

No. 1 Workshop, M-10, Middle section, Science & Technology Park,

Nanshan District, Shenzhen, Guangdong, China 518057

Telephone:	+86 (0) 755 2601 2053
Fax:	+86 (0) 755 2671 0594
Email:	ee.shenzhen@sgs.com

Report No.: SZEM160500330701 Page 1 of 37

TEST REPORT

Application No. :	SZEM1605003307CR
Applicant:	Winspeed Co., Ltd
Manufacturer:	Winspeed Co., Ltd
Product Name:	NIALA Deskset - Wireless
Model No.(EUT):	SL-640304-BK-US
Add Model No.:	SL-640304-XX-YY("XX" could be from "A-Z", what stands for the different product color; "YY" could be from "A-Z", what stands for the different printing version of keyboard)
Trade Mark:	SPEEDLINK
FCC ID:	2AEDNA33
Standards:	47 CFR Part 15, Subpart C (2015)
Date of Receipt:	2016-05-16
Date of Test:	2016-05-18 to 2016-05-24
Date of Issue:	2016-05-27
Test Result:	PASS *

In the configuration tested, the EUT detailed in this report complied with the standards specified above.

Authorized Signature:

EMC Laboratory Manager

This report refers to the General Conditions for Inspection and Testing Services, printed overleaf.

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the SGS PRODUCT CERTIFICATION MARK. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report was used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards

Report No.: SZEM160500330701 Page: 2 of 37

2 Version

Revision Record						
Version Chapter Date Modifier Remark						
00		2016-05-27		Original		

Authorized for issue by:		
Tested By	Gebin Sun	2016-05-24
	(Gebin Sun) /Project Engineer	Date
Prepared By	Joyce Shi	2016-05-27
	(Joyce Shi) /Clerk	Date
Checked By	Eric Fu	2016-05-27
	(Eric Fu) /Reviewer	Date

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms_and_conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms_e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Report No.: SZEM160500330701 Page: 3 of 37

3 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203	ANSI C63.10 (2013)	PASS
AC Power Line47 CFR Part 15, Subpart C SectionConducted Emission15.207		ANSI C63.10 (2013)	PASS
Field Strength of the47 CFR Part 15, Subpart C SectionFundamental Signal15.249 (a)		ANSI C63.10 (2013)	PASS
Spurious Emissions	47 CFR Part 15, Subpart C Section 15.249 (a)/15.209	ANSI C63.10 (2013)	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15, Subpart C Section 15.249(a)/15.205	ANSI C63.10 (2013)	PASS
20dB Occupied47 CFR Part 15, Subpart C SectionBandwidth15.215 (c)		ANSI C63.10 (2013)	PASS

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms_and_conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms_e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Report No.: SZEM160500330701 Page: 4 of 37

4 Contents

Page

			5 -
1	co	VER PAGE	1
2	VE	RSION	
_			
3		ST SUMMARY	
4	CO	NTENTS	4
5	GE	NERAL INFORMATION	5
	5.1		5
	5.2	GENERAL DESCRIPTION OF EUT	
	5.3	TEST ENVIRONMENT AND MODE	7
	5.4	DESCRIPTION OF SUPPORT UNITS	7
	5.5	TEST LOCATION	
	5.6	TEST FACILITY	
	5.7	DEVIATION FROM STANDARDS	
	5.8	ABNORMALITIES FROM STANDARD CONDITIONS	
	5.9	OTHER INFORMATION REQUESTED BY THE CUSTOMER	
	5.10	Equipment List	9
6	TE	ST RESULTS AND MEASUREMENT DATA	12
	6.1	ANTENNA REQUIREMENT	12
	6.2	CONDUCTED EMISSIONS	13
	6.3	Spurious Emissions	17
	6.4	RESTRICTED BANDS AROUND FUNDAMENTAL FREQUENCY	
	6.5	20dB Bandwidth	31
7	PH	OTOGRAPHS	34
	7.1	CONDUCTED EMISSION TEST SETUP	34
	7.2	RADIATED EMISSION TEST SETUP	34
	7.3	RADIATED SPURIOUS EMISSION TEST SETUP	35
	7.4	EUT CONSTRUCTIONAL DETAILS	36-37

Report No.: SZEM160500330701 Page: 5 of 37

5 General Information

5.1 Client Information

Applicant:	Winspeed Co., Ltd
Address of Applicant:	14F-1, No.2 Jian-Ba Rd., Chung-Ho District, New Taipei, Taiwan
Manufacturer:	Winspeed Co., Ltd
Address of Manufacturer:	14F-1, No.2 Jian-Ba Rd., Chung-Ho District, New Taipei, Taiwan

5.2 General Description of EUT

Name:	NIALA Deskset - Wireless
Model No.:	SL-640304-BK-US
Trade Mark :	SPEEDLINK
RF Function (Frequency):	2.4GHz(2408 MHz-2474 MHz)
Modulation Type:	GFSK
Sample Type:	Portable production
Antenna Type:	Integral
Antenna Gain:	0dBi
EUT power supply:	Supplied by PC

Remark:

Model No.: SL-640304-XX-YY("XX" could be from "A-Z", what stands for the different product color; "YY" could be from "A-Z", what stands for the different printing version of keyboard)

Only the model SL-640304-BK-US was tested, since the electrical circuit design, layout, components used and internal wiring were identical for the above models, only different on product color and printing version of keyboard.

Report No.: SZEM160500330701 Page: 6 of 37

Operation Frequency each of channel						
Channel	Frequency	Channel	Frequency	Channel	Frequency	
1CH	2408 MHz	12CH	2430 MHz	23CH	2454 MHz	
2CH	2410 MHz	13CH	2432 MHz	24CH	2456 MHz	
3CH	2412 MHz	14CH	2434 MHz	25CH	2458 MHz	
4CH	2414 MHz	15CH	2436 MHz	26CH	2460 MHz	
5CH	2416 MHz	16CH	2438 MHz	27CH	2462 MHz	
6CH	2418 MHz	17CH	2440 MHz	28CH	2464 MHz	
7CH	2420 MHz	18CH	2444 MHz	29CH	2466 MHz	
8CH	2422 MHz	19CH	2446 MHz	30CH	2468 MHz	
9CH	2424 MHz	20CH	2448 MHz	31CH	2470 MHz	
10CH	2426 MHz	21CH	2450 MHz	32CH	2472 MHz	
11CH	2428 MHz	22CH	2452 MHz	33CH	2474 MHz	

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency	
The Lowest channel(CH1)	2408MHz	
The Middle channel(CH17)	2440MHz	
The Highest channel(CH33)	2474MHz	

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms_and_conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms_e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Report No.: SZEM160500330701 Page: 7 of 37

5.3 Test Environment and Mode

Operating Environment:	Operating Environment:			
Temperature:	25.0 °C			
Humidity:	55 % RH			
Atmospheric Pressure:	1015 mbar			
Test mode:	Test mode:			
Transmitting mode: Keep the EUT in transmitting mode with modulation.				

5.4 Description of Support Units

The EUT has been tested independently.

5.5 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch E&E Lab,

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, Guangdong, China. 518057.

Tel: +86 755 2601 2053 Fax: +86 755 2671 0594

No tests were sub-contracted.

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms_and_conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms_e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Report No.: SZEM160500330701 Page: 8 of 37

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

A2LA (Certificate No. 3816.01)

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 3816.01.

• VCCI

The 10m Semi-anechoic chamber and Shielded Room of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-823, R-4188, T-1153 and C-2383 respectively.

FCC – Registration No.: 556682

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.: 556682.

Industry Canada (IC)

Two 3m Semi-anechoic chambers and the 10m Semi-anechoic chamber of SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1, 4620C-2, 4620C-3.

5.7 Deviation from Standards

None.

5.8 Abnormalities from Standard Conditions

None.

5.9 Other Information Requested by the Customer

None.

Report No.: SZEM160500330701 Page: 9 of 37

5.10 Equipment List

	Conducted Emission							
Item Test Equipment		Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Due date (yyyy-mm-dd)		
1	Shielding Room	ZhongYu Electron	GB-88	SEM001-06	2016-05-13	2017-05-13		
2	LISN	Rohde & Schwarz	ENV216	SEM007-01	2015-10-09	2016-10-09		
3	LISN	ETS- LINDGREN	3816/2	SEM007-02	2016-04-25	2017-04-25		
4	8 Line ISN	Fischer Custom Communication s Inc.	FCC- TLISN-T8- 02	EMC0120	2015-08-30	2016-08-30		
5	4 Line ISN	Fischer Custom Communication s Inc.	FCC- TLISN-T4- 02	EMC0121	2015-08-30	2016-08-30		
6	2 Line ISN	Fischer Custom Communication s Inc.	FCC- TLISN-T2- 02	EMC0122	2015-08-30	2016-08-30		
7	EMI Test Receiver	Rohde & Schwarz	ESCI	SEM004-02	2016-04-25	2017-04-25		
8	DC Power Supply	Zhao Xin	RXN-305D	SEM011-02	2015-10-09	2016-10-09		

Report No.: SZEM160500330701 Page: 10 of 37

	RE in Chamber					
ltem	Test Equipment	Manufacturer	er /		Cal. date (yyyy-mm-dd)	Cal.Due date (yyyy-mm-dd)
1	3m Semi-Anechoic Chamber	ETS- LINDGREN	N/A	SEM001-01	2016-05-13	2017-05-13
2	EMI Test Receiver	Agilent Technologies	N9038A	SEM004-05	2015-09-16	2016-09-16
3	BiConiLog Antenna (26-3000MHz)	ETS- LINDGREN	3142C	SEM003-01	2014-11-01	2017-11-01
4	Double-ridged horn (1-18GHz)	ETS- LINDGREN	3117	SEM003-11	2015-10-17	2018-10-17
5	Horn Antenna (18-26GHz)	ETS- LINDGREN	3160	SEM003-12	2014-11-24	2017-11-24
6	Pre-amplifier (0.1-1300MHz)	Agilent Technologies	8447D	SEM005-01	2016-04-25	2017-04-25
7	Band filter	Amindeon	Asi 3314	SEM023-01	N/A	N/A
8	DC Power Supply	Zhao Xin	RXN-305D	SEM011-02	2015-10-09	2016-10-09
9	Loop Antenna	Beijing Daze	ZN30401	SEM003-09	2015-05-13	2018-05-13

	RE in Chamber					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Due date (yyyy-mm-dd)
1	3m Semi-Anechoic Chamber	AUDIX	N/A	SEM001-02	2016-05-13	2017-05-13
2	EMI Test Receiver	Rohde & Schwarz	ESIB26	SEM004-04	2016-04-25	2017-04-25
3	BiConiLog Antenna (26-3000MHz)	ETS-Lindgren	3142C	SEM003-02	2014-11-15	2017-11-15
4	Amplifier (0.1-1300MHz)	HP	8447D	SEM005-02	2015-10-09	2016-10-09
5	Horn Antenna (1-18GHz)	Rohde & Schwarz	HF907	SEM003-07	2015-06-14	2018-06-14
6	Low Noise Amplifier	Black Diamond Series	BDLNA- 0118- 352810	SEM005-05	2015-10-09	2016-10-09
7	Band filter	Amindeon	Asi 3314	SEM023-01	N/A	N/A

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms_and_conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms_e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Report No.: SZEM160500330701 Page: 11 of 37

RF connected test									
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date	Cal.Due date			
					(yyyy-mm-dd)	(yyyy-mm-dd)			
1	DC Power Supply	ZhaoXin	RXN-305D	SEM011-02	2015-10-09	2016-10-09			
0		Rohde &		SEM004-06	0015 10 17	0010 10 17			
2	Spectrum Analyzer	Schwarz	Schwarz FSP		2015-10-17	2016-10-17			
0	Circul Constant	Rohde &			0010 04 05	0017.04.05			
3	3 Signal Generator	Schwarz	SML03	SEM006-02	2016-04-25	2017-04-25			
	Power Meter	Rohde &	NRVS	SEM014-02	2015-10-09	2016 10 00			
4	rower weter	Schwarz		3EIVI014-02	2015-10-09	2016-10-09			

Report No.: SZEM160500330701 Page: 12 of 37

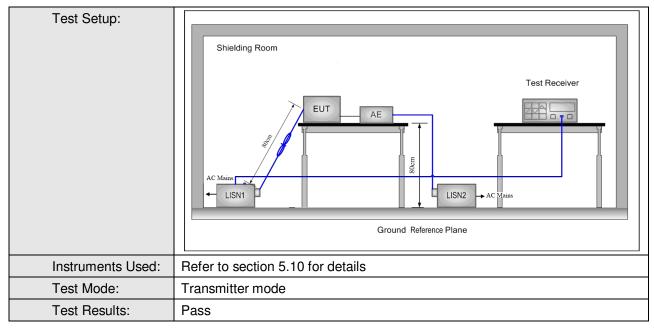
6 Test results and Measurement Data

6.1 Antenna Requirement

Standard requirement:	47 CFR Part 15C Section 15.203					
15.203 requirement:						
	e designed to ensure that no antenna other than that furnished by the d with the device. The use of a permanently attached antenna or of					
an antenna that uses a unic	ue coupling to the intentional radiator, the manufacturer may design the					
unit so that a broken antenr	na can be replaced by the user, but the use of a standard antenna jack					
or electrical connector is pro	phibited.					
EUT Antenna:	$\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \\$					
Ŭ	the main PCB and no consideration of replacement. The best case					
gain of the antenna is 0dBi.						

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms_and_conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms_e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Report No.: SZEM160500330701 Page: 13 of 37

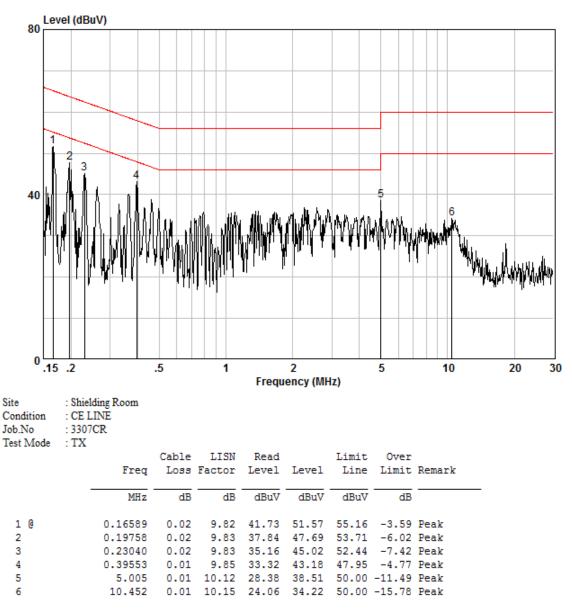

6.2 Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15	5.207					
Test Method:	ANSI C63.10: 2013						
Test Frequency Range:	150KHz to 30MHz						
Limit:		Limit (c	lBuV)				
	Frequency range (MHz)	Quasi-peak	Average				
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	60	50				
	* Decreases with the logarith	nm of the frequency.					
Test Procedure:	 The mains terminal distunshielded room. The EUT was connected Impedance Stabilization linear impedance. The powere connected to a second ground reference plane in being measured. A multipe multiple power cables to LISN was not exceeded. The tabletop EUT was platted on the frequence of the EUT shall be oplane. The vertical ground reference plane for LISN was at least 0.8 m from the according to ANSI C63.1 	to AC power source th Network) which provid ower cables of all other and LISN 2, which was in the same way as the ole socket outlet strip v a single LISN provided aced upon a non-meta ne. And for floor-stand norizontal ground reference with a vertical ground reference with a vertical ground reference plane. The LISN 1 unit under test and bo is mounted on top of th between the closest p nits of the EUT and ass he LISN 2. num emission, the rela interface cables must l	arough a LISN 1 (Line es a $50\Omega/50\mu$ H + 5Ω r units of the EUT s bonded to the LISN 1 for the unit vas used to connect d the rating of the ullic table 0.8m above ing arrangement, the ence plane, eference plane. The ground reference bonded to the was placed 0.8 m nded to a ground e ground reference oints of the LISN 1 sociated equipment tive positions of be changed				

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms_and_conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms_e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Report No.: SZEM160500330701 Page: 14 of 37

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms_and_conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms_e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."


Report No.: SZEM160500330701 Page: 15 of 37

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Live Line:

Report No.: SZEM160500330701 Page: 16 of 37

Level (dBuV) 80 A1 MAARMANAMA 0 .15 .2 .5 1 2 5 10 20 30 Frequency (MHz) Site : Shielding Room : CE NEUTRAL Condition : 3307CR Job No Test Mode : TX Cable LISN Read Limit Over Limit Remark Freq Loss Factor Level Line Level MH₂ dBuV dBuV dB dB dBuV dB 1 @ 0.16241 0.02 9.80 41.65 51.47 55.34 -3.87 Peak 2 @ 0.20075 0.02 9.85 39.84 49.71 53.58 -3.87 Peak 0.23040 3 0.02 9.85 36.64 46.51 52.44 -5.92 Peak 0.01 0.39553 9.87 31.97 41.85 47.95 -6.10 Peak 4 5 5.005 0.01 10.13 27.28 37.42 50.00 -12.58 Peak 6 10.342 0.01 10.14 22.05 32.20 50.00 -17.80 Peak

Notes:

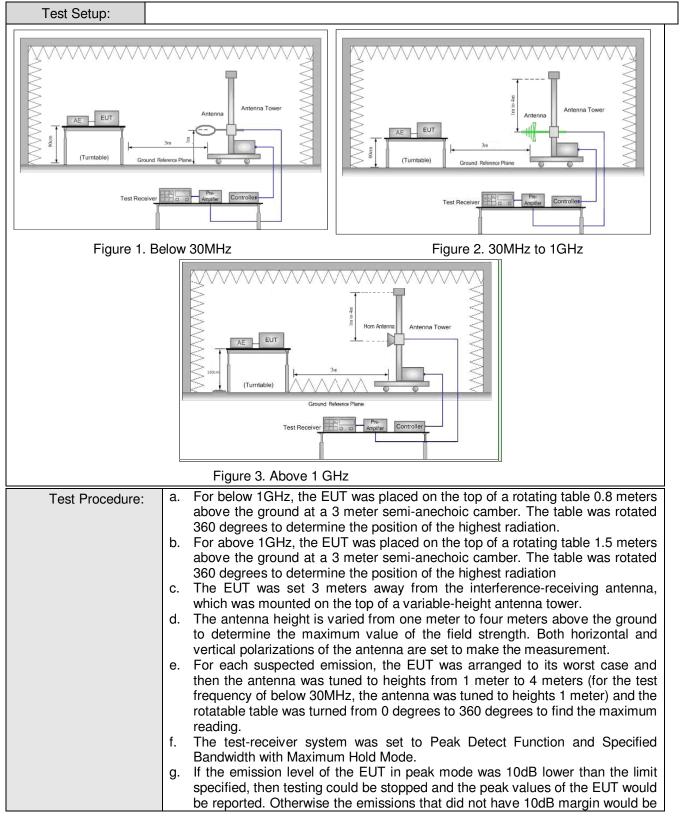
1. The following Quasi-Peak and Average measurements were performed on the EUT:

2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

"This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms_and_conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms_e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Neutral Line:

Report No.: SZEM160500330701 Page: 17 of 37


6.3 Spurious Emissions

Test Requirement:	47 CFR Part 15C Section 15.249 and 15.209								
Test Method:	ANSI C63.10: 2013								
Test Site:	Measurement Distance: 3m (Semi-Anechoic Chamber)								
Receiver Setup:	Frequency		Detector	RBW	VBW	F	lemark		
	0.009MHz-0.090MHz	z	Peak	10kHz	30KHz		Peak		
	0.009MHz-0.090MHz	z	Average	10kHz	30KHz	A	verage		
	0.090MHz-0.110MHz	z	Quasi-peak	10kHz	30KHz	Qu	asi-peak		
	0.110MHz-0.490MHz	z	Peak	10kHz	30KHz		Peak		
	0.110MHz-0.490MHz	z	Average	10kHz	30KHz	A	verage		
	0.490MHz -30MHz		Quasi-peak	10kHz	30kHz	Qu	asi-peak		
	30MHz-1GHz		Quasi-peak	100 kHz	300KHz	Qu	asi-peak		
	Above 1GHz		Peak	1MHz	3MHz		Peak		
			Peak	1MHz	10Hz	A	verage		
Limit:	Frequency		eld strength	Limit	Remark		leasurement		
(Spurious Emissions)		,	crovolt/meter)	(dBuV/m)	rioman	(distance (m)		
	0.009MHz-0.490MHz	24	400/F(kHz)	-	-		300		
	0.490MHz-1.705MHz	24	000/F(kHz)				30		
	1.705MHz-30MHz		30				30		
	30MHz-88MHz		100	40.0	Quasi-pea	ak	3		
	88MHz-216MHz		150	43.5	G Quasi-pea	ak	3		
	216MHz-960MHz		200	46.0	Quasi-pea	ak	3		
	960MHz-1GHz		500	54.0	Quasi-pea	ak	3		
	Above 1GHz		500	54.0	Average		3		
	Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency er is 20dB above the maximum permitted average emission limit applicab equipment under test. This peak limit applies to the total peak emissi radiated by the device.								
Limit:	Frequency		Limit (dBuV/ı	m @3m)	Remark				
(Field strength of the		1-	94.0		Average Va	lue			
fundamental signal)	2400MHz-2483.5MH	12	114.()	Peak Valu	е			

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms_and_conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms_e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Report No.: SZEM160500330701 Page: 18 of 37

Report No.: SZEM160500330701 Page: 19 of 37

	 re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. h. Test the EUT in the lowest channel, the middle channel, the Highest channel i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, And found the X axis positioning which it is worse case. j. Repeat above procedures until all frequencies measured was complete.
Instruments Used:	Refer to section 5.10 for details
Exploratory Test Mode:	Transmitting mode,
Final Test Mode:	Pretest the EUT at Transmitting mode, found the Transmitting mode which it is worse case Only the worst case is recorded in the report.
Test Results:	Pass

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms_and_conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms_e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Report No.: SZEM160500330701 Page: 20 of 37

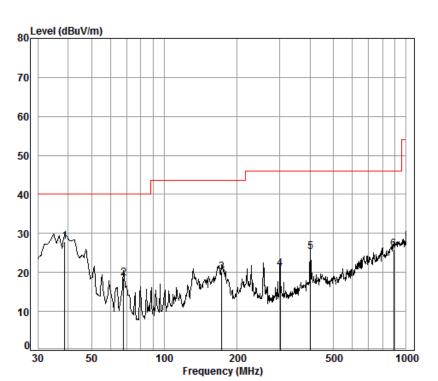
Measurement Data

6.3.1.1 Field Strength Of The Fundamental Signal

Peak value:

Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2407.523	28.64	5.35	38.11	93.47	89.35	114	-24.65	Horizontal
2407.523	28.64	5.35	38.11	87.34	83.22	114	-30.78	Vertical
2440.518	28.79	5.38	38.11	92.95	89.01	114	-24.99	Horizontal
2440.518	28.79	5.38	38.11	86.97	83.03	114	-30.97	Vertical
2474.507	28.94	5.4	38.12	93.74	89.96	114	-24.04	Horizontal
2473.432	28.94	5.4	38.12	86	82.22	114	-31.78	Vertical

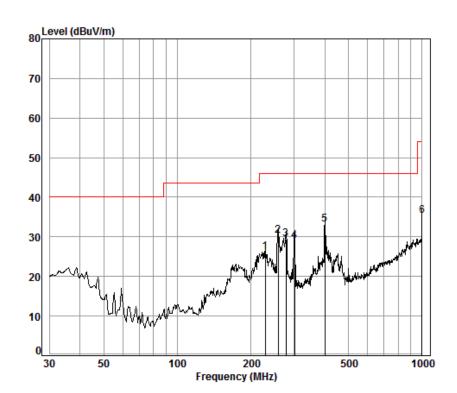
Remark:


The peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

Report No.: SZEM160500330701 Page: 21 of 37

6.3.1.2 Spurious Emissions

30MHz~1GHz		
Test mode:	Transmitting mode	Vertical


Condition: 3m Vertical Job No. : 3307CR Test mode: TX mode

	Freq			Preamp Factor				Over Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1 pp 2 3 4 5 6	38.75 67.91 172.60 301.42 401.84 887.61	1.90 2.21	5.05 9.10 11.27 12.47	25.98 25.93 25.80 25.70 25.66 25.15	38.59 35.43 33.44 36.28	18.51 20.09 20.91 25.30	40.00 43.50 46.00 46.00	-21.49 -23.41 -25.09 -20.70

Report No.: SZEM160500330701 Page: 22 of 37

Test mode:	Transmitting mode	Horizontal

Condition: 3m Horizontal Job No. : 3307CR Test mode: TX mode

lesτ	mode: IX	moae						
		Cable	Ant	Preamp	Read		Limit	0ver
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1	228.49	1.56	7.73	25.75	42.62	26.16	46.00	-19.84
2	258.33	1.71	9.37	25.73	45.02	30.37	46.00	-15.63
3	278.07	1.81	10.05	25.71	43.28	29.43	46.00	-16.57
4	301.42	1.90	11.27	25.70	41.54	29.01	46.00	-16.99
5 p	p 400.43	2.20	12.34	25.66	44.23	33.11	46.00	-12.89
6	1000.00	3.70	22.30	24.40	33.82	35.42	54.00	-18.58

Report No.: SZEM160500330701 Page: 23 of 37

Above 1GH	Above 1GHz										
Test mode:		Trans	mitting	Test cha	nnel:	Lo	owest	Remark:		Pea	ak
Frequency (MHz)	Fa	tenna actor B/m)	Cable Loss (dB)	Preamp Factor (dB)	Read Level (dBuV		Level (dBuV/m)	Limit Line (dBuV/m)	Ov Lim (dE	nit	Polarization
3814.467	32	2.91	7.75	38.49	45.58		47.75	74	-26.	25	Vertical
4816.000	34	4.12	8.88	38.75	44.01		48.26	74	-25.	74	Vertical
6639.063	35	5.18	10.12	38.15	44.30	•	51.45	74	-22.	55	Vertical
7224.000	35	5.59	10.69	37.63	40.26		48.91	74	-25.	09	Vertical
9632.000	37	7.10	12.51	36.31	33.81		47.11	74	-26.	89	Vertical
12676.420	37	7.94	14.65	37.82	37.89		52.66	74	-21.	34	Vertical
3792.453	32	2.87	7.74	38.48	45.91		48.04	74	-25.	96	Horizontal
4816.000	34	4.12	8.88	38.75	44.91		49.16	74	-24.	84	Horizontal
6157.871	34	4.78	10.36	38.75	45.62		52.01	74	-21.	99	Horizontal
7224.000	35	5.59	10.69	37.63	39.60)	48.25	74	-25.	75	Horizontal
9632.000	37	7.10	12.51	36.31	33.60)	46.90	74	-27.	10	Horizontal
12603.270	37	7.90	14.44	37.75	36.96	5	51.55	74	-22.	45	Vertical

Test mode:	Trans	mitting	Test char	nnel:	Middle	Remark:	F	Peak
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
3825.521	32.93	7.75	38.49	46.30	48.49	74	-25.51	Vertical
4880.000	34.18	8.97	38.76	45.97	50.36	74	-23.64	Vertical
6639.063	35.18	10.12	38.15	45.40	52.55	74	-21.45	Vertical
7320.000	35.54	10.72	37.59	41.87	50.54	74	-23.46	Vertical
9760.000	37.10	12.58	36.14	38.89	52.43	74	-21.57	Vertical
12530.530	37.83	14.24	37.68	38.11	52.50	74	-21.50	Vertical
3803.444	32.90	7.74	38.49	44.75	46.90	74	-27.10	Horizontal
4880.000	34.18	8.97	38.76	44.15	48.54	74	-25.46	6 Horizontal
6140.076	34.77	10.38	38.78	45.94	52.31	74	-21.69	Horizontal
7320.000	35.54	10.72	37.59	41.28	49.95	74	-24.05	6 Horizontal
9760.000	37.10	12.58	36.14	38.94	52.48	74	-21.52	e Horizontal
12676.420	37.94	14.65	37.82	37.45	52.22	74	-21.78	B Horizontal

Report No.: SZEM160500330701 Page: 24 of 37

Test mode:	-	Transm	itting	Test char	nnel:	Hi	ghest	Remark:			Peak
Frequency (MHz)	Fa	enna ctor 3/m)	Cable Loss (dB)	Preamp Factor (dB)	Read Level (dBuV		Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	
3881.276	32	.98	7.77	38.52	46.14	-	48.37	74	-	25.63	3 Vertical
4948.000	34	.25	9.07	38.78	47.39)	51.93	74	-	22.07	7 Vertical
6658.303	35	.17	10.15	38.13	45.25		52.44	74	-	21.56	6 Vertical
7424.000	35	.56	10.76	37.55	39.47	,	48.24	74	-	25.76	6 Vertical
9896.000	37	.20	12.65	35.96	37.34		51.23	74	-	22.7	7 Vertical
11757.650	37	.50	14.30	36.94	37.50)	52.36	74	-	21.64	4 Vertical
3803.444	32	.90	7.74	38.49	45.24	-	47.39	74	-	26.6 ⁻	1 Horizontal
4948.000	34	.25	9.07	38.78	46.90)	51.44	74	-	22.56	6 Horizontal
6619.878	35	.19	10.10	38.18	45.00)	52.11	74	-	21.89	9 Horizontal
7424.000	35	.56	10.76	37.55	37.91		46.68	74	-	27.32	2 Horizontal
9896.000	37	.20	12.65	35.96	39.10)	52.99	74	-	21.0 [.]	1 Horizontal
12603.270	37	.90	14.44	37.75	38.15	5	52.74	74	-	21.26	6 Horizontal

Remark:

 The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 Final Test Level =Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor

- 2) Scan from 9kHz to 25GHz, The disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

Report No.: SZEM160500330701 Page: 25 of 37

6.4 Restricted bands around fundamental frequency

Test Requirement:	47 CFR Part 15C Section 15	5.209 and 15.205					
Test Method:	ANSI C63.10: 2013						
Test site:	Measurement Distance: 3m	(Semi-Anechoic Chamber	<i>c</i>)				
Limit(band edge):	Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.20 whichever is the lesser attenuation.						
	Frequency	Limit (dBuV/m @3m)	Remark				
	30MHz-88MHz	z 40.0 Quasi-peak V					
	88MHz-216MHz	43.5	Quasi-peak Value				
	216MHz-960MHz	46.0	Quasi-peak Value				
	960MHz-1GHz	54.0	Quasi-peak Value				
	Above 1GHz	54.0 Average Value					
	Above TGHZ	74.0 Peak Value					
Test Setup:							
Image: Controller Image: Controller <t< td=""></t<>							
Figure 1. 30MHz	to 1GHz	Figure 2. Above 1	GHz				

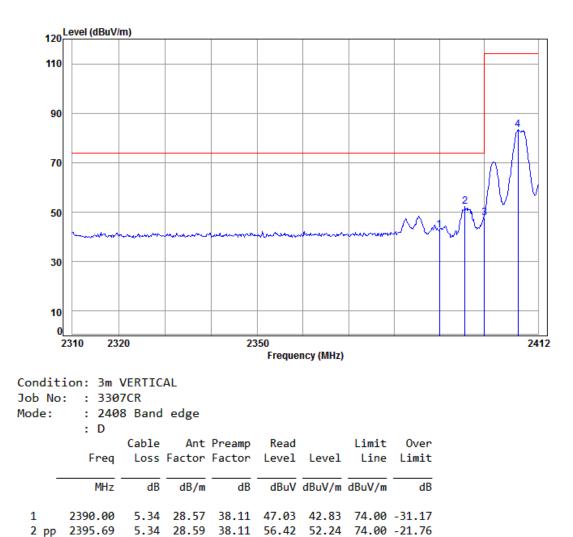
Report No.: SZEM160500330701 Page: 26 of 37

Test Procedure:	a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
	b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
	c. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	 g. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel h. Test the EUT in the lowest channel , the Highest channel i. Repeat above procedures until all frequencies measured was complete.
Instruments Used:	Refer to section 5.10 for details
Test Mode:	Transmitting with GFSK modulation.
	Transmitting mode
Test Results:	Pass

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms_and_conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms_e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

3

4


2400.00

2407.52

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM160500330701 Page: 27 of 37

Band edge (Radiated Emission)							
Worse case mode:	Transmitting	Test channel:	Lowest	Remark:	Peak	Vertical	

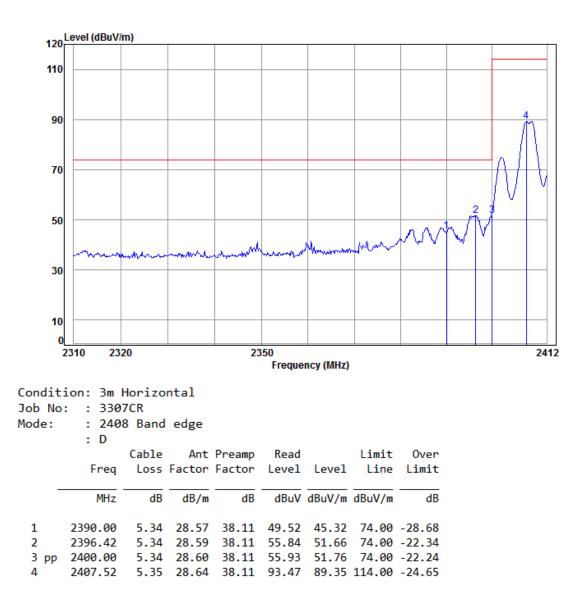
28.60

5.34

5.35

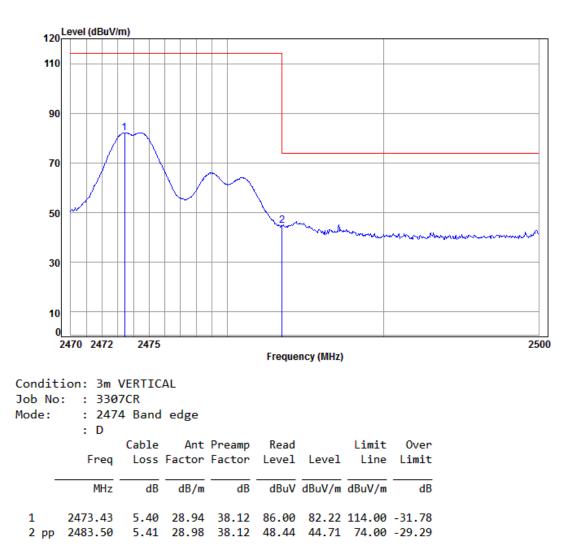
38.11

"This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms_and_conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms_e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

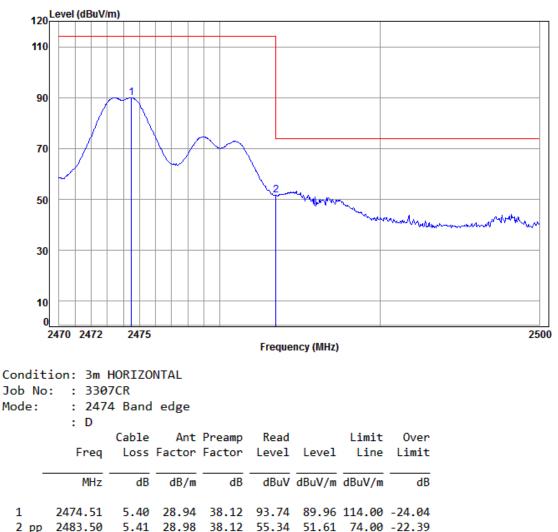

51.96 47.79 74.00 -26.21

28.64 38.11 87.34 83.22 114.00 -30.78

Report No.: SZEM160500330701 Page: 28 of 37


Worse case mode: Transmitting Test channel: Lowest Remark: Peak Horizontal							
	Worse case mode:	Transmitting	Test channel:	Lowest	Remark:	Peak	Horizontal

Report No.: SZEM160500330701 Page: 29 of 37

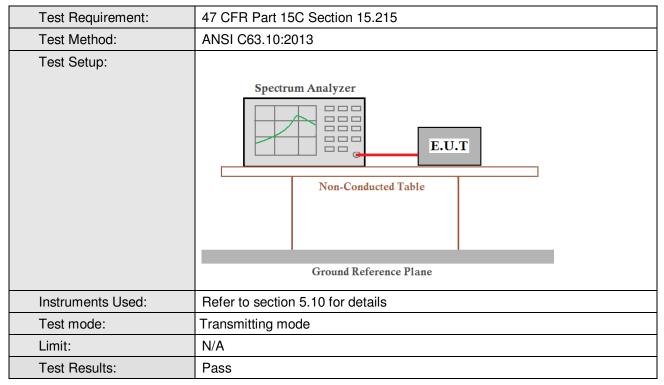

Worse case mode:	Transmitting	Test channel:	Highest	Remark:	Peak	Vertical

Report No.: SZEM160500330701 Page: 30 of 37

Worse case mode:	Transmitting	Test channel:	Highest	Remark:	Peak	Horizontal

2 pp 2403.30 3.41 20.90 30.12 33.34 31.01 74

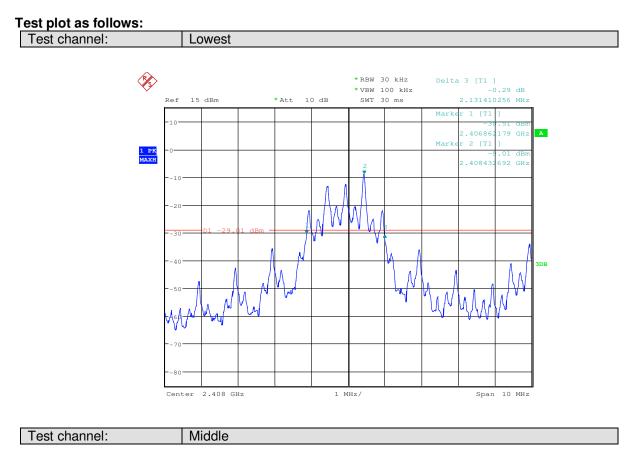
Note:

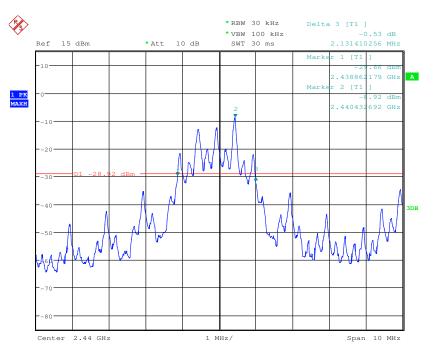

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

Report No.: SZEM160500330701 Page: 31 of 37

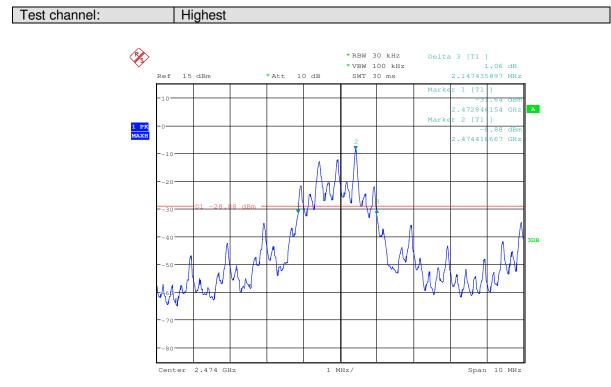
6.5 20dB Bandwidth




Measurement Data

Test channel	20dB bandwidth (MHz)	Results
Lowest	2.13	Pass
Middle	2.13	Pass
Highest	2.15	Pass

Report No.: SZEM160500330701 Page: 32 of 37



"This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms_and_conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms_e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Report No.: SZEM160500330701 Page: 33 of 37

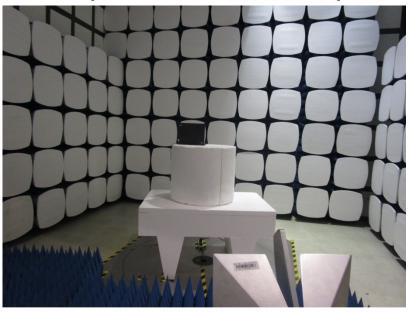
[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms_and_conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms_e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Report No.: SZEM160500330701 Page: 34 of 37

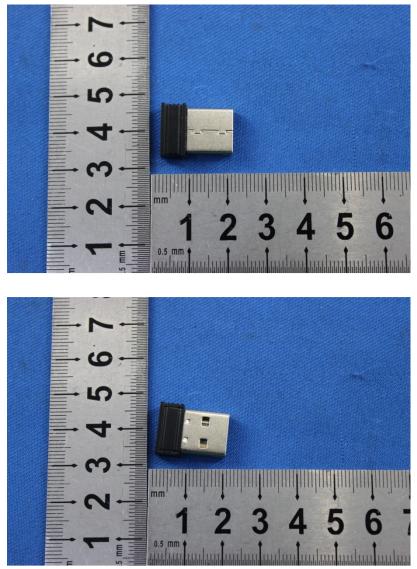
7 Photographs

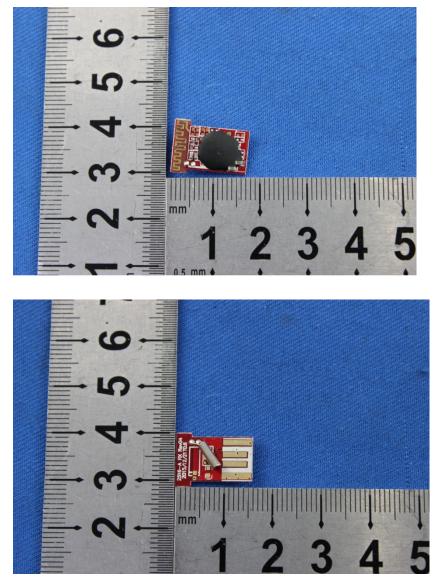
Test Model No.: SL-640304-BK-US

7.1 Conducted Emission Test Setup


7.2 Radiated Emission Test Setup

Report No.: SZEM160500330701 Page: 35 of 37


7.3 Radiated Spurious Emission Test Setup


Report No.: SZEM160500330701 Page: 36 of 37

7.4 EUT Constructional Details

Report No.: SZEM160500330701 Page: 37 of 37

