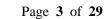


Test Report

Report No.:	MTi220413015-03E1
Date of issue:	2022-09-28
Applicant:	Otter Products, LLC.
Product:	Power Bank with Apple Watch Charger
Model(s):	OBFTC-0121-A
FCC ID:	2AEEV-OBFTC0121A

Shenzhen Microtest Co., Ltd. http://www.mtitest.com

Instructions


1. This test report shall not be partially reproduced without the written consent of the laboratory.

2. The test results in this test report are only responsible for the samples submitted

3. This test report is invalid without the seal and signature of the laboratory.

4. This test report is invalid if transferred, altered, or tampered with in any form without authorization.

Any objection to this test report shall be submitted to the laboratory within
15 days from the date of receipt of the report.

Contents

1	General Description	5
	1.1 Description of the EUT	
	1.2 Description of test modes	
	1.3 Description of support units1.4 Environmental conditions	
	1.5 Measurement uncertainty	
2	Summary of Test Result	7
3	Test Facilities and accreditations	8
	3.1 Test laboratory	8
4	List of test equipment	9
5	Test Results	10
	5.1 Standard requirement	
	5.2 Description of the EUT antenna	
	5.3 AC power line Conducted emissions	
	5.4 Radiated emissions	16
	5.5 Occupied bandwidth test	27
6	Photographs of the test setup	29
7	Photographs of the EUT	29

Test Result Certification			
Applicant:	Otter Products, LLC.		
Address:	209 South Meldrum, Fort Collins, Colorado, United States, 80521		
Manufacturer:	Otter Products, LLC.		
Address:	209 South Meldrum, Fort Collins, Colorado, United States, 80521		
Factory 1:	Shenzhen Topband Co., Ltd.		
Address:	Topband Industry Park, Liyuan Industrial Zone, Shiyan, Bao'an District, Shenzhen, Guangdong, China, 518108		
Factory 2:	TOPBAND SMART DONG NAI (VIETNAM) COMPANY LIMITED		
Address:	Lot D, Loc An - Binh Son Industrial Zone, Long An Commune, Long Thanh District, Dong Nai, Vietnam, 810000		
Product description			
Product name:	Power Bank with Apple Watch Charger		
Trademark:	OTTERBOX		
Model name:	OBFTC-0121-A		
Serial Model:	N/A		
Standards:	FCC 47 CFR Part 15 Subpart C		
Test method:	ANSI C63.10-2013		
Date of Test	Date of Test		
Date of test:	2022-06-29 ~ 2022-09-28		
Test result:	Pass		

Test Engineer :

Yanice Xie

(Yanice Xie)

Reviewed By: :

(cor chen

(Leon Chen)

Approved By: :

Tom Kue

(Tom Xue)

1. General Description

1.1 Description of the EUT

Product name:	Power Bank with Apple Watch Charger	
Model name:	OBFTC-0121-A	
Series Model:	N/A	
Model difference:	N/A	
Electrical rating:	Input: DC 5V/3A Output: Type-C: DC 5V/3A Wireless Output: Watch: 5W Battery: DC 3.7V 3000mAh 11.1Wh	
Accessories:	Cable: USB-C to C cable 0.5M	
Hardware version:	S01	
Software version:	VO	
Test sample number:	MTi220413015-03-S0001	
RF specification:		
Operation frequency:	Tx: 326.5 kHz Tx: 1.778MHz	
Modulation type:	ASK	
Antenna type:	Coil Antenna	

1.2 Description of test modes

All the test modes were carried out with the EUT in normal operation, the final test mode of the EUT was the worst test mode for emission test, which was shown in this report and defined as:

No.	Emission test modes	
Mode 1	Wireless Output(326.5kHz)	
Mode 2	Wireless Output(1.778MHz)	
Mode 3	Stand-by	

1.3 Description of support units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Support equipment list					
Description	Model	Serial No.	Manufacturer		
Watch	/	/	Apple		
Adapter	HW-090200CH0	/	Huizhou BYD Electronics Co., Ltd.		
Support cable list					
Description	Length (m)	From	То		
/	/	/	/		

1.4 Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15°C~35°C
Humidity:	20 % RH ~ 75 % RH
Atmospheric pressure:	98 kPa~101 kPa

1.5 Measurement uncertainty

Measurement	Uncertainty
Conducted emission (9 kHz~30 MHz)	± 2.5 dB
Radiated emission (9 kHz ~ 30 MHz)	± 4.0dB
Radiated emission (30 MHz~1 GHz)	± 4.2 dB
Radiated emission (above 1 GHz)	± 4.3 dB
Occupied bandwidth	± 3 %
Temperature	±1 degree
Humidity	± 5 %

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2. Summary of Test Result

No.	FCC reference	Description of test	Result		
	Emission				
1	FCC Part 15.203	Antenna requirement	Pass		
2	FCC Part 15.207	AC power line Conducted emissions	Pass		
3	FCC Part 15.209	Radiated emissions	Pass		
4	FCC Part 15.215	Occupied bandwidth	Pass		

Note: N/A means not applicable.

3. Test Facilities and accreditations

3.1 Test laboratory

Test laboratory:	Shenzhen Microtest Co., Ltd.
Test site location:	101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China
Telephone:	(86-755)88850135
Fax:	(86-755)88850136
CNAS Registration No.:	CNAS L5868
FCC Registration No.:	448573

4. List of test equipment

No.	Equipment	Manufacturer	Model	Serial No.	Cal. date	Cal. Due
MTI-E043	EMI test receiver	R&S	ESCI7	101166	2022/05/05	2023/05/04
MTI-E044	Broadband antenna	Schwarzbeck	VULB9163	9163-1338	2021/05/30	2023/05/29
MTI-E045	Horn antenna	Schwarzbeck	BBHA9120D	9120D-2278	2021/05/30	2023/05/29
MTi-E046	Active Loop Antenna	Schwarzbeck	FMZB 1519 B	00066	2021/05/30	2023/05/29
MTI-E047	Pre-amplifier	Hewlett-Packard	8447F	3113A06184	2022/05/05	2023/05/04
MTI-E048	Pre-amplifier	Agilent	8449B	3008A01120	2022/05/05	2023/05/04
MTi-E120	Broadband antenna	Schwarzbeck	VULB9163	9163-1419	2021/05/30	2023/05/29
MTi-E121	Pre-amplifier	Hewlett-Packard	8447D	2944A09365	2022/04/15	2023/04/14
MTi-E123	Pre-amplifier	Agilent	8449B	3008A04723	2022/05/05	2023/05/04
MTi-E122	MXA signal analyzer	Agilent	N9020A	MY5444085 9	2022/05/05	2023/05/04
MTi-E001	Artificial Mains Network	R&S	ESH2-Z5	100263	2022/05/05	2023/05/04
MTi-E002	EMI Test Receiver	R&S	ESCI3	101368	2022/05/05	2023/05/04
MTi-E023	Artificial power network	Schwarzbeck	NSLK8127	NSLK8127# 841	2022/05/05	2023/05/04
MTi-E025	Artificial power network	Schwarzbeck	NSLK8127	8127183	2022/05/05	2023/05/04
MTi-E026	8-wire Impedance Stabilization Network	Schwarzbeck	NTFM 8158	NTFM 8158 #199	2022/05/05	2023/05/04
MTi-E021	EMI Test Receiver	R&S	ESCS30	100210	2022/05/05	2023/05/04
MTi-E024	Artificial power network	Schwarzbeck	NSLK8127	01001	2022/05/05	2023/05/04

5. Test Results

5.1 Antenna requirements

15.203 requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §§15.211, 15.213, 15.217, 15.219, 15.221, or §15.236. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

5.2 Description of the EUT antenna

The antenna of EUT is coil antenna, which is integrated on the main PCB of the EUT and no consideration of replacement.

5.3 AC power line conducted emissions

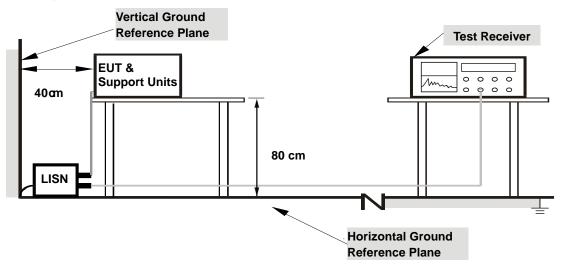
5.3.1 Limits

Frequency (MHz)	Detector type / Bandwidth	Limit-Quasi-peak dBµV	Limit-Average dBµV
0.15 -0.5		66 to 56	56 to 46
0.5 -5	Average / 9 kHz	56	46
5 -30		60	50

Note 1: the limit decreases with the logarithm of the frequency in the range of 0.15 MHz to 0.5 MHz.

5.3.2 Test Procedures

a) The test setup is refer to the standard ANSI C63.10-2013.


b) The EUT is connected to the main power through a line impedance stabilization network (LISN). All support equipment is powered from additional LISN(s).

c) Emissions were measured on each current carrying line of the EUT using an EMI test receiver connected to the LISN powering the EUT.

d) The test receiver scanned from 150 kHz to 30 MHz for emissions in each of the test modes described in Item 1.2.

e) The test data of the worst-case condition(s) was recorded.

5.3.3 Test setup

For the actual test configuration, please refer to the related item – Photographs of the test setup.

5.3.4 Test Result

Calculation formula:

Measurement (dB μ V) = Reading Level (dB μ V) + Correct Factor (dB) Over (dB) = Measurement (dB μ V) – Limit (dB μ V)

326.5 kHz

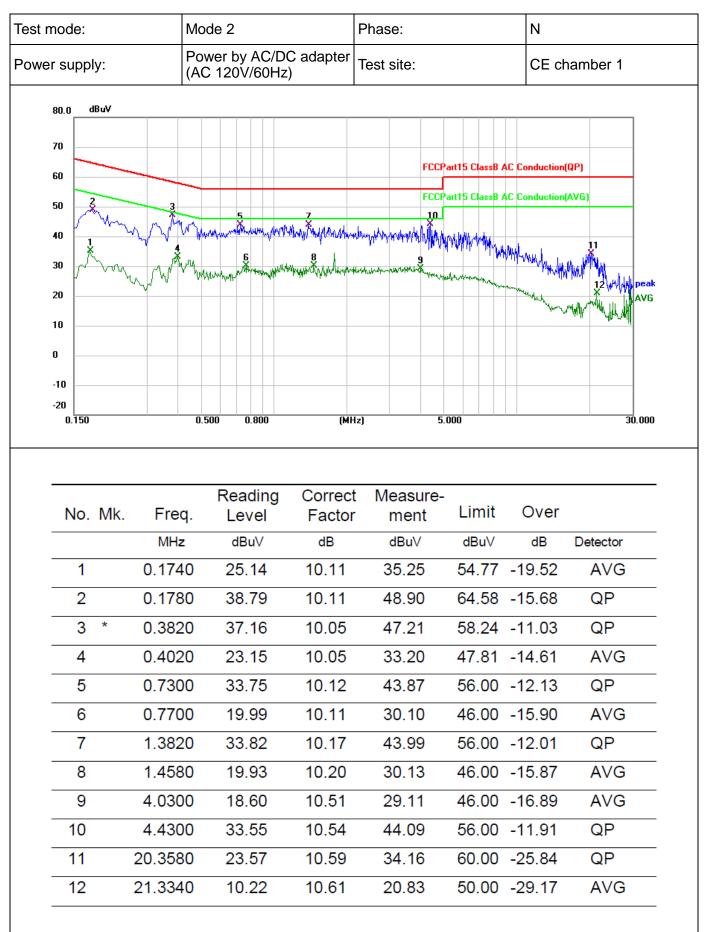
Fest mode:	Mode 1	Phase:	L
Power supply:	Power by AC/DC adapter (AC 120V/60Hz)	Test site:	CE chamber 1
80.0 dBuV			
70			
60		FCCPart15 ClassB AC C	onduction(QP)
50		FCCPart15 ClassB AC C	onduction(AVG)
40			
30 1 WWW	Mar superior from the	7 9 12 7 9	
20	Why man have been three the start of the sta	A ALARY ANALARA TA ALARA	MANNA MANNA PROVIDED
10	V	~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Munanan and And And And AVG
0			
-10			
-20			
0.150	0.500 0.800 (M	Hz) 5.000	30.000

INO. IVIK.	Freq.	Level	Factor	ment	LIIIII	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.1700	18.66	10.28	28.94	54.96	-26.02	AVG
2	0.1731	30.88	10.28	41.16	64.81	-23.65	QP
3	0.2420	24.04	10.75	34.79	62.03	-27.24	QP
4	0.2700	12.88	10.81	23.69	51.12	-27.43	AVG
5	1.3060	16.68	12.91	29.59	56.00	-26.41	QP
6 *	1.3060	11.25	12.91	24.16	46.00	-21.84	AVG
7	2.2420	16.45	10.07	26.52	56.00	-29.48	QP
8	2.2860	6.94	10.08	17.02	46.00	-28.98	AVG
9	3.2659	15.59	10.27	25.86	56.00	-30.14	QP
10	3.2659	11.81	10.27	22.08	46.00	-23.92	AVG
11	6.5300	10.85	10.28	21.13	50.00	-28.87	AVG
12	6.6340	21.38	10.28	31.66	60.00	-28.34	QP

Page 13 of 29

Report No.: MTi220413015-03E1

NO. IVIK.	Fleq.	Level	Factor	ment	Linu	0.101	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.1660	19.32	10.26	29.58	55.16	-25.58	AVG
2	0.1780	32.51	10.24	42.75	64.58	-21.83	QP
3	0.2220	16.32	10.65	26.97	52.74	-25.77	AVG
4	0.2340	25.42	10.67	36.09	62.31	-26.22	QP
5	0.8900	12.47	12.13	24.60	46.00	-21.40	AVG
6	0.9220	17.47	12.18	29.65	56.00	-26.35	QP
7 *	1.1620	12.53	12.67	25.20	46.00	-20.80	AVG
8	1.3060	16.95	13.00	29.95	56.00	-26.05	QP
9	3.5940	17.09	10.28	27.37	56.00	-28.63	QP
10	3.5940	13.19	10.28	23.47	46.00	-22.53	AVG
11	6.5300	22.28	10.28	32.56	60.00	-27.44	QP
12	6.5300	10.86	10.28	21.14	50.00	-28.86	AVG



1.778 MHz

Fest mode:	:		Mo	ode 2			Phase:			L		
Power sup	ply:		Po (A	wer b C 120	oy AC 0V/60	/DC adapter Hz)	Test site:			CE	chaml	ber 1
80.0	dBuV											
70												
60								FCCParl	15 ClassE	AC Conduc	tion(QP)	
50	1							FCCPar	15 Class	AC Conduc	tion(AVG)	
40	hww.	M An	6			7		9				
30	2	`	tran	Man	WANNA MAN	Munnin Mandern	upper phileson and and	norminghall		14471117 12 11471117 112	المندرية المرابل	Wh.
20	N NWY	wŇ	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	www.	producer and	manner	manuna	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~] 	11	. When have	Ny What P
10										warden	www.www.	
0												
-10												
-20												
	0		0.	500	0.800	(M)		5.00	U			30.1
	. Mk.	Fre	eq.	Re	adin evel	g Correc Factor	t Meas	ure- nt	Limit			
No		MH	eq. Iz	Re	eadin evel ∄Bu∀	g Correc Factor dB	t Meas mer dBu\	ure- nt V	Limit dBuV	dB	De	etector
No 1	. Mk.	M⊦ 0.16	eq. Iz	Re L	eadin evel ∄Bu∨ 7.92	g Correc Factor dB 10.18	t Meas mer dBu\ 48.1	ure- nt V	Limit dBuV 65.16	dB -17.0	De 06	etector QP
No 1 2	. Mk.	M⊦ 0.16 0.17	eq. Iz 60	Re L 3	eadin evel ∄Bu∨ 7.92 1.58	g Correc Factor dB 10.18 10.18	t Meas mer dBu\ 48.1 31.7	ure- nt V 0	Limit dBuV 65.16 54.77	dB 6 -17.0 7 -23.0	De 06	etector QP AVG
No 1 2 3	. Mk.	M⊦ 0.16 0.17 0.32	eq. Iz 60 40	Re L 3 2 3	eadin evel Bu∨ 7.92 1.58 1.72	g Correc Factor dB 10.18 10.18 10.15	t Meas mer dBu\ 48.1 31.7 41.8	ure- nt 0 6 7	Limit dBuV 65.16 54.77 59.66	dB 6 -17.0 7 -23.0 6 -17.7	De 06 01 79	etector QP AVG QP
No 1 2 3 4	. Mk.	MF 0.16 0.17 0.32 0.33	eq. Iz 60 40 20 39	Re L 3 2 3 1	eadin evel #Bu∨ 7.92 1.58 1.72 6.69	g Correc Factor dB 10.18 10.18 10.15 10.15	t Meas mer dBu\ 48.1 31.7 41.8 26.8	ure- nt 0 6 7 4	Limit dBuV 65.16 54.77 59.66 49.35	dB 6 -17.0 7 -23.0 6 -17.7 5 -22.5	De 06 01 79 51	etector QP AVG QP AVG
No 1 2 3 4 5	. Mk.	M⊢ 0.16 0.17 0.32 0.33 0.45	eq. 1z 60 20 20 39 40	Re L 3 2 3 1	eadin evel ∄Bu∨ 7.92 1.58 1.72 6.69 5.22	g Correc Factor dB 10.18 10.18 10.15 10.15 10.22	t Meas mer dBu\ 48.1 31.7 41.8 26.8 25.4	ure- nt 0 6 7 4 4	Limit dBuV 65.16 54.77 59.66 49.35 46.80	dB 6 -17.0 7 -23.0 6 -17.7 5 -22.5 0 -21.3	De 06 01 79 51 86	etector QP AVG QP AVG AVG
No 1 2 3 4 5 6	. Mk.	M⊢ 0.16 0.17 0.32 0.33 0.45 0.49	eq. 1z 60 20 20 39 40 80	Re L 3 2 3 1 1 2	eadin evel ∄Bu∨ 7.92 1.58 1.72 6.69 5.22 9.67	g Correc Factor dB 10.18 10.15 10.15 10.22 10.25	t Meas mer dBu\ 48.1 31.7 41.8 26.8 25.4 39.9	ure- nt 0 6 7 4 4 2	Limit dBuV 65.16 54.77 59.66 49.35 46.80 56.03	dB 6 -17.0 7 -23.0 6 -17.7 6 -22.5 9 -21.3 8 -16.1	De 06 01 79 51 86 1	etector QP AVG QP AVG AVG QP
No 1 2 3 4 5 6 7	. Mk.	M⊢ 0.16 0.17 0.32 0.33 0.45 0.49 1.77	eq. Iz 60 20 39 40 80 80	Re L 3 2 3 1 1 2 2 2	eadin evel ∄Bu∨ 7.92 1.58 1.72 6.69 5.22 9.67 9.95	g Correc Factor dB 10.18 10.15 10.15 10.22 10.25 10.26	t Meas mer dBuv 48.1 31.7 41.8 26.8 25.4 39.9 40.2	ure- nt 0 6 7 4 4 2 1	Limit dBuV 65.16 54.77 59.66 49.35 46.80 56.00	dB -17.0 -23.0 -17.7 -22.5 -21.3 -21.3 -16.1 -15.7	De 06 01 79 01 01 06 1 79	etector QP AVG QP AVG AVG QP QP QP
No 1 2 3 4 5 6 7 8	. Mk.	MH 0.16 0.17 0.32 0.33 0.45 0.49 1.77 1.77	eq. 1z 60 20 20 39 40 80 80 80	Re L 3 3 1 1 2 2 2 2	eadin evel ∄Bu∨ 7.92 1.58 1.72 6.69 5.22 9.67 9.95 2.25	g Correc Factor dB 10.18 10.15 10.15 10.22 10.25 10.26 10.26	t Meas mer dBuv 48.1 31.7 41.8 26.8 25.4 39.9 40.2 32.5	ure- nt / 0 6 7 4 4 2 1 1	Limit dBuV 65.16 54.77 59.66 49.35 46.80 56.00 46.00	dB	De 06 01 79 01 01 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 00	etector QP AVG QP AVG AVG QP QP QP AVG
No 1 2 3 4 5 6 7	. Mk.	M⊢ 0.16 0.17 0.32 0.33 0.45 0.49 1.77	eq. 12 60 40 20 39 40 80 80 80 80 00	Re L 3 2 3 1 1 2 2 2 2 2	eadin evel ∄Bu∨ 7.92 1.58 1.72 6.69 5.22 9.67 9.95	g Correc Factor dB 10.18 10.15 10.15 10.22 10.25 10.26 10.26 10.63	t Meas mer dBuv 48.1 31.7 41.8 26.8 25.4 39.9 40.2 32.5 39.0	ure- nt 0 6 7 4 4 2 1 1 8	Limit dBuV 65.10 54.77 59.60 49.35 46.80 56.00 56.00 56.00	dB -17.0 -23.0 -17.7 -22.5 -21.3 -21.3 -16.1 -15.7	De 06 01 79 01 86 1 79 9 9 9 02	etector QP AVG QP AVG AVG QP QP QP
No 1 2 3 4 5 6 7 8 9	. Mk.	MH 0.16 0.17 0.32 0.33 0.45 0.49 1.77 1.77 4.93	eq. 12 60 40 20 39 40 80 80 80 80 80 80 40	Re L 3 3 1 1 2 2 2 2 2 1	eadin evel fBuV 7.92 1.58 1.72 6.69 5.22 9.67 9.95 2.25 8.45	g Correc Factor dB 10.18 10.18 10.15 10.15 10.22 10.25 10.26 10.26 10.63 10.67	t Meas mer dBuv 48.1 31.7 41.8 26.8 25.4 39.9 40.2 32.5	ure- nt 0 6 7 4 4 2 1 1 8 7	Limit dBuV 65.16 54.77 59.66 49.35 46.80 56.00 56.00 56.00 56.00	dB -17.0 -23.0 -17.7 -22.5 -21.3 -16.1 -15.7 -13.4 -16.9	De 06 01 79 01 86 1 79 19 02 03	etector QP AVG QP AVG AVG QP QP AVG QP

Report No.: MTi220413015-03E1

5.4 Radiated emissions

5.4.1 Limits

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Note 1: the tighter limit applies at the band edges.

Note 2: the emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector

§ 15.35 (b) requirements:

When average radiated emission measurements are specified in this part, including average emission measurements below 1000 MHz, there also is a limit on the peak level of the radio frequency emissions. Unless otherwise specified, e.g., see §§ 15.250, 15.252, 15.253(d), 15.255, 15.256, and 15.509 through 15.519, the limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit applicable to the equipment under test.

According to ANSI C63.10, the tests shall be performed in the frequency range shown in the following table:

Frequency range of measurements for unlicensed wireless device

Lowest frequency generated in the device	Upper frequency range of measurement
9 kHz to below 10 GHz	10th harmonic of highest fundamental frequency or to 40 GHz, whichever is lower
At or above 10 GHz to below 30 GHz	5th harmonic of highest fundamental frequency or to 100 GHz, whichever is lower
At or above 30 GHz	5th harmonic of highest fundamental frequency or to 200 GHz, whichever is lower, unless otherwise specified

Frequency range of measurements for unlicensed wireless device with digital device

Highest frequency generated or used in the device or on which the device operates or tunes	Upper frequency range of measurement
Below 1.705 MHz	30 MHz
1.705 MHz to 108 MHz	1000 MHz
108 MHz to 500 MHz	2000 MHz
500 MHz to 1000 MHz	5000 MHz
Above 1000 MHz	5th harmonic of the highest frequency or 40 GHz, whichever is lower

Test instrument setup

Frequency	Test receiver / Spectrum analyzer setting
9 kHz ~ 150 kHz	Quasi Peak / 200 Hz
150 kHz ~ 30 MHz	Quasi Peak / 9 kHz
30 MHz ~ 1 GHz	Quasi Peak / 120 kHz

5.4.2 Test Procedures

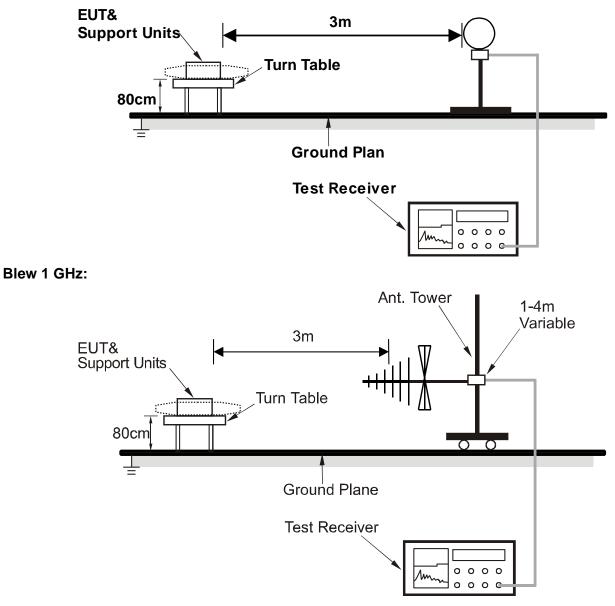
The EUT is placed on a non-conducting table 80cm above the ground plane for measurement blew 1 GHz. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.10-2013.

For measurement blew 1 GHz, the resolution bandwidth is set as item 5.4.2.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned form 1 to 4m meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and horizontal positions.

Special requirements for 9 kHz to 30 MHz:

The lowest height of the magnetic antenna shall be 1 m above the ground


When the EUT contains a loop antenna that can only be placed in a vertical axis, normal measurements shall be made aligning the measurement antenna along the site axis, and then orthogonal to the axis. For each measurement antenna alignment, the EUT shall be rotated through 0° to 360° on a turntable.

When the EUT contains a loop antenna that can be placed in a horizontal or vertical axis, normal measurements shall be made aligning the measurement antenna along the site axis, orthogonal to the axis, and then with the measurement antenna horizontal. For each measurement antenna alignment, the EUT shall be rotated through 0° to 360° on a turntable.

5.4.3 Test Setup

Blew 30 MHz:

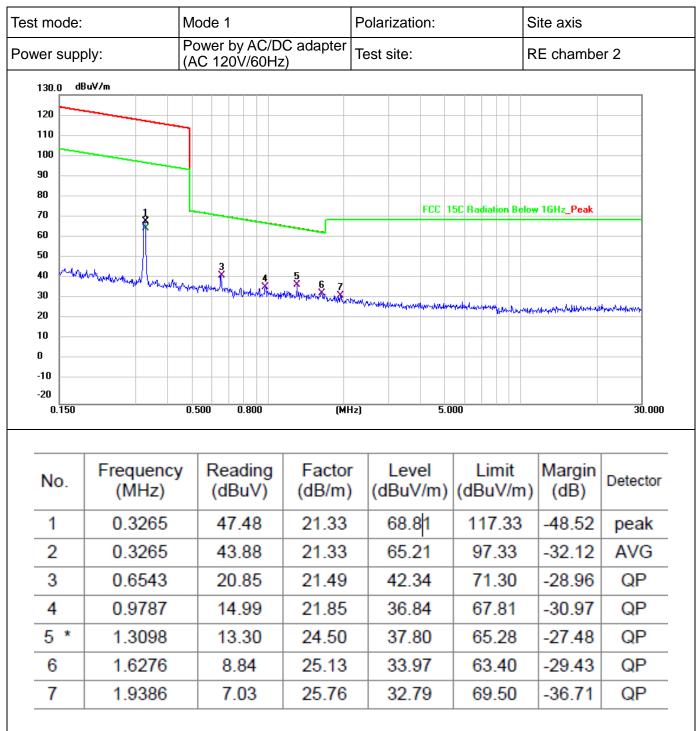
For the actual test configuration, please refer to the related item – Photographs of the test setup.

5.4.4 Test result

Calculation formula:

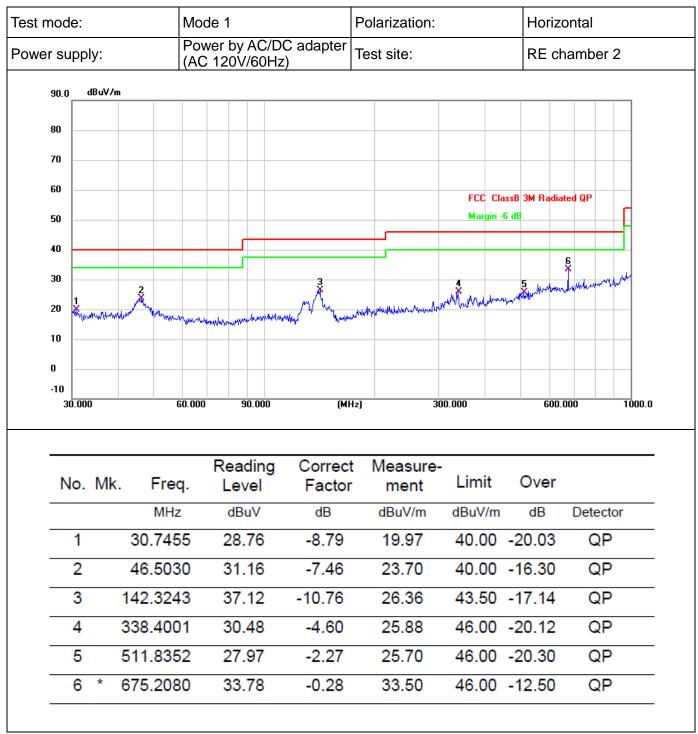
 $\begin{array}{l} \mbox{Measurement (dB\mu V/m) = Reading Level (dB\mu V) + Correct Factor (dB/m) \\ \mbox{Over (dB) = Measurement (dB\mu V/m) - Limit (dB\mu V/m) } \end{array}$

Note: For 9 kHz - 30 MHz testing, all the required orthogonal orientations of the measurement loop antenna were performed for pre-scan, the maximum radiated transmissions (Site axis) were recorded.

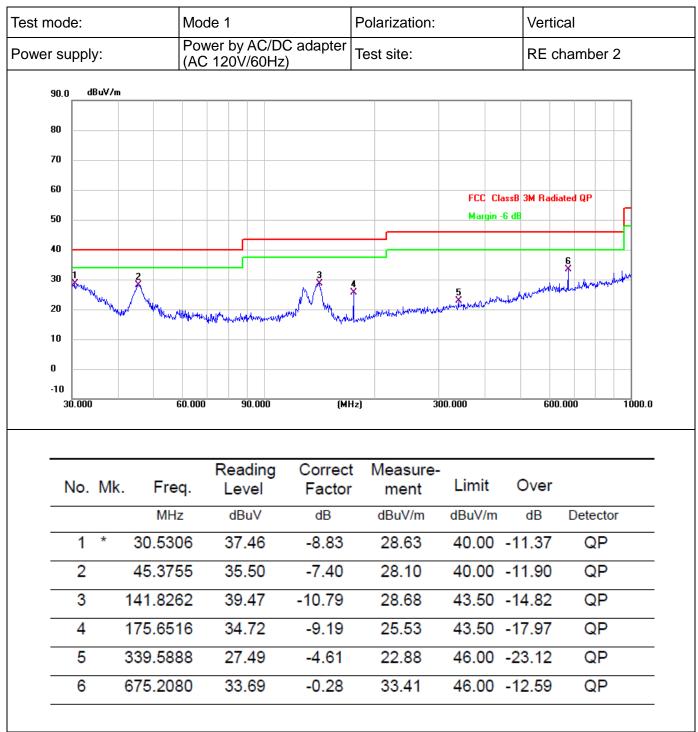


326.5 kHz Frequency 9 kHz ~ 150 kHz

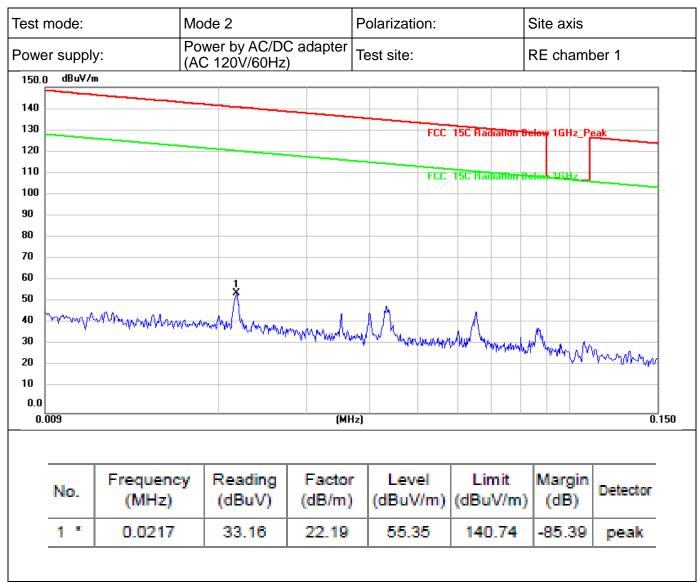
Test mo	ode:		Mode	1		Polarizat	tion:			Site a	axis	
Power	supply:	l	Power (AC 12	[·] by AC/DC 20V/60Hz)	adapter	Test site:	:			RE c	ham	nber 2
160.0) dBuV/m	ı										
150												
140												
130							FCC	15C Rad	liation Be	lew 1GH	lz_P <u>e</u> a	ak
120						_						
110							FCC	15C Rad	liation Be	Iow-1GH	z	
100												
90												
80												
70												
70 60												
70 60	 					1 X						
70 60	farthann f	www.whe	Mary	nonportant	w.w.Martality		murullen	Marty		NA.		
70 60	mm	www.mandud	hhyy	nogenande	w.m.m.autu		monther	www.ngluly	cowww.	n may	Ŵ	J.W.V.M.
70 60	man	mmuniting	www	nonportante	www.manihtw	Y www.www.wh	monther	www.	www.	where the	Ŵ	MM
70 60 50 40 30 20 10.0	γ ^α Δια _{ν-γ} γΔ	www.www.www	man	nnyminingh	what the American A American American Ameri American American		nurally	whaty	Crawwall right	un may	Mw	\W\\/M\ 0.150
70 60 50 40 30 20 10.0		www.maywa	www	n mpn provide			mandly	ant rad with the particular of	cywww.	n May	ŴŴ	
70 60 50 40 30 20 10.0		www.mymy	borg	n mpn y man Ma			monthly	ant ray by pr	cyphrol ^{ody}	n May	Mw	
70 60 50 40 30 20 10.0		Frequent (MHz)	cy I	n _{wlwy/w} wl Reading (dBu∨)		z) r Lev	vel	Li	mit IV/m)	Marg (dE	gin	



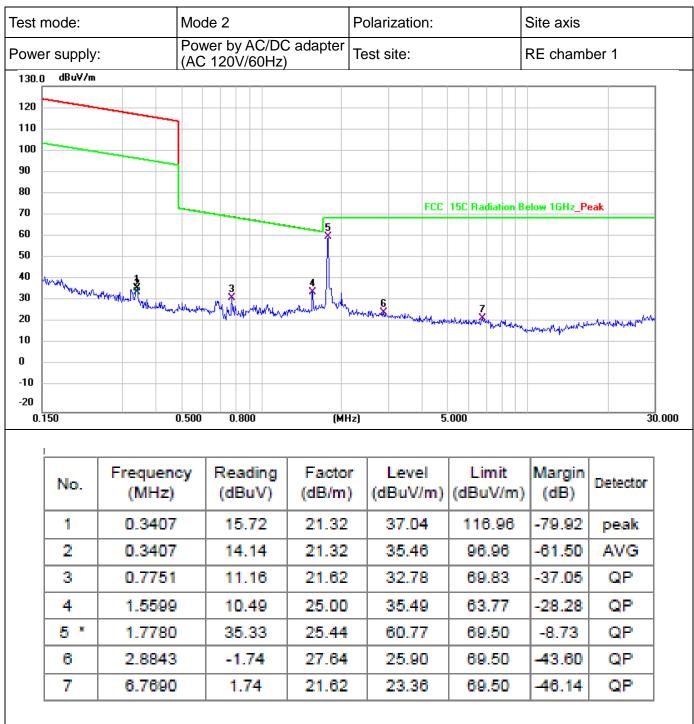
Frequency 150 kHz ~ 30 MHz



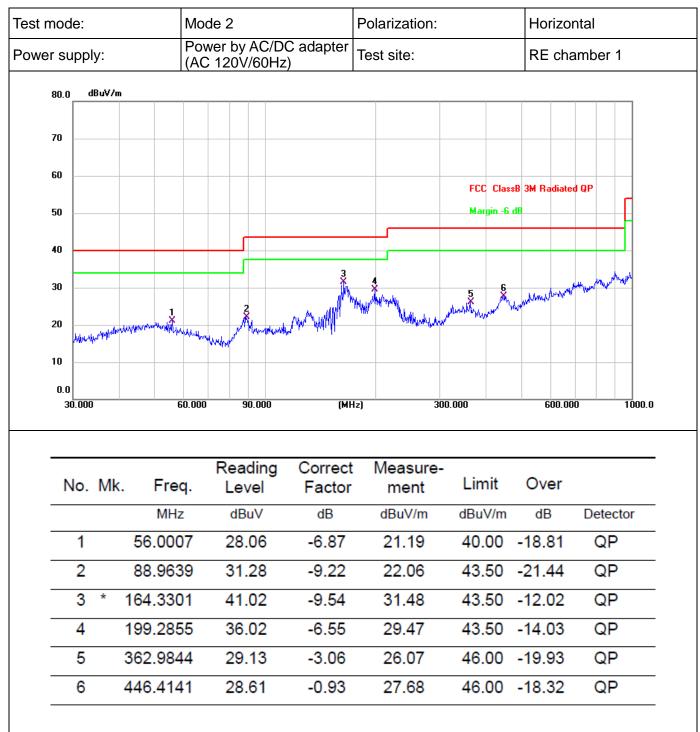
Frequency 30 MHz ~ 1 GHz



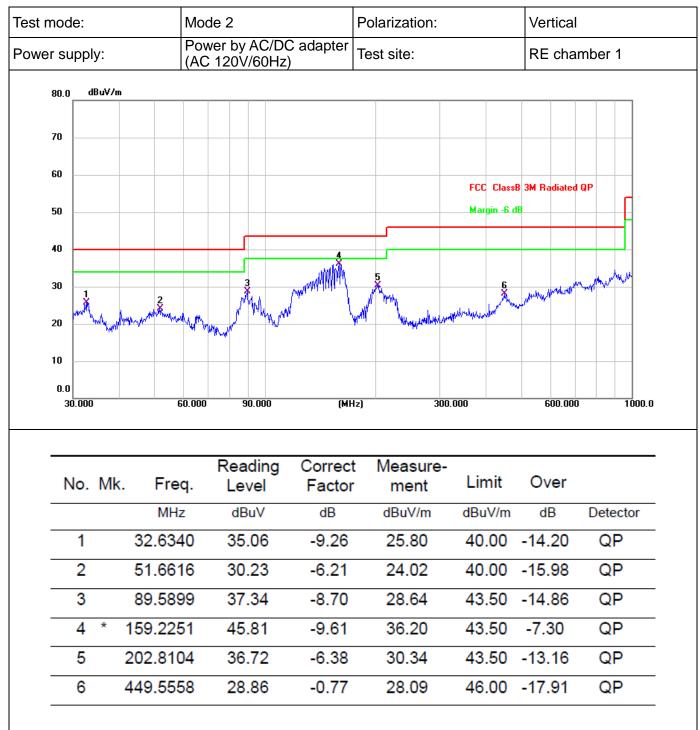
Frequency 30 MHz ~ 1 GHz



1.778MHz **Frequency 9 kHz ~ 150 kHz**



Frequency 150 kHz ~ 30 MHz



Frequency 30 MHz ~ 1 GHz

Frequency 30 MHz ~ 1 GHz

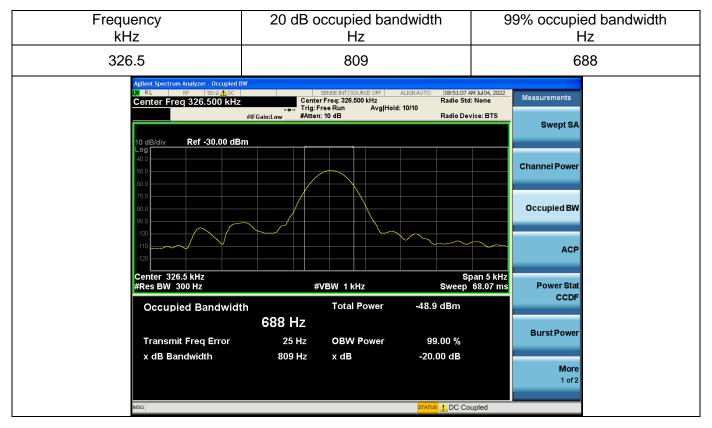
5.5 Occupied bandwidth test

5.5.1 Test Procedures

a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the EMI receiver or spectrum analyzer shall be between two times and five times the OBW.

b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW and video bandwidth (VBW) shall be approximately three times RBW.

c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation.


d) The dynamic range of the instrument at the selected RBW shall be more than 10 dB below the target "-xx dB down" requirement

e) Set detection mode to peak and trace mode to max hold.

f) Determine the "-xx dB down amplitude" using [(reference value) -xx]. Alternatively, this calculation may be made by using the marker-delta function of the instrument.

5.5.2 Test Result


Note: Because the measured signal is CW-like, adjusting the RBW per C63.10 would not be practical since measurement bandwidth will always follow the RBW. The RBW is set to 300 Hz to perform the occupied bandwidth test.

326.5 kHz

1.778MHz

Photographs of the test setup

See the Appendix – Test Setup Photos.

Photographs of the EUT

See the Appendix - EUT Photos.

----End of Report----