

No. 1 Workshop, M-10, Middle section, Science & Technology Park, Shenzhen, Guangdong, China 518057

Telephone: +86 (0) 755 2601 2053 Fax: +86 (0) 755 2671 0594 Report No.: SZEM160900792902

Email: ee.shenzhen@sgs.com Page: 1 of 36

FCC REPORT

Application No. :SZEM1609007929CRApplicant:Winspeed Co., Ltd.Manufacturer:Winspeed Co., Ltd.Factory:Winspeed Co., Ltd.

Product Name: STRIKE NX Gamepad - Wireless - for PC (STRIKE NX Gamepad -

Wireless - for PS3)

 Model No.(EUT):
 SL-650100-BK-01

 Add Model No.:
 SL-440401-BK-01

Trade Mark: Speedlink FCC ID: 2AEDNA37

Standards: 47 CFR Part 15, Subpart C (2015)

Date of Receipt: 2016-09-18

Date of Test: 2016-09-22 to 2016-10-20

Date of Issue: 2016-10-24

Test Result: PASS *

Authorized Signature:

Jack Zhang EMC Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government. All test results in this report can be traceable to National or International Standards.

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sqs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sqs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

Report No.: SZEM160900792902

Page : 2 of 36

2 Version

Revision Record						
Version Chapter Date Modifier Remark						
00		2016-10-24		Original		

Authorized for issue by:		
Tested By	Peter Gene	2016-10-20
	(Peter Geng) /Project Engineer	Date
Checked By	Eric Fu	2016-10-24
	(Eric Fu) /Reviewer	Date

Report No.: SZEM160900792902

Page : 3 of 36

3 Test Summary

Test Item	Test Item Test Requirement		Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203	ANSI C63.10 (2009)	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10 (2013)	PASS
Field Strength of the Fundamental Signal	47 CFR Part 15, Subpart C Section 15.249 (a)	ANSI C63.10 (2013)	PASS
Spurious Emissions	47 CFR Part 15, Subpart C Section 15.249 (a)/15.209	ANSI C63.10 (2013)	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15, Subpart C Section 15.249(a)/15.205	ANSI C63.10 (2013)	PASS
20dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.215 (c)	ANSI C63.10 (2013)	PASS

Report No.: SZEM160900792902

Page : 4 of 36

4 Contents

			Page
1	C	COVER PAGE	1
2	٧	/ERSION	2
3	Т	EST SUMMARY	3
4	С	CONTENTS	4
5	G	SENERAL INFORMATION	5
	5.1	CLIENT INFORMATION	
	5.2	GENERAL DESCRIPTION OF EUT	
	5.3	TEST ENVIRONMENT AND MODE	
	5.4 5.5	DESCRIPTION OF SUPPORT UNITS	
	5.6	TEST LOCATION	
	5.7	DEVIATION FROM STANDARDS	
	5.8	ABNORMALITIES FROM STANDARD CONDITIONS	
	5.9	OTHER INFORMATION REQUESTED BY THE CUSTOMER	
	5.10	EQUIPMENT LIST	9
6	Т	EST RESULTS AND MEASUREMENT DATA	11
	6.1	Antenna Requirement	11
	6.2	CONDUCTED EMISSIONS	
	6.3	RADIATED SPURIOUS EMISSIONS	
	6.4	RESTRICTED BANDS AROUND FUNDAMENTAL FREQUENCY	
	6.5	20dB Bandwidth	32
7	Ρ	PHOTOGRAPHS - EUT TEST SETUP	35
	7.1	CONDUCTED EMISSION	
	7.2	RADIATED EMISSION	
	7.3	RADIATED SPURIOUS EMISSION	
8	Р	PHOTOGRAPHS - FUT CONSTRUCTIONAL DETAILS	36

Report No.: SZEM160900792902

Page : 5 of 36

5 General Information

5.1 Client Information

Applicant:	Winspeed Co., Ltd.
Address of Applicant:	14 F-1, No.2, Jian-Ba Rd., Chung-Ho District, New Taipei City, Taiwan
Manufacturer:	Winspeed Co., Ltd.
Address of Manufacturer:	14 F-1, No.2, Jian-Ba Rd., Chung-Ho District, New Taipei City, Taiwan
Factory:	Winspeed Co., Ltd.
Address of Factory:	14 F-1, No.2, Jian-Ba Rd., Chung-Ho District, New Taipei City, Taiwan

5.2 General Description of EUT

Product Name:	STRIKE NX Gamepad - Wireless - for PC (STRIKE NX Gamepad - Wireless - for PS3)
Model No.:	SL-650100-BK-01 (for Dongle)
Trade Mark:	Speedlink
Frequency Range:	2412-2475MHz
Modulation Type:	GFSK
Number of Channels:	64
Channel separation	1MHz
Antenna Type:	Integral
Antenna Gain:	0dBi
Power Supply:	DC 5V from PC

Remark:

Model No.: SL-650100-BK-01, SL-440401-BK-01

Only the model SL-650100-BK-01 was tested, since the electrical circuit design, layout, components used and internal wiring were identical for all above models, only different on model number and packaging

Report No.: SZEM160900792902

Page : 6 of 36

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	17	2428MHz	33	2444MHz	49	2460MHz
2	2413MHz	18	2429MHz	34	2445MHz	50	2461MHz
3	2414MHz	19	2430MHz	35	2446MHz	51	2462MHz
4	2415MHz	20	2431MHz	36	2447MHz	52	2463MHz
5	2416MHz	21	2432MHz	37	2448MHz	53	2464MHz
6	2417MHz	22	2433MHz	38	2449MHz	54	2465MHz
7	2418MHz	23	2434MHz	39	2450MHz	55	2466MHz
8	2419MHz	24	2435MHz	40	2451MHz	56	2467MHz
9	2420MHz	25	2436MHz	41	2452MHz	57	2468MHz
10	2421MHz	26	2437MHz	42	2453MHz	58	2469MHz
11	2422MHz	27	2438MHz	43	2454MHz	59	2470MHz
12	2423MHz	28	2439MHz	44	2455MHz	60	2471MHz
13	2424MHz	29	2440MHz	45	2456MHz	61	2472MHz
14	2425MHz	30	2441MHz	46	2457MHz	62	2473MHz
15	2426MHz	31	2442MHz	47	2458MHz	63	2474MHz
16	2427MHz	32	2443MHz	48	2459MHz	64	2475MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency	
The Lowest channel(CH1)	2412MHz	
The Middle channel(CH29)	2440MHz	
The Highest channel(CH64)	2475MHz	

Report No.: SZEM160900792902

Page : 7 of 36

5.3 Test Environment and Mode

Operating Environment:	
Temperature:	25.0 °C
Humidity:	52 % RH
Atmospheric Pressure:	1005 mbar
Test mode:	
Transmitting mode:	Keep the EUT in transmitting mode with all kind of modulation and all kind of data rate.

5.4 Description of Support Units

The EUT has been tested with associated equipment below.

Description	Manufacturer	Model No.	
Laptop	Lenovo	T430u	
Router	NETGEAR	DGN2200	
Mouse	Lenovo	MO28UOA	

5.5 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch,

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, Guangdong, China. 518057.

Tel: +86 755 2601 2053 Fax: +86 755 2671 0594

No tests were sub-contracted.

Report No.: SZEM160900792902

Page : 8 of 36

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

A2LA (Certificate No. 3816.01)

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 3816.01.

VCCI

The 10m Semi-anechoic chamber and Shielded Room of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-823, R-4188, T-1153 and C-2383 respectively.

• FCC - Registration No.: 556682

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.: 556682.

· Industry Canada (IC)

Two 3m Semi-anechoic chambers and the 10m Semi-anechoic chamber of SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1, 4620C-2, 4620C-3.

5.7 Deviation from Standards

None.

5.8 Abnormalities from Standard Conditions

None.

5.9 Other Information Requested by the Customer

None.

Report No.: SZEM160900792902

Page : 9 of 36

5.10 Equipment List

	Conducted Emission						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Due date (yyyy-mm-dd)	
1	Shielding Room	ZhongYu Electron	GB-88	SEM001-06	2016-05-13	2017-05-13	
2	LISN	Rohde & Schwarz	ENV216	SEM007-01	2016-10-09	2017-10-09	
3	LISN	ETS-LINDGREN	3816/2	SEM007-02	2016-04-25	2017-04-25	
4	8 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN- T8-02	EMC0120	2016-09-28	2017-09-28	
5	4 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN- T4-02	EMC0121	2016-09-28	2017-09-28	
6	2 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN- T2-02	EMC0122	2016-09-28	2017-09-28	
7	EMI Test Receiver	Rohde & Schwarz	ESCI	SEM004-02	2016-04-25	2017-04-25	
8	DC Power Supply	Zhao Xin	RXN-305D	SEM011-02	2016-10-09	2017-10-09	

	RF connected test						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Due date (yyyy-mm-dd)	
1	DC Power Supply	ZhaoXin	RXN-305D	SEM011-02	2016-10-09	2017-10-09	
2	Spectrum Analyzer	Rohde & Schwarz	FSP	SEM004-06	2016-10-09	2017-10-09	
3	Signal Generator	Rohde & Schwarz	SML03	SEM006-02	2016-04-25	2017-04-25	
4	Power Meter	Rohde & Schwarz	NRVS	SEM014-02	2016-10-09	2017-10-09	

Report No.: SZEM160900792902

Page : 10 of 36

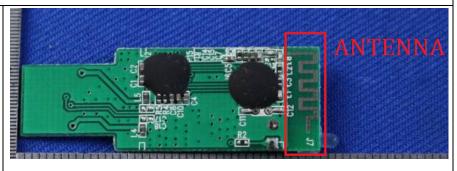
	RE in Chamber					
Item	Test Equipment	Manufacturer Model No		Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Due date (yyyy-mm-dd)
1	10m Semi-Anechoic Chamber	SAEMC	FSAC1018	SEM001-03	2016-05-13	2017-05-13
2	EMI Test Receiver (9k-3GHz)	Rohde & Schwarz	ESCI	SEM004-01	2016-04-25	2017-04-25
3	Trilog-Broadband Antenna(30M-1GHz)	Schwarzbeck	VULB9168	SEM003-18	2016-06-29	2019-06-29
4	Pre-amplifier	Sonoma Instrument Co	310N	SEM005-03	2016-07-06	2017-07-06
5	Loop Antenna	ETS-Lindgren	6502	SEM003-08	2015-08-14	2018-08-14

	RE in Chamber					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Due date (yyyy-mm-dd)
1	3m Semi-Anechoic Chamber	AUDIX	N/A	SEM001-02	2016-05-13	2017-05-13
2	EMI Test Receiver	Rohde & Schwarz	ESIB26	SEM004-04	2016-04-25	2017-04-25
3	BiConiLog Antenna (26-3000MHz)	ETS-Lindgren	3142C	SEM003-02	2014-11-15	2017-11-15
4	Amplifier (0.1-1300MHz)	HP	8447D	SEM005-02	2016-10-09	2017-10-09
5	Horn Antenna (1-18GHz)	Rohde & Schwarz	HF907	SEM003-07	2015-06-14	2018-06-14
6	Horn Antenna (18-26GHz)	ETS-Lindgren	3160	SEM003-12	2014-11-24	2017-11-24
7	Horn Antenna(26GHz- 40GHz)	A.H.Systems, inc.	SAS-573	SEM003-13	2015-02-12	2018-02-12
8	Low Noise Amplifier	Black Diamond Series	BDLNA- 0118- 352810	SEM005-05	2016-10-09	2017-10-09
9	Band filter	Amindeon	Asi 3314	SEM023-01	N/A	N/A

Report No.: SZEM160900792902

Page : 11 of 36

6 Test results and Measurement Data


6.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203

15.203 requirement:

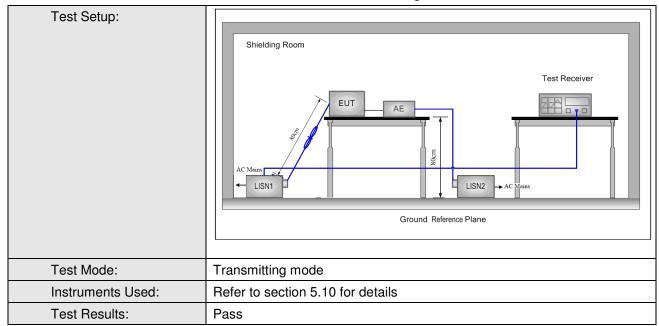
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0dBi.

Report No.: SZEM160900792902

Page : 12 of 36


6.2 Conducted Emissions

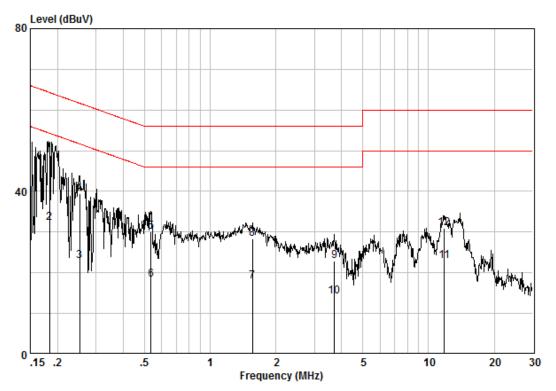
Test Requirement:	47 CFR Part 15C Section 15.2	207	
Test Method:	ANSI C63.10: 2013		
Test Frequency Range:	150kHz to 30MHz		
Limit:	Fraguency range (MIII-)	Limit (c	dBuV)
	Frequency range (MHz)	Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30	60	50
	* Decreases with the logarithm		
Test Procedure:	1) The mains terminal disturb shielded room. 2) The EUT was connected to Impedance Stabilization Network linear impedance. The power connected to a second LIS reference plane in the same measured. A multiple sock power cables to a single LI exceeded. 3) The tabletop EUT was place the ground reference plane EUT was placed on the houndary of the EUT shall be 0.000 plane. The vertical ground horizontal ground reference the boundary of the unit unplane for LISNs mounted of distance was between the All other units of the EUT am from the LISN 2. 5) In order to find the maximum equipment and all of the into ANSI C63.10: 2013 on the connected to the connected to the into ANSI C63.10: 2013 on the connected to the connec	ance voltage test was ance voltage test was a AC power source throwork) which provides a ver cables of all other using a supercable of all other using a supercable way as the LISN 1 for et outlet strip was used ISN provided the rating aced upon a non-metallice. And for floor-standing rizontal ground referent a vertical ground reference plane was be plane. The LISN 1 who had the test and bonded to the control of the ground reference plane was been top of the ground reference plane was and associated equipment and associated equipment in emission, the relative terface cables must be	cough a LISN 1 (Line 50Ω/50μH + 5Ω units of the EUT were do to the ground or the unit being do to connect multiple gof the LISN was not contained to table 0.8m above grangement, the nee plane, derence plane. The round reference plane on the as placed 0.8 m from the aground reference ference plane. This list 1 and the EUT. The need was at least 0.8 for expositions of the changed according

Report No.: SZEM160900792902

Page : 13 of 36

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

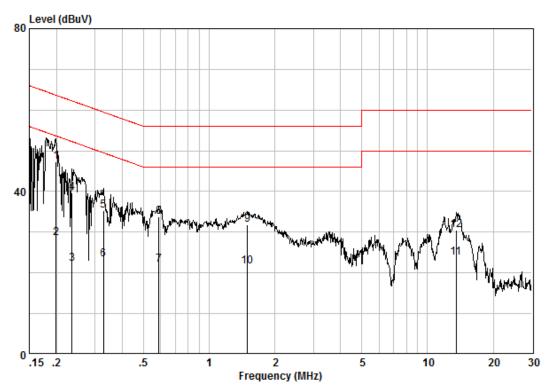

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Report No.: SZEM160900792902

Page : 14 of 36

Live Line:

Site : Shielding Room Condition : CE LINE Job.No : 7929CR Test Mode : TX


			Cable	LISN	Read		Limit	Over	
		Freq	Loss	Factor	Level	Level	Line	Limit	Remark
		MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1 (@	0.18346	0.02	9.60	39.79	49.41	64.33	-14.92	QP
2		0.18346	0.02	9.60	22.56	32.18	54.33	-22.15	AVERAGE
3		0.25211	0.02	9.60	13.32	22.94	51.69	-28.75	AVERAGE
4		0.25211	0.02	9.60	29.92	39.54	61.69	-22.15	QP
5		0.53498	0.02	9.60	20.56	30.18	56.00	-25.82	QP
6		0.53498	0.02	9.60	8.76	18.38	46.00	-27.62	AVERAGE
7		1.560	0.03	9.59	8.32	17.94	46.00	-28.06	AVERAGE
8		1.560	0.03	9.59	18.75	28.36	56.00	-27.64	QP
9		3.700	0.02	9.63	13.25	22.90	56.00	-33.10	QP
10		3.700	0.02	9.63	4.44	14.09	46.00	-31.91	AVERAGE
11		11.807	0.15	9.73	12.98	22.86	50.00	-27.14	AVERAGE
12		11.807	0.15	9.73	20.99	30.86	60.00	-29.14	QP

Report No.: SZEM160900792902

Page : 15 of 36

Neutral Line:

Site : Shielding Room Condition : CE NEUTRAL Job.No : 7929CR Test Mode : TX

		Freq	Cable Loss	LISN Factor			Limit Line	Over Limit	Remark
		MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1	@	0.19863	0.02	9.62	37.71	47.35	63.67	-16.31	QP
2		0.19863	0.02	9.62	18.99	28.63	53.67	-25.04	AVERAGE
3		0.23533	0.02	9.61	12.67	22.30	52.26	-29.96	AVERAGE
4		0.23533	0.02	9.61	30.12	39.76	62.26	-22.50	QP
5		0.32858	0.02	9.62	25.58	35.22	59.49	-24.26	QP
6		0.32858	0.02	9.62	13.60	23.24	49.49	-26.25	AVERAGE
7		0.58851	0.02	9.63	12.30	21.95	46.00	-24.05	AVERAGE
8		0.58851	0.02	9.63	24.20	33.85	56.00	-22.15	QP
9		1.495	0.03	9.64	22.22	31.89	56.00	-24.11	QP
10		1.495	0.03	9.64	11.99	21.67	46.00	-24.33	AVERAGE
11		13.551	0.15	9.87	13.66	23.68	50.00	-26.32	AVERAGE
12		13.551	0.15	9.87	20.41	30.44	60.00	-29.56	QP

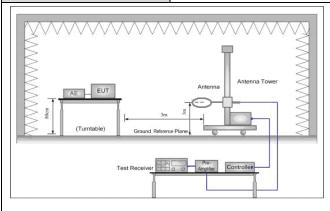
Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Report No.: SZEM160900792902

Page : 16 of 36

6.3 Radiated Spurious Emissions


Test Requirement:	47 CFR Part 15C Section	on 15.249 and 15	.209				
Test Method:	ANSI C63.10: 2013						
Test Site:	Measurement Distance	`		,			
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark		
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak		
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average		
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak		
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak		
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average		
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak		
	30MHz-1GHz	Quasi-peak	100 kHz	300kHz	Quasi-peak		
	Above 1GHz	Peak	1MHz	3MHz	Peak		
	Above 1GH2	Peak	1MHz	10Hz	Average		
Limit: (Spurious Emissions)	Frequency	Field strength (microvolt/meter	Limit) (dBuV/m)	Remark	Measurement distance (m)		
	0.009MHz-0.490MHz	2400/F(kHz)	-	-	300		
	0.490MHz-1.705MHz	24000/F(kHz)	-	-	30		
	1.705MHz-30MHz	30	-	-	30		
	30MHz-88MHz	100	40.0	Quasi-peak	3		
	88MHz-216MHz	150	43.5	Quasi-peak	3		
	216MHz-960MHz	200	46.0	Quasi-peak	3		
	960MHz-1GHz	500	54.0	Quasi-peak	3		
	Above 1GHz	500	54.0	Average	3		
	Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.						
Limit:	Frequency	Limit (dBu	V/m @3m)	Rema	ark		
(Field strength of the	2400MHz-2483.5MH	94	94.0		Value		
fundamental signal)	2400IVIFIZ-2403.3IVIF	11	4.0	Peak V	alue		

Report No.: SZEM160900792902

Page : 17 of 36

Test Setup:

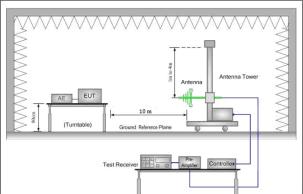


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

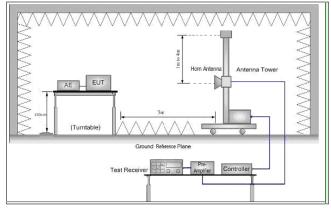


Figure 3. Above 1 GHz

Test Procedure:

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter Fully-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions-Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawfull and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM160900792902

Page : 18 of 36

	limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. h. Test the EUT in the lowest channel,the middle channel,the Highest channel i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode,And found the X axis positioning which it is worse case. j. Repeat above procedures until all frequencies measured was complete.
Exploratory Test Mode:	Transmitting mode.
Final Test Mode:	Pretest the EUT at Transmitting mode. Only the worst case is recorded in the report.
Instruments Used:	Refer to section 5.10 for details
Test Results:	Pass

Report No.: SZEM160900792902

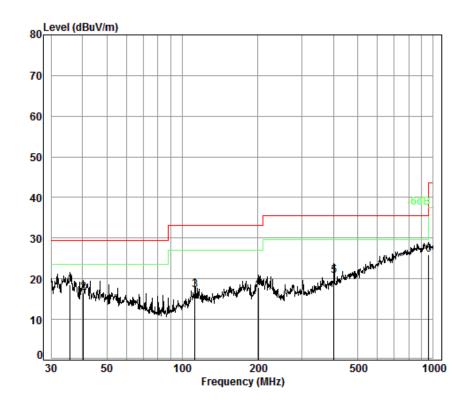
Page : 19 of 36

Measurement Data

6.3.1 Field Strength Of The Fundamental Signal

Peak value:

Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2412.149	29.14	5.35	38.15	85.42	81.76	114.00	-32.24	Horizontal
2412.149	29.14	5.35	38.15	79.93	76.27	114.00	-37.73	Vertical
2440.072	29.23	5.38	38.15	85.22	81.68	114.00	-32.32	Horizontal
2440.152	29.23	5.38	38.15	78.28	74.74	114.00	-39.26	Vertical
2475.104	29.33	5.40	38.15	83.91	80.49	114.00	-33.51	Horizontal
2475.074	29.33	5.40	38.15	77.48	74.06	114.00	-39.94	Vertical


Report No.: SZEM160900792902

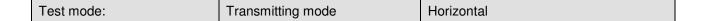
Page : 20 of 36

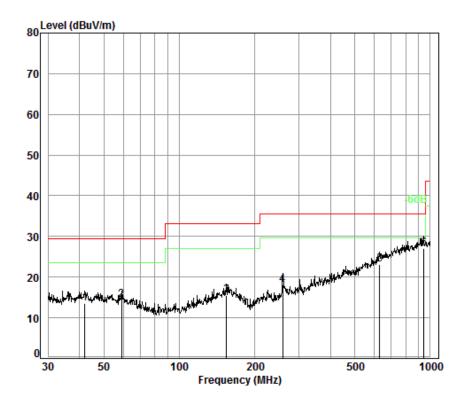
6.3.2 Spurious Emissions

30MHz~1GHz			
Test mode:	Transmitting mode	Vertical	

QP value:

Condition: 10m VERTICAL


Job No. : 7929CR Test Mode: TX mode : Dongle


	Freq			Preamp Factor				Over Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1	35.75	6.72	12.75	32.98	32.00	18.49	29.50	-11.01
2	40.42	6.80	13.28	32.99	29.44	16.53	29.50	-12.97
3	112.52	7.26	10.66	32.78	31.99	17.13	33.10	-15.97
4	202.10	7.61	9.34	32.70	33.59	17.84	33.10	-15.26
5	401.84	8.30	14.91	32.60	30.10	20.71	35.60	-14.89
6 pp	958.79	9.60	22.76	32.50	26.13	25.99	35.60	-9.61

Report No.: SZEM160900792902

Page : 21 of 36

Condition: 10m Horizontal

Job No. : 7929CR Test Mode: TX mode : Dongle

		8						
		Cable	Ant	Preamp	Read		Limit	0ver
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1	42.01	6.80	13.15	32.99	26.51	13.47	29.50	-16.03
2	58.82	7.00	12.09	32.95	28.33	14.47	29.50	-15.03
3	154.28	7.47	13.40	32.74	27.25	15.38	33.10	-17.72
4	258.33	7.90	11.44	32.64	31.29	17.99	35.60	-17.61
5	629.48	8.97	19.28	32.60	27.48	23.13	35.60	-12.47
6 pp	942.13	9.56	22.68	32.50	27.25	26.99	35.60	-8.61

Report No.: SZEM160900792902

Page : 22 of 36

Below 1GHz

The test was performed at a 10m test site. According to below formulate and the test data at 10m test distance,

 $L_3 / L_{10} = D_{10} / D_3$

Note:

 L_3 : Level @ 3m distance. Unit: uV/m; L_{10} : Level @ 10m distance. Unit: uV/m;

 D_3 : 3m distance. Unit: m D_{10} : 10m distance. Unit: m The level at 3m test distance is below:

Frequency (MHz)	Level @ 10m (dBuV/m)	Level @ 10m (uV/m)	Level @ 3m (uV/m)	Level @ 3m (dBuV/m)	Limit @ 3m (dBuV/m)	Margin (dB)	Ant. Polarization
35.75	18.49	8.40	28.01	28.95	40.00	-11.05	V
40.42	16.53	6.71	22.36	26.99	40.00	-13.01	V
112.52	17.13	7.19	23.95	27.59	43.50	-15.91	V
202.10	17.84	7.80	25.99	28.30	43.50	-15.20	V
401.84	20.71	10.85	36.17	31.17	46.00	-14.83	V
958.79	25.99	19.93	66.43	36.45	46.00	-9.55	V
42.01	13.47	4.72	15.72	23.93	40.00	-16.07	Н
58.82	14.47	5.29	17.64	24.93	40.00	-15.07	Н
154.28	15.38	5.87	19.58	25.84	43.50	-17.66	Н
258.33	17.99	7.93	26.45	28.45	46.00	-17.55	Н
629.48	23.13	14.34	47.79	33.59	46.00	-12.41	Н
942.13	26.99	22.36	74.54	37.45	46.00	-8.55	Н

Report No.: SZEM160900792902

Page : 23 of 36

Above 1GH	Z										
Test mode:		Trans	mitting	Test char	nnel:	Lo	west	Remark:		Pea	ak
Frequency (MHz)	Fa	tenna actor B/m)	tor Loss Fa		Read Leve (dBu\	l	Level (dBuV/m)	Limit Line (dBuV/m)	Ov Lim (dE	nit	Polarization
3626.104	32	2.57	7.68	38.53	44.98	}	46.70	74.00	-27.	30	Vertical
4824.000	34	4.19	8.90	39.04	48.45	<u>.</u>	52.50	74.00	-21.	50	Vertical
6043.124	34	4.74	10.50	38.97	44.87	7	51.14	74.00	-22.	86	Vertical
7236.000	36	6.40	10.69	38.15	46.11		55.05	74.00	-18.	95	Vertical
9648.000	3	7.53	12.52	36.97	39.88	\sim	52.96	74.00	-21.	04	Vertical
12137.940	38	8.68	14.45	38.44	39.02		53.71	74.00	-20.	29	Horizontal
3631.354	32	2.59	7.68	38.53	44.96	Ć,	46.70	74.00	-27.	30	Horizontal
4824.000	34	4.19	8.90	39.04	62.41		66.46	74.00	-7.5	54	Horizontal
6069.413	34	4.76	10.47	38.96	44.89)	51.16	74.00	-22.	84	Horizontal
7236.000	30	6.40	10.69	38.15	42.83	}	51.77	74.00	-22.	23	Horizontal

Test mode:		Transmitting Test channel: Low		west	Remark	Remark:		erage			
Frequency (MHz)	Fac	enna ctor 3/m)	Cable Loss (dB)	Preamp Factor (dB)	Read Leve (dBuV	l	Level (dBuV/m)	Limit Lin (dBuV/m	e L	ver mit dB)	Polarization
7236.000	36	.40	10.69	38.15	38.25	5	47.19	54.00	-6	5.81	Vertical
4824.000	34	.19	8.90	39.04	44.59)	48.64	54.00	-5	.36	Horizontal

Report No.: SZEM160900792902

Page : 24 of 36

Test mode:	Test mode: Transmitting		Test char	nnel:	Midd	le	Remark:		Peak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Read Level (dBuV)	(Level dBuV/m)	Limit Line (dBuV/m)	Ove Lim (dB	it	Polarization
3842.163	33.18	7.76	38.63	44.90		47.21	74.00	-26.	79	Vertical
4880.000	34.29	8.97	39.06	49.56		53.76	74.00	-20.2	24	Vertical
6184.658	34.85	10.32	38.88	44.37		50.66	74.00	-23.3	34	Vertical
7320.000	36.37	10.72	38.07	41.79		50.81	74.00	-23.	19	Vertical
9760.000	37.55	12.58	36.92	38.89		52.10	74.00	-21.9	90	Vertical
12226.070	38.74	14.37	38.53	38.56		53.14	74.00	-20.8	86	Horizontal
3960.700	33.50	7.80	38.68	45.71		48.33	74.00	-25.0	67	Horizontal
4880.000	34.29	8.97	39.06	61.59		65.79	74.00	-8.2	21	Horizontal
6193.614	34.86	10.31	38.88	44.96		51.25	74.00	-22.	75	Horizontal
7320.000	36.37	10.72	38.07	42.09		51.11	74.00	-22.8	89	Horizontal

Test mode:	Tr	ansmitting	Test channel: Middle Remark:		Average					
Frequency (MHz)	Antenr Facto (dB/m	r Loss	Preamp Factor (dB)	Read Level (dBuV	I	Level (dBuV/m)	Limit Line (dBuV/m)	Ov Lim (dE	nit	Polarization
4880.000	34.29	8.97	39.06	43.70)	47.90	54.00	-6.1	10	Horizontal

Report No.: SZEM160900792902

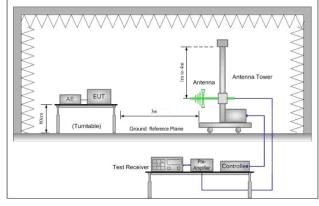
Page : 25 of 36

Test mode:	Trans	mitting	Test char	nnel:	Higl	hest	Remark:		Peak
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Read Level (dBuV)		Level (dBuV/m)	Limit Line (dBuV/m)	Ove Limi (dB)	t Polarization
3615.625	32.54	7.67	38.52	43.95	,	45.64	74.00	-28.3	6 Vertical
4950.000	34.41	9.07	39.08	49.47	'	53.87	74.00	-20.1	3 Vertical
6292.980	34.94	10.18	38.81	45.60)	51.91	74.00	-22.0	9 Vertical
7425.000	36.33	10.76	37.96	47.49)	56.62	74.00	-17.3	88 Vertical
9900.000	37.58	12.66	36.85	38.89)	52.28	74.00	-21.7	'2 Vertical
12243.770	38.75	14.36	38.55	38.74		53.30	74.00	-20.7	'0 Horizontal
3786.970	33.03	7.74	38.60	45.33	1	47.50	74.00	-26.5	60 Horizontal
4950.000	34.41	9.07	39.08	56.50)	60.90	74.00	-13.1	0 Horizontal
6051.874	34.74	10.49	38.97	44.81		51.07	74.00	-22.9	3 Horizontal
7425.000	36.33	10.76	37.96	42.14		51.27	74.00	-22.7	'3 Horizontal

Test mode:	Trans	mitting	Test chai	nnel:	Hi	ghest	Remark:	Average		erage
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Read Leve (dBuV	l	Level (dBuV/m)	Limit Line (dBuV/m)	Ove Lim (dE	nit	Polarization
7425.000	36.33	10.76	37.96	33.19	9	42.32	54.00	-11.	68	Vertical
4950.000	34.41	9.07	39.08	40.26	3	44.66	54.00	-9.3	34	Horizontal

Remark:

- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level = Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, The disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the above measurement data were shown in the report.


Report No.: SZEM160900792902

: 26 of 36

6.4 Restricted bands around fundamental frequency

Test Requirement:	47 CFR Part 15C Section 1	5.209 and 15.205									
Test Method:	ANSI C63.10: 2013										
Test Site:	Measurement Distance: 3m	Measurement Distance: 3m (Fully-Anechoic Chamber)									
Limit(band edge):	harmonics, shall be attenua fundamental or to the gener	emissions radiated outside of the specified frequency bands, except for armonics, shall be attenuated by at least 50 dB below the level of the undamental or to the general radiated emission limits in Section 15.209, whichever is the lesser attenuation.									
	Frequency	Frequency Limit (dBuV/m @3m) Remark									
	30MHz-88MHz	40.0	Quasi-peak Value								
	88MHz-216MHz	43.5	Quasi-peak Value								
	216MHz-960MHz	46.0	Quasi-peak Value								
	960MHz-1GHz	54.0	Quasi-peak Value								
	Above 1011-	54.0 Average Value									
	Above 1GHz	74.0	Peak Value								
Test Setup:											

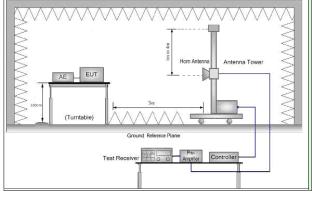


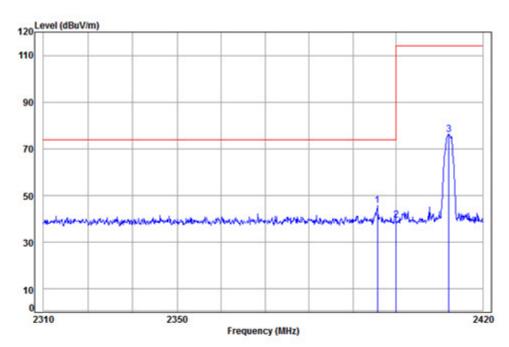
Figure 1. 30MHz to 1GHz

Figure 2. Above 1 GHz

Report No.: SZEM160900792902

Page : 27 of 36

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter Fully-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. c. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. g. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, And found the X axis positioning which it is worse case. j. Repeat above procedures until all frequencies measured was complete. Exploratory Test Mode: Transmitting mode Pretest the EUT at Transmitting mode. Only the worst case is recorded in the report.		
complete. Exploratory Test Mode: Transmitting mode Final Test Mode: Pretest the EUT at Transmitting mode. Only the worst case is recorded in the report. Instruments Used: Refer to section 5.10 for details	Test Procedure:	 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter Fully-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. c. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. g. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel h. Test the EUT in the lowest channel , the Highest channel i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode,And found the X axis positioning which it is worse case.
Final Test Mode: Pretest the EUT at Transmitting mode. Only the worst case is recorded in the report. Instruments Used: Refer to section 5.10 for details		complete.
Only the worst case is recorded in the report. Instruments Used: Refer to section 5.10 for details	Exploratory Test Mode:	Transmitting mode
Instruments Used: Refer to section 5.10 for details	Final Test Mode:	
		Only the worst case is recorded in the report.
Test Results: Pass	Instruments Used:	Refer to section 5.10 for details
	Test Results:	Pass



Report No.: SZEM160900792902

Page : 28 of 36

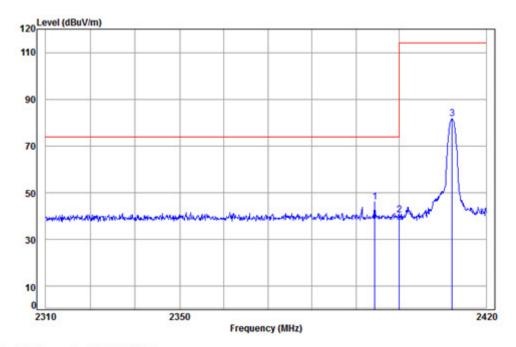
Test plot as follows:

Test mode:	Transmitting	Test channel:	Lowest	Remark:	Peak	Vertical
------------	--------------	---------------	--------	---------	------	----------

Condition: 3m Vertical Job No: : 7929CR

Mode: : 2412 Band edge

: Dongle


	Freq			Preamp Factor					Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1 p	p 2395.614	5.34	29.09	38.14	49.64	45.93	74.00	-28.07	
2	2400.000	5.34	29.11	38.14	43.22	39.53	74.00	-34.47	
3	2412.149	5.35	29.14	38.15	79.93	76.27	114.00	-37.73	

Report No.: SZEM160900792902

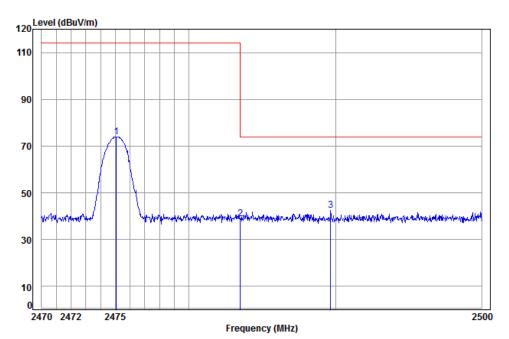
Page : 29 of 36

Condition: 3m HORIZONTAL

Job No: : 7929CR

Mode: : 2412 Band edge

: Dongle


		Freq			Preamp Factor					
		MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	pp	2394.300	5.34	29.09	38.14	49.86	46.15	74.00	-27.85	
2		2400.000	5.34	29.11	38.14	44.08	40.39	74.00	-33.61	
3		2412.149	5.35	29.14	38.15	85.42	81.76	114.00	-32.24	

Report No.: SZEM160900792902

Page : 30 of 36

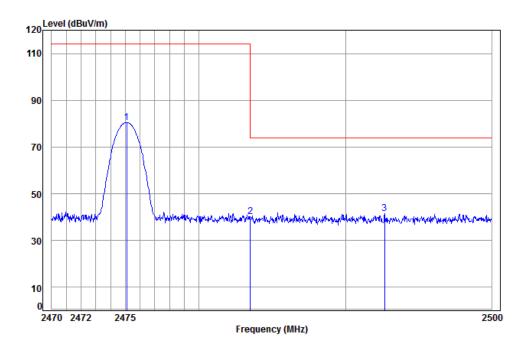
Te	est mode:	Transmitting	Test channel:	Highest	Remark:	Peak	Vertical
----	-----------	--------------	---------------	---------	---------	------	----------

Condition: 3m VERTICAL

Mode: : 2475 Band edge

Job No: : 7929CR

: Dongle


		. DOII	gre								
			Cable	Ant	Preamp	Read		Limit	0ver		
		Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark	
		MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		_
1		2475.074	5.40	29.33	38.15	77.48	74.06	114.00	-39.94		
2		2483.500	5.41	29.35	38.15	42.39	39.00	74.00	-35.00		
3	pp	2489.669	5.41	29.37	38.15	45.95	42.58	74.00	-31.42		

Report No.: SZEM160900792902

Page : 31 of 36

Test mode:	Transmitting	Test channel:	Highest	Remark:	Peak	Horizontal
------------	--------------	---------------	---------	---------	------	------------

Condition: 3m HORIZONTAL

Job No: : 7929CR

Mode: : 2475 Band edge

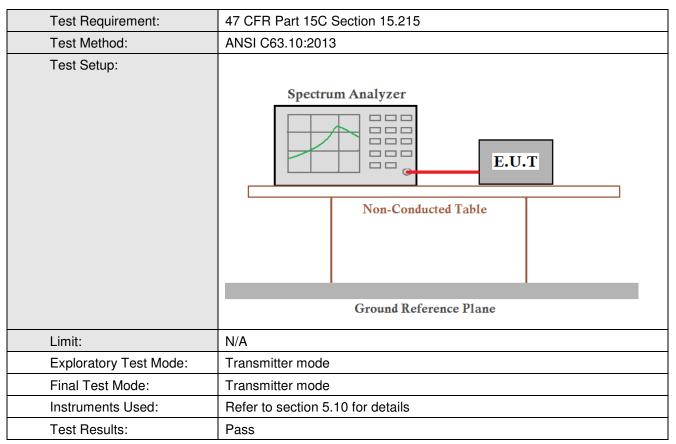
: Dongle

Freq			Preamp Factor					Remark
MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
2475.104 2483.500 2492.677	5.41	29.35	38.15	43.68	40.29	74.00	-33.71	

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation

with a sample calculation is as follows:


Final Test Level =Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

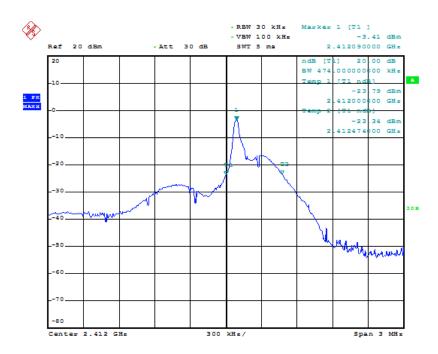
Report No.: SZEM160900792902

Page : 32 of 36

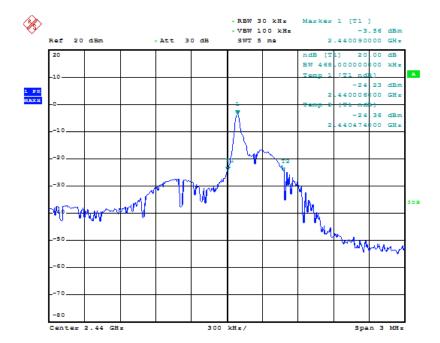
6.5 20dB Bandwidth

Measurement Data

Test Channel	20dB bandwidth (MHz)	Results						
Lowest	0.474	Pass						
Middle	0.468	Pass						
Highest	0.450	Pass						



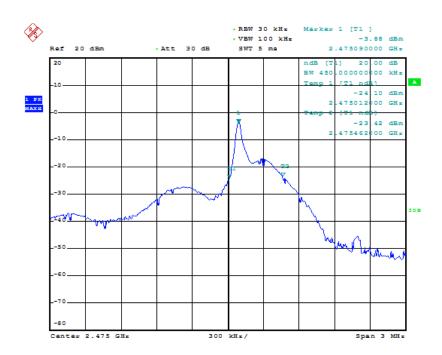
Report No.: SZEM160900792902


Page : 33 of 36

Test plot as follows:

Test channel: Lowest

Test channel: Middle

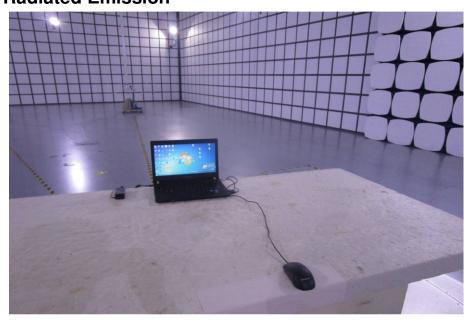


Report No.: SZEM160900792902

Page : 34 of 36

Report No.: SZEM160900792902

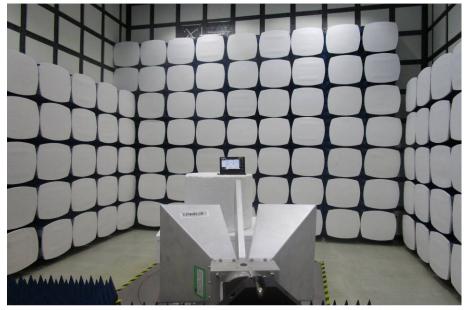
Page : 35 of 36


7 Photographs - EUT Test Setup

Test model No.: SL-650100-BK-01 (for Dongle)

7.1 Conducted Emission

7.2 Radiated Emission



Report No.: SZEM160900792902

Page : 36 of 36

7.3 Radiated Spurious Emission

8 Photographs - EUT Constructional Details

Refer to Appendix A - Photographs of EUT Constructional Details for SZEM1609007929CR.