

Test plot as follows:

Report No.: GTS201907000202F01

Lowest channel

Middle channel

Highest channel



7.6 Band edges

7.6.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)		
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05or02		
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

Test plot as follows:

Lowest channel

Highest channel

7.6.2 Radiated Emission Method

Test Method: ANSI C63.10.2013 Test Frequency Range: All of the restrict bands were tested, only the worst band's (2310MHz to 2500MHz) data was showed. Test site: Measurement Distance: 3m Receiver setup: Frequency Detector RBW VBW Value Above 1GHz RMS 1MHz 3MHz Average Limit: Frequency Limit (BUV/m @3m) Value Above 1GHz 54.00 Average Above 1GHz 54.00 Average Test setup: Image: the ground to a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. Test Procedure: 1. The EUT was placed on the top of a variable-height antenna tower. . The EUT was placed on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to a 3 meter camber. The table was rotated 360 degrees to determine the position of the bighest radiation. . The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. . The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurem	Test Requirement:	FCC Part15 C Section 15.209 and 15.205								
Z500MHz) data was showed. Test site: Measurement Distance: 3m Receiver setup: Frequency Detector RBW VBW Value Above 1GHz RMS 1MHz 3MHz Peak Limit: Frequency Limit (BUV/m @3m) Value Above 1GHz 54.00 Average Above 1GHz 74.00 Peak Test setup: Image: State of the state of th	Test Method:	ANSI C63.10:20)13							
Receiver setup: Frequency Detector RBW VBW Value Above 1GHz Peak 1MHz 3MHz Peak Limit: Frequency Limit (BuV/m @3m) Value Above 1GHz 54.00 Average Test setup: Frequency Limit (BuV/m @3m) Value Test setup: Image: State of the peak Test And the peak Peak Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to a strend form one meter to degrees to take the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and the not atble was tured from 0 degrees to 360 degrees to find the maximum reading. 6. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 7. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 8. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, the testing could be stopped and the peak values and the rot atble was turned from 0 degrees to 360 degrees to fi	Test Frequency Range:			tested, only	the worst ba	nd's (2310MHz to				
Above 1GHz Peak 1MHz 3MHz Peak Limit: Frequency Limit (dBuV/m @3m) Value Above 1GHz 54.00 Average Test setup: Frequency Limit (dBuV/m @3m) Value Test setup: Frequency Limit (dBuV/m @3m) Value Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees t determine the position of the highest radiation. 2. The EUT was placed on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground at a 3 meter camber. The table was rotated 360 degrees t determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make th measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emission shat did not have 10dB margin would be reported on be yone using peak, quasipaek or average method as specified and then reported in a data sheet. 7. The tradiction measurements are performed in X, Y, Z axis positioning And found the X axis positioning which it is worse case, only the test worst case mode is recorded in the report.	Test site:	Measurement D	istance: 3m							
Above 1GHz Peak 1MHz 3MHz Peak Limit: Frequency Limit (GBu/Vm @3m) Value Above 1GHz 54.00 Average Test setup: Frequency Limit (GBu/Vm @3m) Value Test setup: Frequency Limit (GBu/Vm @3m) Value Test setup: Frequency Limit (GBu/Vm @3m) Value Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees t determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make th measurement. 4. For each suspected emission, the EUT was arranged to its worst case and the nota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be recested one by one using peak, quasipeak or average method as specifi	Receiver setup:	Frequency	Detector	RBW	VBW	Value				
Imit: Imit: Imit: Average Limit: Frequency Limit (dBuV/m @3m) Value Above 1GHz 54.00 Average Test setup: Imit: Imit: Imit: Imit: Average Test setup: Imit: Imit: Imit: Imit: Imit: Average Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, the netsing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be reported on the negroted in a data sheet. 7. The radiation measurements are performed in X, Y, Z axis posi	·		Peak	1MHz	3MHz	Peak				
Limit: Frequency Limit (dBuV/m @3m) Value Above 1GHz 54.00 Average Test setup: Image: State of the sta		Above 1GHz	Above 1GHz RMS 1MHz 3MHz Average							
Above 1GHz 54.00 Average Test setup: Image: State of the setup o	Limit:	Freque								
Addive 1GH2 74.00 Peak Test setup: Image: State of the state of		54.00 Average								
Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was splaced on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 3. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 6. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make th measurement. 6. For each suspected emission, the EUT was arranged to its worst cass and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be re-ported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. 7. The radiation measurements are performed in X, Y, Z axis positioning And found the X axis positioning which it is worse case, only the test worst case mode is recorded in the report. Test Instruments: Refer to section 6.0 for details		Above 1	GHZ –	74.0	0					
 the ground at a 3 meter camber. The table was rotated 360 degrees t determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make th measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. The radiation measurements are performed in X, Y, Z axis positioning And found the X axis positioning which it is worse case, only the test worst case mode is recorded in the report. 				Test Ant < 1m	4m >~					
worst case mode is recorded in the report. Test Instruments: Refer to section 6.0 for details		 determine the 2. The EUT was antenna, whit tower. 3. The antenna ground to det horizontal an measuremen 4. For each sus and then the and the rota to the maximum 5. The test-rece Specified Bat 6. If the emission the limit spect of the EUT w have 10dB m peak or avera sheet. 7. The radiation 	e position of the s set 3 meters ch was mounted height is varie termine the ma d vertical polar t. pected emission antenna was t table was turned neading. eiver system was ndwidth with N on level of the f ified, then test ould be reported age method as measurement	e highest rac away from the ed on the top d from one maximum value rizations of the on, the EUT uned to heig ed from 0 de as set to Pea laximum Hol EUT in peak ing could be ed. Otherwis e re-tested o s specified ar ts are perform	diation. The interference of a variable neter to four re- e of the field so the antenna a was arranged hts from 1 m grees to 360 ak Detect Fur d Mode. mode was 10 stopped and the emission ne by one us and then repor- med in X, Y, 2	ce-receiving e-height antenna meters above the strength. Both re set to make the d to its worst case eter to 4 meters degrees to find nction and DdB lower than the peak values ons that did not ing peak, quasi- ted in a data Z axis positioning.				
	Toot Instrumenter	worst case m	ode is recorde	ed in the repo		-				
Test mode: Refer to section 5.2 for details	Test mode:									

Global United Technology Services Co., Ltd. No.301-309, 3/F Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test results:

Report No.: GTS201907000202F01

Measurement Data

Test channe	el:			Lov	west				
Peak value:									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
2310.00	38.80	27.59	5.38	30.18	41.59	74.00	-32.41	Horizontal	
2400.00	53.00	27.58	5.40	30.18	55.80	74.00	-18.20	Horizontal	
2310.00	38.96	27.59	5.38	30.18	41.75	74.00	-32.25	Vertical	
2400.00	54.60	27.58	5.40	30.18	57.40	74.00	-16.60	Vertical	
Average va	Average value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
2310.00	30.27	27.59	5.38	30.18	33.06	54.00	-20.94	Horizontal	
2400.00	38.27	27.58	5.40	30.18	41.07	54.00	-12.93	Horizontal	
2310.00	29.92	27.59	5.38	30.18	32.71	54.00	-21.29	Vertical	
2400.00	38.13	27.58	5.40	30.18	40.93	54.00	-13.07	Vertical	

Pass

Test channel:

Highest

Peak value:				·				
Fraguanay	Read	Antenna	Cable	Preamp	Level	Limit Line	Over	
Frequency	equality (MHz)LevelFactorLossFactor (dBuV)(dBuV)(dB/m)(dB)(dB)		(dBuV/m)	Limit	Polarization			
		(dB)	(dB)	(ubuv/iii)	(ubuv/III)	(dB)		
2483.50	40.42	27.53	5.47	29.93	43.49	74.00	-30.51	Horizontal
2500.00	40.37	27.55	5.49	29.93	43.48	74.00	-30.52	Horizontal
2483.50	40.58	27.53	5.47	29.93	43.65	74.00	-30.35	Vertical
2500.00	40.98	27.55	5.49	29.93	44.09	74.00	-29.91	Vertical

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	33.05	27.53	5.47	29.93	36.12	54.00	-17.88	Horizontal
2500.00	31.64	27.55	5.49	29.93	34.75	54.00	-19.25	Horizontal
2483.50	33.92	27.53	5.47	29.93	36.99	54.00	-17.01	Vertical
2500.00	31.22	27.55	5.49	29.93	34.33	54.00	-19.67	Vertical

Remarks:

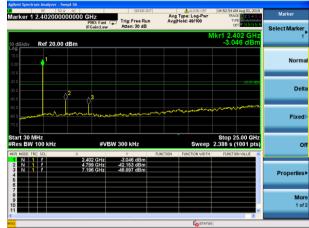
1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

3. The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.

Global United Technology Services Co., Ltd. No.301-309, 3/F Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

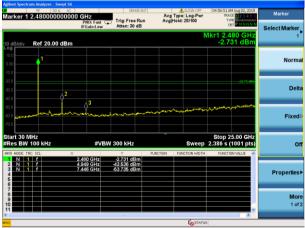
7.7 Spurious Emission


7.7.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05or02
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Test plot as follows: Lowest channel

Report No.: GTS201907000202F01


30MHz~25GHz

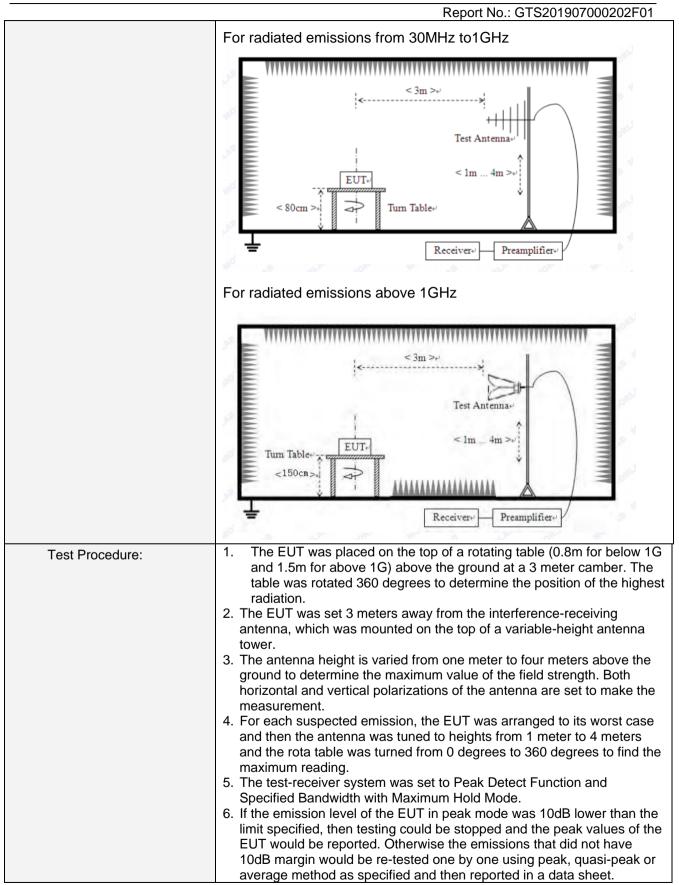
Middle channel

Highest channel

a Trig: Free Run Atten: 30 dB		id: 31/100	kr1 2.440 Gi -2.780 dE	Se Se	elect Marker 1 Norm Del
			02.78		
		and and and a second			Del
	~~~~	and and the second of the	-2.78		Del
and a start and a start and a start a st		and and the second second	- June - and		
- man and a star and a star and a star a	men.	a providence	North Provident		
					Fixed
					TIXO
VBW 300 kHz		Sween	Stop 25.00 G 2.386 s (1001 p	Hz (Hz	c
Y 500 KHZ	FUNCTION F	UNCTION WIDTH	FUNCTION VALUE	A	
-2.780 dBm -43.348 dBm					
-43.346 dBm -51.120 dBm					Propertie
					Mo
					1 0
				M	

30MHz~25GHz




30MHz~25GHz



#### 7.7.2 Radiated Emission Method

ANSI C63 10:2013							
ANSI C63.10:2013							
9kHz to 25GHz							
Measurement Distar	nce: 3i	m					
Frequency	De	etector	RB۱	N	VBW	Value	
9KHz-150KHz	Qua	asi-peak	2001	Ηz	600Hz	Quasi-peak	
150KHz-30MHz	Qua	asi-peak	9KH	Ιz	30KHz	z Quasi-peak	
30MHz-1GHz	30MHz-1GHz Quasi-peak				300KH	z Quasi-peak	
Above 1CHz	I	Peak	1MF	Ηz	3MHz	Peak	
Above 10112	I	Peak	1MF	Ηz	10Hz	Average	
Frequency		Limit (uV	′/m)	V	'alue	Measurement Distance	
0.009MHz-0.490M	0.009MHz-0.490MHz				QP	300m	
0.490MHz-1.705M	0.490MHz-1.705MHz 24000/				QP	30m	
1.705MHz-30MH	1.705MHz-30MHz 30 QP				QP	30m	
30MHz-88MHz	30MHz-88MHz 100 QP						
88MHz-216MHz 150 QP							
216MHz-960MH	216MHz-960MHz 200 C					3m	
960MHz-1GHz		500			QP	om	
Above 1GHz		-		Av	erage		
		5000		F	Peak		
For radiated emiss		< 3m :	>,- - 7 < 1m > +		)		
	Measurement Distant Frequency 9KHz-150KHz 150KHz-30MHz 30MHz-1GHz Above 1GHz Above 1GHz 0.009MHz-0.490W 0.490MHz-1.705W 1.705MHz-30MH 30MHz-88MHz 216MHz-960MH 960MHz-1GHz Above 1GHz For radiated emiss	Measurement Distance: 3         Frequency       Du         9KHz-150KHz       Qua         150KHz-30MHz       Qua         30MHz-1GHz       Qua         30MHz-1GHz       Qua         Above 1GHz       Qua         0.009MHz-0.490MHz       0.490MHz-1.705MHz         0.490MHz-1.705MHz       1.705MHz-30MHz         30MHz-88MHz       30MHz-88MHz         88MHz-216MHz       960MHz-1GHz         960MHz-1GHz       960MHz-1GHz         Above 1GHz       -         Above 1GHz       -         960MHz-1GHz       -         Above 1GHz       -         Sorr radiated emissions       -         Tum Table       -          -         80cm       -	Measurement Distance: 3m         Frequency       Detector         9KHz-150KHz       Quasi-peak         150KHz-30MHz       Quasi-peak         30MHz-1GHz       Quasi-peak         Above 1GHz       Peak         Peak       Peak         0.009MHz-0.490MHz       2400/F(K         0.490MHz-1.705MHz       2400/F(K         0.490MHz-1.705MHz       2400/F(K         0.490MHz-1.705MHz       2400/F(K         0.490MHz-1.705MHz       2400/F(K         0.490MHz-1.705MHz       2400/F(K         0.490MHz-1.705MHz       200/F(K         0.490MHz-1.705MHz       30         30MHz-88MHz       100         88MHz-216MHz       150         216MHz-960MHz       200         960MHz-1GHz       500         Above 1GHz       500         5000       5000         For radiated emissions from 9kHz       4         Image: Europeace       4         Image: Europeace       4         Image: Europeace       4         Image: Europeace       500         Socm >       500	Measurement Distance: 3mFrequencyDetectorRBN9KHz-150KHzQuasi-peak2001150KHz-30MHzQuasi-peak9KH30MHz-1GHzQuasi-peak120KAbove 1GHzPeak1MHPeak1MH0.009MHz-0.490MHz2400/F(KHz)0.490MHz-1.705MHz2400/F(KHz)1.705MHz-30MHz3030MHz-88MHz10088MHz-216MHz150216MHz-960MHz200960MHz-1GHz500Above 1GHz500For radiated emissions from 9kHz to 30Som >-< 3m >-< 3m >-< 1m Table	Measurement Distance: 3m           Frequency         Detector         RBW           9KHz-150KHz         Quasi-peak         200Hz           150KHz-30MHz         Quasi-peak         9KHz           30MHz-1GHz         Quasi-peak         120KHz           Above 1GHz         Peak         1MHz           Peak         1MHz         Peak         1MHz           Above 1GHz         Peak         1MHz           V         0.009MHz-0.490MHz         2400/F(KHz)         0.490MHz-1.705MHz           0.490MHz-1.705MHz         24000/F(KHz)         0.490MHz-300Hz         30           1.705MHz-30MHz         30         30         30           30MHz-16MHz         100         88MHz-216MHz         100           88MHz-216MHz         150         216MHz-960MHz         200           960MHz-1GHz         500         Av           5000         F         For radiated emissions from 9kHz to 30MH	Measurement Distance: 3m         Frequency       Detector       RBW       VBW         9KHz-150KHz       Quasi-peak       200Hz       600Hz         150KHz-30MHz       Quasi-peak       9KHz       30KHz         30MHz-1GHz       Quasi-peak       120KHz       300KHz         30MHz-1GHz       Quasi-peak       120KHz       300KHz         Above 1GHz       Peak       1MHz       30MHz         Peak       1MHz       10Hz       10Hz         0.009MHz-0.490MHz       2400/F(KHz)       QP       QP         0.490MHz-1.705MHz       24000/F(KHz)       QP       QP         1.705MHz-30MHz       30       QP       QP         30MHz-88MHz       100       QP       QP         30MHz-1GHz       150       QP       QP         960MHz-1GHz       500       QP       QP         Above 1GHz       500       Average       S000       Peak         For radiated emissions from 9kHz to 30MHz       Im >        Im >        Im >	



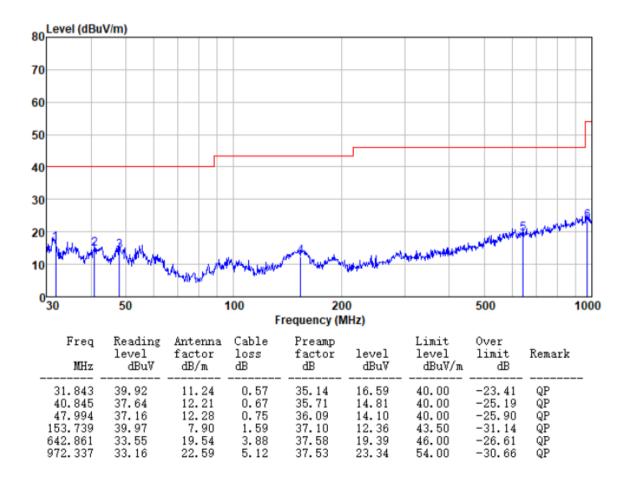




		Report No.: GTS201907000202F01
Test Instruments:	Refer to section 6.0 for details	
Test mode:	Refer to section 5.2 for details	
Test voltage:	DC 3.8V	
Test results:	Pass	

#### Measurement data:

#### Remark:


Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

#### ■ 9kHz~30MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

#### Below 1GHz

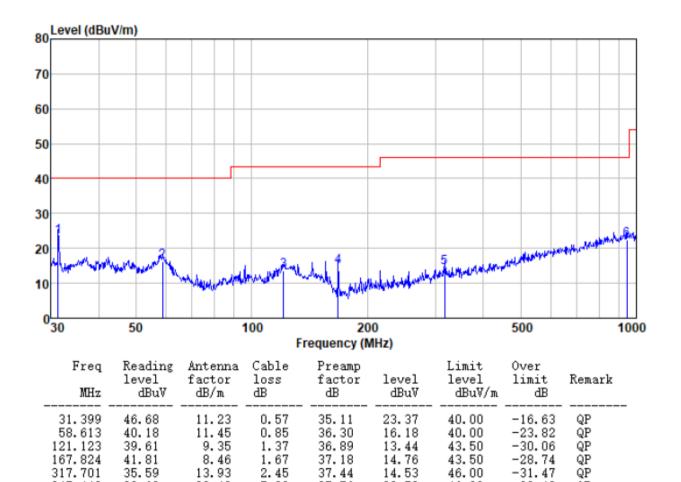
Mode:	Transmitting mode	Polarization:	Horizontal	
-------	-------------------	---------------	------------	--



Global United Technology Services Co., Ltd. No.301-309, 3/F Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960



945.440


32.63

22.48

5.03

#### Report No.: GTS201907000202F01

Mode:	Transmitting mode	Polarziation:	Vertical



37.56

22.58

46.00

-23.42

QP



#### Above 1GHz

#### Report No.: GTS201907000202F01

Test channel				Lowe	et			
Peak value:	-			LOW	531			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804.00	35.61	31.78	8.60	32.09	43.90	74.00	-30.10	Vertical
7206.00	30.71	36.15	11.65	32.00	46.51	74.00	-27.49	Vertical
9608.00	30.47	37.95	14.14	31.62	50.94	74.00	-23.06	Vertical
12010.00	*					74.00		Vertical
14412.00	*					74.00		Vertical
4804.00	39.55	31.78	8.60	32.09	47.84	74.00	-26.16	Horizontal
7206.00	32.31	36.15	11.65	32.00	48.11	74.00	-25.89	Horizontal
9608.00	29.73	37.95	14.14	31.62	50.20	74.00	-23.80	Horizontal
12010.00	*					74.00		Horizontal
14412.00	*					74.00		Horizontal
Average val	ue:		-				-	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804.00	24.75	31.78	8.60	32.09	33.04	54.00	-20.96	Vertical
7206.00	19.58	36.15	11.65	32.00	35.38	54.00	-18.62	Vertical
9608.00	18.77	37.95	14.14	31.62	39.24	54.00	-14.76	Vertical
12010.00	*					54.00		Vertical
14412.00	*					54.00		Vertical
4804.00	28.79	31.78	8.60	32.09	37.08	54.00	-16.92	Horizontal
7206.00	21.65	36.15	11.65	32.00	37.45	54.00	-16.55	Horizontal
9608.00	18.36	37.95	14.14	31.62	38.83	54.00	-15.17	Horizontal
12010.00	*					54.00		Horizontal
14412.00	*					54.00		Horizontal

Remarks:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

2. The emission levels of other frequencies are very lower than the limit and not show in test report.



Test channel	:			Midd	lle			
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4880.00	35.82	31.85	8.67	32.12	44.22	74.00	-29.78	Vertical
7320.00	30.84	36.37	11.72	31.89	47.04	74.00	-26.96	Vertical
9760.00	30.59	38.35	14.25	31.62	51.57	74.00	-22.43	Vertical
12200.00	*					74.00		Vertical
14640.00	*					74.00		Vertical
4880.00	39.80	31.85	8.67	32.12	48.20	74.00	-25.80	Horizontal
7320.00	32.47	36.37	11.72	31.89	48.67	74.00	-25.33	Horizontal
9760.00	29.87	38.35	14.25	31.62	50.85	74.00	-23.15	Horizontal
12200.00	*					74.00		Horizontal
14640.00	*					74.00		Horizontal
Average val	ue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4880.00	24.92	31.85	8.67	32.12	33.32	54.00	-20.68	Vertical
7320.00	19.70	36.37	11.72	31.89	35.90	54.00	-18.10	Vertical
9760.00	18.87	38.35	14.25	31.62	39.85	54.00	-14.15	Vertical
12200.00	*					54.00		Vertical
14640.00	*					54.00		Vertical
4880.00	28.98	31.85	8.67	32.12	37.38	54.00	-16.62	Horizontal
7320.00	21.78	36.37	11.72	31.89	37.98	54.00	-16.02	Horizontal
9760.00	18.48	38.35	14.25	31.62	39.46	54.00	-14.54	Horizontal
12200.00	*					54.00		Horizontal
14640.00	*					54.00		Horizontal

Remarks:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

2. The emission levels of other frequencies are very lower than the limit and not show in test report.



Test channel: Highest								
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960.00	35.60	31.93	8.73	32.16	44.10	74.00	-29.90	Vertical
7440.00	30.70	36.59	11.79	31.78	47.30	74.00	-26.70	Vertical
9920.00	30.46	38.81	14.38	31.88	51.77	74.00	-22.23	Vertical
12400.00	*					74.00		Vertical
14880.00	*					74.00		Vertical
4960.00	39.53	31.93	8.73	32.16	48.03	74.00	-25.97	Horizontal
7440.00	32.30	36.59	11.79	31.78	48.90	74.00	-25.10	Horizontal
9920.00	29.72	38.81	14.38	31.88	51.03	74.00	-22.97	Horizontal
12400.00	*					74.00		Horizontal
14880.00	*					74.00		Horizontal
Average value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960.00	24.77	31.93	8.73	32.16	33.27	54.00	-20.73	Vertical
7440.00	19.60	36.59	11.79	31.78	36.20	54.00	-17.80	Vertical
9920.00	18.78	38.81	14.38	31.88	40.09	54.00	-13.91	Vertical
12400.00	*					54.00		Vertical
14880.00	*					54.00		Vertical
4960.00	28.81	31.93	8.73	32.16	37.31	54.00	-16.69	Horizontal
7440.00	21.66	36.59	11.79	31.78	38.26	54.00	-15.74	Horizontal
9920.00	18.37	38.81	14.38	31.88	39.68	54.00	-14.32	Horizontal
12400.00	*					54.00		Horizontal
14880.00	*					54.00		Horizontal

Remarks:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

2. The emission levels of other frequencies are very lower than the limit and not show in test report.



## 8 Test Setup Photo

Reference to the **appendix I** for details.

## 9 EUT Constructional Details

Reference to the **appendix II** for details.

-----End------