

Axonics Modulation Technologies, Inc.

Implantable Pulse Generator (IPG), model 4101

FCC 95I:2021 MedRadio

Report: AXON0180.4 Rev. 1, Issue Date: March 8, 2022

NVLAP LAB CODE: 200676-0

Last Date of Test: October 25, 2021 Axonics Modulation Technologies, Inc. EUT: Implantable Pulse Generator (IPG), model 4101

Radio Equipment Testing

Standards	
Specification	Method
FCC 95I:2021	ANSI C63.26:2015

Results

Method Clause	Test Description	Applied	Results	Comments
ANSI C63.26 5.2.3.3	Duty Cycle Characterization	Yes	N/A	Characterization of radio operation.
ANSI C63.26 5.2.3.3	Conducted Output Power	Yes	N/A	Characterization of radio operation.
ANSI C63.26 5.2.3.3, 5.2.7	Radiated Power (EIRP)	Yes	Pass	
ANSI C63.26 5.4.3	Emission Bandwidth	Yes	Pass	
ANSI C63.26 5.5.4	Spurious Radiated Emissions	Yes	Pass	
ANSI C63.26 5.6	Frequency Stability	Yes	Pass	
ANSI C63.26 5.7	Spurious Conducted Emissions	Yes	Pass	
FCC 95.2579(a)(1)	Emission Mask	Yes	Pass	

Deviations From Test Standards

None

Approved By:

Johnny Candelas, Department Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information. As indicated in the Statement of Work sent with the quotation, Element's standard process is to always use the latest published version of the test methods even when earlier versions are cited in the test specification. Issuance of a purchase order was de facto acceptance of this approach. Otherwise, the client would have advised Element in writing of the specific version of the test methods they wanted applied to the subject testing.

REVISION HISTORY

Revision Number	Description	Date (yyyy-mm-dd)	Page Number
	Added missing calibrated test equipment to data module	2022-03-08	26
01	Reworded the test description, we are not talking about a specific datasheet, this is intended to mean the channels/frequencies on following page.	2022-03-08	15
01	Signal substitution EIRP has been performed and included as well as test equipment required to complete.	2022-03-08	19-20
	Page 8 (Test Setup Block Diagrams) has been revised to include sample calculation as well as page 26 & 27 to match with page 8.	2022-03-08	8, 26, 27

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Each laboratory is accredited by A2LA to ISO / IEC 17025, and as a product certifier to ISO / IEC 17065 which allows Element to certify transmitters to FCC and IC specifications.

NVLAP - Each laboratory is accredited by NVLAP to ISO 17025

Canada

ISED - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB) and as a CAB for the acceptance of test data.

European Union

European Commission - Recognized as an EU Notified Body validated for the EMCD and RED Directives.

United Kingdom

BEIS - Recognized by the UK as an Approved Body under the UK Radio Equipment and UK EMC Regulations.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIT / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC – Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

OFCA – Recognized by OFCA as a CAB for the acceptance of test data.

Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.

SCOPE					
For details on the Scopes of our Accreditations, please visit:					
<u>California</u>	<u>Minnesota</u>	<u>Oregon</u>	<u>Texas</u>	Washington	

California Labs OC01-17 41 Tesla Irvine, CA 92618 (949) 861-8918	Minnesota Labs MN01-11 9349 W Broadway Ave. Brooklyn Park, MN 55445 (612)-638-5136	Oregon Labs EV01-12 6775 NE Evergreen Pkwy #400 Hillsboro, OR 97124 (503) 844-4066	Texas Labs TX01-09 3801 E Plano Pkwy Plano, TX 75074 (469) 304-5255	Washington Labs NC01-05 19201 120 th Ave NE Bothell, WA 98011 (425)984-6600			
		A2LA	_				
Lab Code: 3310.04	Lab Code: 3310.05	Lab Code: 3310.02	Lab Code: 3310.03	Lab Code: 3310.06			
NVLAP							
NVLAP Lab Code: 200676-0	NVLAP Lab Code: 200881-0	NVLAP Lab Code: 200630-0	NVLAP Lab Code:201049-0	NVLAP Lab Code: 200629-0			
	Innovation, Science and Economic Development Canada						
2834B-1, 2834B-3	2834E-1, 2834E-3	2834D-1	2834G-1	2834F-1			
		BSMI					
SL2-IN-E-1154R	SL2-IN-E-1152R	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R			
VCCI							
A-0029	A-0109	A-0108	A-0201	A-0110			
Re	Recognized Phase I CAB for ISED, ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA						
US0158	US0175	US0017	US0191	US0157			

MEASUREMENT UNCERTAINTY

Measurement Uncertainty

When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

A measurement uncertainty estimation has been performed for each test per our internal quality document QM205.4.6. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) can be found in the table below. A lab specific value may also be found in the applicable test description section. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.

Test	+ MU	- MU
Frequency Accuracy	0.0007%	-0.0007%
Amplitude Accuracy (dB)	1.2 dB	-1.2 dB
Conducted Power (dB)	1.2 dB	-1.2 dB
Radiated Power via Substitution (dB)	0.7 dB	-0.7 dB
Temperature (degrees C)	0.7°C	-0.7°C
Humidity (% RH)	2.5% RH	-2.5% RH
Voltage (AC)	1.0%	-1.0%
Voltage (DC)	0.7%	-0.7%
Field Strength (dB)	5.2 dB	-5.2 dB
AC Powerline Conducted Emissions (dB)	2.6 dB	-2.6 dB

TEST SETUP BLOCK DIAGRAMS

Measurement Bandwidths

Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

Unless otherwise stated, measurements were made using the bandwidths and detectors specified. No video filter was used.

Antenna Port Conducted Measurements

Measured Value		Measured Level		Reference Level Offset
71.2	=	42.6	+	28.6

Near Field Test Fixture Measurements

71.2

=

42.6

+

28.6

TEST SETUP BLOCK DIAGRAMS

Emissions Measurements

Sample Calculation (logarithmic units)

Radiated Emissions:

				Factor								
Measured Level (Amplitude)		Antenna Factor		Cable Factor		Amplifier Gain		Distance Adjustment Factor		External Attenuation		Field Strength Adjusted
42.6	+	28.6	+	3.1	-	40.8	+	0.0	+	0.0	=	33.5

Conducted Emissions:

TEST SETUP BLOCK DIAGRAMS

Bore Sighting (>1GHz)

The diameter of the illumination area is the dimension of the line tangent to the EUT formed by 3 dB beamwidth of the measurement antenna at the measurement distance. At a 3 meter test distance, the diameter of the illumination area was 3.8 meters at 1 GHz and greater than 2.1 meters up to 6 GHz. Above 1 GHz, when required by the measurement standard, the antenna is pointed for both azimuth and elevation to maintain the receive antenna within the cone of radiation from the EUT. The specified measurement detectors were used for comparison of the emissions to the peak and average specification limits.

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	Axonics Modulation Technologies, Inc.
Address:	26 Technology Drive
City, State, Zip:	Irvine, CA 92618
Test Requested By:	Wes Clement
EUT:	Implantable Pulse Generator (IPG), model 4101
First Date of Test:	March 5, 2021
Last Date of Test:	October 25, 2021
Receipt Date of Samples:	February 8, 2021
Equipment Design Stage:	Production
Equipment Condition:	No Damage
Purchase Authorization:	Verified

Information Provided by the Party Requesting the Test

Functional Description of the EUT:

The Sacral Neuromodulation (SNM) system consists of an implanted system used to provide long term therapy for urinary and fecal dysfunction. The system includes a non-rechargeable IPG that is compatible with the existing approved Tined Lead, 1201.

Testing Objective:

Seeking FCC authorization for the MedRadio transmitter to FCC Part 95I.

CONFIGURATIONS

Configuration AXON0180-9

Software/Firmware Running during test			
Description	Version		
IPGLink	1.0.1.138		
IPG Software	757		
PR Software	72		

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
IPG	Axonics	4101	4022370919

Peripherals in test setup boundary						
Description	Manufacturer	Model/Part Number	Serial Number			
Laptop PC	Dell	Latitude 7490	25825576862			
DC Power Supply	GW Instek	GPD-3303S	GET875876			
Test Socket	Axonics	TE-1330	N/A			
PR	Axonics	2301	AP1F590001			

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
USB Cable (Daisy Chained)	Yes	10m	Yes	Dongle	Laptop PC
Twisted Pair (DC Power)	No	3m	No	DC Power Supply	Test Socket

CONFIGURATIONS

Configuration AXON0190-1

Software/Firmware Running during test				
Description	Version			
IPGLink	1.0.1.138			
IPG Software	757			
PR Software	72			

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
IPG	Axonics	4101	4022370919

Peripherals in test setup boundary						
Description	Manufacturer	Model/Part Number	Serial Number			
Laptop PC	Dell	Latitude 7490	25825576862			
DC Power Supply	GW Instek	GPD-3303S	GET875876			
Test Socket	Axonics	TE-1330	N/A			
PR	Axonics	2301	AP1F590001			

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
USB Cable (Daisy Chained)	Yes	10m	Yes	Dongle	Laptop PC
Twisted Pair (DC Power)	No	3m	No	DC Power Supply	Test Socket

CONFIGURATIONS

Configuration AXON0193-1

Software/Firmware Running during test				
Description	Version			
IPGLink	1.0.1.138			
IPG Software	757			
PR Software	72			

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
IPG	Axonics	4101	AX71T000014
Lead	Axonics	1201	AL1T701967

Peripherals in test setup boundary						
Description	Manufacturer	Model/Part Number	Serial Number			
Laptop PC	Dell	Latitude 7490	25825576862			
USB Dongle	Blue giga	BLED112	A111471			
Patient Remote	Axonics	2301	AP1F590057			

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
		Spurious	Tested as	No EMI suppression	EUT remained at
1	2021-03-05	Radiated	delivered to	devices were added or	Element following the
		Emissions	Test Station.	modified during this test.	test.
		Radiated	Tested as	No EMI suppression	Schoduled testing
2	2021-03-05	Power	delivered to	devices were added or	was completed
		(EIRP)	Test Station.	modified during this test.	was completed.
		Frequency	Tested as	No EMI suppression	EUT remained at
3	2021-07-14	Stability	delivered to	devices were added or	Element following the
		Otability	Test Station.	modified during this test.	test.
		Emission	Tested as	No EMI suppression	EUT remained at
4	2021-07-15	Bandwidth	delivered to	devices were added or	Element following the
		Danawiatin	Test Station.	modified during this test.	test.
		Emission	Tested as	No EMI suppression	EUT remained at
5	2021-07-15	Mask	delivered to	devices were added or	Element following the
		Masic	Test Station.	modified during this test.	test.
		Spurious	Tested as	No EMI suppression	Scheduled testing
6	2021-07-15	Conducted	delivered to	devices were added or	was completed
		Emissions	Test Station.	modified during this test.	was completed.
		Conducted	Tested as	No EMI suppression	EUT remained at
7	2021-08-16	Output	delivered to	devices were added or	Element following the
		Power	Test Station.	modified during this test.	test.
		Radiated	Tested as	No EMI suppression	EUT remained at
8	2021-10-25	Power	delivered to	devices were added or	Element following the
		(EIRP)	Test Station.	modified during this test.	test.
		Spurious	Tested as	No EMI suppression	Scheduled testing
9	2021-10-25	Radiated	delivered to	devices were added or	was completed
		Emissions	Test Station.	modified during this test.	

DUTY CYCLE CHARACTERIZATION

TEST DESCRIPTION

The Duty Cycle (x) of the single channel operation of the radio as controlled by the provided test software was measured for each of the EUT operating modes.

There is no compliance requirement to be met by this test, so therefore no Pass / Fail criteria.

The measurements were made using a zero span on the spectrum analyzer to see the pulses in the time domain. The transmit power was set to its default maximum.

The test software provided for operation in a fixed, single channel mode allows the EUT to operate continuously at 100% Duty Cycle.

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Cable	Micro-Coax	UFD150A-1-0720-200200	OCA	2021-04-27	2022-04-27
Attenuator	Fairview Microwave	SA18H-20	TKR	2020-12-18	2021-12-18
Block - DC	Fairview Microwave	SD3379	AMV	2020-12-18	2021-12-18
Generator - Signal	Agilent	E8257D	TGU	2020-11-03	2023-11-03
Analyzer - Spectrum Analyzer	Agilent	N9010A	AFJ	2021-01-06	2022-01-06

TEST DESCRIPTION

Per FCC Part 2.1046, the output power shall be measured at the RF terminal. The RMS output power was measured with the EUT configured in the modes listed in the datasheet. The EUT was transmitting at its maximum data rate.

FCC Part 95 does not have a conducted output power limit. It is a requirement to characterize this information and that data is contained within this data module (channels/frequncies listed on following page).

				XMit 2020.12.30.0
EUT: Implantable Pulse Generator (IPG), Model 4101, Taurus		Work Order:	AXON0190	
Serial Number: 4022370919	Date: 1	16-Aug-21		
Customer: Axonics Modulation Technologies, Inc.		Temperature:	23.6 °C	
Attendees: Franklin Portillo, Wes Clement		Humidity:	49.1% RH	
Project: None		Barometric Pres.: 1	1013 mbar	
Tested by: Nolan De Ramos	Power: 2.9VDC	Job Site: 0	OC13	
TEST SPECIFICATIONS	Test Method			
FCC 95H:2021	ANSI C63.26:2015			
COMMENTS				
Cable + 20 dB Attenuator + DC Block + 90° SMA elbow adapter = Ref Level Offso	21			
DEVIATIONS FROM TEST STANDARD				
None				
Configuration # AXON0190-1 Signature	SC -			
		Value	Limit	Result
Low Channel, 402.3 MHz		2.97 dBm	N/A	N/A
Mid Channel, 403.5 MHz		2.98 dBm	N/A	N/A
High Channel, 404.7 MHz		2.86 dBm	N/A	N/A

RADIATED POWER (EIRP)

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting Low Channel (402.3 MHz), Mid Channel (403.5 MHz), High Channel (404.7 MHz)

POWER SETTINGS INVESTIGATED

Battery

CONFIGURATIONS INVESTIGATED AXON0193 - 1

FREQUENCY RANGE INVESTIGATED

Start Frequency 30 MHz	Stop Frequency	1000 MHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Power Sensor	Agilent	E4412A	SQE	2021-12-22	2022-12-22
Meter - Power	Hewlett Packard	E4418A	SPA	2021-12-22	2022-12-22
Cable	Fairview Microwave	SCA1814-0505-72	OC3	2021-06-02	2022-06-02
Antenna - Dipole	A.H. Systems, Inc.	FCC-4	ADCA	NCR	NCR
Generator - Signal	Keysight	N5182B	TFY	2020-12-22	2023-12-22
Saline Tank	N/A	N/A	ZZZ	NCR	NCR
Amplifier - Pre-Amplifier	Miteq	AM-1402	AOZ	2022-02-11	2023-02-11
Cable	Northwest EMC	10kHz-1GHz RE Cables	OCH	2022-02-11	2023-02-11
Antenna - Biconilog	Teseq	CBL 6141A	AYE	2020-05-06	2022-05-06
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFP	2021-11-12	2022-11-12

TEST DESCRIPTION

The Field Strength of the Fundamental was measured in the far-field at a semi-anechoic Chamber. Spectrum analyzer and linearly polarized antennas were used to measure the radiated field strength of the fundamental.

The orientation of the EUT, and the measurement antenna were manipulated to maximize the level of emissions. The turntable azimuth was varied to maximize the level of radiated emissions. The height of the measurement antenna was also varied from 1 to 4 meters. The amplitude and frequency of the emissions were noted.

The EUT was then replaced with a substitution antenna that varies depending on the frequency range of the emission. A $\frac{1}{2}$ wave dipole that is successively tuned to each of the highest spurious emissions is utilized from 400-1000 MHz. Below 400 MHz, a small biconical antenna is utilized due to the increasing size of the dipole to match the $\frac{1}{2}$ wavelength. Above 1 GHz, a horn antenna is utilized.

A signal generator is then connected to the substitution antenna and its output is adjusted to match the level previously noted for each frequency. The output of the signal generator is recorded, and by factoring in the cable loss to the substitution antenna and its gain (dBi); the radiated power (dBm) for each radiated spurious emission is determined.

RADIATED POWER (EIRP)

						EmiR5 2021.08.30.0	PSA-ESCI 202
Work Order:	AXON0193	Date:	2021-1	0-25			
Project:	None	Temperature:	19.9	°C	AF		
Job Site:	OC10	Humidity:	60.3%	RH 🥏	/ ~		
Serial Number:	AX1T000014	Barometric Pres.:	1016 r	nbar	Tested I	by: Nolan De Ramo	s, Vincent Liwag
EUT:	Implantable Pulse G	nerator (IPG), Model 41	01 IPG				
Configuration:	AXON0193 - 1						
Customer:	Axonics Modulation	Technologies, Inc.					
Attendees:	Wes Clement	.					
EUT Power:	Battery						
Operating Mode:	Transmitting Low Ch	nannel (402.3 MHz), Mid	I Channel (40	03.5 MHz), Higl	n Channel (40-	4.7 MHz)	
Deviations:	None						
Comments:	Power Setting: Index	k 2					
st Specifications			1	est Method			
C 951:2022			4	NSI C63 26-20)15		
Pup # 7	Toot Dictores (m		Hoight(c)	4 40	4(m)	Populto	Paga
Run# /	Test Distance (m	n) 3 Antenna	i Height(s)	1 to	4(m)	Results	Pass
-5							
-15							
-25							+
-35							+
e	┭					🖣	
8							
o -45							
-55							+
a=							
-65							
76							
-/5							
05							
-85	400 5	400.0	100 5		04.0	404.5	405.0
402.0	402.5	403.0	403.5	4	04.0	404.5	405.0
			MHz				

	Freq (MHz)	Antenna Height (meters)	Azimuth (degrees)	Polarity/ Transducer Type	Detector	EIRP (Watts)	EIRP (dBm)	Spec. Limit (dBm)	Compared to Spec. (dB)	Comments
	402.298	1.0	19.0	Vert	PK	835.6E-9	-30.8	-16.0	-14.8	Low Ch., EUT On Side
	403.492	1.0	20.0	Vert	PK	818.5E-9	-30.9	-16.0	-14.9	Mid Ch., EUT On Side
	404.697	1.0	19.0	Vert	PK	801.7E-9	-31.0	-16.0	-15.0	High Ch., EUT On Side
	402.298	1.0	37.0	Vert	PK	605.3E-9	-32.2	-16.0	-16.2	Low Ch., EUT Vertical
	403.497	1.0	33.0	Vert	PK	592.9E-9	-32.3	-16.0	-16.3	Mid Ch., EUT Vertical
	404.697	1.0	37.0	Vert	PK	580.8E-9	-32.4	-16.0	-16.4	High Ch., EUT Vertical
	404.697	1.77	163.0	Horz	PK	397.2E-9	-34.0	-16.0	-18.0	High Ch., EUT On Side
	403.493	1.74	157.0	Horz	PK	387.3E-9	-34.1	-16.0	-18.1	Mid Ch., EUT On Side
	402.302	1.73	156.0	Horz	PK	377.6E-9	-34.2	-16.0	-18.2	Low Ch., EUT On Side
	404.698	1.51	343.0	Horz	PK	322.8E-9	-34.9	-16.0	-18.9	High Ch., EUT Horizontal
	403.495	1.52	347.0	Horz	PK	322.1E-9	-34.9	-16.0	-18.9	Mid Ch., EUT Horizontal
	402.298	1.5	348.0	Horz	PK	321.4E-9	-34.9	-16.0	-18.9	Low Ch., EUT Horizontal
	403.490	2.28	185.0	Horz	PK	222.8E-9	-36.5	-16.0	-20.5	Mid Ch., EUT Vertical
	402.290	2.25	182.0	Horz	PK	222.3E-9	-36.5	-16.0	-20.5	Low Ch., EUT Vertical
	404.695	2.29	189.0	Horz	PK	213.3E-9	-36.7	-16.0	-20.7	High Ch., EUT Vertical
	402.302	1.0	260.0	Vert	PK	60.5E-9	-42.2	-16.0	-26.2	Low Ch., EUT Horizontal
	403.493	1.01	251.0	Vert	PK	55.3E-9	-42.6	-16.0	-26.6	Mid Ch., EUT Horizontal
	404.698	1.0	254.0	Vert	PK	54.2E-9	-42.7	-16.0	-26.7	High Ch., EUT Horizontal

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Attenuator	Fairview Microwave	SA18H-20	TKR	2020-12-18	2021-12-18
Cable	Micro-Coax	UFD150A-1-0720-200200	OCA	2021-04-27	2022-04-27
Block - DC	Fairview Microwave	SD3379	AMV	2020-12-18	2021-12-18
Generator - Signal	Agilent	E8257D	TGU	2020-11-03	2023-11-03
Analyzer - Spectrum Analyzer	Agilent	N9010A	AFJ	2021-01-06	2022-01-06

TEST DESCRIPTION

Per 47 CFR 95.2573(a), the emission bandwidth was determined by measuring the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, that are 20 dB down relative to the maximum level of the modulated carrier. A spectrum analyzer using a peak detector with no video filtering was used with a resolution bandwidth equal to approximately 1.0 percent of the emission bandwidth of the EUT.

			TbtTx 2021.03.19.1	XMit 2020.12.30.0
EUT: Implantable Pulse Generator (IPG), model 4101		Work Order	AXON0180	
Serial Number: 4022370919		Date	: 15-Jul-21	
Customer: Axonics Modulation Technologies, Inc.		Temperature	23.8 °C	
Attendees: Wes Clement		Humidity	: 43.8% RH	
Project: None		Barometric Pres.	1018 mbar	
Tested by: Nolan De Ramos	Power: 2.9VDC	Job Site	OC13	
TEST SPECIFICATIONS	Test Method			
FCC 951:2021	ANSI C63.26:2015			
COMMENTS				
IPG Transmit Power Index 2				
Cable + 20 dB Attenuator + DC Block + 90° SMA adapter = 21.11 dB Ref Level Offs	set			
•				
DEVIATIONS FROM TEST STANDARD				
None				
Signature	SC			
			Limit	
		Value	(≤)	Result
Low Channel, 402.3 MHz		126.8 kHz	300 kHz	Pass
Mid Channel, 403.5 MHz		126.5 kHz	300 kHz	Pass
High Channel, 404.7 MHz		126.9 kHz	300 kHz	Pass

SPURIOUS RADIATED EMISSIONS

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting Low Channel (402.3 MHz), Mid Channel (403.5 MHz), High Channel (404.7 MHz)

POWER SETTINGS INVESTIGATED

Battery

CONFIGURATIONS INVESTIGATED

AXON0193 - 1

FREQUENCY RANGE INVESTIGATED

Start Frequency 25 MHz

Stop Frequency

5000 MHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFP	2021-10-01	2022-10-01
Amplifier - Pre-Amplifier	Cernex	CBL01084020-xx	PAX	2021-10-12	2022-10-12
Amplifier - Pre-Amplifier	Miteq	AM-1402	AOZ	2021-10-12	2022-10-12
Antenna - Standard Gain	ETS Lindgren	3160-08	AHT	NCR	NCR
Antenna - Standard Gain	ETS Lindgren	3160-07	AHR	NCR	NCR
Antenna - Double Ridge	EMCO	3115	AHB	2020-04-08	2022-04-08
Antenna - Biconilog	Teseq	CBL 6141A	AYE	2020-05-06	2022-05-06
Cable	Northwest EMC	1-8GHz RE Cables	OCJ	2021-10-12	2022-10-12
Cable	Northwest EMC	10kHz-1GHz RE Cables	OCH	2021-10-12	2022-10-12
Filter - Low Pass	Micro-Tronics	LPM50004	LFT	2021-01-04	2022-01-04
Saline Tank	N/A	N/A	ZZZ	NCR	NCR

TEST DESCRIPTION

The highest gain of each type of antenna to be used with the EUT was tested. For each configuration, the spectrum was scanned throughout the specified range. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and the EUT antenna in three orthogonal axis, and adjusting measurement antenna height and polarization, and manipulating the EUT antenna in 3 orthogonal planes (per ANSI C63.26). A preamp was used for this test in order to provide sufficient measurement sensitivity.

Per CFR 47 95.2579(a), field strength measurements were performed and compared to the specified limits.

SPURIOUS RADIATED EMISSIONS

								EmiR5 2021.08.30.0	PSA-ESCI 2021.0
Wor	k Order:	AXON0193		Date:	2021-	0-25			
	Project:	None	Tem	perature:	20.3	°C	26	2	
	Job Site:	OC10		Humidity:	62.9%	RH			
Serial	Number:	AX1T000014	Barome	ric Pres.:	1014	nbar	Testee	d by: Nolan De Ram	ios & Vincent Liwa
	EUT:	Implantable Pulse Ge	nerator (IPG	i), Model 4101					
Config	guration:	AXON0193 - 1							
Cı	ustomer:	Axonics Modulation T	echnologies	, Inc.					
At	tendees:	Wes Clement							
EU	T Power:	Battery							
Operatin	ng Mode:	Transmitting Low Cha	innel (402.3	MHz), Mid Cha	annel (4)3.5 MHz)	, High Channel (4	104.7 MHz)	
De	viations:	None							
Co	mments:	Power Setting: Index 2	2.						
Test Specif	ications					Fest Meth	od		
FCC 951:202	21					NSI C63	.26:2015		
Run #	10	Test Distance (m)	3	Antenna He	iaht(s)		1 to 4(m)	Results	Pass
Itun #	10		0	Antenna ne	igit(3)		1 10 4(11)	Results	1 435
80 -									
70									
/0									
60									
00									
							 		
50									
<u> </u>									
2				P					
a 40 +									
P									
30 -									
							•		
20									
20									
10 🗕					_				
0 🗕									
10			100				1000		10000

Freq (MHz)	Measured Level - Amplitude (dBuV)	Factor (dB/m)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Field Strength Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Commente
811 978	18.4	15.6	1.0	41.0	3.0	0.0	Horz	OP	0.0	34.0	46.0	-12.0	High Ch. ELIT On Side
811.881	18.4	15.6	1.0	149.0	3.0	0.0	Vert	QP	0.0	34.0	46.0	-12.0	High Ch., EUT On Side
811.703	18.4	15.6	1.0	237.0	3.0	0.0	Horz	QP	0.0	34.0	46.0	-12.0	High Ch., EUT Vertical
811.769	18.4	15.6	2.2	137.0	3.0	0.0	Vert	QP	0.0	34.0	46.0	-12.0	High Ch., EUT Vertical
812.244	18.4	15.6	1.0	257.0	3.0	0.0	Horz	QP	0.0	34.0	46.0	-12.0	High Ch., EUT Horz
812.176	18.4	15.6	1.0	198.0	3.0	0.0	Vert	QP	0.0	34.0	46.0	-12.0	High Ch., EUT Horz
807.087	18.4	15.6	1.0	337.0	3.0	0.0	Horz	QP	0.0	34.0	46.0	-12.0	Mid Ch., EUT On Side
807.298	18.4	15.6	1.0	104.0	3.0	0.0	Vert	QP	0.0	34.0	46.0	-12.0	Mid Ch., EUT On Side
809.507	18.4	15.5	1.0	121.0	3.0	0.0	Horz	QP	0.0	33.9	46.0	-12.1	High Ch., EUT Horz
809.457	18.4	15.5	1.0	281.0	3.0	0.0	Vert	QP	0.0	33.9	46.0	-12.1	High Ch., EUT Horz
809.215	18.4	15.5	1.6	294.0	3.0	0.0	Horz	QP	0.0	33.9	46.0	-12.1	High Ch., EUT On Side
809.092	18.4	15.5	3.8	281.0	3.0	0.0	Vert	QP	0.0	33.9	46.0	-12.1	High Ch., EUT On Side
809.682	18.4	15.5	1.0	247.0	3.0	0.0	Horz	QP	0.0	33.9	46.0	-12.1	High Ch., EUT Vertical
804.440	18.3	15.6	1.7	2.0	3.0	0.0	Horz	QP	0.0	33.9	46.0	-12.1	Low Ch., EUT On Side
804.527	18.3	15.6	1.0	33.0	3.0	0.0	Vert	QP	0.0	33.9	46.0	-12.1	Low Ch., EUT On Side
808.922	18.3	15.5	1.0	48.0	3.0	0.0	Vert	QP	0.0	33.8	46.0	-12.2	High Ch., EUT Vertical
1611.117	40.6	-14.3	1.5	73.0	3.0	0.0	Vert	AV	0.0	26.3	54.0	-27.7	Low Ch., EUT On Side
1621.008	40.6	-14.4	1.5	134.0	3.0	0.0	Vert	AV	0.0	26.2	54.0	-27.8	High Ch., EUT On Side
1611.967	40.5	-14.3	2.2	132.0	3.0	0.0	Horz	AV	0.0	26.2	54.0	-27.8	Mid Ch., EUT On Side
1612.175	40.5	-14.3	2.9	176.0	3.0	0.0	Vert	AV	0.0	26.2	54.0	-27.8	Mid Ch., EUT On Side

Freq (MHz)	Measured Level - Amplitude (dBuV)	Factor (dB/m)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Field Strength Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
1611.600	40.5	-14.3	1.5	50.0	3.0	0.0	Horz	AV	0.0	26.2	54.0	-27.8	Low Ch., EUT On Side
1621.192	40.5	-14.4	1.5	91.0	3.0	0.0	Horz	AV	0.0	26.1	54.0	-27.9	High Ch., EUT On Side
1215.442	41.1	-15.6	1.5	70.0	3.0	0.0	Horz	AV	0.0	25.5	54.0	-28.5	High Ch., EUT On Side
1215.758	41.1	-15.6	2.1	201.0	3.0	0.0	Vert	AV	0.0	25.5	54.0	-28.5	High Ch., EUT On Side
1215.917	41.1	-15.6	1.5	273.0	3.0	0.0	Vert	AV	0.0	25.5	54.0	-28.5	High Ch., EUT On Side
1204.833	41.1	-15.7	1.5	12.0	3.0	0.0	Horz	AV	0.0	25.4	54.0	-28.6	Low Ch., EUT On Side
1204.708	41.1	-15.7	1.5	69.0	3.0	0.0	Vert	AV	0.0	25.4	54.0	-28.6	Low Ch., EUT On Side
1208.375	40.9	-15.7	1.5	101.0	3.0	0.0	Horz	AV	0.0	25.2	54.0	-28.8	Mid Ch., EUT On Side
1208.083	40.8	-15.7	1.5	33.0	3.0	0.0	Vert	AV	0.0	25.1	54.0	-28.9	Mid Ch., EUT On Side
1612.533	52.2	-14.3	2.9	176.0	3.0	0.0	Vert	PK	0.0	37.9	74.0	-36.1	Mid Ch., EUT On Side
1620.100	52.2	-14.4	1.5	73.0	3.0	0.0	Horz	PK	0.0	37.8	74.0	-36.2	High Ch., EUT On Side
1616.458	52.0	-14.3	1.5	91.0	3.0	0.0	Horz	PK	0.0	37.7	74.0	-36.3	High Ch., EUT On Side
1205.183	53.4	-15.7	1.5	12.0	3.0	0.0	Horz	PK	0.0	37.7	74.0	-36.3	Low Ch., EUT On Side
1611.417	52.0	-14.3	1.5	50.0	3.0	0.0	Horz	PK	0.0	37.7	74.0	-36.3	Low Ch., EUT On Side
1214.475	53.2	-15.6	2.1	201.0	3.0	0.0	Vert	PK	0.0	37.6	74.0	-36.4	High Ch., EUT On Side
1620.617	51.9	-14.4	1.5	134.0	3.0	0.0	Vert	PK	0.0	37.5	74.0	-36.5	High Ch., EUT On Side
1612.083	51.8	-14.3	2.2	132.0	3.0	0.0	Horz	PK	0.0	37.5	74.0	-36.5	Mid Ch., EUT On Side
1215.342	52.9	-15.6	1.5	273.0	3.0	0.0	Vert	PK	0.0	37.3	74.0	-36.7	High Ch., EUT On Side
1610.317	51.5	-14.3	1.5	73.0	3.0	0.0	Vert	PK	0.0	37.2	74.0	-36.8	Low Ch., EUT On Side
1206.792	52.5	-15.7	1.5	69.0	3.0	0.0	Vert	PK	0.0	36.8	74.0	-37.2	Low Ch., EUT On Side
1213.000	52.3	-15.6	1.5	101.0	3.0	0.0	Horz	PK	0.0	36.7	74.0	-37.3	Mid Ch., EUT On Side
1212.208	52.1	-15.6	1.5	33.0	3.0	0.0	Vert	PK	0.0	36.5	74.0	-37.5	Mid Ch., EUT On Side

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Chamber, Temperature/Humidity	Cincinnati Sub Zero (CSZ)	ZPHS-32-3.5-SCT/AC	TBE	2021-01-28	2022-01-28
Thermometer	Omega Engineering, Inc.	HH311	DUC	2020-11-09	2023-11-09
Multimeter	Fluke	179	MBB	2021-03-05	2024-03-05
Generator - Signal	Agilent	E8257D	TGU	2020-11-03	2023-11-03
Block - DC	Fairview Microwave	SD3379	AMV	2020-12-18	2021-12-18
Attenuator	Fairview Microwave	SA18H-20	TKR	2020-12-18	2021-12-18
Cable	Micro-Coax	UFD150A-1-0720-200200	OCA	2021-04-27	2022-04-27
Analyzer - Spectrum Analyzer	Agilent	N9010A	AFJ	2021-01-06	2022-01-06

TEST DESCRIPTION

The spectrum analyzer is configured with a precision frequency reference that exceeds the stability requirement of the transmitter. The EUT was placed inside a temperature / humidity chamber.

Variation of Supply Voltage

The primary supply voltage was varied over the range specified by the client. A DC lab supply was used to vary the supply voltage.

Variation of Ambient Temperature

Using a temperature chamber, the transmit frequency was recorded at the extremes of the specified temperature range (+20C, +25C, +35C and +45C).

				TbtTx 2021.03.19.1	XMit 2020.12.30.0
EUT: Implantable Pulse Generator (IPG), model 4101			Work Order:	AXON0180	
Serial Number: 4022370919			Date:	14-Jul-21	
Customer: Axonics Modulation Technologies, Inc.			Temperature:	26 °C	
Attendees: Wes Clement			Humidity:	42.4% RH	
Project: None		I	Barometric Pres.:	1018 mbar	
Tested by: Nolan De Ramos	Power: 2.9VDC		Job Site:	OC13	
TEST SPECIFICATIONS	Test Method				
FCC 951:2021	ANSI C63.26:2015				
CONVENTO					
COMMENTS					
IPG Transmit Power Index 2 Cable : 20 dB Attenueter : DC Block : 00% SMA adapter : 24 44 dB Bef Level Offert					
Cable + 20 dB Attenuator + DC Block + 90 SMA adapter = 21.11 dB Ref Level Onset					
DEVIATIONS FROM TEST STANDARD					
None					
Configuration # AXON0180 - 9	\bigcirc				
Signature	Ð				
	Measured	Assigned	Error	Limit	
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
Nominal Temperature +26°C					
Nominal Voltage 2.9V	402 200222	402.2	1.0	100	Deee
Low Grannel, 402.5 MHz	402.299233	402.3	1.9	100	Pass
High Channel, 404 7 MHz	403.430030	403.3	2.0	100	Pass
Extreme Max Voltage 3.2V	404.000001		0.0	100	1 455
Low Channel, 402.3 MHz	402.299183	402.3	2.0	100	Pass
Mid Channel, 403.5 MHz	403.498850	403.5	2.9	100	Pass
High Channel, 404.7 MHz	404.698566	404.7	3.5	100	Pass
Extreme Min Voltage 2.0V					
Low Channel, 402.3 MHz	402.299167	402.3	2.1	100	Pass
Mid Channel, 403.5 MHz	403.498834	403.5	2.9	100	Pass
High Channel, 404.7 MHz	404.698534	404.7	3.6	100	Pass
Extreme Temperature +20°C					
Low Channel 402.3 MHz	402 299783	402.3	0.5	100	Pass
Mid Channel 403 5 MHz	402.239783	403.5	1.4	100	Pass
High Channel, 404,7 MHz	404.699150	404.7	2.1	100	Pass
Extreme Temperature +25°C					
Nominal Voltage 2.9V					
Low Channel, 402.3 MHz	402.299200	402.3	2.0	100	Pass
Mid Channel, 403.5 MHz	403.498884	403.5	2.8	100	Pass
High Channel, 404.7 MHz	404.698600	404.7	3.5	100	Pass
Extreme Temperature +35°C					
Nominal Voltage 2.9V	402 208004	402.2	5.0	100	Boos
LOW Channel, 402.5 MHz	402.298001	402.3	5.0	100	Pass
High Channel 404.7 MHz	403.497750 204 607434	403.5	63	100	Pass
Extreme Temperature +45°C	404.097434	404.7	0.0	100	1 000
Nominal Voltage 2.9V					
Low Channel, 402.3 MHz	402.296934	402.3	7.6	100	Pass
Mid Channel, 403.5 MHz	403 496590	403.5	8.5	100	Pass
	100.100000				

Nominal Temperature +26°C, Nominal Voltage 2.9V, Mid Channel, 403.5 MHz										
		Measured	Assigned	Error	Limit					
		Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results				
		403.49889	403.5	2.8	100	Pass				

Agilent Spectrum Analyzer - Element Ma	terials Technology			
[//0 RL RF 50Ω DC	PNO: Close 🖵 IFGain:Low	INT REF Trig: Free Run Atten: 6 dB	ALIGNAUTO #Avg Type: Voltag Avg Hold:>100/100	03:38:48 PM Jul 14, 2021 e TRACE 123456 TYPE MWWWW DET PNNNNN
Ref Offset 20.62 dB 5 dB/div Ref 9.00 dBm				Mkr1 403.498 89 MHz 4.298 dBm
4 00		↓ ¹		
-1.00				
-6.00	/			
-11.0				
-16.0				
-21.0	/			
-26.0				
-31.0	/			
-36.0				
Center 403.499100 MHz #Res BW 1.0 kHz	VBM	/ 10 kHz		Span 10.00 kHz Sweep 9.267 ms (1001 pts)
MSG			STATUS	

Nominal Temperature +26°C, Extreme Max Voltage 3.2V, Low Channel, 402.3 MHz										
Measured Assigned Error Limit										
		Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results				
		402.2991833	402.3	2	100	Pass				

Agilent Spect	rum Analyzer - Element N	laterials Techno	ology						
(X) RL	RF 50 Ω DC	Pi IF	NO: Close 🖵 Gain:Low	INT REF Trig: Free #Atten: 10	Run dB	IGNAUTO #Avg Type: Avg Hold:>	Voltage 100/100	03:34:07 TF	PM Jul 14, 2021 ACE 1 2 3 4 5 6 TYPE M WWWWWW DET P P P P P P
5 dB/div	Ref Offset 20.62 dE Ref 9.00 dBm	3					Mkr1	402.299 4.	183 MHz 342 dBm
4 00				● ¹					
-1.00									
-6.00			/						
-11.0									
-16.0					, 	\			
-21.0			/			1			
-26.0		/	1						
-31.0		/							
-36.0									
Center 4	12 299500 MHz							Snar	10.00 kHz
#Res BW	1.0 kHz		#VB	W 3.0 kHz			Swee	ep 9.560 m	is (601 pts)
MSG						STATUS			

Nominal Temperature +26°C, Extreme Max Voltage 3.2V, High Channel, 404.7 MHz										
Measured Assigned Error Limit										
		Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results				
		404.6985663	404.7	3.5	100	Pass				

Agilent Spect	rum Analyzer - Element Mate	rials Technology							
(XI RL	RF 50 Ω DC	PNO: Clo IFGain:L	ise 🖵 ow	INT REF Trig: Free #Atten: 10	Run dB	IGNAUTO #Avg Type: Avg Hold:>	Voltage 100/100	03:43:30 TF	I PM Jul 14, 2021 RACE 1 2 3 4 5 6 TYPE M WWWWWW DET P P P P P P
5 dB/div	Ref Offset 20.62 dB Ref 9.00 dBm						Mkr1	404.698 4.	566 MHz 363 dBm
4.00				↓ ¹					
-1.00									
-6.00									
-11 0									
-16.0		/							
-21.0		/							
-26.0		/							
-31.0		/							
-36.0									
						1			
Center 4 #Res BW	04.698833 MHz / 1.0 kHz		#VB	W 3.0 kHz			Swee	Spar 9.560 m	10.00 kHz 1s (601 pts)
MSG						STATUS			

Nominal Temperature +26°C, Extreme Min Voltage 2.0V, Mid Channel, 403.5 MHz										
Measured Assigned Error Limit										
	Va	alue (MHz)	Value (MHz)	(ppm)	(ppm)	Results				
	403	3.4988337	403.5	2.9	100	Pass				

Agilent Spect	rum Analyzer - Element Mate	erials Technolo	ogy	N.C. DEE					
LA RL	κ ι 50 Ω DC	PN0 IFGa): Close 😱 ain:Low	Trig: Free #Atten: 10	Run dB	#Avg Type: Avg Hold>1	Voltage 00/100	03:40:24 TE	ACE 1 2 3 4 5 6 TYPE M
5 dB/div	Ref Offset 20.62 dB Ref 9.00 dBm						Mkr1	403.498 4.	834 MHz 341 dBm
4 00				● ¹					
-1.00					\sum				
-6.00			_/						
-11.0									
-16.0			/		۰ ۱	\			
-21.0		/	/			\mathbf{h}			
-26.0		/							
-31.0		/_							
-36.0		_/							
Center 4	03 499167 MHz					\		Snan	10.00 kHz
#Res BW	1.0 kHz		#VB	W 3.0 kHz			Swee	ep 9.560 m	is (601 pts)
MSG						STATUS			

Extreme Temperature +20°C, Nominal Voltage 2.9V, Low Channel, 402.3 MHz										
Measured Assigned Error Limit										
		Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results				
		402.2997827	402.3	0.5	100	Pass				

Agilent Spect	rum Analyzer - Element Mat	erials Technology						
(X) RL	RF 50 Ω DC	PNO: Close 🕞 IFGain:Low	INT REF Trig: Free F #Atten: 10 c	AL Run JB	IGNAUTO #Avg Type: Avg Hold:>1	Voltage 100/100	05:12:49 TF	PM Jul 14, 2021 ACE 1 2 3 4 5 6 TYPE M MAAAAAA DET P P P P P P
5 dB/div	Ref Offset 20.62 dB Ref 10.00 dBm					Mkr1	402.299 4.	783 MHz 598 dBm
5.00			● ¹					
0.00		,						
-5.00								
-10.0								
-15.0		/		<u></u>	L			
-20.0					1			
-25.0								
-30.0								
-35.0								
Center 40 #Res BW	02.300166 MHz	_/#VE	W 3.0 kHz			Swee	Span 9.560 m	10.00 kHz
MSG					STATUS			

	Extreme Temperature +20°C, Nominal Voltage 2.9V, High Channel, 404.7 MHz										
	Measured Assigned Error Limit										
			Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results				
ĺ			404.69915	404.7	2.1	100	Pass				

Extreme Temperature +25°C, Nominal Voltage 2.9V, Mid Channel, 403.5 MHz										
Measured Assigned Error Limit										
		Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results				
		403.4988837	403.5	2.8	100	Pass				

	Extreme Tem	perature +35°C, I	Nominal Voltage	2.9V, Low Chann	el, 402.3 MHz		
		Measured	Assigned	Error	Limit		
		Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results	
		402.2980007	402.3	5	100	Pass	

Agilent Spec	trum Analyzer - Element Materia	als Technology						
UX4 RL	RF 50 Ω DC	PNO: Close 🖵 IFGain:Low	INT REF Trig: Free F #Atten: 10 c	ALI Run JB	GNAUTO #Avg Type: Avg Hold:>1	Voltage 00/100	05:52:08 TR 1	PM Jul 14, 2021 ACE 1 2 3 4 5 6 TYPE M MAAAAAA DET P P P P P P P
5 dB/div	Ref Offset 20.62 dB Ref 9.00 dBm					Mkr1	402.298 4.	001 MHz 378 dBm
4.00			↓ ¹					
-1.00								
-6.00								
-11.0								
-16.0					\			
-21.0		/			1 1			
-26.0		/						
-31.0								
-36.0								
Center 4 #Res BW	02.298334 MHz ≬ 1.0 kHz	#VB	W 3.0 kHz			Swee	Span 9.560 m	10.00 kHz is (601 pts)
MSG					STATUS			

	Extreme Tem	perature +35°C, I	Nominal Voltage	2.9V, High Chann	el, 404.7 MHz		
		Measured	Assigned	Error	Limit		
		Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results	
		404.6974337	404.7	6.3	100	Pass	

Agilent Spectrum Analyzer	Element Materials Tech	nology						
X RL RF	50 Ω DC	PNO: Close 🖵 FGain:Low	INT REF Trig: Free #Atten: 10	AL Run dB	IGNAUTO #Avg Type: Avg Hold:>*	Voltage 100/100	05:51:25 TF	PM Jul 14, 2021 ACE 1 2 3 4 5 6 TYPE M MAAAAAA DET P P P P P P
5 dB/div Ref 9.00	t 20.62 dB I dBm					Mkr1	404.697 4.	434 MHz 409 dBm
4 00			● ¹					
-1.00								
-6.00								
-11.0								
-16.0					1			
-21.0		/			<u>\</u>			
-26.0		/						
-31.0	/							
-36.0								
Center 404.697667	MHz						Spar	10.00 kHz
#Res BW 1.0 kHz		#VB	W 3.0 kHz		STATUS	Swee	ep 9.560 m	is (601 pts)

	Extreme Tem	perature +45°C,	Nominal Voltage	2.9V, Mid Channe	el, 403.5 MHz		
		Measured	Assigned	Error	Limit		
		Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results	
		403.49659	403.5	8.5	100	Pass	

Agilent Spectrum Analyz	er - Element Materials Techr	ology						
KX RL RF	50 Ω DC 	NO: Close 😱 -Gain:Low	INT REF Trig: Free I Atten: 6 df	AL Run B	IGNAUTO #Avg Type: Avg Hold:>1	Voltage 100/100	06:36:16 TR T	PM Jul 14, 2021 ACE 1 2 3 4 5 6 YPE M MAAAAAA DET P N N N N N
Ref Off 5 dB/div Ref 9.	set 20.62 dB 00 dBm					Mkr	1 403.496 4.:	59 MHz 247 dBm
4 00			♦ ¹					
-1.00				\sum				
-6.00								
-11.0					\			
-16.0					\mathbf{h}			
-21.0		/						
-26.0		<u> </u>						
-31.0	/							
-36.0								
Center 403.4968(DO MHz						Span	10.00 kHz
#Res BW 1.0 kHz		VBW	T 10 KHZ		STATUS	Sweep	9.267 ms	(1001 pts)

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Cable	Micro-Coax	UFD150A-1-0720-200200	OCA	2021-04-27	2022-04-27
Attenuator	Fairview Microwave	SA18H-20	TKR	2020-12-18	2021-12-18
Block - DC	Fairview Microwave	SD3379	AMV	2020-12-18	2021-12-18
Generator - Signal	Agilent	E8257D	TGU	2020-11-03	2023-11-03
Analyzer - Spectrum Analyzer	Agilent	N9010A	AFJ	2021-01-06	2022-01-06

TEST DESCRIPTION

Per FCC Part 2.1051, the spurious emissions shall be measured at the RF terminal. The peak spurious emissions were measured with the EUT configured to the modes listed in the datasheet. The EUT was transmitting at its maximum data rate.

FCC Part 95 have no conducted spurious emissions limit. It is a requirement to characterize this information and that data is contained within this datasheet.

							XMit 2020.12.30.0
EUT	: Implantable Pulse Generator ((IPG), model 4101			Work Order:	AXON0180	
Serial Number	r: 4022370919				Date: 1	15-Jul-21	
Customer	r: Axonics Modulation Technolo	ogies, Inc.			Temperature:	23.8 °C	
Attendees	: Wes Clement				Humidity:	43.8% RH	
Project	t: None				Barometric Pres.: 1	1018 mbar	
Tested by	/: Nolan De Ramos		P	ower: 2.9VDC	Job Site: 0	OC13	
TEST SPECIFICAT	TIONS			Test Method			
FCC 95I:2021				ANSI C63.26:2015			
COMMENTS							
IPG Transmit Pow	ver Index 2						
Cable + 20 dB Atte	enuator + DC Block + 90° SMA a	dapter = 20.97 dB Ref L	evel Offset				
DEVIATIONS FRO	M TEST STANDARD						
None							
Configuration #	AXON0180 - 9		alle	2			
		Signature	100	* 3			
					Value	Limit	Result
Low Channel, 402.3	3 MHz				Value	Limit	Result
Low Channel, 402.3	3 MHz Fundamental				Value 4.865 dBm	Limit N/A	Result N/A
Low Channel, 402.3	3 MHz Fundamental 9 kHz - 150 kHz				Value 4.865 dBm -48.662 dBm	Limit N/A N/A	Result N/A N/A
Low Channel, 402.	3 MHz Fundamental 9 kHz - 150 kHz 150 kHz - 30 MHz				 Value 4.865 dBm -48.662 dBm -52.454 dBm	Limit N/A N/A N/A	N/A N/A N/A N/A
Low Channel, 402.3	3 MHz Fundamental 9 kHz - 150 kHz 150 kHz - 30 MHz 30 MHz - 1 GHz				Value 4.865 dBm -48.662 dBm -52.454 dBm -47.844 dBm	Limit N/A N/A N/A N/A	Result N/A N/A N/A N/A
Low Channel, 402.3	3 MHz Fundamental 9 KHz - 150 KHz 150 KHz - 30 MHz 30 MHz - 1 GHz 1 GHz - 5 GHz				Value 4.865 dBm -48.662 dBm -52.454 dBm -47.844 dBm -40.173 dBm	Limit N/A N/A N/A N/A N/A	Result N/A N/A N/A N/A N/A
Low Channel, 402.	3 MHz Fundamental 9 KHz - 150 KHz 150 KHz - 30 MHz 30 MHz - 1 GHz 1 GHz - 5 GHz 5 MHz				Value 4.865 dBm -48.662 dBm -52.454 dBm -47.844 dBm -40.173 dBm	Limit N/A N/A N/A N/A N/A	Result N/A N/A N/A N/A N/A
Low Channel, 402.	3 MHz Fundamental 9 kHz - 150 kHz 150 kHz - 30 MHz 30 MHz - 1 GHz 1 GHz - 5 GHz 5 MHz Fundamental				Value 4.865 dBm -48.662 dBm -52.454 dBm -47.844 dBm -40.173 dBm 4.8 dBm	Limit N/A N/A N/A N/A	Result N/A N/A N/A N/A N/A
Low Channel, 402.3 Mid Channel, 403.5	3 MHz Fundamental 9 KHz - 150 KHz 150 KHz - 30 MHz 30 MHz - 1 GHz 1 GHz - 5 GHz 5 MHz Fundamental 9 KHz - 150 KHz				Value 4.865 dBm -48.662 dBm -52.454 dBm -47.844 dBm -40.173 dBm -48.354 dBm -48.354 dBm	Limit N/A N/A N/A N/A N/A	Result N/A N/A N/A N/A N/A N/A
Low Channel, 402.	3 MHz Fundamental 9 KHz - 150 KHz 150 kHz - 30 MHz 30 MHz - 1 GHz 1 GHz - 5 GHz 5 MHz Fundamental 9 kHz - 150 kHz 150 kHz - 30 MHz				Value 4.865 dBm -48.662 dBm -52.454 dBm -47.844 dBm -40.173 dBm 4.8 dBm -48.354 dBm -54.482 dBm	Limit N/A N/A N/A N/A N/A N/A	Result N/A N/A N/A N/A N/A N/A N/A N/A N/A
Low Channel, 402.	3 MHz Fundamental 9 kHz - 150 kHz 150 kHz - 30 MHz 30 MHz - 1 GHz 1 GHz - 5 GHz 5 MHz Fundamental 9 kHz - 150 kHz 150 kHz - 30 MHz 30 MHz - 1 GHz				Value 4.865 dBm -48.662 dBm -52.454 dBm -47.844 dBm -40.173 dBm -48.354 dBm -54.482 dBm -54.063 dBm	Limit N/A N/A N/A N/A N/A N/A N/A	Result N/A N/A N/A N/A N/A N/A N/A
Low Channel, 402.	3 MHz Fundamental 9 KHz - 150 KHz 150 KHz - 30 MHz 30 MHz - 1 GHz 1 GHz - 5 GHz 5 MHz Fundamental 9 KHz - 150 KHz 150 KHz - 30 MHz 30 MHz - 1 GHz 1 GHz - 5 GHz				Value 4.865 dBm -48.662 dBm -52.454 dBm -47.844 dBm -40.173 dBm -48.354 dBm -54.822 dBm -54.063 dBm -54.063 dBm -53.231 dBm	Limit N/A N/A N/A N/A N/A N/A N/A N/A	Result N/A
Low Channel, 402. Mid Channel, 403.5 High Channel, 404.	3 MHz Fundamental 9 KHz - 150 KHz 150 kHz - 30 MHz 30 MHz - 1 GHz 1 GHz - 5 GHz 5 MHz Fundamental 9 kHz - 150 kHz 150 kHz - 30 MHz 30 MHz - 1 GHz 1 GHz - 5 GHz 7 MHz				Value 4.865 dBm -48.662 dBm -52.454 dBm -47.844 dBm -40.173 dBm -48.354 dBm -54.82 dBm -54.482 dBm -54.063 dBm -35.231 dBm	Limit N/A N/A N/A N/A N/A N/A N/A N/A N/A	Result N/A
Low Channel, 402. Mid Channel, 403.5 High Channel, 404.	3 MHz Fundamental 9 KHz - 150 KHz 150 KHz - 30 MHz 30 MHz - 1 GHz 1 GHz - 5 GHz 5 MHz Fundamental 9 KHz - 150 KHz 150 KHz - 30 MHz 30 MHz - 1 GHz 1 GHz - 5 GHz .7 MHz Fundamental				Value 4.865 dBm -52.454 dBm -52.454 dBm -47.844 dBm -40.173 dBm -48.354 dBm -54.482 dBm -54.063 dBm -35.231 dBm 4.822 dBm	Limit N/A N/A N/A N/A N/A N/A N/A N/A	Result N/A N/A N/A N/A N/A N/A N/A N/A N/A
Low Channel, 402.3 Mid Channel, 403.5 High Channel, 404.	3 MHz Fundamental 9 KHz - 150 KHz 150 KHz - 30 MHz 30 MHz - 1 GHz 1 GHz - 5 GHz 5 MHz Fundamental 9 KHz - 150 KHz 150 kHz - 30 MHz 1 GHz - 5 GHz 1 GHz - 5 GHz 1 GHz - 5 GHz 7 MHz Fundamental 9 kHz - 150 KHz				Value 4.865 dBm -48.662 dBm -52.454 dBm -47.844 dBm -40.173 dBm -48.354 dBm -54.482 dBm -54.063 dBm -35.231 dBm 4.822 dBm -48.576 dBm	Limit N/A N/A N/A N/A N/A N/A N/A N/A N/A	Result N/A
Low Channel, 402. Mid Channel, 403.5 High Channel, 404.	3 MHz Fundamental 9 kHz - 150 kHz 150 kHz - 30 MHz 30 MHz - 1 GHz 1 GHz - 5 GHz 5 MHz Fundamental 9 kHz - 150 kHz 150 kHz - 1 GHz 1 GHz - 5 GHz 7 MHz Fundamental 9 kHz - 150 kHz 150 kHz - 30 MHz				Value 4.865 dBm -52.454 dBm -52.454 dBm -47.844 dBm -40.173 dBm -48.354 dBm -54.482 dBm -54.063 dBm -35.231 dBm 4.822 dBm -48.576 dBm -55.839 dBm	Limit N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	Result N/A
Low Channel, 402.3 Mid Channel, 403.5 High Channel, 404.	3 MHz Fundamental 9 KHz - 150 KHz 150 KHz - 30 MHz 30 MHz - 1 GHz 1 GHz - 5 GHz 5 MHz Fundamental 9 KHz - 150 KHz 1 GHz - 5 GHz 1 GHz - 5 GHz 7 MHz Fundamental 9 KHz - 150 KHz 1 GHz - 1 GHz 30 MHz - 1 GHz 1 GHz - 1 GHz				Value 4.865 dBm -52.454 dBm -52.454 dBm -47.844 dBm -40.173 dBm -48.354 dBm -54.482 dBm -54.482 dBm -54.063 dBm -35.231 dBm -48.576 dBm -55.839 dBm -55.839 dBm -55.439 dBm	Limit N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	Result N/A
Low Channel, 402.3 Mid Channel, 403.5 High Channel, 404.	3 MHz Fundamental 9 KHz - 150 KHz 150 KHz - 30 MHz 30 MHz - 1 GHz 1 GHz - 5 GHz 5 MHz Fundamental 9 KHz - 150 KHz 1 GHz - 5 GHz 7 MHz Fundamental 9 kHz - 150 KHz 1 GHz - 16 KHz 150 kHz - 30 MHz 150 kHz - 16 KHz 150 kHz - 16 KHz 1 GHz - 5 GHz 30 MHz - 1 GHz 1 GHz - 5 GHz				Value 4.865 dBm -48.662 dBm -52.454 dBm -47.844 dBm -40.173 dBm -48.354 dBm -54.482 dBm -54.063 dBm -35.231 dBm 4.822 dBm -48.576 dBm -55.839 dBm -54.009 dBm -54.009 dBm	Limit N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	Result N/A N/A

#VBW 300 kHz

STATUS

Center 403.500 MHz #Res BW 120 kHz Span 3.000 MHz #Sweep 1.092 ms (8192 pts)

#VBW 30 kHz

Report No. AXON0180.4 Rev 1

Start 9.00 kHz #Res BW 9.1 kHz Stop 150.00 kHz #Sweep 1.638 ms (8192 pts)

STATUS

		High Chann	el, 404.7 MHz,	150 kHz - 30 MHz			
				Value -55.839 dBr	Limit	: R(esult N/A
Agilent Spectrum A	analyzer - Element Materia	ls Technology					
(X) RL R	RF 50 Ω DC	PNO: Fast	INT REF	ALIGNAUTO Avg Ty n Avg Ho	pe: Log-Pwr Id:>100/100	11:33:1 T	7 AM Jul 19, 2021 RACE 1 2 3 4 5 6 TYPE M
Re	ef Offset 20.97 dB	IFGain:Low	#Atten: 10 dB			Mkr	1 150 kHz
10 dB/div Re	ef 16.97 dBm					-00	.839 dBm
6.97							
-3.03							
-13.0							
-23.0							
-43.0							
-53.0							
-63.0							
-73.0	a di sa			a an a thi farma a thi binn trach but a		क्रम् मा स्थापन् के जन्म के स्थापन के स्थापन	a diala dia 40
Start 150 kHz	Z					Stop	30.00 MHz
#Res BW 9.1	kHz	#VB	14/30 kHz				- (0400 4-)
MSG				STATUS	Swe	ep 342.4 m	s (8192 pts)
MSG		High Chan	nel, 404.7 MHz	status 2, 30 MHz - 1 GHz	Swe	ep 342.4 m	s (8192 pts)
MSG		High Chan	nel, 404.7 MHz	status 2, 30 MHz - 1 GHz Value -54 109 dBr	Swee	ep 342.4 m	esult
MSG Adjust Spectrum A	Lunkrzar - Elanant Materia	High Chani	nel, 404.7 MHz	status 2, 30 MHz - 1 GHz Value -54.109 dBr	Limit n N/A	ep 342.4 m	esult N/A
Agilent Spectrum A (X) RL R	Malyzer - Element Materia XF 50 Q DC	High Chani	INT REF	status 2, 30 MHz - 1 GHz Value -54.109 dBr Aug Ty n Avg Ty	Swer Limit n N/A pe: Log-Pwr di>100/100	ep 342.4 m : R(11:34:2 T	5 (8192 pts) esult V/A 6 AM Jul 19, 2021 1, 23 4 5 6
Agilent Spectrum A	Malyzer - Element Materia XF 50 Ω DC	High Chan Is Technology PNO: Fast IFGain:Low	INT REF	status 2, 30 MHz - 1 GHz Value -54.109 dBr -54.109 dBr Avg Ty Avg Ty	Swer Limit n N/A pe: Log-Pwr Id>100/100	ep 342.4 m : Ri 11:34/2 T Mkr1 80	6 AM Jul 19, 2021 AM Jul 19, 2021 FARCE ID 2 3 4 5 DET PINNINN DET PINNINN 9.34 MHz
Agilent Spectrum A Od RL R 10 dB/div Re	Malyzer - Element Materia XF 50 Ω DC ef Offset 20.97 dB ef 16.97 dBm	High Chan Is Technology PNO: Fast IFGain:Low	INT REF	status 2, 30 MHz - 1 GHz Value -54.109 dBr -54.109 dBr Augnauto Avg Ty Avg Ho	Limit n N/A pe: Log-Pwr Id>100/100	: Ri 11:34:2 Mkr1 80 -54	6 AM Jul 19, 2021 6 AM Jul 19, 2021 RACE 10 2 3 4 5 6 DET P NNNN DET P NNNN 9.34 MHz 109 dBm
Agilent Spectrum A Agilent Spectrum A Agilent Spectrum A Color Re 10 dB/div Re 6.97	vialyzer - Element Materia K 50 Q DC of Offset 20.97 dB ef 16.97 dBm	High Chan Is Technology PNO: Fast IFGain:Low	INT REF	STATUS 2, 30 MHz - 1 GHz Value -54.109 dBr ALIGNAUTO Avg Ty AvgHo	Limit n N/A pe: Log-Pwr Id>100/100	E RI 11:34:2 Mkr1 80 -54	6 AM Jul 19, 2021 RACE 12 3 4 5 6 TYPE 17 AMMUN 9.34 MHz 109 dBm
Agilent Spectrum A Agilent Spectrum A Agilent Spectrum A Colored B 6.97 -3.03	wałyzer - Element Materia XE 50 Ω DC Sf Offset 20.97 dB ef 16.97 dBm	High Chan Is Technology PNO: Fast IFGain:Low	INT REF	status 2, 30 MHz - 1 GHz Value -54.109 dBr ALIGNAUTO Avg Ty n AvgIHo	Limit n N/A pe: Log-Pwr Id>100/100	E Ri 11:34:2 Mkr1 80 -54	6 AM 3/19/ 2021 6 AM 3/19/ 2021 RACE 12 3/4 5 0 TYPE 12 3/4 5 0 10 9 dBm
Aglient Spectrum A (X) RL R 10 dB/div Re 6.97 -3.03 -13.0	vnalyzer - Element Materia ^{3E} 50 x DC ^{3f} Offset 20.97 dB ^{ef} 16.97 dBm	High Chan Is Technology PNO: Fast IFGain:Low	INT REF	status 2, 30 MHz - 1 GHz Value -54.109 dBr Alignauto Avg Ty n AvgHo	Limit n N/A	: Ri 11:34:2 M 11:34:2 Mkr1 80 -54	6 AM Jul 19, 2021 6 AM Jul 19, 2021 6 AM Jul 19, 2021 7 VPE 12 3 4 5 6 7 VPE 10 9 d Bm
Aglient Spectrum A (M RL R 10 dB/div Re 6.97 -3.03 -13.0 -23.0 -23.0	vnalyzer - Element Materia RE 50 & DC ef Offset 20.97 dB ef 16.97 dBm	High Chan Is Technology PNO: Fast IFGain:Low	INT REF	STATUS 2, 30 MHz - 1 GHz Value -54.109 dBr Avg Ty n Avg Ty	Limit n N/A	E R	6 AM Jul 19, 2021 6 AM Jul 19, 2021 RACE 12 23 4 5 6 TYPE 12 3 4 5 6 MANNA 9:34 MHZ 109 dBm
Agilent Spectrum A () RL R 10 dB/div Re 6.97 -3.03 -13.0 -23.0 -33.0 -43.0	nalyzer - Element Materia E 50 Q DC of Offset 20.97 dB ef 16.97 dBm	High Chan Is Technology PNO: Fast IFGain:Low	INT REF	STATUS 2, 30 MHz - 1 GHz Value -54.109 dBr Avg Ty n Avg Ty	Limit n N/A	: Ri 11:94:2 Mkr1 80 -54	S (8192 pts)
Aglient Spectrum A (V) RL R 10 dB/div Re 6.97 -3.03 -13.0 -33.0 -33.0 -33.0 -33.0	vnalyzer - Element Materia E 50 Q DC of Offset 20.97 dB ef 16.97 dBm	High Chan Is Technology PNO: Fast IFGain:Low	INT REF	STATUS 2, 30 MHz - 1 GHz Value -54.109 dBr Avg Ty n Avg Ty n Avg Ho	Limit n N/A pe: Log-Pwr Id>100/100	E Ri 11:94:2 Mkr1 80 -54	Sout
Agilent Spectrum A Q R 10 B/div 6.97 - -3.03 - -13.0 - -33.0 - -33.0 - -33.0 - -33.0 - -33.0 - -33.0 - -33.0 - -33.0 - -33.0 - -33.0 -	nalyzer - Element Materia E 50 Q DC 50 Q DC of Offset 20.97 dB ef 16.97 dBm 1	High Chan Is Technology PNO: Fast IFGain:Low	INT REF	STATUS 2, 30 MHz - 1 GHz -54.109 dBr Avg Ty n Avg Ty n Avg Ho ship to the state of	Limit n N/A pe: Log-Pwr id> 100/100	E Ri 11:34:2 Mkr1 80 -54	6 AM Jul 19, 2021 AM Jul 19, 2021 AAA Jul 19, 2021 AAA Jul 19, 2021 P. 23 45 6 P. 24
Agilent Spectrum A JJ RL D dB/div Re 10 dB/div 6.97 -3.03 -13.0 -33.0 -43.0 -53.0 -63.0 -63.0 -73.0	analyzer - Element Materia IF 50 0 DC of Offset 20.97 dB of 16.97 dBm 1 10.97 d	High Chan Is Technology PNO: Fast IFGain:Low	INT REF	STATUS	Swer	E Ri 11:34:2 Mkr1 80 -54	6 AM Jul 19, 2021 AM Jul 19, 2021 FACE II 2: 3 4 5 6 9: 34 MHz 109 dBm
Agilent Spectrum A Ju all and a spectrum A Ju all and a spectrum A Ju all and a spectrum A 10 all div Re 13 all div Re -13 all div Re -33 all div Re	Analyzer - Element Materia E 50 x DC of Offset 20.97 dB of 16.97 dB analyzer - Element Materia of 0 ffset 20.97 dB of 0 ffset 20.	High Chan Is Technology PNO: Fast IFGain:Low	INT REF	STATUS	Swer	E Ri 11:34:2 M 11:34:2 Mkr1 80 -54 -54 -54 -54 -54 -54 -54 -54	E (8192 pts)

MSG

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Agilent	E8257D	TGU	2020-11-03	2023-11-03
Attenuator	Fairview Microwave	SA18H-20	TKR	2020-12-18	2021-12-18
Block - DC	Aeroflex	INMET 8535	AMO	2021-02-22	2022-02-22
Cable	Micro-Coax	UFD150A-1-0720-200200	OCA	2021-04-27	2022-04-27
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFP	2021-07-19	2022-07-19

TEST DESCRIPTION

Per 47 CFR 95.2579(a)(1) the emission mask was measured. Emissions more than 150 kHz away from the center frequency must be attenuated below the transmitter output power by at least 20 dB. This was evaluated by the Occupied Bandwidth measurement according to 47 CFR 95.2573(a). In addition, emissions 250 kHz or less above and below the MICS band (402-405 MHz) must be attenuated below the maximum permitted output power by at least 20 dB.

A spectrum analyzer was used to measure the emission mask. A spectrum analyzer using a peak detector with no video filtering was used with a resolution bandwidth equal to approximately 1.0 percent of the emission bandwidth of the EUT. However, various plots were made using different frequency spans and resolution bandwidths in an attempt to not only satisfy the measurement criteria, but to also show that all emissions outside of the occupied band are greatly attenuated.

						XMit 2020.12.30.0
EUT:	Implantable Pulse Generator (IPG), model 4101			Work Order:	AXON0180	
Serial Number:	4022370919			Date:	: 16-Aug-21	
Customer:	Axonics Modulation Technologies, Inc.			Temperature:	24 °C	
Attendees:	Wes Clement			Humidity	: 49.4% RH	
Project:	None			Barometric Pres.:	: 1013 mbar	
Tested by:	Nolan De Ramos	Power	2.9VDC	Job Site:	OC13	
TEST SPECIFICATION	ONS		Test Method			
FCC 95I:2021			ANSI C63.26:2015			
COMMENTS			-			
DEVIATIONS FROM	TEST STANDARD		Set			
Configuration #	AXON0180 - 9 Signature	-				
				Value	Limit	
				(dBc)	≤ (dBc)	Result
Low Channel, 402.3	MHz			-35.18	-20	Pass
Mid Channel, 403.5 M	IHz (Between 401.75 MHz and 402 MHz)			-62.187	-20	Pass
Mid Channel, 403.5 M	/Hz (Between 405 MHz and 405.25 MHz)			-63.992	-20	Pass
High Channel, 405.7	MHz			-35.52	-20	Pass

		Value	Limit	
		(dBc)	≤ (dBc)	Result
		-35.52	-20	Pass

End of Test Report