Report No:CCISE170604406

FCC REPORT

Applicant: LAVA INTERNATIONAL (H.K) LIMITED

Address of Applicant: UNIT L 1/F MAU LAM COMM BLDG 16-18 MAU LAM ST,

JORDAN KL, HK

Equipment Under Test (EUT)

Product Name: Mobile Phone

Model No.: R2

Trade mark: LAVA

FCC ID: 2AEE8LAVAR2

Applicablestandards: FCC CFR Title 47 Part 15 Subpart B

Date of sample receipt: 08 Jun., 2017

Date of Test: 08 Jun., to 10 Jul., 2017

Date of report issued: 12 Jul., 2017

Test Result: Pass *

*In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCISproduct certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery orfalsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	12 Jul., 2017	Original

Tested by:	Mike ou			
	Test Engineer			
Reviewed by:	2 Man Lee	Date:	12 Jul., 2017	

Project Engineer

3 Contents

			Page
1	С	COVER PAGE	1
2	V	/ERSION	2
3	С	CONTENTS	3
4	TI	EST SUMMARY	4
5	G	SENERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	5
	5.3	TEST MODE	5
	5.4	Measurement Uncertainty	5
	5.5	DESCRIPTION OF SUPPORT UNITS	6
	5.6	LABORATORY FACILITY	6
	5.7	LABORATORY LOCATION	
	5.8	TEST INSTRUMENTS LIST	7
6	T	EST RESULTS ANDMEASUREMENT DATA	
	6.1	CONDUCTED EMISSION	8
	6.2	RADIATED EMISSION	
7	T	EST SETUP PHOTO	17
R	F	UT CONSTRUCTIONAL DETAILS	12

4 Test Summary

Test Item	Section in CFR 47	Result
Conducted Emission	Part15.107	Pass
Radiated Emission	Part15.109	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	LAVA INTERNATIONAL (H.K) LIMITED
Address of Applicant:	UNIT L 1/F MAU LAM COMM BLDG 16-18 MAU LAM ST, JORDAN KL, HK
Manufacturer	LAVA INTERNATIONAL (H.K) LIMITED
Address of Manufacturer:	UNIT L 1/F MAU LAM COMM BLDG 16-18 MAU LAM ST, JORDAN KL, HK

5.2 General Description of E.U.T.

Product Name:	Mobile Phone
Model No.:	R2
Power supply:	Rechargeable Li-ion Battery DC3.8V-2700mAh
	Model: CLV-15
AC adapter :	Input: AC100-240V 50/60Hz 0.15A
	Output: DC 5.0V, 1A

5.3 Test Mode

Operating mode	Detail description
PC mode	Keep the EUT in Downloading mode(Worst case)
Charging+Recording mode	Keep the EUT in Charging+Recording mode
Charging+Playing mode	Keep the EUT in Charging+Playing mode
FM mode	Keep the EUT in FM receiver mode
GPS mode	Keep the EUT in GPS receiver mode

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

5.4 Measurement Uncertainty

Items	Expanded Uncertainty (Confidence of 95%)
Conducted Emission (9kHz ~ 30MHz)	2.14 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	4.24 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	4.35 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	4.44 dB (k=2)
Radiated Emission (18GHz ~ 26.5GHz)	4.56 dB (k=2)

Report No: CCISE170604406

5.5 Description of Support Units

Manufacturer	Description	Model	Serial Number	FCC ID/DoC
DELL	PC	OPTIPLEX745	N/A	DoC
DELL	MONITOR	E178FPC	N/A	DoC
DELL	KEYBOARD	SK-8115	N/A	DoC
DELL	MOUSE	MOC5UO	N/A	DoC
HP	Printer	CB495A	05257893	DoC
MERCURY	Wireless router	MW150R	12922104015	FCC ID
NAKAMICHI	Bluetooth earphone	T8	N/A	FCC ID

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.7 Laboratory Location

Shenzhen ZhongjianNanfang Testing Co., Ltd.

Address: No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Website: http://www.ccis-cb.com

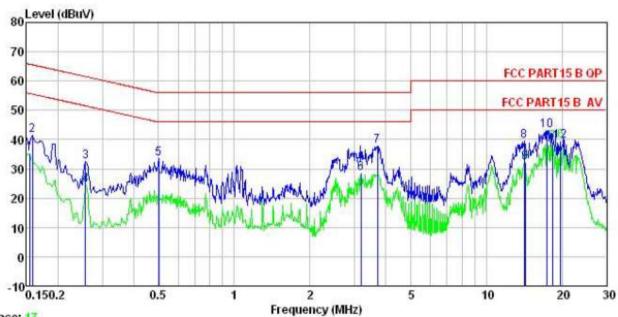
Tel: +86-755-23118282 Fax:+86-755-23116366 Email: info@ccis-cb.com

5.8 Test Instruments list

Radia	Radiated Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
1	3m SAC	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017
2	BiConiLog Antenna	SCHWARZBECK	VULB9163	CCIS0005	02-25-2017	02-24-2018
3	Horn Antenna	SCHWARZBECK	BBHA9120D	CCIS0006	02-25-2017	02-24-2018
4	Pre-amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	02-25-2017	02-24-2018
5	Pre-amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	02-25-2017	02-24-2018
6	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP30	CCIS0023	02-25-2017	02-24-2018
7	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	02-25-2017	02-24-2018
8	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
9	Coaxial Cable	N/A	N/A	CCIS0018	02-25-2017	02-24-2018
10	Coaxial Cable	N/A	N/A	CCIS0020	02-25-2017	02-24-2018

Cond	Conducted Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	08-23-2014	08-22-2017	
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	02-25-2017	02-24-2018	
3	LISN	CHASE	MN2050D	CCIS0074	02-25-2017	02-24-2018	
4	Coaxial Cable	CCIS	N/A	CCIS0086	02-25-2017	02-24-2018	
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	

6 Test results and Measurement Data


6.1 Conducted Emission

Test Requirement:	FCC Part15 B Section 15.107				
Test Method:	ANSI C63.4:2014	ANSI C63.4:2014			
Test Frequency Range:	150kHz to 30MHz				
Class / Severity:	Class B				
Receiver setup:	RBW=9kHz, VBW=30kHz				
Limit:	Frequency range (MHz)	Li	mit (dBµV)		
	, , , ,	Quasi-peak		Average	
	0.15-0.5	66 to 56*		56 to 46*	
	0.5-5	56		46	
	0.5-30	60		50	
	* Decreases with the logarith	m of the frequency	/.		
Test setup:	Reference Plan	ne			
	Remark E.U.T Remark E.U.T Remark E.U.T Remark E.U.T. Equipment Under Test LISN: Line impedence Stabilization Network Test table height=0.8m	EMI Receiver			
Test procedure	 The E.U.T and simulators line impedance stabilization 500hm/50uH coupling impedance. The peripheral devices are a LISN that provides a 500 termination. (Please refers photographs). Both sides of A.C. line are interference. In order to fir positions of equipment an according to ANSI C63.4: 	on network (L.I.S.N. pedance for the me e also connected to ohm/50uH couplings to the block diagree checked for maxing the maximum er d all of the interface). The provi- asuring equal the main page impedance arm of the tempedance arm of the tempedance arm condumission, the e cables mu	de a Juipment. Juipment. Juipment and Ju	
			l	1	
Test environment:	Temp.: 23°C Hun	nid.: 56%	Press.:	101kPa	
Test environment: Test Instruments:	Temp.: 23°C Hun Refer to section 5.7 for detai		Press.:	101kPa	
	<u> </u>	ls	Press.:	101kPa	

Measurement data:

Line:

Trace: 17

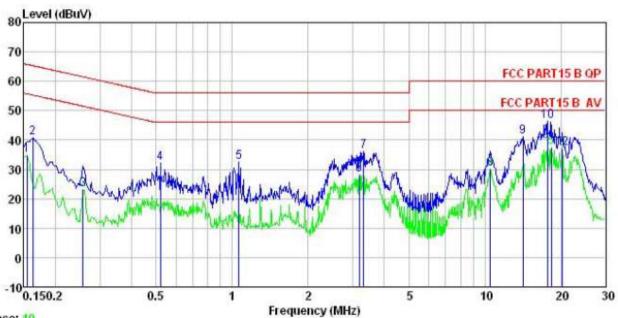
: CCIS Shielding Room : FCC PART15 B QP LISN LINE Site Condition

: Smart phone EUT

Model : R2 Test Mode : PC mode
Power Rating : AC 120V/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: Mike

Remark


emark		Read	LISN	Cable		Limit	Over	
	Freq		Factor	Loss	Level	Line		Remark
	MHz	dBu∀	₫B	₫B	dBu₹	dBu√	dB	
1	0.154	24.87	-0.56	10.78	35.09	55.78	-20.69	Average
2	0.158	31.17	-0.55	10.78	41.40	65.56	-24.16	QP
1 2 3 4 5 6 7 8 9	0.258	22.12	-0.51	10.75	32.36		-29.15	
4	0.258	14.20	-0.51	10.75	24.44	51.51	-27.07	Average
5	0.502	23.14	-0.49	10.76	33.41	56.00	-22.59	QP
6	3.190	17.98	-0.41	10.91	28.48	46.00	-17.52	Average
7	3.700	27.26	-0.34	10.90	37.82	56.00	-18.18	QP
8	14.138	29.08	-0.57	10.91	39.42	60.00	-20.58	QP
9	14.288	22.00	-0.60	10.91	32.31	50.00	-17.69	Average
10	17.383	32.83	-0.58	10.91	43.16	60.00	-16.84	QP
11	18.328	28.87	-0.54		39.24	50.00	-10.76	Average
12	19.740	28.98	-0.48	10.93	39.43	50.00	-10.57	Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Loss.

Neutral:

Trace: 19

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL Condition

EUT : Smart phone

Model : R2

Test Mode : PC mode Power Rating : AC 120V/60Hz

Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: Mike

Remark

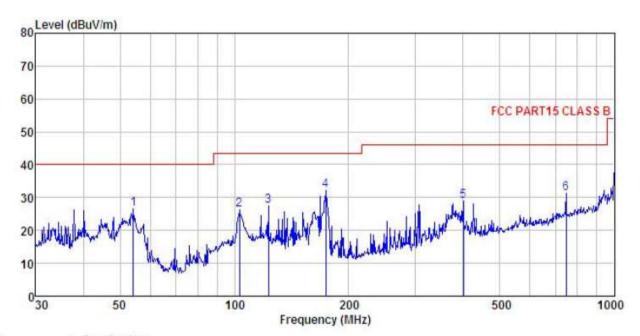
remark	Freq	Read Level	LISN Factor	Cable Loss		Limit Line	Over Limit	Remark
	MHz	dBu₹	₫B	₫B	dBu₹	dBu₹	₫B	
1	0.154	24.38	-0.38	10.78	34.78	55.78	-21.00	Average
2	0.162	30.41	-0.37	10.77	40.81	65.34	-24.53	QP
3	0.258	12.88	-0.33	10.75	23.30	51.51	-28.21	Average
1 2 3 4 5 6 7 8 9	0.521	21.65	-0.30	10.76	32.11	56.00	-23.89	QP
5	1.065	22.00	-0.29	10.88	32.59	56.00	-23.41	QP
6	3.190	17.63	-0.20	10.91	28.34	46.00	-17.66	Average
7	3.310	25.39	-0.20	10.91	36.10	56.00	-19.90	QP
8	10.508	18.94	0.24	10.93	30.11	50.00	-19.89	Average
	14.138	30.59	-0.21	10.91	41.29	60.00	-18.71	QP
10	17.661	36.12	-0.41	10.90	46.61	60.00	-13.39	QP
11	18.328	27.12	-0.43	10.91	37.60	50.00	-12.40	Average
12	20.270	26.65	-0.51	10.93	37.07	50.00	-12.93	Average

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.2 Radiated Emission

0.2 Radiated Ellission										
Test Requirement:	FCC Part15 B S	FCC Part15 B Section 15.109								
Test Method:	ANSI C63.4:201	ANSI C63.4:2014								
Test Frequency Range:	30MHz to 26000	30MHz to 26000MHz								
Test site:	Measurement D	Measurement Distance: 3m (Semi-Anechoic Chamber)								
Receiver setup:	Frequency	Frequency Detector RBW VBW Re								
·	30MHz-1GHz	Quasi-		120kHz	300k		Quasi-peak Value			
	Above 1GHz	Above 1GHz Peak 1MHz 3MH					Peak Value			
I tourist.	RMS 1MHZ 3MHZ AVera						Average Value Remark			
Limit:							Quasi-peak Value			
	88MHz-216N			43.5			Quasi-peak Value			
	216MHz-960			46.0			Quasi-peak Value			
	960MHz-1G			54.0			Quasi-peak Value			
				54.0			Average Value			
	Above 1GI	Hz		74.0			Peak Value			
	Tum 0.8	Tum 0.8m lm RF Test Receiver Ground Plane								
	80CM	E EUT	G Test Recei	Ground Reference Plane Receiver Controller						

Test Procedure:	 The EUT was placed on the top of a rotating table 0.8 meters above the groundat a 3 meter semi-anechoic camber. The table was rotated 360 degrees todetermine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower. 							
	 3. The antenna height is varied from one meter to four meters about ground to determine the maximum value of the field strength. But horizontal and vertical polarizations of the antenna are set to maximum reading. 4. For each suspected emission, the EUT was arranged to its wors and thenthe antenna was tuned to heights from 1 meter to 4 meter to 4 meter to 4 meter rotatabletable was turned from 0 degrees to 360 degrees to maximum reading. 							
	The test-receiver system was set to Peak Detect Function and SpecifiedBandwidth with Maximum Hold Mode.							
	limit spe EUT wo margin v	cified, then to uld be report would be re-to	esting could led. Otherwisested one by	be stopped a	nd the peal ons that did eak, quasi- _l			
Test environment:	Temp.:	25°C	Humid.:	55%	Press.:	101kPa		
Test Instruments:	Refer to section 5.7 for details							
Test mode:	Refer to section 5.3 for details							
Test results:	Passed							
Remark:	All of theobserved value above 6GHz ware theniose floor , which were no recorded							



Measurement Data:

Below 1GHz

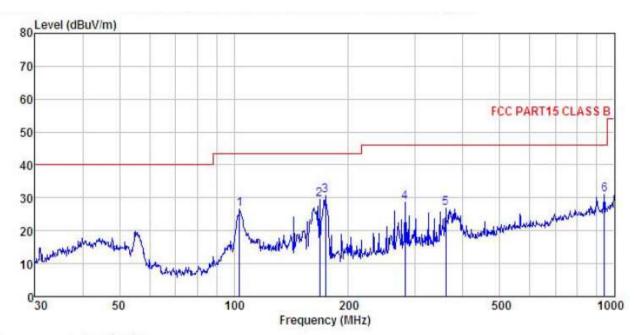
Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) VERTICAL Condition

EUT : Smart phone

Model : R2
Test mode : PC mode
Power Rating : AC 120V / 60Hz
Environment : Temp: 25.5 C Huni: 55%


Test Engineer: Mike REMARK :

	Freq		Antenna Factor				Limit Line	Over Limit	Remark
77	MHz	dBu∀	dB/m	dB	dB	dBuV/m	dBuV/m	dB	
1	54.261	41.91	13.06	1.34	29.80	26.51	40.00	-13.49	QP
1 2 3	103.080	43.50	10.37	1.97	29.51	26.33	43.50	-17.17	QP
3	122.834	42.68	11.95	2.20	29.37	27.46	43.50	-16.04	QP
4 5 6	173.814	49.04	9.60	2.68	29.02	32.30	43.50	-11.20	QP
5	400.432	38.77	15.91	3.08	28.78	28.98	46.00	-17.02	QP
6	747.483	35.16	20.32	4.35	28.49	31.34	46.00	-14.66	QP

Vertical:

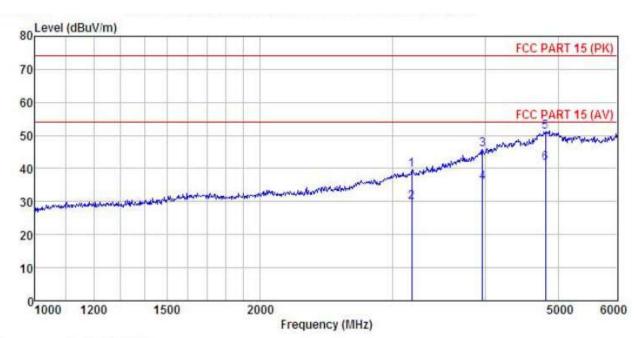
Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) HORIZONTAL Condition

EUT : Smart phone

Model : R2

Test mode : PC mode
Power Rating : AC 120V / 60Hz
Environment : Temp:25.5°C Huni:55%


Test Engineer: Mike REMARK

CEMARK	•		Antenna				Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
200	MHz	dBu∀	dB/m	<u>dB</u>	dB	dBuV/m	dBuV/m	<u>db</u>	
1	103.442	43.66	10.45	1.97	29.50	26.58	43.50	-16.92	QP
2	167.824	46.17	9.82	2.64	29.07	29.56	43.50	-13.94	QP
3	173.814	47.55	9.60	2.68	29.02	30.81	43.50	-12.69	QP
4	281.995	42.01	12.23	2.89	28.48	28.65	46.00	-17.35	QP
2 3 4 5	360.448	37.89	14.53	3.10	28.61	26.91	46.00	-19.09	QP
6	942.131	32.66	21.93	4.13	27.75	30.97	46.00	-15.03	QP

Above 1GHz

Horizontal:

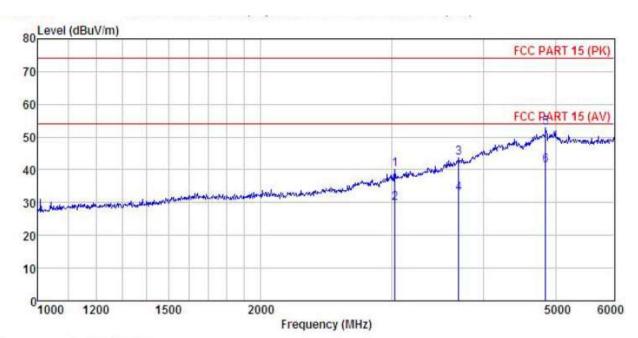
Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : Smart phone : R2 Model

Test mode : PC mode Power Rating : AC 120V / 60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Mike


REMARK

THE STATE	r :	Read	Antenna	Cable	Preamn		Limit	Over	
	Freq		Factor						
	MHz	dBu∜	dB/m	₫B	dB	dBuV/m	dBuV/m	dB	
1	3189.176	49.16	26.47	5.42	41.41	39.64	74.00	-34.36	Peak
2	3189.176	39.20	26.47	5.42	41.41	29.68	54.00	-24.32	Average
3	3965.787	49.37	32.01		41.81				
	3965.787	39.42	32.01	6.11	41.81	35.73	54.00	-18.27	Average
4 5 6	4808.328	50.16	35.99	6.80	41.81	51.14	74.00	-22.86	Peak
6	4808 328	40.63	35, 99						Average

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Smart phone

Model : R2
Test mode : PC mode
Power Rating : AC 120V / 60Hz
Environment : Test France : Miles

Test Engineer: Mike REMARK

CHEVIC									
	Freq		Antenna Factor				Limit Line	Over Limit	Remark
15	MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB	
1	3031.837	50.58	25.77	5.36	41.49	40.22	74.00	-33.78	Peak
2	3031.837	40.23	25.77	5.36	41.49	29.87	54.00	-24.13	Average
3	3697.480	49.82	29.62	5.98	41.66	43.76	74.00	-30.24	Peak
4	3697.480	38.86	29.62	5.98	41.66	32.80	54.00	-21.20	Average
5	4845.901	51.54	36.19	6.83	41.83	52.73	74.00	-21.27	Peak
6	4845.901	40.12	36.19	6.83	41.83	41.31			Average