

Axonics Modulation Technologies, Inc.

Patient Remote (PR) - 2301 FCC 95I:2017 MedRadio

Report # AXON0099.5

NVLAP Lab Code: 200629-0 NVLAP Lab Code: 200676-0

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America. This Report shall not be reproduced, except in full without written approval of the laboratory.

EAR-Controlled Data - This document contains technical data whose export and reexport/retransfer is subject to control by the U.S. Department of Commerce under the Export Administration Act and the Export Administration Regulations. The Department of Commerce's prior written approval may be required for the export or re-export/retransfer of such technical data to any foreign person, foreign entity or foreign organization whether in the United States or abroad.

More: https://www.bis.doc.gov/index.php/forms-documents/regulations-docs/14-commerce-country-chart/fileT

CERTIFICATE OF TEST

Last Date of Test: November 21, 2017 Axonics Modulation Technologies, Inc. Model: Patient Remote (PR) - 2301

Radio Equipment Testing

Standards	
Specification	Method
FCC 95I:2017	ANSI C63.26:2015

Results

Method Clause	Test Description	Applied	Results	Comments
ANSI C63.26 5.4.3	Emission Bandwidth	Yes	Pass	
FCC 95.2579(a)(1)	Emission Mask	Yes	Pass	
ANSI C63.26 5.2.3.3	Conducted Output Power	Yes	Pass	
ANSI C63.26 5.2.3.3, 5.2.7	Radiated Power (EIRP)	Yes	Pass	
ANSI C63.26 5.5.4	Spurious Radiated Emissions	Yes	Pass	
ANSI C63.26 5.6	Frequency Stability	Yes	Pass	
ANSI C63.26 5.7	Spurious Conducted Emissions	Yes	Pass	

Deviations From Test Standards

None

Approved By:

Rod Munro, Operations Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information.

REVISION HISTORY

Revision Number	Description	Date	Page Number
00	None		

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Accredited by A2LA to ISO / IEC 17065 as a product certifier. This allows Element to certify transmitters to FCC and IC specifications.

NVLAP - Each laboratory is accredited by NVLAP to ISO 17025

Canada

ISED - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB). Certification chambers and Open Area Test Sites are filed with ISED.

European Union

European Commission - Within Element, we have a EU Notified Body validated for the EMCD and RED Directives.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIP / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC – Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

OFCA – Recognized by OFCA as a CAB for the acceptance of test data.

Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.

SCOPE

For details on the Scopes of our Accreditations, please visit: <u>http://portlandcustomer.element.com/ts/scope/scope.htm</u> <u>http://gsi.nist.gov/global/docs/cabs/designations.html</u>

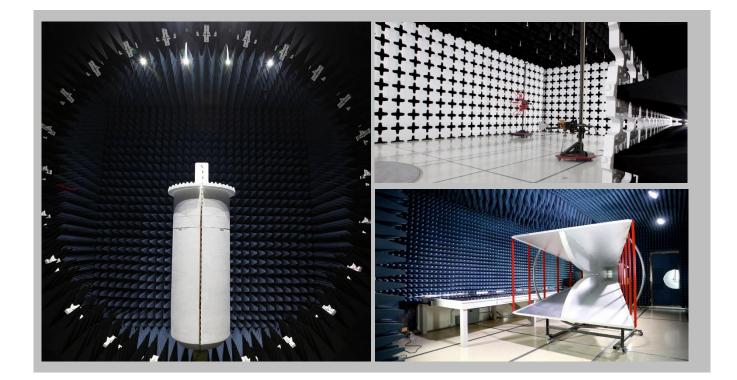
MEASUREMENT UNCERTAINTY

Measurement Uncertainty

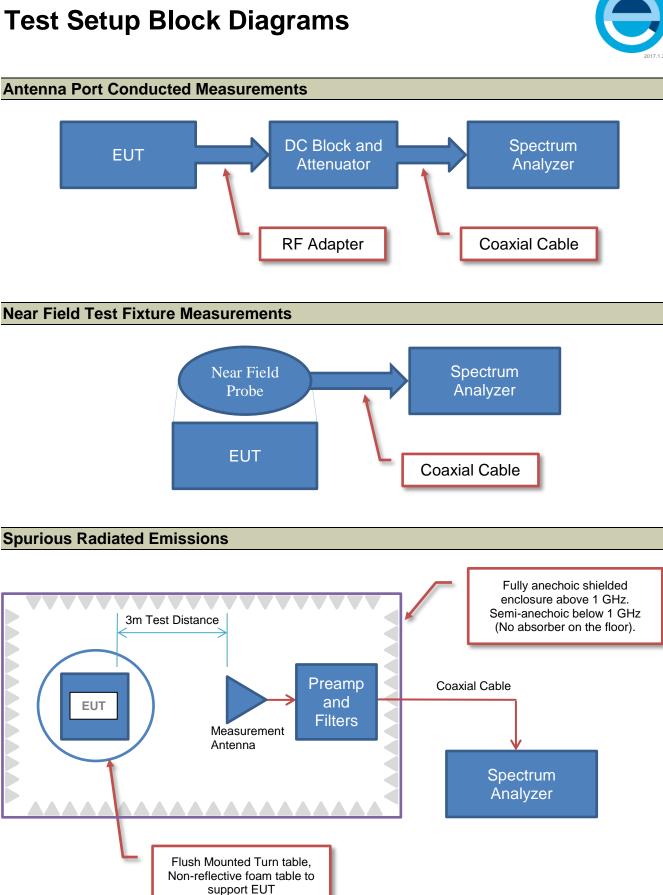
When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

A measurement uncertainty estimation has been performed for each test per our internal quality document QM205.4.6. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) can be found included as part of the applicable test description page. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.


Test	+ MU	- MU
Frequency Accuracy (Hz)	0.0007%	-0.0007%
Amplitude Accuracy (dB)	1.2 dB	-1.2 dB
Conducted Power (dB)	0.3 dB	-0.3 dB
Radiated Power via Substitution (dB)	0.7 dB	-0.7 dB
Temperature (degrees C)	0.7°C	-0.7°C
Humidity (% RH)	2.5% RH	-2.5% RH
Voltage (AC)	1.0%	-1.0%
Voltage (DC)	0.7%	-0.7%
Field Strength (dB)	5.2 dB	-5.2 dB
AC Powerline Conducted Emissions (dB)	2.4 dB	-2.4 dB

FACILITIES



California	Minnesota	New York	Oregon	Texas	Washington
Labs OC01-17	Labs MN01-08, MN10	Labs NY01-04	Labs EV01-12	Labs TX01-09	Labs NC01-05
41 Tesla	9349 W Broadway Ave.	4939 Jordan Rd.	22975 NW Evergreen Pkwy	3801 E Plano Pkwy	19201 120 th Ave NE
Irvine, CA 92618	Brooklyn Park, MN 55445	Elbridge, NY 13060	Hillsboro, OR 97124	Plano, TX 75074	Bothell, WA 98011
(949) 861-8918	(612)-638-5136	(315) 554-8214	(503) 844-4066	(469) 304-5255	(425)984-6600
		NV	LAP		
NVLAP Lab Code: 200676-0	NVLAP Lab Code: 200881-0	NVLAP Lab Code: 200761-0	NVLAP Lab Code: 200630-0	NVLAP Lab Code:201049-0	NVLAP Lab Code: 200629-0
	Innovation, Science and Economic Development Canada				
2834B-1, 2834B-3	2834E-1, 2834E-3	N/A	2834D-1, 2834D-2	2834G-1	2834F-1
		BS	MI		
SL2-IN-E-1154R	SL2-IN-E-1152R	N/A	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R
		VC	CI		
A-0029	A-0109	N/A	A-0108	A-0201	A-0110
	Recognized Phase I CAB for ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA				
US0158	US0175	N/A	US0017	US0191	US0157

Test Setup Block Diagrams

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	Axonics Modulation Technologies, Inc.	
Address:	7575 Irvine Center Drive Suite 200	
City, State, Zip:	Irvine, CA 92618	
Test Requested By:	Franklin Portillo	
Model:	Patient Remote (PR) - 2301	
First Date of Test:	November 7, 2017	
Last Date of Test:	November 21, 2017	
Receipt Date of Samples:	November 2, 2017	
Equipment Design Stage:	Production	
Equipment Condition:	No Damage	
Purchase Authorization:	Verified	

Information Provided by the Party Requesting the Test

Functional Description of the EUT:

Patient Remote Control (PR): a battery-operated device the size of a key fob that uses radio-frequency (RF) signals to communicate with IPG/EPG. The PR allows the patient to adjust stimulation level, to check the status of the IPG/EPG battery charge level, to check the stimulation level in the IPG/EPG, and to turn the stimulation on or off.

Testing Objective:

Seeking FCC authorization for the MedRadio transmitter to FCC Part 95I.

CONFIGURATIONS

Configuration AXON0099-3

Software/Firmware Running during test		
Description	Version	
IPG Link	1.0.1.104	

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Patient Remote	Axonics Modulation Technologies, Inc.	2301	AP1BA70018

Peripherals in test setup boundary			
Description	Manufacturer	Model/Part Number	Serial Number
DC Power Supply (1)	Kikusui	PWC0620	1930492

Remote Equipment Outside of Test Setup Boundary			
Description Manufacturer Model/Part Number Serial Number			
USB Dongle	Bluegiga	BLED112	None
Laptop	Dell	Precision M3800	None

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
DC Power	No	0.7m	No	DC Power Supply (1)	Patient Remote
AC Power	No	1.8m	No	AC Mains	DC Power Supply (1)

Configuration AXON0099- 6

Software/Firmware Running during test		
Description	Version	
IPG Link	1.0.1.104	

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Patient Remote (PR)	Axonics Modulation Technologies, Inc.	2301	AP1BA70024

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
1	11/7/2017	Emission Bandwidth	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
2	11/7/2017	Conducted Output Power	delivered to I devices were added or		EUT remained at Element following the test.
3	11/7/2017	Spurious Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
4	11/7/2017	Emission Mask	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
5	11/7/2017	Frequency Stability	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
6	11/21/2017	Radiated Power (EIRP)	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
7	11/21/2017	Spurious Radiated Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.

EMISSION BANDWIDTH

XMit 2017.09.21

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

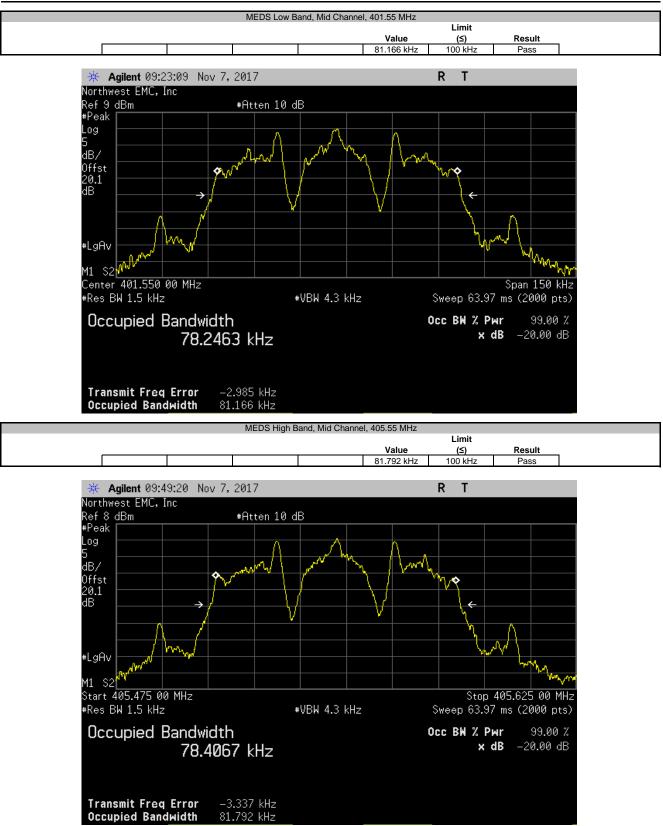
TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Attenuator	Fairview Microwave	SA4014-20	TKV	9-Mar-17	9-Mar-18
Block - DC	Fairview Microwave	SD3379	AMU	20-Apr-17	20-Apr-18
Cable	Micro-Coax	UFD150A-1-0720-200200	NCS	20-Apr-17	20-Apr-18
Analyzer - Spectrum Analyzer	Agilent	E4446A	AAT	2-Jun-17	2-Jun-18
Generator - Signal	Keysight	N5182B	TFY	16-Apr-15	16-Apr-18

TEST DESCRIPTION

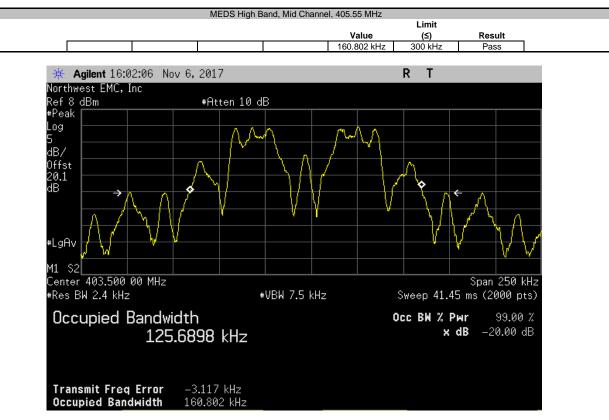
The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. Per 47 CFR 95.2573(a), the emission bandwidth was determined by measuring the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, that are 20 dB down relative to the maximum level of the modulated carrier. A spectrum analyzer using a peak detector with no video filtering was used with a resolution bandwidth equal to approximately 1.0 percent of the emission bandwidth of the EUT.

EMISSION BANDWIDTH



					NweTx 2016.09.14.2	XMit 2017.09.21
EUT:	Patient Remote (PR) - 2301			Work Order:	AXON0099	
Serial Number:	AP1BA70018			Date:	7-Nov-17	
Customer:	Axonics Modulation Technologies, Inc.			Temperature:	22 °C	
Attendees:	Flavio Ono			Humidity:	28% RH	
Project:	None			Barometric Pres.:	1028 mbar	
Tested by:	Richard Mellroth	Power: 2.8	VDC	Job Site:	NC04	
TEST SPECIFICATIO	DNS	Tes	st Method			
FCC 95I:2017		ANS	SI C63.26:2015			
COMMENTS						
Transmitting at defa	TEET STANDARD	n to remote laptop.				
	TEST STANDARD					
None						
Configuration #	3 Signature	flight				
					Limit	
				Value	(≤)	Result
MEDS Low Band, Mi	d Channel, 401.55 MHz			81.166 kHz	100 kHz	Pass
MEDS High Band, Mi	d Channel, 405.55 MHz			81.792 kHz	100 kHz	Pass
MICS Mid Band, Mid	Channel, 403.5 MHz			160.802 kHz	300 kHz	Pass

Report No. AXON0099.5


EMISSION BANDWIDTH

EMISSION BANDWIDTH (MICS)

XMit 2017.09.21

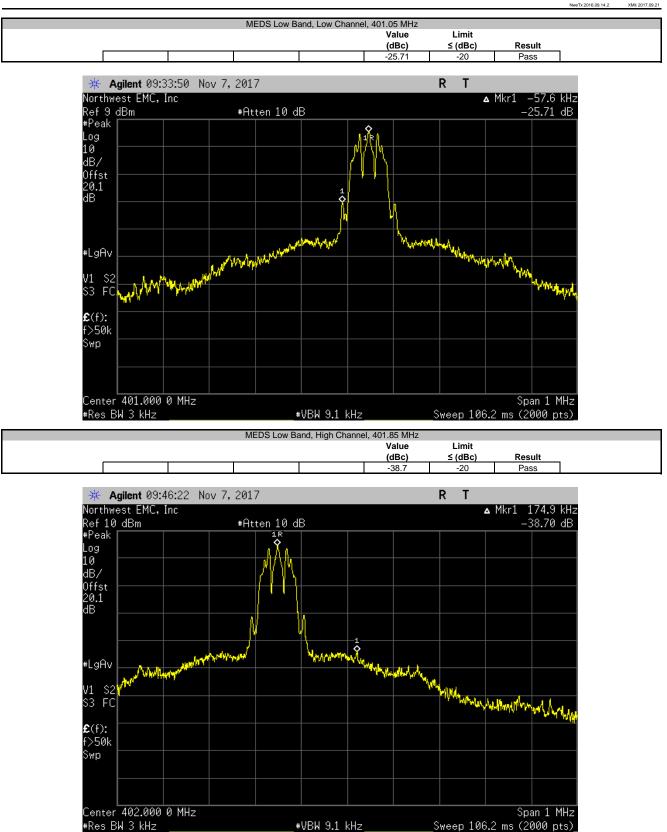
Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Attenuator	Fairview Microwave	SA4014-20	TKV	9-Mar-17	9-Mar-18
Block - DC	Fairview Microwave	SD3379	AMU	20-Apr-17	20-Apr-18
Cable	Micro-Coax	UFD150A-1-0720-200200	NCS	20-Apr-17	20-Apr-18
Analyzer - Spectrum Analyzer	Agilent	E4446A	AAT	2-Jun-17	2-Jun-18
Generator - Signal	Keysight	N5182B	TFY	16-Apr-15	16-Apr-18

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. Per 47 CFR 95.2579(a)(1) the emission mask was measured. Emissions more than 150 kHz away from the center frequency must be attenuated below the transmitter output power by at least 20 dB. This was evaluated by the Occupied Bandwidth measurement according to 47 CFR 95.2573(a). In addition, emissions 250 kHz or less above and below the MICS band (402-405 MHz) must be attenuated below the maximum permitted output power by at least 20 dB.


A spectrum analyzer was used to measure the emission mask. A spectrum analyzer using a peak detector with no video filtering was used with a resolution bandwidth equal to approximately 1.0 percent of the emission bandwidth of the EUT. However, various plots were made using different frequency spans and resolution bandwidths in an attempt to not only satisfy the measurement criteria, but to also show that all emissions outside of the occupied band are greatly attenuated.

						NweTx 2016.09.14.2	2 XMit 2017.09.21
EUT:	Patient Remote (PR) - 230)1			Work Ore	ler: AXON0099	
Serial Number:	AP1BA70018					ite: 7-Nov-17	
Customer:	Axonics Modulation Tech	nologies, Inc.			Temperate	re: 22 °C	
	Flavio Ono					ity: 28% RH	
Project:	None				Barometric Pr	es.: 1028 mbar	
	Richard Mellroth		Power:	2.8 VDC	Job S	ite: NC04	
TEST SPECIFICATI	ONS			Test Method			
FCC 95I:2017				ANSI C63.26:2015			
COMMENTS							
Transmitting at def	ault power setting. EUT p	rogrammed via Bluetooth connection	to remote laptop.				
-		-					
DEVIATIONS FROM	I TEST STANDARD						
None							
		5	n n				
Configuration #	3		MENL				
		Signature	3-				
					Value	Limit	
					(dBc)	≤ (dBc)	Result
	w Channel, 401.05 MHz				-25.7	-20	Pass
	gh Channel, 401.85 MHz				-38.7	-20	Pass
	ow Channel, 405.05 MHz				-26.9	-20	Pass
	igh Channel, 405.85 MHz				-40.1	-20	Pass
	v Channel, 402.3 MHz				-41.5	-20	Pass
MICS Mid Band, Hig	h Channel, 404.7 MHz				-41.0	-20	Pass

Report No. AXON0099.5

weTx 2016.09.14.2 XMit 2017.09.21 MEDS High Band, Low Channel, 405.05 MHz Value Limit (dBc) ≤ (dBc) Result 26.94 -20 Pass R T Agilent 09:47:47 Nov 7, 2017 ☀ ▲ Mkr1 –56.6 kHz Northwest EMC, Inc Ref 10 dBm #Peak #Atten 10 dB -26.94 dB \diamond Log 10 dB/ 0ffst 20.1 dB ō all provided the payment of hand have Josh rows Mint and and way after the #LgAv S2 FC V1 S3 VUL BARANI HARANANA Willel £(f): f>50k Swp Center 405.000 0 MHz Span 1 MHz #Res BW 3 kHz #VBW 9.1 kHz Sweep 106.2 ms (2000 pts) MEDS High Band, High Channel, 405.85 MHz Value Limit (dBc) ≤ (dBc) Result -40.09 -20 Pass Agilent 09:48:20 Nov 7, 2017 兼 R Т Northwest EMC, Inc ▲ Mkr1 159.6 kHz Ref 10 dBm #Peak -40.09 dB #Atten 10 dB Log 10 dB/ 0ffst 20.1 dB ANN Anna Marine Haylowall and the start of t #LgAv Mr. V1 S2 S3 FC and film and an all shows **£**(f): f>50k Swp Center 406.000 0 MHz Span 1 MHz

#Res BW 3 kHz

#VBW 9.1 kHz

Sweep 106.2 ms (2000 pts)

EMISSION MASK (MICS)

MEDS Low Band, High Channel, 401.85 MHz Value Limit ≤ (dBc) (dBc) Result -41.46 20 Pass R T Agilent 08:16:19 Nov 7, 2017 兼 Northwest EMC, Inc ▲ Mkr1 -306.2 kHz Ref 8 dBm #Peak #Atten 10 dB -41.46 dB .og 10 dB/ 0ffst 20.1 dB ANA A #LgAv S2 FC V1 \$3 *** £(f): f>50k Swp Center 402.000 0 MHz Span 1.5 MHz #Res BW 3 kHz #VBW 9.1 kHz Sweep 159.3 ms (2000 pts) MEDS High Band, Low Channel, 405.05 MHz Limit Value (dBc) ≤ (dBc) Result -41 -20 Pass Agilent 08:17:42 Nov 7, 2017 R Т 兼 Northwest EMC, Inc ▲ Mkr1 307.2 kHz Ref 8 dBm #Peak -41.00 dB #Atten 10 dB Log 10 ¦₿/ Offst 20.1 dΒ WWW WWW MAN MAN #LgAv V1 S3 S2 FC What a far **£**(f): f>50k Swp

CONDUCTED OUTPUT POWER (MEDS)

XMit 2017.09.21

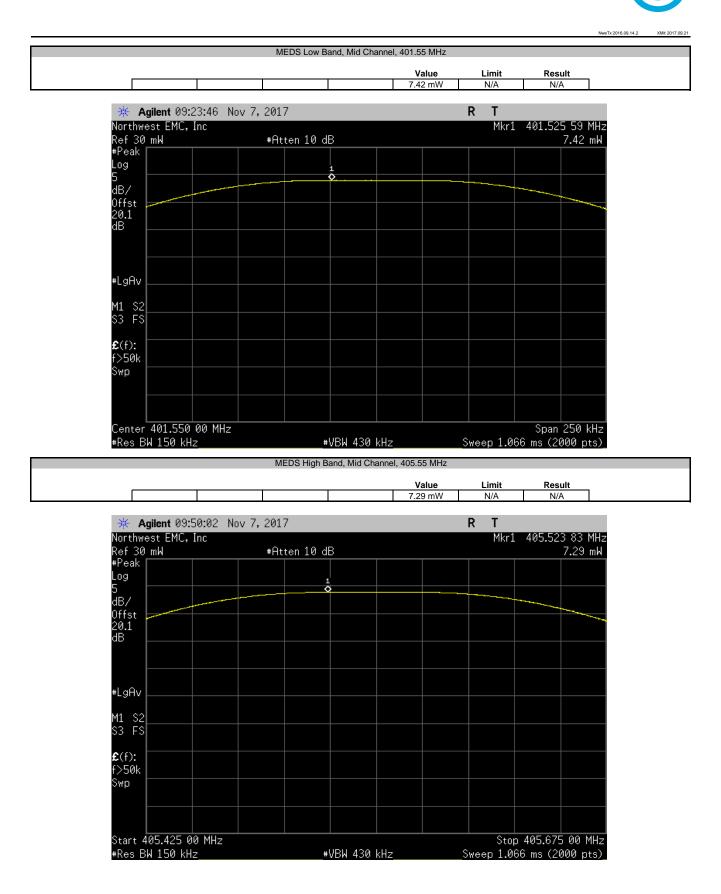
Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

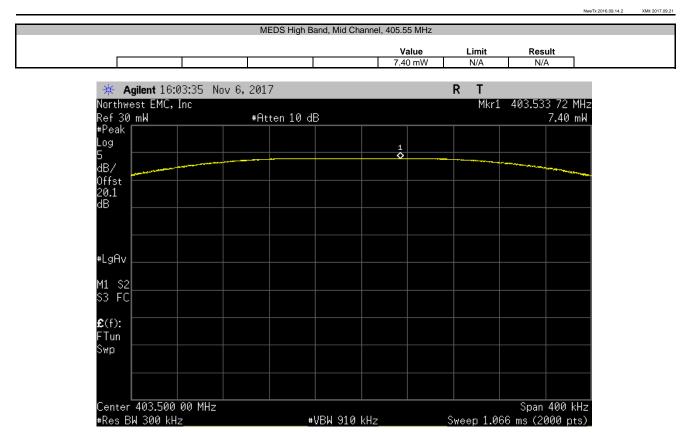
Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Attenuator	Fairview Microwave	SA4014-20	ΤKV	9-Mar-17	9-Mar-18
Block - DC	Fairview Microwave	SD3379	AMU	20-Apr-17	20-Apr-18
Cable	Micro-Coax	UFD150A-1-0720-200200	NCS	20-Apr-17	20-Apr-18
Analyzer - Spectrum Analyzer	Agilent	E4446A	AAT	2-Jun-17	2-Jun-18
Generator - Signal	Keysight	N5182B	TFY	16-Apr-15	16-Apr-18

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. Per FCC Part 2.1046, RSS-GEN, the output power shall be measured at the RF terminal. The peak output power was measured with the EUT configured in the modes listed in the datasheet. The EUT was transmitting at its maximum data rate.


FCC Part 95 and RSS-243 have no conducted output power limit. It is a requirement to characterize this information and that data is contained within this datasheet.

CONDUCTED OUTPUT POWER (MEDS)



				NweTx 2016.09.14.2	XMit 2017.09.21
EUT:	Patient Remote (PR) - 2301		Work Order:	AXON0099	
Serial Number:	AP1BA70018		Date:	7-Nov-17	
Customer:	Axonics Modulation Technologies, Inc.		Temperature:	22 °C	
Attendees:	Flavio Ono		Humidity:	28% RH	
Project:	None		Barometric Pres.:	1028 mbar	
Tested by:	Richard Mellroth	Power: 2.8 VDC	Job Site:	NC04	
TEST SPECIFICATI	ONS	Test Method			
FCC 95I:2017		ANSI C63.26:2015			
COMMENTS		• • • • • • • • • • • • • • • • • • •			
DEVIATIONS FROM	ault power setting (Power Index = 27). EUT programmed via BI				
None					
Configuration #	3 Signature	flict			
			Value	Limit	Result
MEDS Low Band, Mi	id Channel, 401.55 MHz		7.42 mW	N/A	N/A
MEDS High Band, M	lid Channel, 405.55 MHz		7.29 mW	N/A	N/A
MICS Mid Band, Mid	Channel, 403.5 MHz		7.40 mW	N/A	N/A

CONDUCTED OUTPUT POWER (MEDS)

CONDUCTED OUTPUT POWER (MICS)

RADIATED POWER (EIRP)

PSA-ESCI 2017.06.01

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Continuously Transmitting at Mid Ch - MEDS Low Band = 401.55 MHz, Mid Ch - MICS Mid Band = 403.5 MHz & Mid Ch - MEDS High Band = 405.55 MHz

POWER SETTINGS INVESTIGATED

Battery

CONFIGURATIONS INVESTIGATED

AXON0099 - 6

FREQUENCY RANGE INVESTIGATED

Start Frequency 401 MHz

Stop Frequency 406 MHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Power Sensor	Agilent	E4412A	SQE	1/26/2017	12 mo
Meter - Power	Hewlett Packard	E4418A	SPA	1/26/2017	12 mo
Generator - Signal	Agilent	E8257D	TGU	2/5/2015	36 mo
Antenna - Dipole	A.H. Systems, Inc.	FCC-4	ADCA	NCR	0 mo
Cable	Element	10kHz-1GHz RE Cables	OCH	8/1/2017	12 mo
Antenna - Biconilog	Teseq	CBL 6141A	AYE	11/7/2017	24 mo
Analyzer - Spectrum Analyzer	Keysight	N9010A (EXA)	AFQ	12/22/2016	12 mo

TEST DESCRIPTION

Per 95.2567(a)(2), the maximum radiated field strength for a MICS transmitter is 25uW EIRP. The Field Strength of the Fundamental data was converted to EIRP with the formula based upon the Friis transmission equation with 6 dB removed due to reflections from the ground plane: $EIRP = ((E/2)*d)^2/30$ where E is V/m and d = distance = 3m, and EIRP = W (Reference 95.2569(a)).

The Field Strength of the Fundamental was measured in the far-field at an FCC Listed Semi-anechoic Chamber. Spectrum analyzer and linearly polarized antennas were used to measure the radiated field strength of the fundamental.

The orientation of the EUT and measurement antenna were manipulated to maximize the level of emissions. The turntable azimuth was varied to maximize the level of radiated emissions. The height of the measurement antenna was also varied from 1 to 4 meters. The amplitude and frequency of the emissions were noted.

The EUT was configured to transmit in a fixture that simulates the human torso. The dimensions of the test fixture and the characteristics of the tissue substitute material met the requirements 95.2569(c) and FCC KDB 617965. The height of the transmitter was 1.5-meter above the reference ground plane.

RADIATED POWER (EIRP)

Wo	rk Ord	er:		AXC	0N0	099						Dat				1/2						0					.07.11		0		PSA-ES	-
	Proje			Ν	lone)			Т		per				1	21.2	°C			-	1	~1		5	1	-	4				~	_
	Job Si	te:		С	C10)					Hun	nidit	ty:		39	9.4%	RF	1			\langle											
Serial	Numb			P1E					Baro	me	tric	Pre	s.:		10)21	nba	r				Test	ted b	y: .	Johr	nny	Са	nde	elas			
	EU	JT:	Patie	nt R	emo	ote (PR)	- 23	01																							
Confi	guratio	on:	6																													
С	ustom	er:	Axon	ics N	Nod	ulati	ion T	Tech	nolog	gies	, Inc).																				
	ttendee																															
EU	T Pow	er:	Batte	rv																												
			Conti		usly	Tra	insm	nitting	at N	∕lid	Ch -	ME	DS	Lo	w Ba	and	= 4()1.55	M	Ηz, I	Mid C	:h - N	AICS	Mic	d Ba	and	= 4	03.	5 M	Hz a	& Mi	id C
Operati	ng woo		MED																													
D			None	•																												
De	eviation	ns:																														
			Powe	r Tr	ansr	mit I	nde	x = 2	7																							
Co	ommen	ts:																														
st Speci	fication	ne														-	Τος	t Met	ho	Ч												
C 951:20		13																			15											
0 301.20	10															ľ	-UNC		0.20	0.20	15											
Run #	0		Те	st D	ista	ince	e (m))	3		A	nter	na	Hei	iaht	(s)				1 to	4(m)				R	esu	Ilts			Pa	ass	
	-								-	_					<u> </u>	(-/												L				
Γ																																7
-5 +					_		_			-		_		-				_	_	_				-		_						-
-15 -		_		+ +	-		-			-		-		-	-				-	_				-		-	_	-	-			-
																_													_			
25																																
-25 +																																
-35 +																																
ug -45 –																													-			
₩8 -45 +																																_
-55 🕂				+		+	_			_		_		_										_			_	\vdash				_
-65 +				+		+		+	+	-	+		$\left \cdot \right $	-		\vdash	+			_		+	+	+-	+	-		\vdash	+	+	_	-
-75 +				+				+		+	+	-		-					+		+	+		+	+	+	+	\square	-			1
05																																
-85 ⊥ 401	0		01.5		10)2.0)2.5			03.0	h		40;	2 F		404	10		40	4.5		40	5.0			405	. F		л	 06.0
401	.0	4	01.5		40	JZ.U		40	JZ.J		4	03.0	J					404	+.0		40	4.0		40	5.0			400	J.U		4(0.0
															MI	ΗZ										I P	ĸ			v	•	QP
							_					_			_										_			_		-	_	
									olarity/ ansduc													Cor	npared	to								
	Freq		Antenna	a Heigl	ht	Azim	uth		Type	-	De	tecto	r	E	EIRP		E	IRP		Spec	. Limit		Spec.					Сс	omme	ents		
	(MHz)		(me			(degr									Natts))		lBm)			3m)		(dB)									
				_																			_			1.5						
	401.55	0	1	.0		317	' .0		Horz			ΡK		7.3	86E-0	06	-2	21.3		-1	6.0		-5.3	L	_ow ·	401.	.55 N	лHz	, EU	T Ho	riz	
	403.49	~	1	~		104			Horz			ΡK		~	37E-0	~ ~		21.6			6.0		-5.3 Low 401.55 MHz, EUT Horiz -5.6 Mid 403.5 MHz, EUT Horiz									

405.550

401.545

403.495

305.0

297.0

299.0

Horz

Vert

Vert

1.0

1.3

1.4

6.72E-06

6.56E-06

6.27E-06

-21.7

-21.8

-22.0

-16.0

-16.0

-16.0

-5.7

-5.8

-6.0

ΡK

ΡK

ΡK

High 405.55 MHz, EUT Horiz

Low 401.55 MHz, EUT Vert

Mid 403.5 MHz, EUT Vert

Freq (MHz)	Antenna Height (meters)	Azimuth (degrees)	Polarity/ Transducer Type	Detector	EIRP (Watts)	EIRP (dBm)	Spec. Limit (dBm)	Compared to Spec. (dB)	Comments
403.497	1.5	293.0	Vert	PK	5.85E-06	-22.3	-16.0	-6.3	Mid 403.5 MHz, EUT on Side
401.553	1.5	294.0	Vert	PK	5.46E-06	-22.6	-16.0	-6.6	Low 401.55 MHz, EUT on Side
405.545	1.4	116.0	Vert	PK	5.46E-06	-22.6	-16.0	-6.6	High 405.55 MHz, EUT Vert
405.538	1.5	289.0	Vert	PK	4.87E-06	-23.1	-16.0	-7.1	High 405.55 MHz, EUT on Side
401.550	2.1	205.0	Horz	PK	2.17E-06	-26.6	-16.0	-10.6	Low 401.55 MHz, EUT on Side
403.500	2.1	201.0	Horz	PK	2.03E-06	-26.9	-16.0	-10.9	Mid 403.5 MHz, EUT on Side
405.553	2.2	210.0	Horz	PK	1.98E-06	-27.0	-16.0	-11.0	High 405.55 MHz, EUT on Side
401.543	1.6	196.0	Horz	PK	1.37E-06	-28.6	-16.0	-12.6	Low 401.55 MHz, EUT Vert
403.498	1.6	203.0	Horz	PK	1.28E-06	-28.9	-16.0	-12.9	Mid 403.5 MHz, EUT Vert
405.557	2.8	203.0	Horz	PK	7.89E-07	-31.0	-16.0	-15.0	High 405.55 MHz, EUT Vert
403.517	3.0	28.0	Vert	PK	1.65E-07	-37.8	-16.0	-21.8	Mid 403.5 MHz, EUT Horiz
401.547	3.0	200.0	Vert	PK	1.54E-07	-38.1	-16.0	-22.1	Low 401.55 MHz, EUT Horiz
405.533	3.0	213.0	Vert	PK	1.54E-07	-38.1	-16.0	-22.1	High 405.55 MHz, EUT Horiz

SPURIOUS RADIATED EMISSIONS

PSA-ESCI 2017.06.01

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Continuously Transmitting at Mid Ch - MEDS Low Band = 401.55 MHz, Mid Ch - MICS Mid Band = 403.5 MHz & Mid Ch - MEDS High Band = 405.55 MHz

POWER SETTINGS INVESTIGATED

Battery

CONFIGURATIONS INVESTIGATED

AXON0099 - 6

FREQUENCY RANGE INVESTIGATED

Start Frequency 30 MHz

Stop Frequency 5000 MHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Cable	Element	1-8GHz RE Cables	OCJ	7/13/2017	12 mo
Amplifier - Pre-Amplifier	Miteq	AMF-4D-010120-30-10P-1	AOP	7/13/2017	12 mo
Antenna - Double Ridge	EMCO	3115	AHB	3/21/2016	24 mo
Cable	Element	10kHz-1GHz RE Cables	OCH	8/1/2017	12 mo
Amplifier - Pre-Amplifier	Miteq	AM-1402	AOZ	8/1/2017	12 mo
Antenna - Biconilog	Teseq	CBL 6141A	AYE	11/7/2017	24 mo
Analyzer - Spectrum Analyzer	Keysight	N9010A (EXA)	AFQ	12/22/2016	12 mo

TEST DESCRIPTION

The highest gain of each type of antenna to be used with the EUT was tested. For each configuration, the spectrum was scanned throughout the specified range. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and the EUT antenna in three orthogonal axis, and adjusting measurement antenna height and polarization, and manipulating the EUT antenna in 3 orthogonal planes (per ANSI C63.26). A preamp was used for this test in order to provide sufficient measurement sensitivity.

Per CFR 47 95.2579(a), field strength measurements were performed and compared to the specified limits.

SPURIOUS RADIATED EMISSIONS

\M/	ork Order:	AXON	1099			Date:	11/21	/17	1	EmiR5 2017.07.11	PS	A-ESCI 201		
	Project:						-fe	1.6	A.	-				
	Job Site:				10	Humidity:		9.4% RH						
Soria	I Number:				arom	netric Pres.:	1021 n		Tostod h	y: Johnny Cand				
Seria		Patient Rem				CUIC FIES.	10211	ivai	Tested b	y. Johnny Cand	6103			
Conf	iguration:			.,-230										
Com	iguration.	o Axonics Mo	dulation	Toohr	ologi									
	sustomer:	Franklin Pol		Techi	lologie	3S, INC.								
			tilio											
EL	JT Power:													
Operat	ing Mode:	Mid Ch - ME					ow Band =	= 401.55 MHz	z, Mid Ch - MICS	Mid Band = 403 .	.5 MHz &			
D	eviations:	None												
C	omments:	Power Tran	smit Inde	ex = 2	7									
st Speci C 951:20	ifications							NSI C63.26			-			
Run #	1	Test Dist	ance (m	1)	3	Antenna H	eight(s)	1	to 3(m)	Results	Pas	s		
80 70														
60 -														
50 -														
50 -						/								
w//ngp						/								
w//ngp 50														
50 - 40 - 30 - 20 -									1000			10000		

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
2810.825	48.6	4.0	2.5	94.0	3.0	0.0	Horz	AV	0.0	52.6	54.0	-1.4	Low 401.55 MHz, EUT Horiz
2824.465	48.3	4.0	2.5	109.0	3.0	0.0	Horz	AV	0.0	52.3	54.0	-1.7	Mid 403.5 MHz, EUT on Side
2824.465	48.1	4.0	1.9	4.0	3.0	0.0	Horz	AV	0.0	52.1	54.0	-1.9	Mid 403.5 MHz, EUT Horiz
2838.845	47.9	4.2	2.6	110.0	3.0	0.0	Horz	AV	0.0	52.1	54.0	-1.9	High 405.55 MHz, EUT Vert
2838.815	47.4	4.2	1.8	281.0	3.0	0.0	Horz	AV	0.0	51.6	54.0	-2.4	High 405.55 MHz, EUT Horiz
2824.465	47.2	4.0	1.9	4.0	3.0	0.0	Horz	AV	0.0	51.2	54.0	-2.8	Mid 403.5 MHz, EUT Vert
2810.825	47.1	4.0	2.0	358.0	3.0	0.0	Horz	AV	0.0	51.1	54.0	-2.9	Low 401.55 MHz, EUT Vert
2810.820	46.6	4.0	2.7	108.0	3.0	0.0	Horz	AV	0.0	50.6	54.0	-3.4	Low 401.55 MHz, EUT on Side
2838.830	45.3	4.2	1.0	175.0	3.0	0.0	Vert	AV	0.0	49.5	54.0	-4.5	High 405.55 MHz, EUT on Side
2838.835	45.2	4.2	1.9	282.0	3.0	0.0	Horz	AV	0.0	49.4	54.0	-4.6	High 405.55 MHz, EUT on Side
2007.745	46.0	2.6	3.0	153.0	3.0	0.0	Horz	AV	0.0	48.6	54.0	-5.4	Low 401.55 MHz, EUT Horiz
2824.480	44.4	4.0	1.1	162.0	3.0	0.0	Vert	AV	0.0	48.4	54.0	-5.6	Mid 403.5 MHz, EUT on Side
2017.495	45.7	2.6	2.7	309.0	3.0	0.0	Horz	AV	0.0	48.3	54.0	-5.7	Mid 403.5 MHz, EUT on Side
2810.815	44.3	4.0	3.0	262.0	3.0	0.0	Vert	AV	0.0	48.3	54.0	-5.7	Low 401.55 MHz, EUT Vert
2824.485	43.8	4.0	1.7	346.0	3.0	0.0	Vert	AV	0.0	47.8	54.0	-6.2	Mid 403.5 MHz, EUT Horiz
2838.825	43.5	4.2	1.1	334.0	3.0	0.0	Vert	AV	0.0	47.7	54.0	-6.3	High 405.55 MHz, EUT Vert
2824.440	43.4	4.0	3.0	218.0	3.0	0.0	Vert	AV	0.0	47.4	54.0	-6.6	Mid 403.5 MHz, EUT Vert
2838.835	43.0	4.2	2.1	260.0	3.0	0.0	Vert	AV	0.0	47.2	54.0	-6.8	High 405.55 MHz, EUT Horiz
2810.805	43.0	4.0	1.2	316.0	3.0	0.0	Vert	AV	0.0	47.0	54.0	-7.0	Low 401.55 MHz, EUT on Side
2007.705	44.0	2.6	1.2	135.0	3.0	0.0	Vert	AV	0.0	46.6	54.0	-7.4	Low 401.55 MHz, EUT Vert
3649.940	38.1	8.3	1.9	246.0	3.0	0.0	Vert	AV	0.0	46.4	54.0	-7.6	High 405.55 MHz, EUT on Side
3613.915	38.4	7.9	1.9	235.0	3.0	0.0	Horz	AV	0.0	46.3	54.0	-7.7	Low 401.55 MHz, EUT Horiz

							Polarity/						
_			Antenna			External	Transducer		Distance			Compared to	
Freq	Amplitude	Factor	Height	Azimuth	Test Distance	Attenuation	Туре	Detector	Adjustment	Adjusted	Spec. Limit	Spec.	
(MHz)	(dBuV)	(dB)	(meters)	(degrees)	(meters)	(dB)			(dB)	(dBuV/m)	(dBuV/m)	(dB)	Commonto
0004 500	07.0		4.0	000.0				A) (45.4	54.0		Comments
3631.500	37.2 40.4	8.2	1.8	306.0 161.0	3.0	0.0 0.0	Horz	AV AV	0.0 0.0	45.4 44.4	54.0 54.0	-8.6 -9.6	Mid 403.5 MHz, EUT on Side Low 401.55 MHz, EUT Horiz
2810.815		4.0	1.2		3.0		Vert						Mid 403.5 MHz, EUT on Side
3631.515	35.4	8.2	2.5	39.0	3.0	0.0	Vert	AV	0.0	43.6	54.0	-10.4	High 405.55 MHz, EUT Vert
3649.910	33.8	8.3	2.0	155.0	3.0	0.0	Horz	AV	0.0	42.1	54.0	-11.9	Mid 403.5 MHz, EUT on Side
2017.455	37.7	2.6	1.2	70.0	3.0	0.0	Vert	AV	0.0	40.3	54.0	-13.7	-
2027.725	37.8	2.5	2.7	83.0	3.0	0.0	Horz	AV	0.0	40.3	54.0	-13.7	High 405.55 MHz, EUT Vert
2027.740	37.5	2.5	1.2	256.0	3.0	0.0	Vert	AV	0.0	40.0	54.0	-14.0	High 405.55 MHz, EUT on Side
3613.890	32.0	7.9	1.2	215.0	3.0	0.0	Vert	AV	0.0	39.9	54.0	-14.1	Low 401.55 MHz, EUT Vert
807.000	15.3	15.9	1.0	56.0	3.0	0.0	Horz	QP	0.0	31.2	46.0	-14.8	Mid 403.5 MHz, EUT on Side
803.097	14.8	16.0	1.0	320.0	3.0	0.0	Horz	QP	0.0	30.8	46.0	-15.2	Low 401.55 MHz, EUT Horiz
803.102	14.6	16.0	1.0	52.0	3.0	0.0	Vert	QP	0.0	30.6	46.0	-15.4	Low 401.55 MHz, EUT Vert
806.992	14.6	15.9	1.0	224.0	3.0	0.0	Vert	QP	0.0	30.5	46.0	-15.5	Mid 403.5 MHz, EUT on Side
811.098	14.7	15.8	1.0	302.0	3.0	0.0	Horz	QP	0.0	30.5	46.0	-15.5	High 405.55 MHz, EUT Vert
811.105	14.4	15.8	1.0	191.0	3.0	0.0	Vert	QP	0.0	30.2	46.0	-15.8	High 405.55 MHz, EUT on Side
2824.465	50.4	4.0	2.5	109.0	3.0	0.0	Horz	PK	0.0	54.4	74.0	-19.6	Mid 403.5 MHz, EUT on Side
2824.465	50.1	4.0	1.9	4.0	3.0	0.0	Horz	PK	0.0	54.1	74.0	-19.9	Mid 403.5 MHz, EUT Horiz
2810.860	50.1	4.0	2.5	94.0	3.0	0.0	Horz	PK	0.0	54.1	74.0	-19.9	Low 401.55 MHz, EUT Horiz
2838.800	49.2	4.2	2.6	110.0	3.0	0.0	Horz	PK	0.0	53.4	74.0	-20.6	High 405.55 MHz, EUT Vert
2838.820	49.1	4.2	1.8	281.0	3.0	0.0	Horz	PK	0.0	53.3	74.0	-20.7	High 405.55 MHz, EUT Horiz
2824.635	49.2	4.0	1.9	4.0	3.0	0.0	Horz	PK	0.0	53.2	74.0	-20.8	Mid 403.5 MHz, EUT Vert
2810.880	48.6	4.0	2.0	358.0	3.0	0.0	Horz	PK	0.0	52.6	74.0	-21.4	Low 401.55 MHz, EUT Vert
2810.830	48.4	4.0	2.7	108.0	3.0	0.0	Horz	PK	0.0	52.4	74.0	-21.6	Low 401.55 MHz, EUT on Side
3631.425	43.5	8.2	1.8	306.0	3.0	0.0	Horz	PK	0.0	51.7	74.0	-22.3	Mid 403.5 MHz, EUT on Side
2838.685	47.5	4.2	1.0	175.0	3.0	0.0	Vert	PK	0.0	51.7	74.0	-22.3	High 405.55 MHz, EUT on Side
2838.860	47.4	4.2	1.9	282.0	3.0	0.0	Horz	PK	0.0	51.6	74.0	-22.4	High 405.55 MHz, EUT on Side
1210.565	33.4	-1.9	2.2	346.0	3.0	0.0	Horz	AV	0.0	31.5	54.0	-22.5	Mid 403.5 MHz, EUT on Side
2824.520	47.3	4.0	1.1	162.0	3.0	0.0	Vert	PK	0.0	51.3	74.0	-22.7	Mid 403.5 MHz, EUT on Side
3649.910	43.0	8.3	1.9	246.0	3.0	0.0	Vert	PK	0.0	51.3	74.0	-22.7	High 405.55 MHz, EUT on Side
2017.645	48.5	2.6	2.7	309.0	3.0	0.0	Horz	PK	0.0	51.1	74.0	-22.9	Mid 403.5 MHz, EUT on Side
3613.970	43.2	7.9	1.9	235.0	3.0	0.0	Horz	PK	0.0	51.1	74.0	-22.9	Low 401.55 MHz, EUT Horiz
3631.385	42.7	8.2	2.5	39.0	3.0	0.0	Vert	PK	0.0	50.9	74.0	-23.1	Mid 403.5 MHz, EUT on Side
2007.695	48.2	2.6	3.0	153.0	3.0	0.0	Horz	PK	0.0	50.8	74.0	-23.2	Low 401.55 MHz, EUT Horiz
2824.490	46.7	4.0	1.7	346.0	3.0	0.0	Vert	PK	0.0	50.7	74.0	-23.3	Mid 403.5 MHz, EUT Horiz
2810.695	46.5	4.0	3.0	262.0	3.0	0.0	Vert	PK	0.0	50.5	74.0	-23.5	Low 401.55 MHz, EUT Vert
1204.635	32.4	-1.9	1.0	293.0	3.0	0.0	Vert	AV	0.0	30.5	54.0	-23.5	Low 401.55 MHz, EUT Vert
2824.525	46.4	4.0	3.0	218.0	3.0	0.0	Vert	PK	0.0	50.4	74.0	-23.6	Mid 403.5 MHz, EUT Vert
1216.705	32.3	-1.9	1.2	76.0	3.0	0.0	Vert	AV	0.0	30.4	54.0	-23.6	High 405.55 MHz, EUT on Side
2838.720	46.0	4.2	2.1	260.0	3.0	0.0	Vert	PK	0.0	50.2	74.0	-23.8	High 405.55 MHz, EUT Horiz
2838.735	46.0	4.2	1.1	334.0	3.0	0.0	Vert	PK	0.0	50.2	74.0	-23.8	High 405.55 MHz, EUT Vert
1210.370	32.1	-1.9	2.4	234.0	3.0	0.0	Vert	AV	0.0	30.2	54.0	-23.8	Mid 403.5 MHz, EUT on Side
2810.855	45.7	4.0	1.2	316.0	3.0	0.0	Vert	PK	0.0	49.7	74.0	-24.3	Low 401.55 MHz, EUT on Side
3649.800	40.7	8.3	2.0	155.0	3.0	0.0	Horz	PK	0.0	49.0	74.0	-25.0	High 405.55 MHz, EUT Vert
2007.685	46.3	2.6	1.2	135.0	3.0	0.0	Vert	PK	0.0	48.9	74.0	-25.1	Low 401.55 MHz, EUT Vert
1204.615	30.2	-1.9	1.2	273.0	3.0	0.0	Horz	AV	0.0	28.3	54.0	-25.7	Low 401.55 MHz, EUT Horiz
2810.680	43.6	4.0	1.0	161.0	3.0	0.0	Vert	PK	0.0	47.6	74.0	-26.4	Low 401.55 MHz, EUT Horiz
	39.7	7.9	1.2	215.0	3.0	0.0		PK	0.0	47.6	74.0	-26.4	Low 401.55 MHz, EUT Vert
3613.830	28.5	-1.9	1.2	199.0	3.0	0.0	Vert	AV	0.0	26.6	74.0 54.0	-20.4	High 405.55 MHz, EUT Vert
1216.655							Horz						5
2017.485	43.1	2.6	1.2	70.0	3.0	0.0	Vert	PK	0.0	45.7	74.0	-28.3	Mid 403.5 MHz, EUT on Side High 405.55 MHz, EUT on Side
2027.730	42.3	2.5	1.2	256.0	3.0	0.0	Vert	PK	0.0	44.8	74.0	-29.2	5
2027.575	41.9	2.5	2.7	83.0	3.0	0.0	Horz	PK	0.0	44.4	74.0	-29.6	High 405.55 MHz, EUT Vert
1210.775	41.6	-1.9	2.2	346.0	3.0	0.0	Horz	PK	0.0	39.7	74.0	-34.3	Mid 403.5 MHz, EUT on Side
1210.510	41.6	-1.9	2.4	234.0	3.0	0.0	Vert	PK	0.0	39.7	74.0	-34.3	Mid 403.5 MHz, EUT on Side
1216.485	40.2	-1.9	1.2	76.0	3.0	0.0	Vert	PK	0.0	38.3	74.0	-35.7	High 405.55 MHz, EUT on Side
1204.760	39.9	-1.9	1.0	293.0	3.0	0.0	Vert	PK	0.0	38.0	74.0	-36.0	Low 401.55 MHz, EUT Vert
1204.715	39.3	-1.9	1.0	273.0	3.0	0.0	Horz	PK	0.0	37.4	74.0	-36.6	Low 401.55 MHz, EUT Horiz
1216.710	38.0	-1.9	1.9	199.0	3.0	0.0	Horz	PK	0.0	36.1	74.0	-37.9	High 405.55 MHz, EUT Vert

XMit 2017.09.21

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Chamber - Temperature/Humidity	Tenney	T6S	TBG	NCR	NCR
Thermometer	Omega Engineering, Inc.	HH311	DUH	3-Apr-15	3-Apr-18
Meter - Multimeter	Fluke	111	MMM	18-Feb-16	18-Feb-19
Attenuator	Fairview Microwave	SA4014-20	ΤKV	9-Mar-17	9-Mar-18
Block - DC	Fairview Microwave	SD3379	AMU	20-Apr-17	20-Apr-18
Cable	Micro-Coax	UFD150A-1-0720-200200	NCS	20-Apr-17	20-Apr-18
Analyzer - Spectrum Analyzer	Agilent	E4446A	AAT	2-Jun-17	2-Jun-18
Generator - Signal	Keysight	N5182B	TFY	16-Apr-15	16-Apr-18

TEST DESCRIPTION

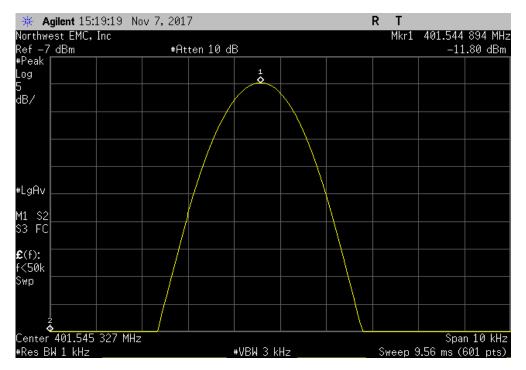
The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The spectrum analyzer is configured with a precision frequency reference that exceeds the stability requirement of the transmitter. The EUT was placed inside a temperature / humidity chamber.

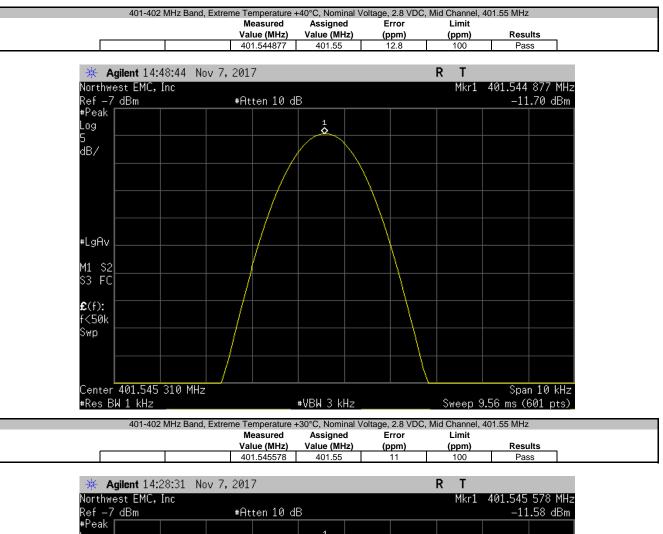
Variation of Supply Voltage

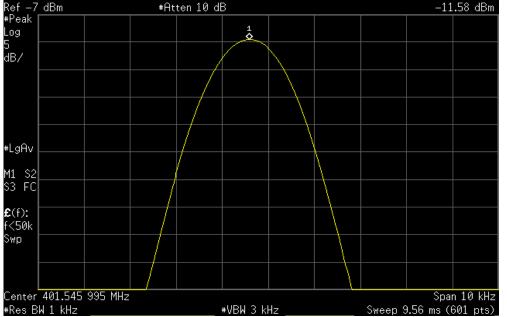
The primary supply voltage was varied from 2.1 VDC to 3.3 VDC, as specified by the manufacturer. A DC lab supply was used to vary the supply voltage.

Variation of Ambient Temperature

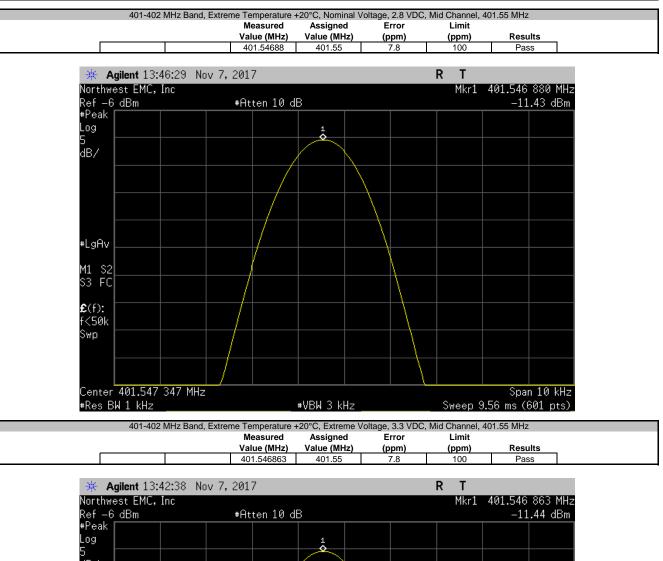
Using a temperature chamber, the transmit frequency was recorded at intervals of 10°C over the specified temperature range of 0°C to 55°C.

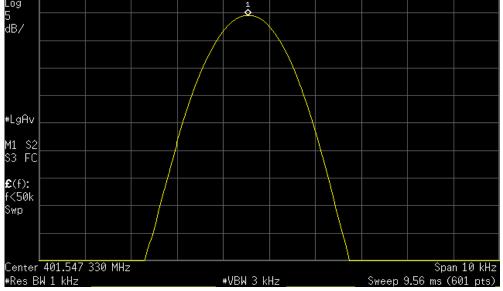

EUT:	Patient Remote (PR) - 23	01				Work Order:	AXON0099				
Serial Number:							7-Nov-17				
	Axonics Modulation Tech	nnologies, Inc.				Temperature:					
Attendees: Project:	Flavio Ono None					Humidity: 2 Barometric Pres.: 2					
	Richard Mellroth		Power: 2.8 VDC			Job Site:					
EST SPECIFICATI			Test Method	d		000 01101					
CC 95I:2017			ANSI C63.26	5:2015							
DMMENTS ansmitting at default power setting. EUT programmed via Bluetooth connection to remote laptop. EVIATIONS FROM TEST STANDARD											
one	I IEST STANDARD										
onfiguration #	3	Signature	flict	Measured	Assigned	Error	Limit				
				Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results			
01-402 MHz MEDS ktreme Temperatu											
	MEDS Low Band, Mid Cha	nnel, 401.55 MHz		401.545344	401.55	11.6	100	Pass			
	MEDS Low Band, Mid Cha	nnel, 401.55 MHz		401.544894	401.55	12.7	100	Pass			
	MEDS Low Band, Mid Cha	nnel, 401.55 MHz		401.544877	401.55	12.8	100	Pass			
	MEDS Low Band, Mid Cha	nnel, 401.55 MHz		401.545578	401.55	11	100	Pass			
xtreme Temperatu	MEDS Low Band, Mid Cha			401.54688	401.55	7.8	100	Pass			
	Extreme Voltage, 3.3 VDC MEDS Low Band, Mid Cha	innel, 401.55 MHz		401.546863	401.55	7.8	100	Pass			
	Extreme Voltage, 2.1 VDC MEDS Low Band, Mid Cha			401.54688	401.55	7.8	100	Pass			
	MEDS Low Band, Mid Cha	nnel, 401.55 MHz		401.547014	401.55	7.4	100	Pass			
xtreme Temperatu	MEDS Low Band, Mid Cha	nnel, 401.55 MHz		401.547899	401.55	5.2	100	Pass			
05-406 MHz MEDS xtreme Temperatu	re +55°C										
xtreme Temperatu				405.545126	405.55	12	100	Pass			
xtreme Temperatu				405.544675	405.55	13.1	100	Pass			
xtreme Temperatu	MEDS High Band, Mid Cha re +30°C	annel, 405.55 MHz		405.544658	405.55	13.2	100	Pass			
treme Temperatu	MEDS High Band, Mid Cha re +20°C	annel, 405.55 MHz		405.545328	405.55	11.5	100	Pass			
	Nominal Voltage, 2.8 VDC MEDS High Band, Mid Cha Extreme Voltage, 3.3 VDC	annel, 405.55 MHz		405.54668	405.55	8.2	100	Pass			
	MEDS High Band, Mid Cha Extreme Voltage, 2.1 VDC	annel, 405.55 MHz		405.546631	405.55	8.3	100	Pass			
xtreme Temperatu	MEDS High Band, Mid Cha			405.546679	405.55	8.2	100	Pass			
	MEDS High Band, Mid Cha	annel, 405.55 MHz		405.546763	405.55	8	100	Pass			
02-405 MHz MICS xtreme Temperatu	MEDS High Band, Mid Cha Band	annel, 405.55 MHz		405.547698	405.55	5.7	100	Pass			
xtreme Temperatu	MICS Mid Band, Mid Chan	nel, 403.5 MHz		403.49521	403.5	11.9	100	Pass			
	MICS Mid Band, Mid Chan	nel, 403.5 MHz		403.494809	403.5	12.9	100	Pass			
	MICS Mid Band, Mid Chan	nel, 403.5 MHz		403.494809	403.5	12.9	100	Pass			
ktreme Temperatu	MICS Mid Band, Mid Chan			403.495428	403.5	11.3	100	Pass			
	MICS Mid Band, Mid Chan Extreme Voltage, 3.3 VDC	nel, 403.5 MHz		403.496813	403.5	7.9	100	Pass			
	MICS Mid Band, Mid Chan Extreme Voltage, 2.1 VDC	nel, 403.5 MHz		403.496781	403.5	8	100	Pass			
	MICS Mid Band, Mid Chan			403.496814	403.5	7.9	100	Pass			
xtreme Temperatu	MICS Mid Band, Mid Chan	nel, 403.5 MHz		403.496846	403.5	7.8	100	Pass			
xtreme Temperatu											

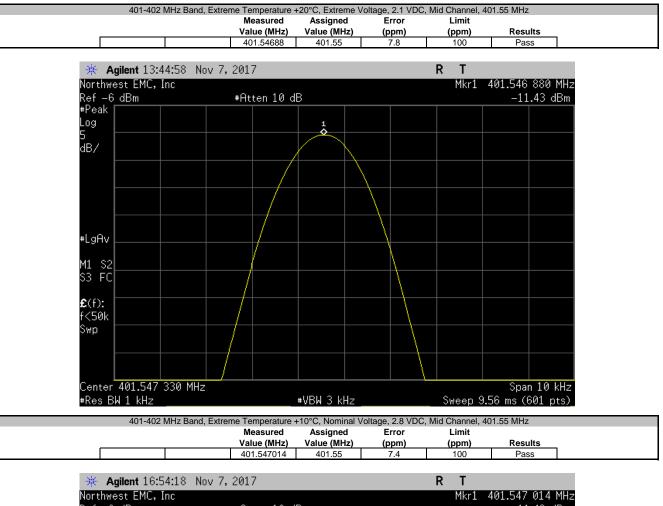

XMit 2017.09.21

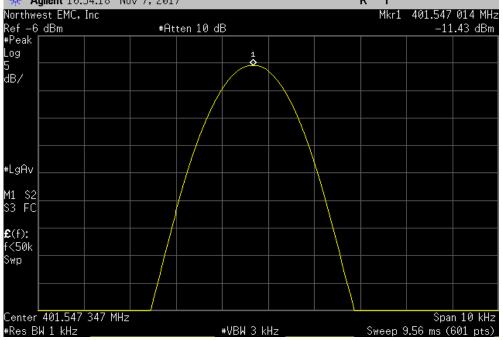

weTx 2016.09.14.2

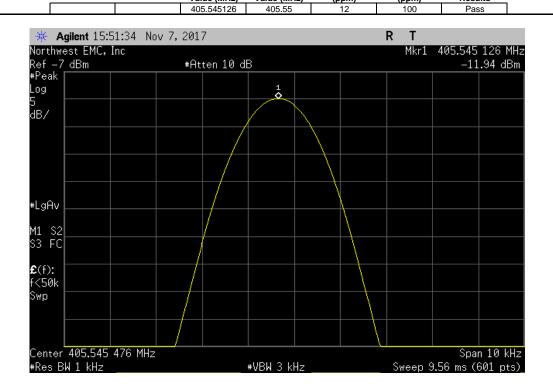
401-402 MHz Band, Extreme Temperature +55°C, Nominal Voltage, 2.8 VDC, Mid Channel, 401.55 MHz Measured Assigned Error Limit Value (MHz) Value (MHz) (ppm) (ppm) Results 401.545344 401.55 11.6 100 Pass Agilent 15:50:47 Nov 7, 2017 R * Т Mkr1 401.545 344 MHz Northwest EMC, Inc Ref -7 dBm #Peak #Atten 10 dB -11.86 dBm Log dB/ #LgAv M1 S2 S3 FC £(f): f<50k Swp Center 401.545 811 MHz Span 10 kHz #Res BW 1 kHz ₩VBW 3 kHz Sweep 9.56 ms (601 pts) 401-402 MHz Band, Extreme Temperature +50°C, Nominal Voltage, 2.8 VDC, Mid Channel, 401.55 MHz Measured Assigned Limit Error Value (MHz) Value (MHz) Results (ppm) (ppm) 401.544894 401.55 12.7 100 Pass







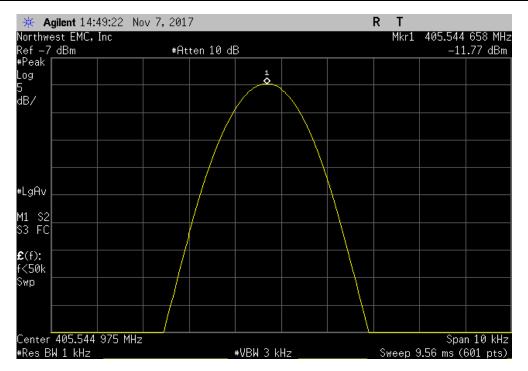




XMit 2017.09.21

weTx 2016.09.14.2

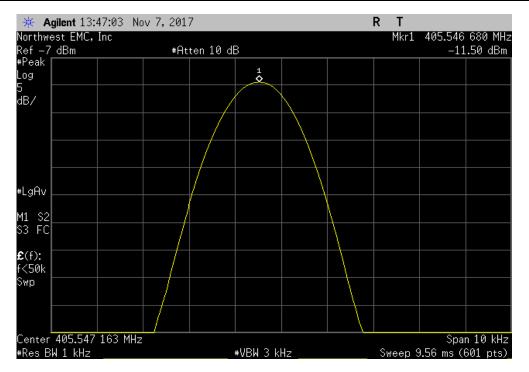
401-402 MHz Band, Extreme Temperature 0°C, Nominal Voltage, 2.8 VDC, Mid Channel, 401.55 MHz Measured Assigned Error Limit Value (MHz) Value (MHz) (ppm) (ppm) Results 401.547899 401.55 5.2 100 Pass Agilent 16:29:56 Nov 7, 2017 R ☀ Т Mkr1 401.547 899 MHz Northwest EMC, Inc Ref -6 dBm #Peak #Atten 10 dB -11.29 dBm Log dB/ #LgAv M1 S2 S3 FC £(f): f<50k Swp Center 401.548 349 MHz Span 10 kHz #Res BW 1 kHz ₩VBW 3 kHz Sweep 9.56 ms (601 pts) 405-406 MHz Band, Extreme Temperature +55°C, Nominal Voltage, 2.8 VDC, Mid Channel, 405.55 MHz Measured Assigned Limit Error Value (MHz) Value (MHz) Results (ppm) (ppm)



XMit 2017.09.21

weTx 2016.09.14.2

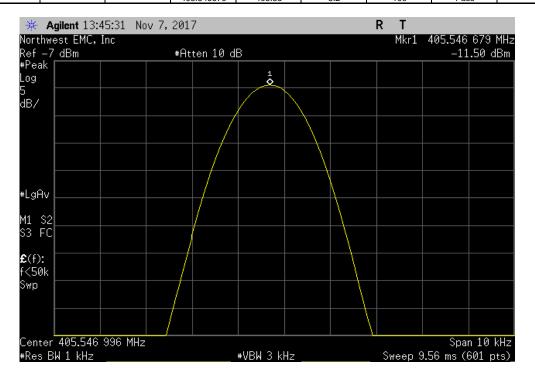
405-406 MHz Band, Extreme Temperature +50°C, Nominal Voltage, 2.8 VDC, Mid Channel, 405.55 MHz Measured Assigned Error Limit Value (MHz) Value (MHz) (ppm) (ppm) Results 405.544675 405.55 13.1 100 Pass Agilent 15:19:55 Nov 7, 2017 R ** Т Mkr1 405.544 675 MHz Northwest EMC, Inc Ref -7 dBm #Peak #Atten 10 dB -11.87 dBm 1 Log dB/ #LgAv M1 S2 S3 FC £(f): f<50k Swp Center 405.544 975 MHz Span 10 kHz #Res BW 1 kHz ₩VBW 3 kHz Sweep 9.56 ms (601 pts) 405-406 MHz Band, Extreme Temperature +40°C, Nominal Voltage, 2.8 VDC, Mid Channel, 405.55 MHz Measured Assigned Limit Error Value (MHz) Value (MHz) Results (ppm) (ppm) 405.544658 405.55 13.2 100 Pass



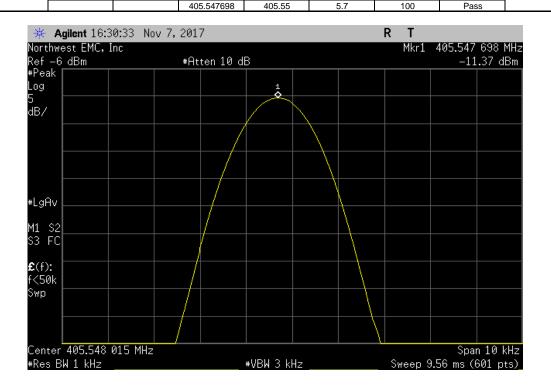
XMit 2017.09.21

weTx 2016.09.14.2

405-406 MHz Band, Extreme Temperature +30°C, Nominal Voltage, 2.8 VDC, Mid Channel, 405.55 MHz Measured Assigned Error Limit Value (MHz) Value (MHz) (ppm) (ppm) Results 405.545328 405.55 11.5 100 Pass Agilent 14:29:01 Nov 7, 2017 R ** Т Mkr1 405.545 328 MHz Northwest EMC, Inc Ref -7 dBm #Peak #Atten 10 dB -11.65 dBm 1 Log _ dB∕ #LgAv M1 S2 S3 FC £(f): f<50k Swp Center 405.545 661 MHz Span 10 kHz #Res BW 1 kHz ₩VBW 3 kHz Sweep 9.56 ms (601 pts) 405-406 MHz Band, Extreme Temperature +20°C, Nominal Voltage, 2.8 VDC, Mid Channel, 405.55 MHz Limit Measured Assigned Error Value (MHz) Value (MHz) Results (ppm) (ppm) 405.54668 405.55 8.2 100 Pass

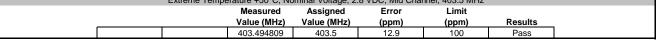


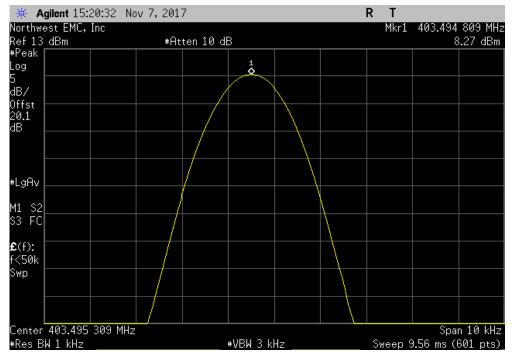
XMit 2017.09.21


weTx 2016.09.14.2

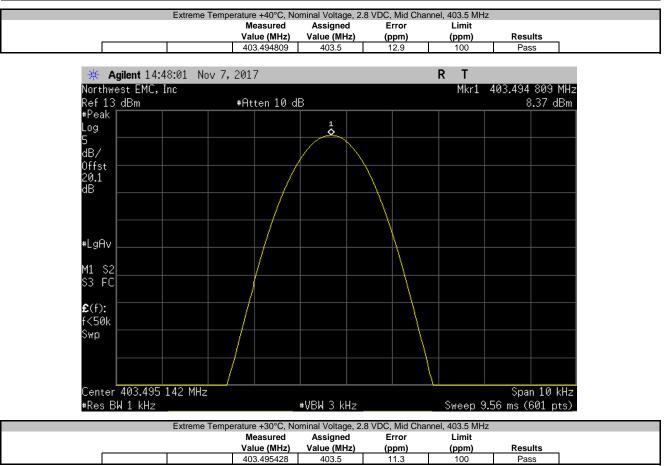
405-406 MHz Band, Extreme Temperature +20°C, Extreme Voltage, 3.3 VDC, Mid Channel, 405.55 MHz Measured Assigned Error Limit Value (MHz) Value (MHz) (ppm) (ppm) Results 405.546631 405.55 8.3 100 Pass Agilent 13:43:12 Nov 7, 2017 R ** Т Mkr1 405.546 631 MHz Northwest EMC, Inc Ref -7 dBm #Peak #Atten 10 dB -11.52 dBm 1 Log _ dB∕ #LgAv M1 S2 S3 FC £(f): f<50k Swp Center 405.547 014 MHz Span 10 kHz #Res BW 1 kHz ₩VBW 3 kHz Sweep 9.56 ms (601 pts) 405-406 MHz Band, Extreme Temperature +20°C, Extreme Voltage, 2.1 VDC, Mid Channel, 405.55 MHz Measured Assigned Limit Error Value (MHz) Value (MHz) Results (ppm) (ppm) 405.546679 405.55 8.2 100 Pass

weTx 2016.09.14.2 XMit 2017.09.21 405-406 MHz Band, Extreme Temperature +10°C, Nominal Voltage, 2.8 VDC, Mid Channel, 405.55 MHz Measured Assigned Error Limit Value (MHz) Value (MHz) (ppm) (ppm) Results 405.546763 405.55 100 Pass 8 Agilent 16:54:51 Nov 7, 2017 R ** Т Mkr1 405.546 763 MHz Northwest EMC, Inc Ref -7 dBm #Peak #Atten 10 dB -11.51 dBm 1 Log _ dB∕ #LgAv M1 S2 S3 FC £(f): f<50k Swp Center 405.547 163 MHz Span 10 kHz #Res BW 1 kHz ₩VBW 3 kHz Sweep 9.56 ms (601 pts) 405-406 MHz Band, Extreme Temperature 0°C, Nominal Voltage, 2.8 VDC, Mid Channel, 405.55 MHz Measured Assigned Error Limit Value (MHz) Value (MHz) Results (ppm) (ppm)

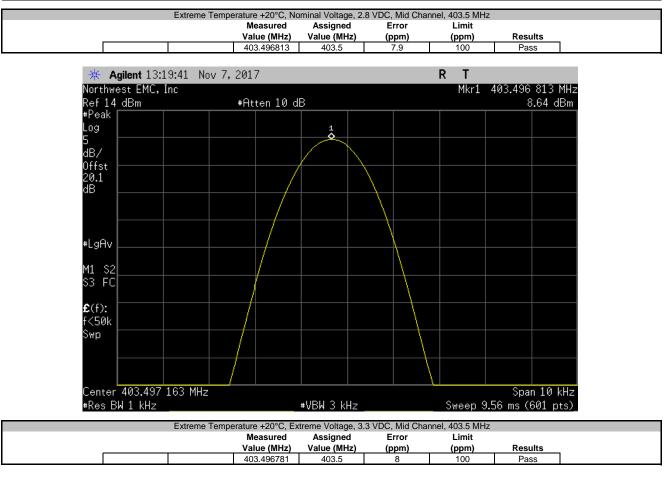


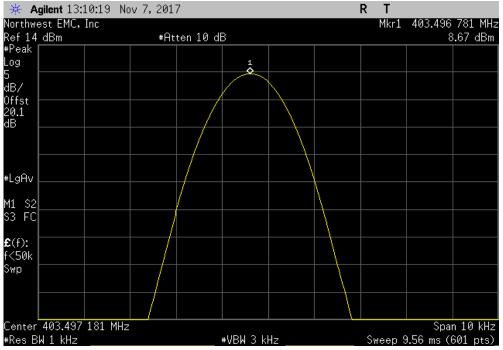


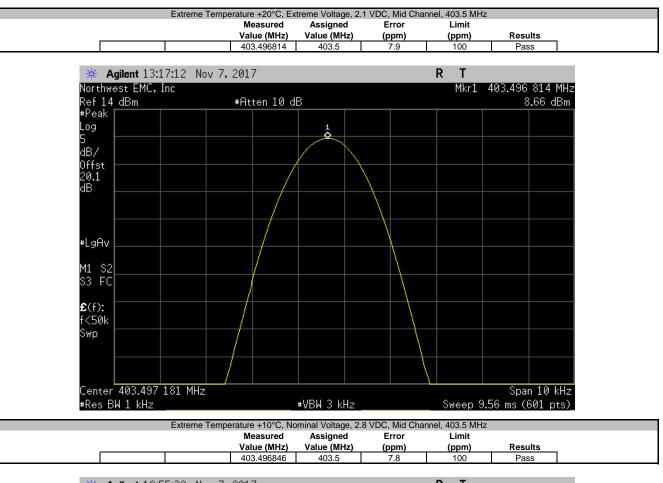
XMit 2017.09.21

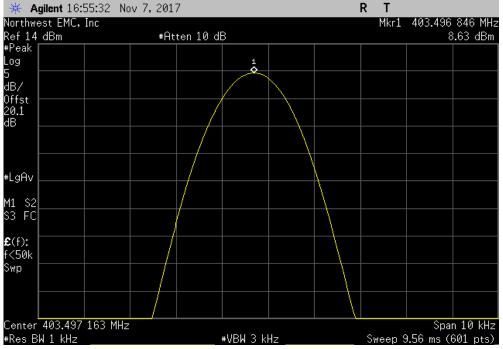

weTx 2016.09.14.2

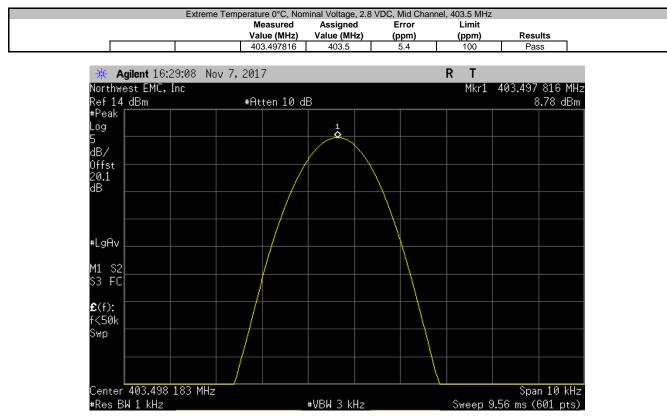
Extreme Temperature +55°C, Nominal Voltage, 2.8 VDC, Mid Channel, 403.5 MHz Measured Assigned Error Limit Value (MHz) Value (MHz) (ppm) (ppm) Results 403.49521 403.5 11.9 100 Pass Agilent 15:48:23 Nov 7, 2017 R ☀ Т Mkr1 403.495 210 MHz Northwest EMC, Inc Ref 13 dBm #Peak #Atten 10 dB 8.21 dBm 1 Log 5 dB/ 0ffst 20.1 dB #LgAv M1 S2 S3 FC £(f): f<50k Swp Center 403.495 643 MHz Span 10 kHz #Res BW 1 kHz ₩VBW 3 kHz Sweep 9.56 ms (601 pts) Extreme Temperature +50°C, Nominal Voltage, 2.8 VDC, Mid Channel, 403.5 MHz Assigned Limit Measured Error











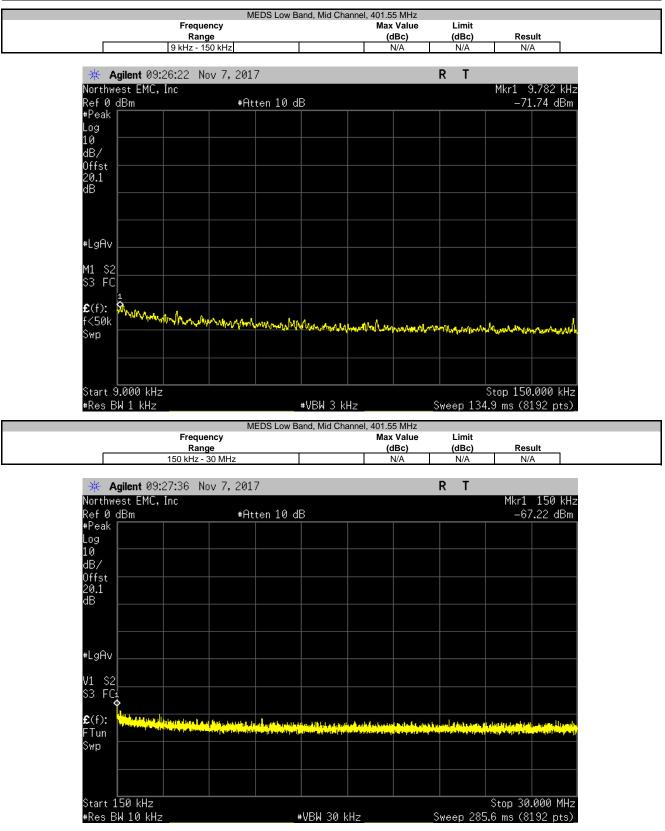
XMit 2017.09.21

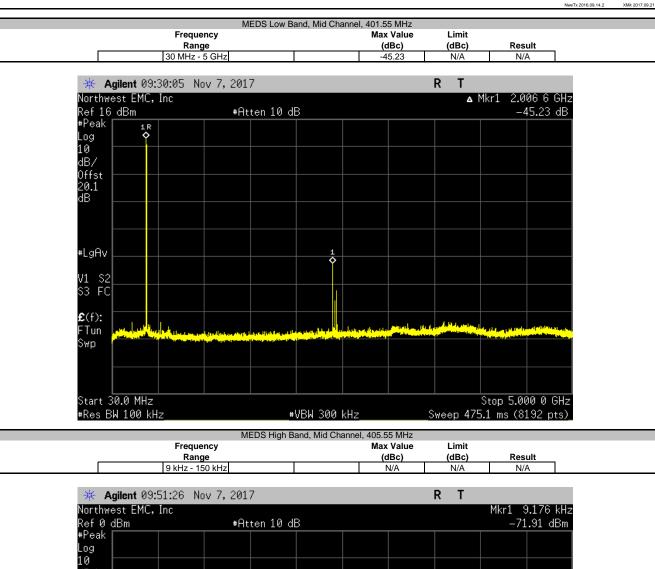
Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

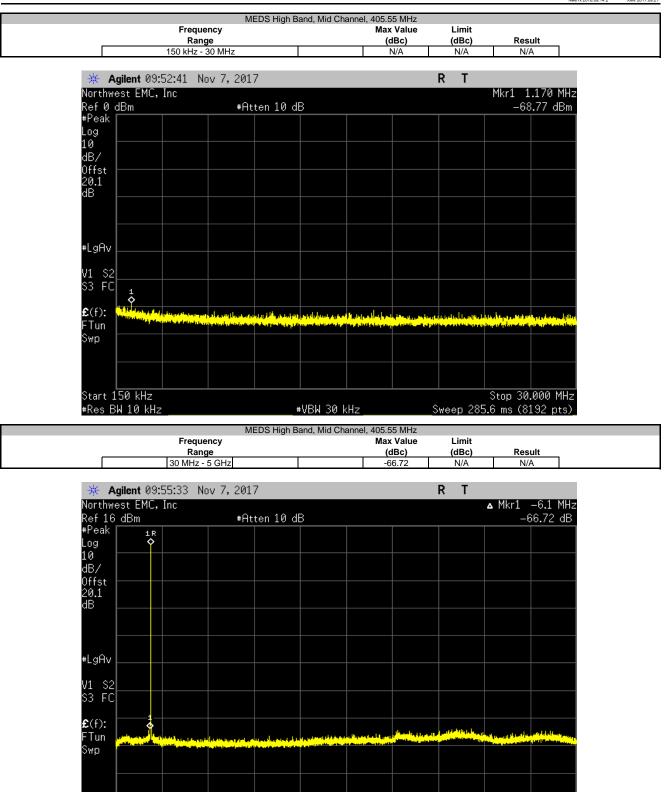
Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Attenuator	Fairview Microwave	SA4014-20	TKV	9-Mar-17	9-Mar-18
Block - DC	Fairview Microwave	SD3379	AMU	20-Apr-17	20-Apr-18
Cable	Micro-Coax	UFD150A-1-0720-200200	NCS	20-Apr-17	20-Apr-18
Analyzer - Spectrum Analyzer	Agilent	E4446A	AAT	2-Jun-17	2-Jun-18
Generator - Signal	Keysight	N5182B	TFY	16-Apr-15	16-Apr-18

TEST DESCRIPTION


The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. Per FCC Part 2.1051, RSS-GEN, the spurious emissions shall be measured at the RF terminal. The peak spurious emissions were measured with the EUT configured to the modes listed in the datasheet. The EUT was transmitting at its maximum data rate.


FCC Part 95 and RSS-243 have no conducted spurious emissions limit. It is a requirement to characterize this information and that data is contained within this datasheet.

					NweTx 2016.09.14.2	XMit 2017.09.21			
	Patient Remote (PR) - 230	01		Work Order:					
Serial Number:	AP1BA70018			Date:	7-Nov-17				
Customer:	Axonics Modulation Tech	nnologies, Inc.		Temperatures	22 °C				
Attendees:	Flavio Ono			Humidity:	28% RH				
Project:	None			Barometric Pres.:	1028 mbar				
	Richard Mellroth		Power: 2.8 VDC	Job Site:	NC04				
TEST SPECIFICAT	TEST SPECIFICATIONS Test Method								
FCC 95I:2017			ANSI C63.26:2015						
COMMENTS									
Transmitting at def	fault power setting. EUT p	programmed via Bluetooth connec	tion to remote laptop.						
	5 1	· · · · · · · · · · · · · · · · · · ·							
DEVIATIONS FROM	M TEST STANDARD								
None									
None			01 0						
None Configuration #	3		Rust						
	3	Signature	flist						
	3	Signature	Frequency	Max Value	Limit				
	3	Signature	Frequency Range	Max Value (dBc)	Limit (dBc)	Result			
Configuration #	3 lid Channel, 401.55 MHz	Signature				Result N/A			
Configuration # MEDS Low Band, M		Signature	Range	(dBc)	(dBc)				
Configuration # MEDS Low Band, M MEDS Low Band, M	lid Channel, 401.55 MHz	Signature	Range 9 kHz - 150 kHz	(dBc) N/A	(dBc) N/A	N/A			
Configuration # MEDS Low Band, M MEDS Low Band, M MEDS Low Band, M	lid Channel, 401.55 MHz lid Channel, 401.55 MHz	Signature	Range 9 kHz - 150 kHz 150 kHz - 30 MHz	(dBc) N/A N/A	(dBc) N/A N/A	N/A N/A			
Configuration # MEDS Low Band, M MEDS Low Band, M MEDS Low Band, M MEDS High Band, M	lid Channel, 401.55 MHz lid Channel, 401.55 MHz lid Channel, 401.55 MHz	Signature	Range 9 kHz - 150 kHz 150 kHz - 30 MHz 30 MHz - 5 GHz	(dBc) N/A N/A -45.23	(dBc) N/A N/A N/A	N/A N/A N/A			
Configuration # MEDS Low Band, M MEDS Low Band, M MEDS Low Band, M MEDS High Band, M MEDS High Band, M	lid Channel, 401.55 MHz lid Channel, 401.55 MHz lid Channel, 401.55 MHz did Channel, 405.55 MHz	Signature	Range 9 kHz - 150 kHz 150 kHz - 30 MHz 30 MHz - 5 GHz 9 kHz - 150 kHz	(dBc) N/A N/A -45.23 N/A	(dBc) N/A N/A N/A N/A	N/A N/A N/A N/A			
Configuration # MEDS Low Band, M MEDS Low Band, M MEDS Low Band, M MEDS High Band, N MEDS High Band, N MEDS High Band, N	lid Channel, 401.55 MHz lid Channel, 401.55 MHz lid Channel, 405.55 MHz lid Channel, 405.55 MHz lid Channel, 405.55 MHz	Signature	Range 9 kHz - 150 kHz 150 kHz - 30 MHz 30 MHz - 5 GHz 9 kHz - 150 kHz 150 kHz - 30 MHz	(dBc) N/A N/A -45.23 N/A N/A	(dBc) N/A N/A N/A N/A N/A	N/A N/A N/A N/A			
Configuration # MEDS Low Band, M MEDS Low Band, M MEDS Ligh Band, N MEDS High Band, N MEDS High Band, N MICS Mid Band, Mic	lid Channel, 401.55 MHz lid Channel, 401.55 MHz lid Channel, 401.55 MHz lid Channel, 405.55 MHz lid Channel, 405.55 MHz lid Channel, 405.55 MHz	Signature	Range 9 kHz 150 kHz 150 kHz 30 MHz 30 MHz 5 GHz 9 kHz 150 kHz 150 kHz 30 MHz 30 MHz 5 GHz 9 kHz 150 kHz 30 MHz 5 GHz 30 MHz 5 GHz 30 MHz 5 GHz 30 MHz 5 GHz 30 MHz 5 GHz	(dBc) N/A N/A -45.23 N/A N/A -66.72	(dBc) N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A			
Configuration # MEDS Low Band, M MEDS Low Band, M MEDS Low Band, N MEDS High Band, N MEDS High Band, Ni MICS Mid Band, Mic MICS Mid Band, Mic	lid Channel, 401.55 MHz lid Channel, 401.55 MHz lid Channel, 401.55 MHz did Channel, 405.55 MHz did Channel, 405.55 MHz did Channel, 405.55 MHz d Channel, 405.55 MHz	Signature	Range 9 kHz - 150 kHz 150 kHz - 30 MHz 30 MHz - 5 GHz 9 kHz - 150 kHz 150 KHz - 30 MHz 30 MHz - 5 GHz 9 kHz - 150 kHz 9 kHz - 150 kHz	(dBc) N/A N/A -45.23 N/A N/A -66.72 N/A	(dBc) N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A			

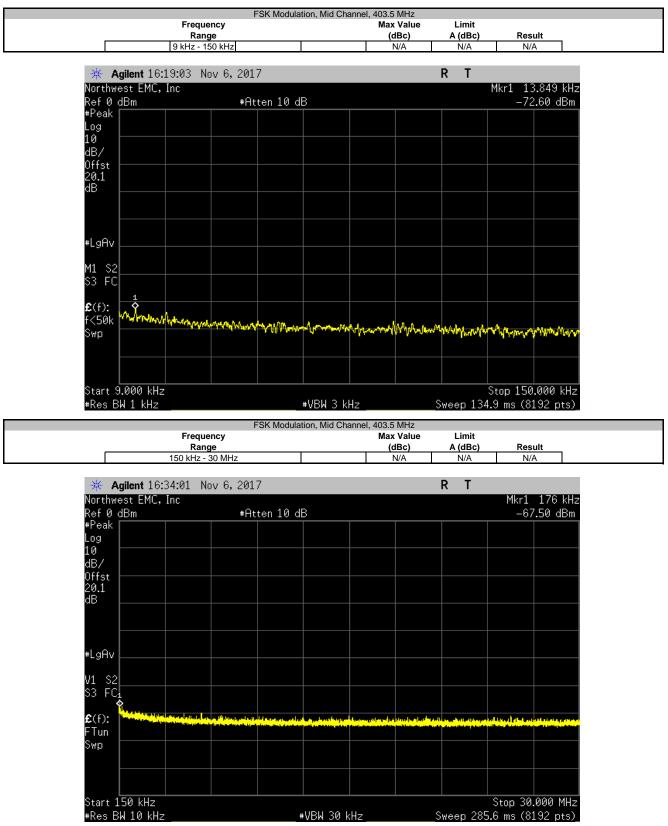


#Peak								
Log								
10								
dB/								
Offst								
20.1 dB								
dB								
#LgAv								
M1 S2								
\$3 FC								
1								
£(f):								
f<50k	wana malaya wa	A Bearing	A ches and a	مل ماريد ا				A
Swp		a di matakatan	an Affine Cala fr	ALA CHARAC A	LANG AN ALL IN	and the second secon	a na ann an ann an an an an an an an an	And a second
Start 9.000 kHz							Stop 1E0	000 LU-
				1-	~		Stop 150	
#Res BW 1 kHz			⊭VBW 3 kH	HZ	>	weep 134	. 9 ms (81	.92 pts)_

weTx 2016.09.14.2 XMit 2017.09.21

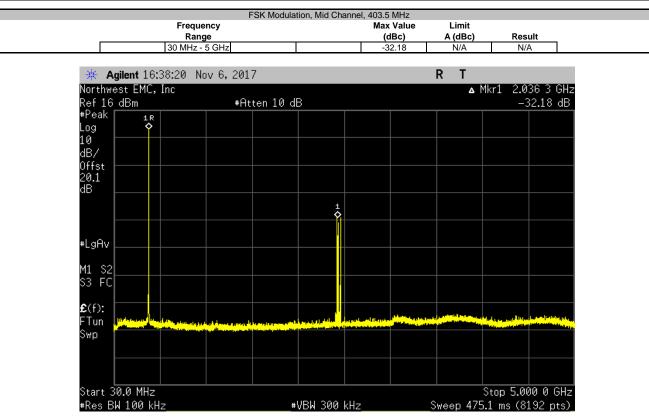
Start 3<mark>0.0 MH</mark>z

#Res BW 100 kHz


#VBW 300 kHz

Stop 5.000 0 GHz

Sweep 475.1 ms (8192 pts)


SPURIOUS CONDUCTED EMISSIONS (MICS)

SPURIOUS CONDUCTED EMISSIONS (MICS)

