# **Test Report**

Test Report No.: CQC-IVTS-2023-00333

| Product Name   | Road-Side (Transceiver) Unit for infrastructure |  |
|----------------|-------------------------------------------------|--|
| Model Number   | MK6 RSU                                         |  |
| Applicant      | Cohda Wireless Pty Ltd.                         |  |
| Approval Types | FCC ID: 2AEGPMK6RSU                             |  |

CQC Internet of Vehicles Technical Service (Shenzhen) Co., Ltd.

National Quality Inspection and Testing Center for Internet of Vehicles

Products



Report No.: CQC-IVTS-2023-00333 Page 1 of 40

## **TEST REPORT DECLARATION**

Equipment under Test : Road-Side (Transceiver) Unit for infrastructure

Model /Type : MK6 RSU

Listed Models : N/A

Applicant Cohda Wireless Pty Ltd.

Address 27 Greenhill Road Wayville SA 5034 Australia

Manufacturer : Cohda Wireless Pty Ltd.

Address 27 Greenhill Road Wayville SA 5034 Australia

The EUT described above is tested by CQC Internet of Vehicles Technical Service (Shenzhen) Co., Ltd. to determine the maximum emissions from the EUT. CQC Internet of Vehicles Technical Service (Shenzhen) Co., Ltd. is assumed full responsibility for the accuracy of the test results.

| Project Engineer: | Yankun Wang 王炎坤)             | Date: | 2023-9-12 |
|-------------------|------------------------------|-------|-----------|
| Checked by:       | Huohuo し、<br>(Haohao Li 李昊昊) | Date: | 2023-9-12 |
| Approved by:      | Menliang Li 李文亮)             | Date: | 2023-9-12 |

**Report No.: CQC-IVTS-2023-00333** 

## Page 2 of 40

## **Contents**

| <u></u>      | IESI             | STANDARDS                                                    | <u></u>  |
|--------------|------------------|--------------------------------------------------------------|----------|
| <u>2.</u>    | SUMMA            | ARY                                                          | <u>5</u> |
| 2.1.         | General F        | Remarks                                                      | 5        |
| 2.2.         |                  | Description*                                                 | 5        |
| 2.3.         |                  | ration Mode*                                                 | 5        |
| 2.4.         | Modificat        |                                                              | 6        |
| 2.4.<br>2.5. |                  | lons<br>(Equipment Under Test) Description*                  | 6        |
| 2.5.<br>2.6. |                  |                                                              | 6        |
|              |                  | Equipment (AE) Description*                                  |          |
| 2.7.         | Test Con         | Set-ups Description                                          | 6        |
| 2.8.         |                  |                                                              | 6        |
| 2.9.         |                  | al Information                                               | 6        |
| 2.10.        | Test Loca        |                                                              | 7        |
| 2.11.        |                  | lities from Standard Conditions                              | 7        |
| 2.12.        |                  | verdicts of the results                                      | 7        |
| 2.13.        |                  | for Determination of Correction Values (E <sub>c</sub> )     | 7        |
| 2.14.        |                  | g Statements of Conformity – Decision Rule                   | 7        |
| 2.15.        |                  | er of Test Software Setting                                  | 8        |
| 2.16.        |                  | Rate & Modulation*                                           | 8        |
| 2.17.        |                  | Carrier Frequencies*                                         | 8        |
| 2.18.        | Antenna          | Characteristics                                              | 9        |
| <u>3.</u>    | TEST E           | ENVIRONMENT                                                  | 10       |
| 3.1.         | Address          | of the test laboratory                                       | 10       |
| 3.2.         | Environm         | nental conditions                                            | 10       |
| 3.3.         | Test Des         | cription                                                     | 10       |
| 3.4.         | Statemen         | nt of The Measurement Uncertainty                            | 10       |
| 3.5.         | Equipme          | nts Used during the Test                                     | 11       |
| <u>4.</u>    | TEST (           | CONDITIONS AND RESULTS                                       | 12       |
|              | <b></b>          | Dan dwidth 150 4040 0 00 0701                                | 40       |
| 4.1.         |                  | Bandwidth [§2.1049 & 90.379]                                 | 12       |
|              | 4.1.1.           |                                                              | 12       |
|              | 4.1.2.           | TEST CONFIGURATION                                           |          |
|              | 4.1.3.           | TEST PROCEDURE                                               |          |
|              | 4.1.4.           | TEST RESULTS                                                 |          |
| 4.2.         |                  | n Transmitter Power [§90.379 & ASTM E2213-03 8.10.1]         | 21       |
|              | 4.2.1.           | LIMITS                                                       |          |
|              | 4.2.2.           | TEST CONFIGURATION                                           |          |
|              | 4.2.3.           | TEST PROCEDURE                                               |          |
|              | 4.2.4.           | TEST RESULTS                                                 | 22       |
| 4.3.         | Transmit         | Spectrum Mask [§90.379 & ASTM E2213-03 8.10.2]               | 23       |
|              | 4.3.1.           | LIMITS                                                       |          |
|              | 4.3.2.           | TEST CONFIGURATION                                           | 23       |
|              | 4.3.3.           | TEST PROCEDURE                                               | 23       |
|              | 4.3.4.           | TEST RESULTS                                                 | 24       |
| 4.4.         | Transmit         | ter Conducted Unwanted Emissions [§2.1051 & §90.739 & ASTM E |          |
| & 8.1        |                  |                                                              | 29       |
| J. U. I      | 4.4.1.           | LIMITS                                                       |          |
|              | 4.4.1.<br>4.4.2. | TEST RESULTS                                                 |          |
|              | 4.4.2.<br>4.4.3. | TEST PROCEDURE                                               |          |
|              | _                |                                                              |          |
| 4 -          | 4.4.4.           | TEST RESULTS                                                 |          |
| 4.5.         |                  | cy Stability [§2.1055 §90.213 & ASTM E2213-03 8.10.4]        | 34       |
|              | 4.5.1.           | LIMITS                                                       |          |
|              | 4.5.2.           | TEST CONFIGURATION                                           |          |
|              | 4.5.3.           | TEST PROCEDURE                                               | 34       |

## **Report No.: CQC-IVTS-2023-00333**

## Page 3 of 40

|      | 4.5.4.          | TEST RESULTS                 | 34 |
|------|-----------------|------------------------------|----|
| 4.6. | <b>Emission</b> | n Types [§ASTM E2213-03]     | 36 |
|      | 4.6.1.          | STANDARD APPLICABLE          | 36 |
|      | 4.6.2.          | VERDICT                      | 36 |
| 4.7. | Modulati        | on Standard [§ASTM E2213-03] | 37 |
|      | 4.7.1.          | STANDARD APPLICABLE          | 37 |
|      | 4.7.2.          | VERDICT                      | 37 |

Report No.: CQC-IVTS-2023-00333 Page 4 of 40

## 1. TEST STANDARDS

The tests were performed according to following standards: The equipment under test (EUT) has been tested at CQC-IVTS's (own or subcontracted) laboratories according to the leading reference documents giving table below:

| No | Identify       | Document Title                                                                                                                                                                                                                        | Version/Date |
|----|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| 1  | FCC Part 90M   | Intelligent Transportation Systems Radio Service                                                                                                                                                                                      | 07/20/2023   |
| 2  | ANSI C63.4     | American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz                                                                   | 2014         |
| 3  | ANSI C63.26    | American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services                                                                                                                                     | 2015         |
| 4  | ANSI/TIA-603-E | Land Mobile FM or PM Communications Equipment Measurement and Performance Standards                                                                                                                                                   | March 2016   |
| 5  | ASTM E2213-03  | Standard Specification for Telecommunications and Information Exchange Between Roadside and Vehicle Systems—5GHz Band Dedicated Short Range Communications (DSRC) Medium Access Control (MAC) and Physical Layer (PHY) Specifications | 2010         |

Report No.: CQC-IVTS-2023-00333 Page 5 of 40

## 2. SUMMARY

#### 2.1. General Remarks

| Date of receipt of test sample | : | June 30, 2023 |
|--------------------------------|---|---------------|
|                                |   |               |
| Testing commenced on           | : | July 17, 2023 |
|                                |   |               |
| Testing concluded on           | : | July 25, 2023 |

### 2.2. Product Description\*

| D. I. (M                        | D 10:1 (T : ) 11:1( : ( :                       |
|---------------------------------|-------------------------------------------------|
| Product Name:                   | Road-Side (Transceiver) Unit for infrastructure |
| Trade Mark                      | Cohda Wireless                                  |
| Model/Type reference:           | MK6 RSU                                         |
| FCC ID:                         | 2AEGPMK6RSU                                     |
| Hardware Version:               | Rev 1.0                                         |
| Software Version:               | 19.Release.134186                               |
| Frequency Range:                | 5900.00 – 5920.00 MHz                           |
| Technology:                     | DSRC / IEEE 802.11p                             |
| Modulation Type:                | OFDM (BPSK / QPSK / 16QAM / 64QAM)              |
| Emission Type:                  | D1D                                             |
| Device Class:                   | C                                               |
| Channel Number:                 | 3                                               |
| Usage:                          | Roadside Units                                  |
| Antenna:                        | Dipole Terminal Antenna                         |
| Antenna Gain:                   | 6.10 dBi                                        |
| Maximum Conducted Output Power: | 19.75 dBm                                       |
| Power Supply:                   | DC 48.00V from POE                              |
| Temperature Range:              | -20°C to +75°C                                  |
| Difference Declaration          | n/a                                             |
|                                 | D !! ( 10! (D                                   |

Note 1: The EUT Under Test (EUT) use for Dedicated Short Range Communications Service. DSRCS system is transmit is transmit status and instrunctional messages related to the units involved. This unit is Roadside unit.

## 2.3. EUT Operation Mode\*

| EUT operating mode no | Description of operating modes                                   | Additional information                                             |
|-----------------------|------------------------------------------------------------------|--------------------------------------------------------------------|
| op. 1                 | Continuously transmitting and receiving mode at BPSK modulation  | Lowest Channel (5900 MHz), a continuous wave with 100% duty cycle  |
| op. 2                 | Continuously transmitting and receiving mode at BPSK modulation  | Middle Channel (5910 MHz), a continuous wave with 100% duty cycle  |
| op. 3                 | Continuously transmitting and receiving mode at BPSK modulation  | Highest Channel (5920 MHz), a continuous wave with 100% duty cycle |
| op. 4                 | Continuously transmitting and receiving mode at QPSK modulation  | Lowest Channel (5900 MHz), a continuous wave with 100% duty cycle  |
| op. 5                 | Continuously transmitting and receiving mode at QPSK modulation  | Middle Channel (5910 MHz), a continuous wave with 100% duty cycle  |
| op. 6                 | Continuously transmitting and receiving mode at QPSK modulation  | Highest Channel (5920 MHz), a continuous wave with 100% duty cycle |
| op. 7                 | Continuously transmitting and receiving mode at 16QAM modulation | Lowest Channel (5900 MHz), a continuous wave with 100% duty cycle  |
| op. 8                 | Continuously transmitting and receiving mode at 16QAM modulation | Middle Channel (5910 MHz), a continuous wave with 100% duty cycle  |
| op. 9                 | Continuously transmitting and receiving mode at 16QAM modulation | Highest Channel (5920 MHz), a continuous wave with 100% duty cycle |
| op. 10                | Continuously transmitting and receiving mode at 64QAM modulation | Lowest Channel (5900 MHz), a continuous wave with 100% duty cycle  |

<sup>\*:</sup> declared by the applicant. CQC-IVTS not responsible for accuary.

#### Report No.: CQC-IVTS-2023-00333 Page 6 of 40

| on 11  | Continuously transmitting and receiving | Middle Channel (5910 MHz), a continuous  |
|--------|-----------------------------------------|------------------------------------------|
| op. 11 | mode at 64QAM modulation                | wave with 100% duty cycle                |
| on 12  | Continuously transmitting and receiving | Highest Channel (5920 MHz), a continuous |
| op. 12 | mode at 64QAM modulation                | wave with 100% duty cycle                |

<sup>\*:</sup> declared by the applicant

#### 2.4. Modifications

No modifications were implemented to meet testing criteria

## 2.5. Test Item (Equipment Under Test) Description\*

| Short designation | EUT Name | EUT Description                                       | Serial number | Hardware status | Software status   |
|-------------------|----------|-------------------------------------------------------|---------------|-----------------|-------------------|
| EUT A             | MK6 RSU  | Road-Side<br>(Transceiver) Unit for<br>infrastructure | 04E548300550  | Rev 1.0         | 19.Release.134186 |
|                   |          |                                                       |               |                 |                   |
|                   |          |                                                       |               |                 |                   |

<sup>\*:</sup> declared by the applicant.

## 2.6. Auxiliary Equipment (AE) Description\*

| AE short designation | EUT Name<br>(if available) | EUT Description   | Serial number (if available) | Software<br>(if used) |
|----------------------|----------------------------|-------------------|------------------------------|-----------------------|
| AE 1                 | POE29U-1AT (PL)            | POE Power Adapter | P202600614A2                 | -/-                   |
| AE 2                 | -/-                        | RJ45 Length: 2m   | -/-                          | -/-                   |
|                      |                            |                   | -/-                          | -/-                   |
|                      |                            |                   |                              |                       |

<sup>\*:</sup> declared by the applicant.

## 2.7. Test Item Set-ups Description

| set. 1  | EUT A + AE 1 + AE2 | EUT operating mode 1  |
|---------|--------------------|-----------------------|
| set. 2  | EUT A + AE 1 + AE2 | EUT operating mode 2  |
| set. 3  | EUT A + AE 1 + AE2 | EUT operating mode 3  |
| set. 4  | EUT A + AE 1 + AE2 | EUT operating mode 4  |
| set. 5  | EUT A + AE 1 + AE2 | EUT operating mode 5  |
| set. 6  | EUT A + AE 1 + AE2 | EUT operating mode 6  |
| set. 7  | EUT A + AE 1 + AE2 | EUT operating mode 7  |
| set. 8  | EUT A + AE 1 + AE2 | EUT operating mode 8  |
| set. 9  | EUT A + AE 1 + AE2 | EUT operating mode 9  |
| set. 10 | EUT A + AE 1 + AE2 | EUT operating mode 10 |
| set. 11 | EUT A + AE 1 + AE2 | EUT operating mode 11 |
| set. 12 | EUT A + AE 1 + AE2 | EUT operating mode 12 |
|         |                    |                       |

#### 2.8. Test Conditions\*

| Tempera   | ture, [°C] | Voltage, [V]               |           |  |
|-----------|------------|----------------------------|-----------|--|
| $T_{nom}$ | +25.0      | V <sub>nom</sub> DC 48.0 V |           |  |
| $T_{min}$ | -20.0      | $V_{min}$                  | DC 40.8 V |  |
| $T_{max}$ | +75.0      | $V_{max}$                  | DC 55.2 V |  |

<sup>\*:</sup> declared by the applicant

#### 2.9. Additional Information

| Test items differences                          | None                      |
|-------------------------------------------------|---------------------------|
| Additional application considerations to test a | Laptop with test software |
| component or sub-assembly                       | Laptop with test software |

Report No.: CQC-IVTS-2023-00333 Page 7 of 40

#### 2.10. Test Location

Location 1

| Company:        | CQC Internet of Vehicles Technical Service (Shenzhen) Co., Ltd.                 |
|-----------------|---------------------------------------------------------------------------------|
| Address:        | Building G5, TCL International E City, Xili Street, Nanshan District, Shenzhen, |
| Address.        | China                                                                           |
| Post code:      | 518112                                                                          |
| Contact Person: | Wenliang Li                                                                     |
| Telephone:      | +86-755-8618 9654                                                               |
| e-Mail:         | liwenliang@cqc.com.cn                                                           |

#### 2.11. Abnormalities from Standard Conditions

None

#### 2.12. Possible verdicts of the results

| Test sample meets the requirements          | P (PASS) $\pm$ the measured value is below the acceptance limit, $AL = TL$ |  |  |  |  |
|---------------------------------------------|----------------------------------------------------------------------------|--|--|--|--|
| Test sample does not meet the requirements  | F (FAIL) ± the measured value is above the acceptance limit, AL = TL       |  |  |  |  |
| Test case does not apply to the test sample | N/A (Not applicable)                                                       |  |  |  |  |
| Test case not performed                     | N/P (Not performed)                                                        |  |  |  |  |

#### 2.13. Formula for Determination of Correction Values (Ec)

 $E_C = E_R + AF + C_L + D_F - G_A (1)$  $M = L_T - E_C (2)$ 

Ec = Electrical field ± corrected value

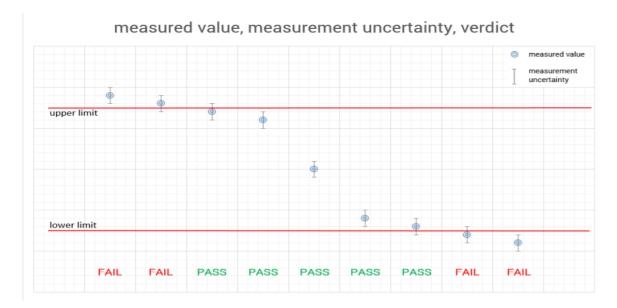
E<sub>R</sub> = Receiver reading

M = Margin

 $L_T = Limit$ 

AF = Antenna factor

C<sub>L</sub> = Cable loss


D<sub>F</sub> = Distance correction factor (if used)

 $G_A = Gain of pre-amplifier (if used)$ 

All units are dB-units, positive margin means value is below limit.

#### 2.14. Reporting Statements of Conformity - Decision Rule

Only the measured values related to their corresponding limits will be used to decide whether the equipment under test meets the requirements of the test standards listed. The measurement uncertainty is mentioned in this test report, see chapter 9, but is not taken into account - neither to the limits nor to the measurement results. Measurement results with a smaller margin to the corresponding limits than the measurement uncertainty have a potential risk of more than 5% that the decision might be wrong."



## 2.15. Parameter of Test Software Setting

During testing, Channel & Power Controlling Software provided by customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

| Test Software Version               | Type commands using terminal program |                      |        |        |        |        |  |  |
|-------------------------------------|--------------------------------------|----------------------|--------|--------|--------|--------|--|--|
| Madulation IEEE                     |                                      | Test Frequency [MHz] |        |        |        |        |  |  |
| Modulation: IEEE<br>802.11p [10MHz] | 5900                                 |                      | 5910   |        | 5920   |        |  |  |
| 802.11p [10WH2]                     | Port 1                               | Port 2               | Port 1 | Port 2 | Port 1 | Port 2 |  |  |
| BPSK                                | 24                                   | 24                   | 24     | 43     | 43     | 43     |  |  |
| QPSK                                | 24                                   | 24                   | 24     | 43     | 43     | 43     |  |  |
| 16QAM                               | 24                                   | 24                   | 24     | 43     | 43     | 43     |  |  |
| 64QAM                               | 25                                   | 25                   | 25     | 25     | 45     | 45     |  |  |

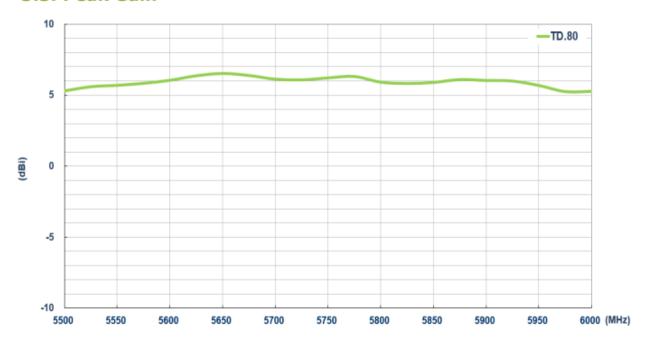
#### 2.16. Test Data Rate & Modulation\*

Rate-Dependent Parameters

| Data Rate,<br>Mbits/s | Modulation | Coding Rate, | Coded Bits per Subcarrier, | Coded Bits<br>Per OFDM Symbol, | Data Bits<br>Per OFDM     |
|-----------------------|------------|--------------|----------------------------|--------------------------------|---------------------------|
|                       |            |              | N <sub>BPSC</sub>          | N <sub>CBPS</sub>              | Symbol, N <sub>DBPS</sub> |
| 3                     | BPSK       | 1/2          | 1                          | 48                             | 24                        |
| 4.5                   | BPSK       | 3/4          | 1                          | 48                             | 36                        |
| 6                     | QPSK       | 1/2          | 2                          | 96                             | 48                        |
| 9                     | QPSK       | 3/4          | 2                          | 96                             | 72                        |
| 12                    | 16QAM      | 1/2          | 4                          | 192                            | 96                        |
| 18                    | 16QAM      | 3/4          | 4                          | 192                            | 144                       |
| 24                    | 64QAM      | 2/3          | 6                          | 288                            | 192                       |
| 27                    | 64QAM      | 3/4          | 6                          | 288                            | 216                       |

Note 1: The data rates used when evaluating the EUT was the lowest data rates, The device was operating at its maximum output power at the lowest data rate for all measurements.

#### 2.17. Table For Carrier Frequencies\*


| Frequency Range: 5895 – 5925 MHz       |     |          |  |  |  |  |
|----------------------------------------|-----|----------|--|--|--|--|
| Frequency Range Channel BW: 5 / 10 MHz |     |          |  |  |  |  |
| 5895 – 5905 MHz                        | 180 | 5900 MHz |  |  |  |  |
| 5905 – 5915 MHz                        | 182 | 5910 MHz |  |  |  |  |
| 5915 – 5925 MHz                        | 184 | 5920 MHz |  |  |  |  |

Note 1: Regarding the operating frequency, the lowest, middle, and highest frequency are selected to perform the test.

#### 2.18. Antenna Characteristics

Following information is derived from documents "DRAFT SPECIFICATION" provided by applicant.

### 3.3. Peak Gain



Report No.: CQC-IVTS-2023-00333 Page 10 of 40

## 3. TEST ENVIRONMENT

#### 3.1. Address of the test laboratory

CQC Internet of Vehicles Technical Service (Shenzhen) Co., Ltd.

Building G5, TCL International E City, Xili Street, Nanshan District, Shenzhen, China CQC-IVTS A2LA Certification Number: 6645.01;

#### 3.2. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

| Normal Temperature: | 25°C    |
|---------------------|---------|
| Lative Humidity     | 55 %    |
| Air Pressure        | 989 hPa |

#### 3.3. Test Description

| Test Specification<br>Clause                             | Test Case                                                             | Temperature<br>Condition | Power<br>Supply    | PASS        | FAIL | NA | NP          | Results |
|----------------------------------------------------------|-----------------------------------------------------------------------|--------------------------|--------------------|-------------|------|----|-------------|---------|
| § 2.1049<br>§ 90.379                                     | Emission<br>Bandwidth                                                 | Nominal                  | Nominal            | $\boxtimes$ |      |    |             |         |
| § 90.379<br>ASTM E2213-03<br>8.10.1                      | Maximum Transmitter Power (Effective Isotropic Radiated Power (EIRP)) | Nominal                  | Nominal            | $\boxtimes$ |      |    |             |         |
| § 90.379<br>ASTM E2213-03<br>8.10.2                      | Transmit<br>Spectrum Mask                                             | Nominal                  | Nominal            | $\boxtimes$ |      |    |             |         |
| § 2.1051<br>§ 90.379<br>ASTM E2213-03<br>8.10.2 & 8.10.3 | Transmitter<br>Conducted<br>Unwanted<br>Emissions                     | Nominal                  | Nominal            |             |      |    |             |         |
| § 2.1053<br>§ 90.379<br>ASTM E2213-03<br>8.10.2 & 8.10.3 | Transmitter<br>Radiated<br>Unwanted<br>Emissions                      | Nominal                  | Nominal            |             |      |    | $\boxtimes$ |         |
| § 90.213<br>ASTM E2213-03<br>8.10.4                      | Frequency<br>Stability                                                | Nominal<br>Extreme       | Nominal<br>Extreme | $\boxtimes$ |      |    |             |         |
| ASTM E2213-03                                            | Emission Types                                                        | -/-                      | -/-                |             |      |    |             |         |
| ASTM E2213-03                                            | Modulation<br>Standard                                                | -/-                      | -/-                | $\boxtimes$ |      |    |             |         |

Note 1: NA means "not applicable"; NP means Not Performed;

#### 3.4. Statement of The Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the CQC Internet of Vehicles Technical Service (Shenzhen) Co., Ltd..quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested

Note 2: The measurement uncertainty is not included in the test result.

Note 3: The radiation measurements are performed in X, Y, Z axis positioning, only the worst case is shown in the report.

Note 4: Transmitter Radiated Unwanted Emissions Not Including this report.

may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

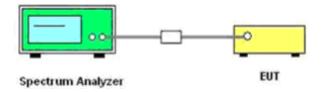
Hereafter the best measurement capability for CQC Internet of Vehicles Technical Service (Shenzhen) Co., Ltd.:

| Test                          | Range          | Measurement<br>Uncertainty | Notes |
|-------------------------------|----------------|----------------------------|-------|
| RF Output Power               | 9 KHz – 40 GHz | 0.35 dB                    | (1)   |
| Power Spectral Density        | 9 KHz – 40 GHz | 0.35 dB                    | (1)   |
| Occupied Bandwidth            | 9 KHz – 40 GHz | 0.25 MHz                   | (1)   |
| Conducted Spurious Emission   | 9 KHz – 40 GHz | 1.39 dB                    | (1)   |
| Radio frequency               | 9 KHz – 40 GHz | 1 × 10 <sup>-7</sup>       | (1)   |
| DC and low frequency voltages | -/-            | ±3 %                       | (1)   |

<sup>(1)</sup> This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

## 3.5. Equipments Used during the Test

| Radia | Radiated Emission                |              |            |               |            |            |  |  |
|-------|----------------------------------|--------------|------------|---------------|------------|------------|--|--|
| Item  | Test Equipment                   | Manufacturer | Model No.  | Equipment No. | Last Cal.  | Cal.Due    |  |  |
| 1     | Spectrum Analyzer                | R&S          | FSW43      | 10182         | 2022/08/25 | 2023/08/24 |  |  |
| 2     | Thermal chamber                  | ESPEC        | GFS-800-15 | 0050-001161   | 2022/07/26 | 2023/07/25 |  |  |
| 3     | Wideband<br>Communication Tester | R&S          | CMW500     | 170436        | 2022/08/25 | 2023/08/24 |  |  |


## 4. TEST CONDITIONS AND RESULTS

#### 4.1. Emission Bandwidth [§2.1049 & 90.379]

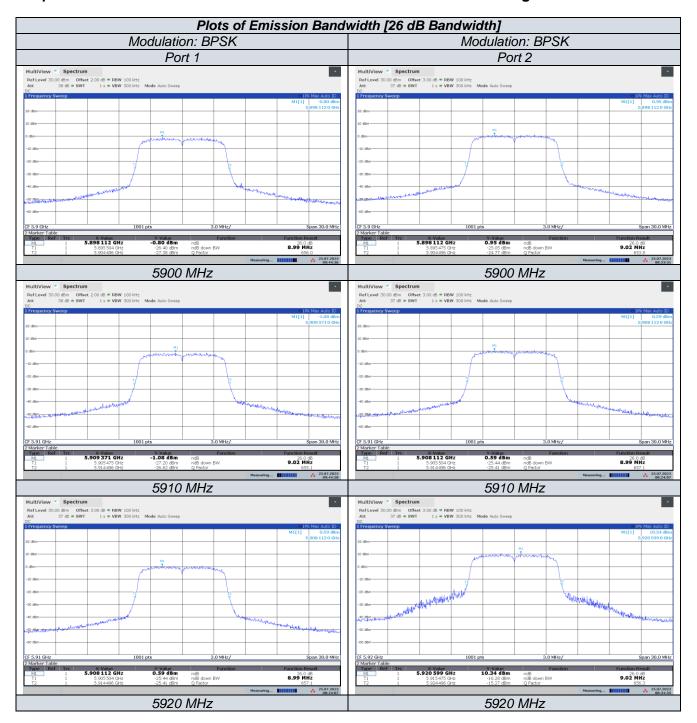
#### 4.1.1. LIMITS

According to § 90.379: DSRCS Roadside Units (RSUs) operating in the 5895–5925 MHz band must comply with the technical standard Institute of Electrical and Electronics Engineers (IEEE) 802.11p–2010 (incorporated by reference, see § 90.395).

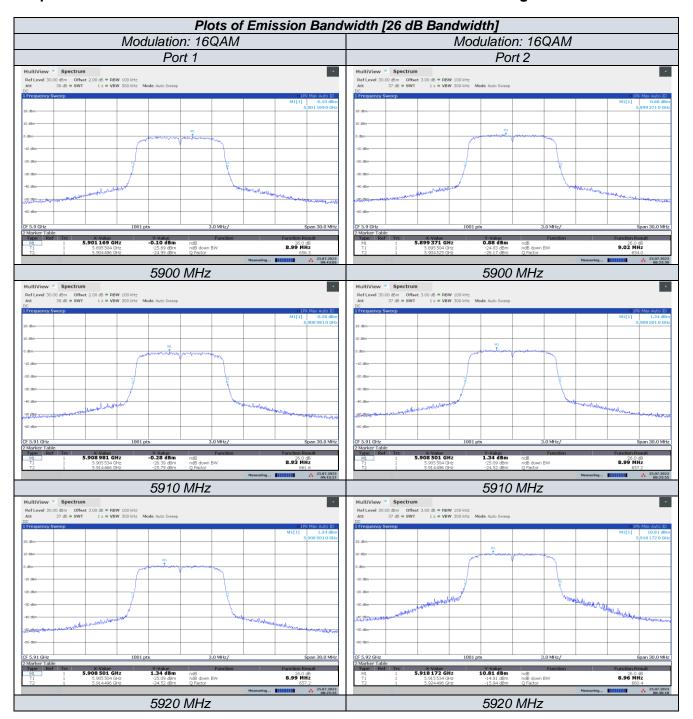
#### 4.1.2. TEST CONFIGURATION

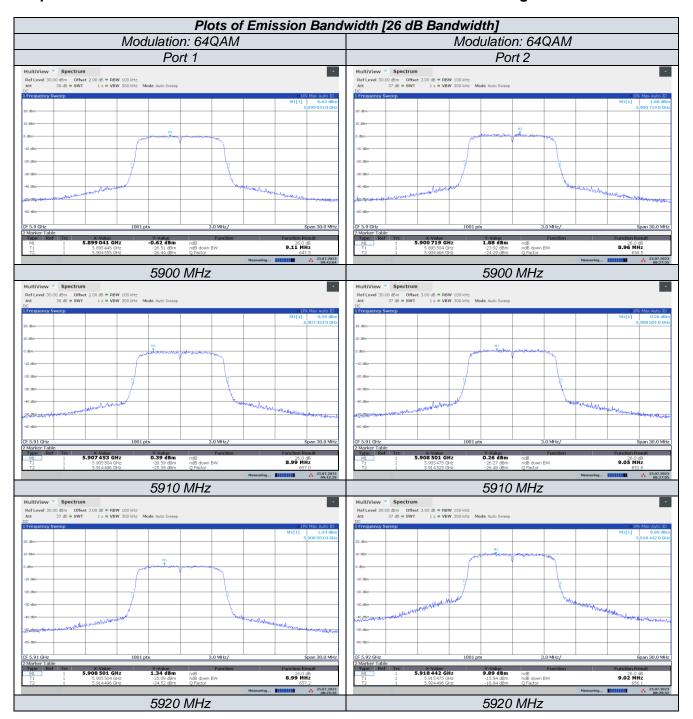


#### 4.1.3. TEST PROCEDURE

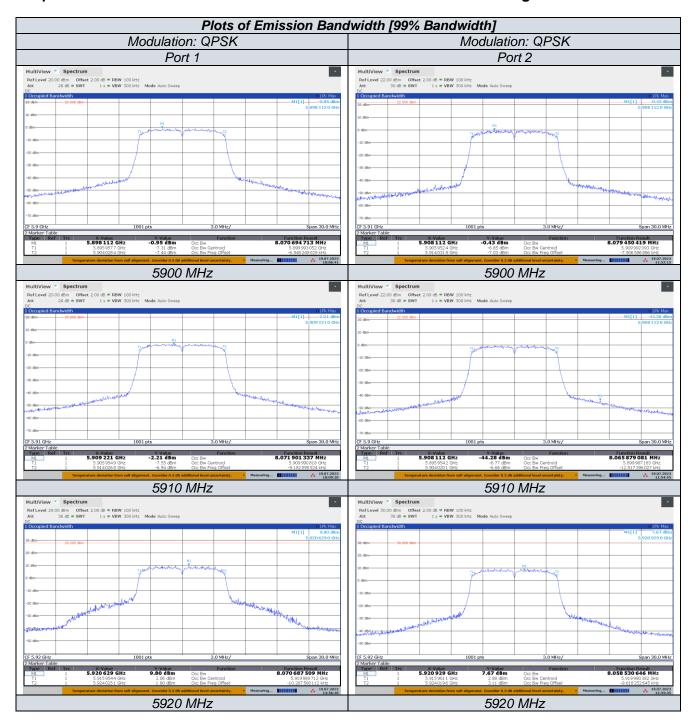

According to ANSI C63.26:2015 section 5.4.4: The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are equal to 0.5% of the total mean power of the given emission.

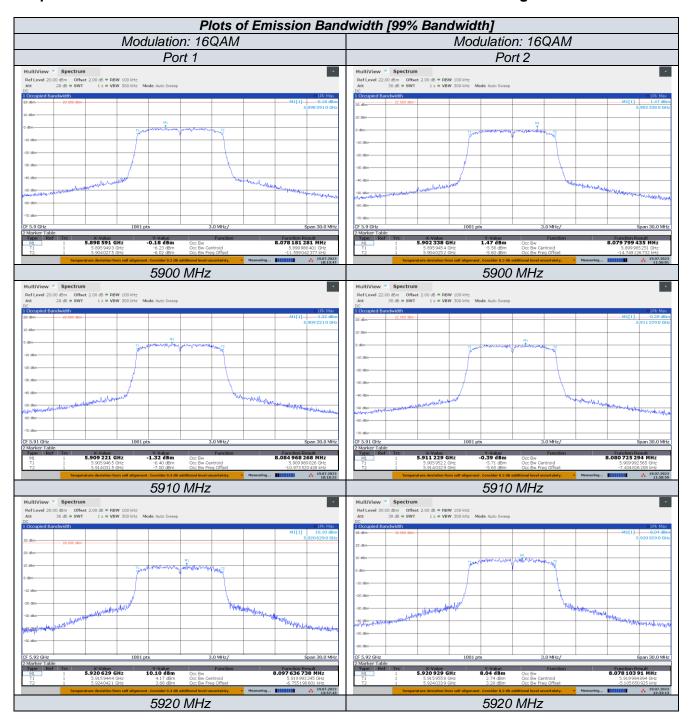
The following procedure shall be used for measuring 99% power bandwdith and 26dB bandwidth emission bandwidth:


- a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.
- b) The nominal IF filter bandwidth (3dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement.
- c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10log<sub>10</sub>(OBW/RBW] below the reference level. Specific guidance is given in 4.1.5.2.
- d) Set the detection mode to peak, and the trace mode to maxhold.
- e) If the instrument does not have 99% OBW function, recover the trace data points and sum directly in linear power terms. Place the recovered amplitude data points, beginning at the lowest frequency, in a running sum until 0.5% of the total is reached. Recorded that frequency as the lower OBW frequency. Repeat the process until 99.5% of the total is reached and record that frequency as the upper OBW frequency. The 99% power OBW can be determined by computing the difference these two frequencies.
- f) The OBW shall be reported and plots of the measuring instrument display shall be provided with the test report. The frequency and amplitude axis and scale shall be clearly labelled. Tabular data can be reported in addition to the plots.


#### 4.1.4. TEST RESULTS

|         | Channel Frequency Madulat |            |                 | Measurement Results [MHz] |               |        |                 |         |
|---------|---------------------------|------------|-----------------|---------------------------|---------------|--------|-----------------|---------|
| Channel | Channel [MHz]             | Modulation | 26 dB Bandwidth |                           | 99% Bandwidth |        | Limits<br>[MHz] | Results |
|         | [IVII 12]                 |            | Port 1          | Port 2                    | Port 1        | Port 2 | [IVII 12]       |         |
| 180     | 5900                      | BPSK       | 8.99            | 9.02                      | 8.022         | 8.021  | -/-             | PASS    |
| 182     | 5910                      | BPSK       | 9.02            | 8.99                      | 8.031         | 8.019  | -/-             | PASS    |
| 184     | 5920                      | BPSK       | 8.99            | 9.02                      | 8.077         | 8.034  | -/-             | PASS    |
| 180     | 5900                      | QPSK       | 9.05            | 8.99                      | 8.070         | 8.065  | -/-             | PASS    |
| 182     | 5910                      | QPSK       | 8.96            | 9.02                      | 8.071         | 8.079  | -/-             | PASS    |
| 184     | 5920                      | QPSK       | 8.99            | 8.99                      | 8.070         | 8.058  | -/-             | PASS    |
| 180     | 5900                      | 16QAM      | 8.99            | 9.02                      | 8.045         | 8.052  | -/-             | PASS    |
| 182     | 5910                      | 16QAM      | 8.93            | 8.99                      | 8.063         | 8.067  | -/-             | PASS    |
| 184     | 5920                      | 16QAM      | 8.99            | 8.96                      | 8.057         | 8.044  | -/-             | PASS    |
| 180     | 5900                      | 64QAM      | 9.11            | 8.96                      | 8.086         | 8.100  | -/-             | PASS    |
| 182     | 5910                      | 64QAM      | 8.99            | 9.05                      | 8.082         | 8.074  | -/-             | PASS    |
| 184     | 5920                      | 64QAM      | 8.99            | 9.02                      | 8.087         | 8.081  | -/-             | PASS    |
















Report No.: CQC-IVTS-2023-00333 Page 21 of 40

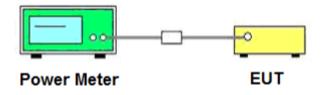
#### 4.2. Maximum Transmitter Power [§90.379 & ASTM E2213-03 8.10.1]

#### 4.2.1. LIMITS

According to §90.370 (b) - DSRCS authorizations granted prior to the July 2, 2021 may remain on existing frequencies in the 5850–5895 MHz band until July 5, 2022, at which time they may only operate in the 5895–5925 MHz band.

According to ASTM E2213-03 8.10.1 – For the 5850 – 5925 MHz band, the maxmum conducted output power shall not exceed the below table.

| ondi net oneded the beleft topic. |         |                |                       |                  |  |  |
|-----------------------------------|---------|----------------|-----------------------|------------------|--|--|
| Frequency Range<br>[MHz]          | Channel | BW: 5 / 10 MHz | Conducted Power [dBm] | EIRP Power [dBm] |  |  |
| 5855 - 5865                       | 172     | 5860           | 28.8                  | 33               |  |  |
| 5865 - 5875                       | 174     | 5870           | 28.8                  | 33               |  |  |
| 5875 – 5885                       | 176     | 5880           | 28.8                  | 33               |  |  |
| 5885 - 5895                       | 178     | 5890           | 28.8                  | 33 or 44.8       |  |  |
| 5895 - 5905                       | 180     | 5900           | 10                    | 23               |  |  |
| 5905 - 5915                       | 182     | 5910           | 10                    | 23               |  |  |
| 5915 – 5925                       | 184     | 5920           | 28.8                  | 33 or 40         |  |  |


Note 1: Conducted power could overcome limit but EIRP power shall under limit

Note 2: Refer to ASTM E2213-03 Clause 8.10.1

According to §90.375 (c) - Licensees must operate each RSU in accordance with the Commission's rules and the registration data posted on the ULS for such RSU. Licensees must register each RSU for the smallest communication zone needed for the intelligent transportation systems application using one of the following four communication zones:

| DSRC Device Classes and Transmit Power Levels [5850 – 5925 MHz Band) |                                                    |      |  |  |  |
|----------------------------------------------------------------------|----------------------------------------------------|------|--|--|--|
| RSU Class                                                            | Maximum Output Power [dBm] Communication Zone [met |      |  |  |  |
| А                                                                    | 0                                                  | 15   |  |  |  |
| В                                                                    | 10                                                 | 100  |  |  |  |
| С                                                                    | 20                                                 | 400  |  |  |  |
| D                                                                    | 28.8                                               | 1000 |  |  |  |

#### 4.2.2. TEST CONFIGURATION



#### 4.2.3. TEST PROCEDURE

According to ANSI C63.26:2015 section 5.2.4: General procedure for measuring average power with an average power meter.

When an average power meter is used to perform RF output power measurements, the fundamental condition that measurements be performed only over durations of active transmissions at maximum output power level applies. Thus, an average power meter can always be used to perform the measurement when the EUT can be configured to transmit continuously.

If the EUT cannot be configured to transmit continuously (i.e., burst duty cycle < 98%), then the following options can be implemented to facilitate measurement of the average power with an average power meter:

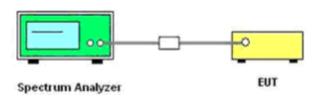
- a) A gated average power meter can be used to perform the measurement if the gating parameters can be adjusted such that the power is measured only during active transmission bursts at maximum output power levels.
- b) A conventional average power meter with no signal gating capability can also be used if the measured burst duty cycle is constant (i.e. duty cycle variations are less than or equal to  $\pm 2\%$ ) by performing the measurement over the on/off burst cycles and then correcting (increasing) the measured level by a factor equal to [10 log (1/duty cycle)]. See 5.2.4.3.4 for guidance with respect to measuring the transmitter duty cycle.

Report No.: CQC-IVTS-2023-00333 Page 22 of 40

## 4.2.4. TEST RESULTS

| Channel Frequency |          | Rate   | Conducted Conducted EIF Power [dBm] Power* [dBm |        |        | Limi              | Dogulto              |         |      |
|-------------------|----------|--------|-------------------------------------------------|--------|--------|-------------------|----------------------|---------|------|
| [MHz]             | [Mbps]   | Port 1 | Port 2                                          | Port 1 | Port 2 | Conduted<br>Power | Conducted EIRP Power | Results |      |
|                   |          | 3      | 9.92                                            | 9.93   | 16.02  | 16.03             | 10                   | 23      |      |
|                   |          | 4.5    | 9.35                                            | 9.45   | 15.45  | 15.55             | 10                   | 23      |      |
|                   |          | 6      | 9.33                                            | 9.81   | 15.43  | 15.91             | 10                   | 23      |      |
| 180               | 5900     | 9      | 9.15                                            | 9.40   | 15.25  | 15.50             | 10                   | 23      | PASS |
| 180               | 3900     | 12     | 9.72                                            | 9.43   | 15.82  | 15.53             | 10                   | 23      | FASS |
|                   |          | 18     | 9.33                                            | 9.33   | 15.43  | 15.43             | 10                   | 23      |      |
|                   |          | 24     | 9.57                                            | 9.25   | 15.67  | 15.35             | 10                   | 23      |      |
|                   |          | 27     | 9.47                                            | 9.17   | 15.57  | 15.27             | 10                   | 23      |      |
|                   |          | 3      | 9.69                                            | 9.73   | 15.79  | 15.83             | 10                   | 23      | PASS |
|                   | 182 5910 | 4.5    | 9.05                                            | 9.36   | 15.15  | 15.46             | 10                   | 23      |      |
|                   |          | 6      | 9.16                                            | 9.33   | 15.26  | 15.43             | 10                   | 23      |      |
| 182               |          | 9      | 9.03                                            | 9.29   | 15.13  | 15.39             | 10                   | 23      |      |
| 102               | 3910     | 12     | 9.58                                            | 9.28   | 15.68  | 15.38             | 10                   | 23      |      |
|                   |          | 18     | 9.19                                            | 9.07   | 15.29  | 15.17             | 10                   | 23      |      |
|                   |          | 24     | 9.46                                            | 9.16   | 15.56  | 15.26             | 10                   | 23      | 1    |
|                   |          | 27     | 9.30                                            | 9.14   | 15.40  | 15.24             | 10                   | 23      |      |
|                   |          | 3      | 19.75                                           | 19.50  | 25.85  | 25.60             | 20                   | 33      |      |
|                   | 4.5      | 4.5    | 19.58                                           | 19.33  | 25.68  | 25.43             | 20                   | 33      |      |
| 184 5920          |          | 6      | 19.71                                           | 19.38  | 25.81  | 25.48             | 20                   | 33      |      |
|                   | 9        | 19.63  | 19.26                                           | 25.73  | 25.36  | 20                | 33                   | PASS    |      |
|                   | 12       | 19.68  | 19.26                                           | 25.78  | 25.36  | 20                | 33                   | FASS    |      |
|                   |          | 18     | 19.59                                           | 19.21  | 25.69  | 25.31             | 20                   | 33      |      |
|                   |          | 24     | 19.22                                           | 19.10  | 25.32  | 25.20             | 20                   | 33      |      |
|                   |          | 27     | 19.07                                           | 19.04  | 25.17  | 25.14             | 20                   | 33      |      |

Note 1: Conducted EIRP Power\* = Conducted Output Power + Antenna Gain (6.10 dBi)


Report No.: CQC-IVTS-2023-00333 Page 23 of 40

#### 4.3. Transmit Spectrum Mask [§90.379 & ASTM E2213-03 8.10.2]

#### 4.3.1. LIMITS

According to ASTM E2213-03 8.10.2 – Transmit Spectrum Mask: The DSRC transmitted spectrum mask is relative to the device class of operation. The power in the transmitted spectrum for all DSRC devices shall be –25 dBm or less within 100 kHz outside all channel and bandedges. This will be accomplished by attenuating the transmitted signal 100 kHz outside the channel and bandedges by 55 + 10log (P) dB, where P is the total transmitted power in watts.

#### 4.3.2. TEST CONFIGURATION



#### 4.3.3. TEST PROCEDURE

According to ASTM E2213-03 8.10.2 – Transmit Spectrum Mask: The DSRC transmitted spectrum mask is relative to the device class of operation. The power in the transmitted spectrum for all DSRC devices shall be –25 dBm or less within 100 kHz outside all channel and bandedges. This will be accomplished by attenuating the transmitted signal 100 kHz outside the channel and bandedges by 55 + 10log (P) dB, where P is the total transmitted power in watts. The transmitted spectral density of the transmitted signal for all devices shall fall within the spectral mask,as detailed in following table. The measurements shall be made using a 100 kHz resolution bandwidth and a 30 kHz video bandwidth.

**DSRC** Device Classes and Transmit Power Levels

| Device Class | Maximum Device Output Power [dBm] |
|--------------|-----------------------------------|
| A            | 0                                 |
| В            | 10                                |
| C            | 20                                |
| D            | 28.8 or more                      |

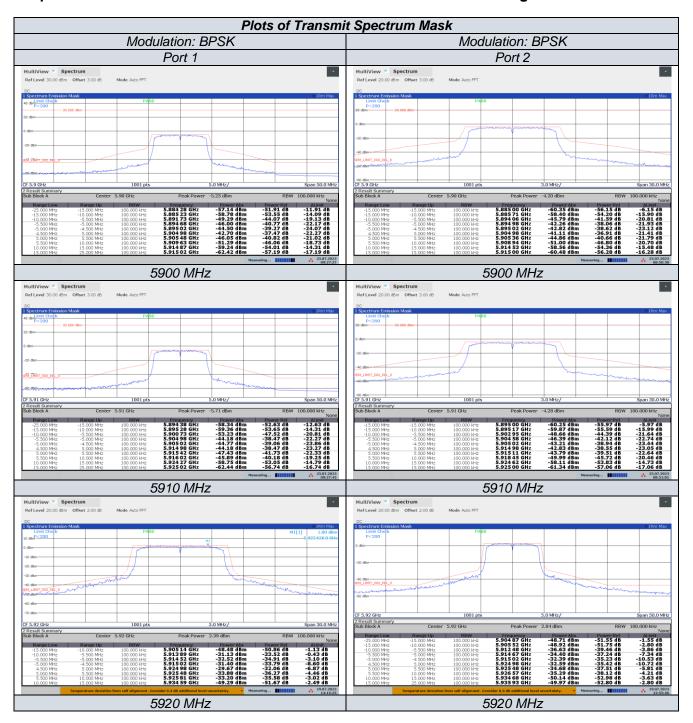
The transmitted spectral mask for class A, B, C, and D devices are shown in following table. In addition, all DSRC site installations shall limit the EIRP in the transmitted spec-trum to -25dB mor less in the 100 kHz at the channel edges and the band edges. Additional filtering that supplements the filtering provided by the transmitter may be needed for some antenna / transmitter combinations.

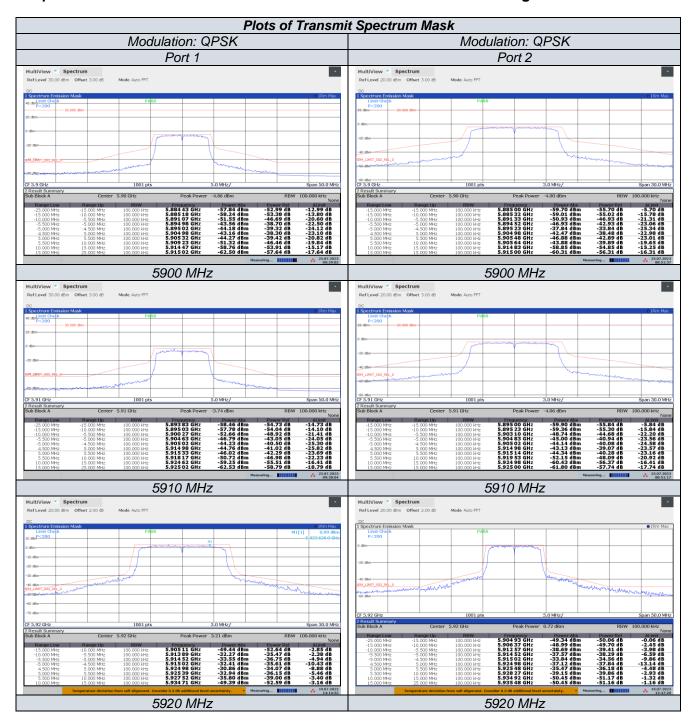
DSRC Spectrum Mask
Note 1—Reduction in Power Spectral Density, dBr.

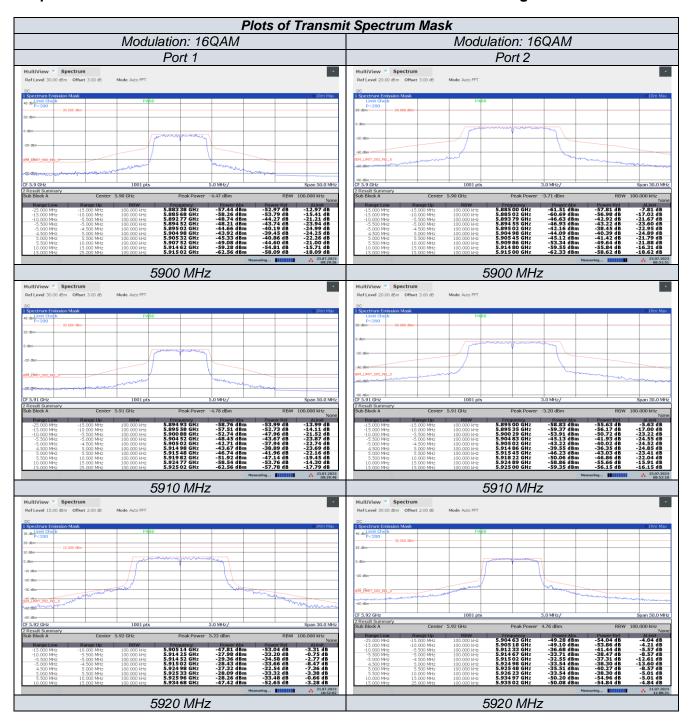
| Class   | $\pm$ 4.5 MHz | ±5.0 MHz | $\pm$ 5.5 MHz | ±10 MHz | ±15 MHz |
|---------|---------------|----------|---------------|---------|---------|
| Class   | Offset        | Offset   | Offset        | Offset  | Offset  |
| Class A | 0             | -10      | -20           | -28     | -40     |
| Class B | 0             | -16      | -20           | -28     | -40     |
| Class C | 0             | -26      | -32           | -40     | -50     |
| Class D | 0             | -35      | -45           | -55     | -65     |

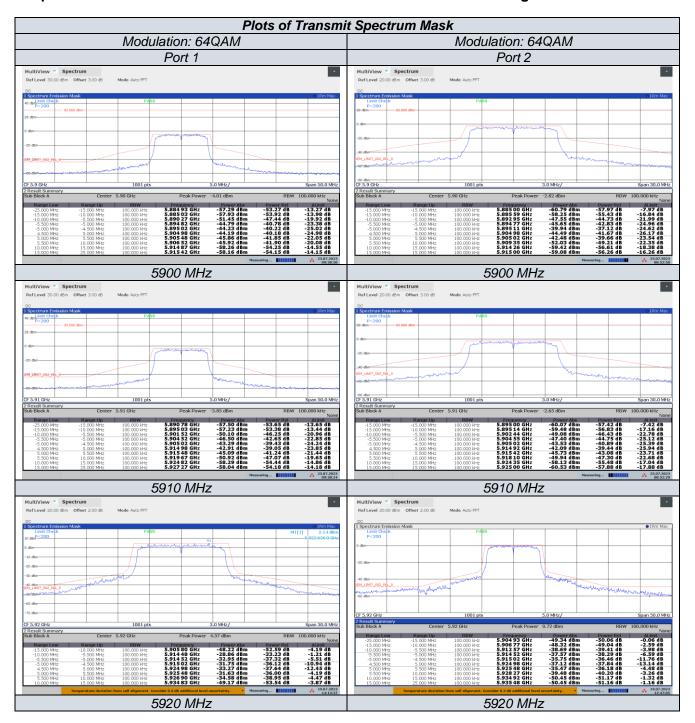
Measurement with the RMS detector are also suitable to demonstrate compliance of an EUT, as long as the required resolution bandwidth is used, because peak detection will yield amplitudes equal to or greater than amplitudes measured with RMS detector. The measurement data from a spectrum analyser peak detector will represent the worst-case results.

The spectrum analyzer is set to as follows;


RBW: 100 KHzVBW: 30 KHzSweep: AutoDetector: RMSTrace: Maxhold


Report No.: CQC-IVTS-2023-00333 Page 24 of 40


## 4.3.4. TEST RESULTS


| Channel | Frequency | Modulation | Measurement Results [dBc] |        | Limita [dDa] | Results |
|---------|-----------|------------|---------------------------|--------|--------------|---------|
| Channel | [MHz]     | Modulation | Port 1                    | Port 2 | Limits [dBc] | Results |
| 180     | 5900      | BPSK       | Note 1                    | Note 1 | Note 2       | PASS    |
| 182     | 5910      | BPSK       | Note 1                    | Note 1 | Note 2       | PASS    |
| 184     | 5920      | BPSK       | Note 1                    | Note 1 | Note 2       | PASS    |
| 180     | 5900      | QPSK       | Note 1                    | Note 1 | Note 2       | PASS    |
| 182     | 5910      | QPSK       | Note 1                    | Note 1 | Note 2       | PASS    |
| 184     | 5920      | QPSK       | Note 1                    | Note 1 | Note 2       | PASS    |
| 180     | 5900      | 16QAM      | Note 1                    | Note 1 | Note 2       | PASS    |
| 182     | 5910      | 16QAM      | Note 1                    | Note 1 | Note 2       | PASS    |
| 184     | 5920      | 16QAM      | Note 1                    | Note 1 | Note 2       | PASS    |
| 180     | 5900      | 64QAM      | Note 1                    | Note 1 | Note 2       | PASS    |
| 182     | 5910      | 64QAM      | Note 1                    | Note 1 | Note 2       | PASS    |
| 184     | 5920      | 64QAM      | Note 1                    | Note 1 | Note 2       | PASS    |

Note 1: Refer to following test plots; Note 2: Refer to following test plots;

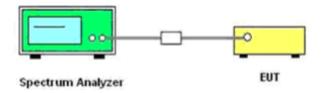








Report No.: CQC-IVTS-2023-00333 Page 29 of 40


## 4.4. Transmitter Conducted Unwanted Emissions [§2.1051 & §90.739 & ASTM E2213-03 8.10.2 & 8.10.3]

#### 4.4.1. LIMITS

According to ASTM E2213-03 8.10.2 – Transmit Spectrum Mask: The DSRC transmitted spectrum mask is relative to the device class of operation. The power in the transmitted spectrum for all DSRC devices shall be –25 dBm or less within 100 kHz outside all channel and bandedges. This will be accomplished by attenuating the transmitted signal 100 kHz outside the channel and bandedges by 55 + 10log (P) dB, where P is the total transmitted power in watts.

According to ASTM E2213-03 8.10.3 – Spurious transmissions from compliant devices shall comply with national regulations.

#### 4.4.2. TEST RESULTS

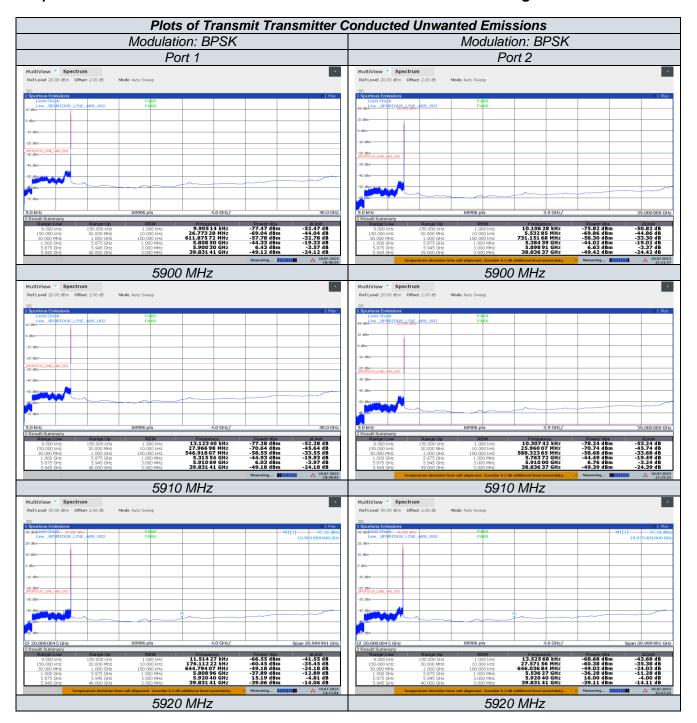


#### 4.4.3. TEST PROCEDURE

According to ASTM E2213-03 8.10.2 – Transmit Spectrum Mask: The DSRC transmitted spectrum mask is relative to the device class of operation. The power in the transmitted spectrum for all DSRC devices shall be –25 dBm or less within 100 kHz outside all channel and bandedges. This will be accomplished by attenuating the transmitted signal 100 kHz outside the channel and bandedges by 55 + 10log (P) dB, where P is the total transmitted power in watts. The measurements shall be made using a 100 kHz resolution bandwidth and a 30 kHz video bandwidth.

#### 4.4.4. TEST RESULTS

| Channel | Frequency | Modulation | Measurement Results [dBm] |        | Limita [dDa] | Results |
|---------|-----------|------------|---------------------------|--------|--------------|---------|
| Channel | [MHz]     | Modulation | Port 1                    | Port 2 | Limits [dBc] | Results |
| 180     | 5900      | BPSK       | < -25                     | < -25  | -25          | PASS    |
| 182     | 5910      | BPSK       | < -25                     | < -25  | -25          | PASS    |
| 184     | 5920      | BPSK       | < -25                     | < -25  | -25          | PASS    |
| 180     | 5900      | QPSK       | < -25                     | < -25  | -25          | PASS    |
| 182     | 5910      | QPSK       | < -25                     | < -25  | -25          | PASS    |
| 184     | 5920      | QPSK       | < -25                     | < -25  | -25          | PASS    |
| 180     | 5900      | 16QAM      | < -25                     | < -25  | -25          | PASS    |
| 182     | 5910      | 16QAM      | < -25                     | < -25  | -25          | PASS    |
| 184     | 5920      | 16QAM      | < -25                     | < -25  | -25          | PASS    |
| 180     | 5900      | 64QAM      | < -25                     | < -25  | -25          | PASS    |
| 182     | 5910      | 64QAM      | < -25                     | < -25  | -25          | PASS    |
| 184     | 5920      | 64QAM      | < -25                     | < -25  | -25          | PASS    |


Note 1: Refer to following test plots;

Note 2: Conducted spurious emission from 9 KHz – 40 GHz.

Note 3: The higher level over limit is fundantal frequency.

Note 4: Measure RBW and VBW as following table, which more than standards requirement, if results over limit, will require reduce RBW = 100 KHz / VBW = 30 KHz remeasurement again.

| Frequency Range   | RBW / VBW         |
|-------------------|-------------------|
| 9 KHz – 150 KHz   | 1 KHz / 3 KHz     |
| 150 KHz – 30 MHz  | 10 KHz / 30 KHz   |
| 30 MHz – 1000 MHz | 100 KHz / 300 KHz |
| 1 GHz – 40 GHz    | 1 MHz / 3 MHz     |

