APPENDIX C: RELEVANT PAGES FROM PROBE CALIBRATION REPORT(S) Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland S С S Schweizerischer Kallbrierdienst Service suisse d'étalonnage Servizlo svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client SMQ (Auden) Certificate No: EX3-3881_Jul14 Accreditation No.: SCS 108 # **CALIBRATION CERTIFICATE** Object EX3DV4 - SN:3881 Calibration procedure(s) QA CAL-01.v9, QA CAL-12.v9, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes Calibration date: July 22, 2014 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|-----------------|-----------------------------------|------------------------| | Power meter E4419B | GB41293874 | 03-Apr-14 (No. 217-01911) | Apr-15 | | Power sensor E4412A | MY41498087 | 03-Apr-14 (No. 217-01911) | Apr-15 | | Reference 3 dB Attenuator | SN: S5054 (3c) | 03-Apr-14 (No. 217-01915) | Apr-15 | | Reference 20 dB Attenuator | SN: S5277 (20x) | 03-Apr-14 (No. 217-01919) | Apr-15 | | Reference 30 dB Attenuator | SN: S5129 (30b) | 03-Apr-14 (No. 217-01920) | Apr-15 | | Reference Probe ES3DV2 | SN: 3013 | 30-Dec-13 (No. ES3-3013_Dec13) | Dec-14 | | DAE4 | SN: 660 | 13-Dec-13 (No. DAE4-660_Dec13) | Dec-14 | | | | | Scheduled Check | | Secondary Standards | ID | Check Date (in house) | | | RF generator HP 8648C | US3642U01700 | 4-Aug-99 (in house check Apr-13) | In house check: Apr-16 | | Network Analyzer HP 8753E | US37390585 | 18-Oct-01 (in house check Oct-13) | In house check: Oct-14 | Signature Name Function Laboratory Technician Jeton Kastrati Calibrated by: Technical Manager Katja Pokovic Approved by: Page 1 of 11 Issued: July 23, 2014 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. #### Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst S Service suisse d'étalonnage С Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL NORMx,y,z tissue simulating liquid sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF A, B, C, D crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters Polarization @ σ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis Connector Angle Certificate No: EX3-3881_Jul14 information used in DASY system to align probe sensor X to the robot coordinate system #### Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 #### Methods Applied and Interpretation of Parameters: - NORMx, y, z: Assessed for E-field polarization $\vartheta = 0$ (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E2-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f \leq 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). July 22, 2014 EX3DV4 - SN:3881 # Probe EX3DV4 SN:3881 Manufactured: April 30, 2012 July 22, 2014 Calibrated: Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) EX3DV4-SN:3881 July 22, 2014 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3881 **Basic Calibration Parameters** | Basic Gailbration Fara | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--|----------|----------|----------|-----------| | Norm (µV/(V/m) ²) ^A | 0.18 | 0.37 | 0.53 | ± 10.1 % | | DCP (mV) ^B | 96.5 | 100.9 | 101.1 | | Modulation Calibration Parameters | QID | Communication System Name | | A
dB | B
dB√μV | С | D
dB | VR
mV | Unc ⁻
(k=2) | |-----|---------------------------|---|---------|------------|-----|---------|----------|---------------------------| | 0 | CW | X | 0.0 | 0.0 | 1.0 | 0.00 | 133.4 | ±4.1 % | | | | Y | 0.0 | 0.0 | 1.0 | | 131.0 | | | | | Z | 0.0 | 0.0 | 1.0 | | 132.8 | | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: EX3-3881_Jul14 A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6). Numerical linearization parameter: uncertainty not required. Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the EX3DV4- SN:3881 July 22, 2014 ### DASY/EASY - Parameters of Probe: EX3DV4 - SN:3881 #### Calibration Parameter Determined in Head Tissue Simulating Media | | | | | | _ | | | | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | f (MHz) ^C | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | | 450 | 43.5 | 0.87 | 10.60 | 10.60 | 10.60 | 0.18 | 1.80 | ± 13.3 % | | 835 | 41.5 | 0.90 | 9.41 | 9.41 | 9.41 | 0.49 | 0.70 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 8.09 | 8.09 | 8.09 | 0.57 | 0.64 | ± 12.0 % | ^C Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. the ConvF uncertainty for Indicated target tissue parameters. Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. EX3DV4-SN:3881 Certificate No: EX3-3881_Jul14 July 22, 2014 # DASY/EASY - Parameters
of Probe: EX3DV4 - SN:3881 # Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 450 | 56.7 | 0.94 | 10.75 | 10.75 | 10.75 | 0.10 | 1.50 | ± 13.3 % | | 835 | 55.2 | 0.97 | 9.34 | 9.34 | 9.34 | 0.30 | 1.03 | ± 12.0 % | | 1900 | 53.3 | 1.52 | 8.25 | 8.25 | 8.25 | 0.46 | 1.00 | ± 12.0 % | ^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. FAt frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. Galpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. EX3DV4-SN:3881 July 22, 2014 # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) July 22, 2014 EX3DV4-- SN:3881 # Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) EX3DV4-SN:3881 July 22, 2014 # Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) EX3DV4- SN:3881 July 22, 2014 # **Conversion Factor Assessment** # **Deviation from Isotropy in Liquid** Error (ϕ, θ) , f = 900 MHz EX3DV4- SN:3881 July 22, 2014 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3881 #### **Other Probe Parameters** | Triangular | |------------| | -10.2 | | enabled | | disabled | | 337 mm | | 10 mm | | 9 mm | | 2.5 mm | | 1 mm | | 1 mm | | 1 mm | | 1.4 mm | | | Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn Client **AUDEN** Certificate No: Z14-97164 #### CALIBRATION CERTIFICATE Object ES3DV3 - SN:3203 Calibration Procedure(s) TMC-OS-E-02-195 Calibration Procedures for Dosimetric E-field Probes Calibration date: December 19, 2014 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|--------------|--|-----------------------| | Power Meter NRP2 | 101919 | 01-Jul-14 (CTTL, No.J14X02146) | Jun-15 | | Power sensor NRP-Z91 | 101547 | 01-Jul-14 (CTTL, No.J14X02146) | Jun-15 | | Power sensor NRP-Z91 | 101548 | 01-Jul-14 (CTTL, No.J14X02146) | Jun-15 | | Reference10dBAttenuator | 18N50W-10dE | 3 13-Mar-14(TMC,No.JZ14-1103) | Mar-16 | | Reference20dBAttenuator | 18N50W-20dE | 3 13-Mar-14(TMC,No.JZ14-1104) | Mar-16 | | Reference Probe EX3DV4 | SN 3617 | 28-Aug-14(SPEAG,No.EX3-3617_Aug14) | Aug-15 | | DAE4 | SN 1331 | 23-Jan-14 (SPEAG, DAE4-1331_Jan14) | Jan -15 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | SignalGeneratorMG3700A | 6201052605 | 01-Jul-14 (CTTL, No.J14X02145) | Jun-15 | | Network Analyzer E5071C | MY46110673 | 15-Feb-14 (TMC, No.JZ14-781) | Feb-15 | | 1114111 | Name | Function | Signature | | Calibrated by: | SPRESSIVE ST | 요즘 얼룩한 한 바람이 가지가 하는 살을 때는 사람은 | 1 xtz | Calibrated by: Yu Zongying SAR Test Engineer Reviewed by: Qi Dianyuan SAR Project Leader Approved by: Lu Bingsong Deputy Director of the laboratory Issued: December 20, 2014 This calibration certificate shall not be reproduced except in full without written approval of the laboratory Certificate No: Z14-97164 Page 1 of 11 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn Glossary: TSL NORMx,y,z tissue simulating liquid sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters Polarization Φ Φ rotation around probe axis Polarization θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i θ=0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005 Methods Applied and Interpretation of Parameters: - NORMx, v.z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E^2 -field uncertainty inside TSL (see below ConvF). - $NORM(f)x, y, z = NORMx, y, z^*$ frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal - Ax, y, z; Bx, y, z; Cx, y, z; VRx, y, z: A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ±50MHz to ±100MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMX (no uncertainty required). Certificate No: Z14-97164 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn # Probe ES3DV3 SN: 3203 Calibrated: December 19, 2014 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) Certificate No: Z14-97164 Page 3 of 11 ### DASY/EASY - Parameters of Probe: ES3DV3 - SN: 3203 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |----------------------|----------|----------|----------|-----------| | Norm(µV/(V/m)²)A | 1.39 | 1.37 | 1.19 | ±10.8% | | DCP(mV) ^B | 103.9 | 100.8 | 104.3 | | #### **Modulation Calibration Parameters** | UID | Communication | | A | В | С | D | VR | Unc E | |-----|---------------|---|-----|------|-----|------|-------|-------| | | System Name | | dB | dBõV | | dB | mV | (k=2) | | 0 | cw | Х | 0.0 | 0.0 | 1.0 | 0.00 | 298.4 | ±2.3% | | | | Υ | 0.0 | 0.0 | 1.0 | | 292.8 | | | | | Z | 0.0 | 0.0 | 1.0 | | 272.7 | | The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. ⁸ Numerical linearization parameter: uncertainty not required. A The uncertainties of Norm X, Y, Z do not affect the E2-field uncertainty inside TSL (see Page 5 and Page 6). ^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn ###
DASY/EASY – Parameters of Probe: ES3DV3 - SN: 3203 #### Calibration Parameter Determined in Head Tissue Simulating Media between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. | f [MHz] ^C | Relative
Permittivity ^F | Conductivity
(S/m) ^f | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 900 | 41.5 | 0.97 | 6.55 | 6.55 | 6.55 | 0.32 | 1.66 | ±12% | | 1810 | 40.0 | 1.40 | 5.20 | 5.20 | 5.20 | 0.67 | 1.27 | ±12% | | 2450 | 39.2 | 1.80 | 4.55 | 4.55 | 4.55 | 0.90 | 1.10 | ±12% | ^C Frequency validity of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^F At frequency below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies Certificate No: Z14-97164 Page 5 of 11 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn ### DASY/EASY – Parameters of Probe: ES3DV3 - SN: 3203 ### Calibration Parameter Determined in Body Tissue Simulating Media | f [MHz] ^C | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 900 | 55.0 | 1.05 | 6.20 | 6.20 | 6.20 | 0.55 | 1.38 | ±12% | | 1810 | 53.3 | 1.52 | 4.88 | 4.88 | 4.88 | 0.46 | 1.60 | ±12% | | 2450 | 52.7 | 1.95 | 4.47 | 4.47 | 4.47 | 0.59 | 1.55 | ±12% | ^c Frequency validity of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Certificate No: Z14-97164 F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 +86-10-6230463-2504 +86-10-6230467 Fax: +86-10-62304 Fax: +86-10-62304 Fax: +86-10-62304 Fax: +86-10-62304 Fax: +86-10-62304 Fax: +86-10-62304 Fa # Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ±7.5% (k=2) Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn # Receiving Pattern (Φ), θ =0° Uncertainty of Axial Isotropy Assessment: ±0.9% (k=2) Certificate No: Z14-97164 Page 8 of 11 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn # Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz) Uncertainty of Linearity Assessment: ±0.9% (k=2) Certificate No: Z14-97164 Page 9 of 11 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tcl: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn # **Conversion Factor Assessment** ## f=900 MHz, WGLS R9(H_convF) ## f=1810 MHz, WGLS R22(H_convF) # **Deviation from Isotropy in Liquid** Uncertainty of Spherical Isotropy Assessment: ±2.8% (K=2) Certificate No: Z14-97164 Page 10 of 11 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn # DASY/EASY - Parameters of Probe: ES3DV3 - SN: 3203 ### **Other Probe Parameters** | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | 175.2 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disable | | Probe Overall Length | 337mm | | Probe Body Diameter | 10mm | | Tip Length | 10mm | | Tip Diameter | 4mm | | Probe Tip to Sensor X Calibration Point | 2mm | | Probe Tip to Sensor Y Calibration Point | 2mm | | Probe Tip to Sensor Z Calibration Point | 2mm | | Recommended Measurement Distance from Surface | 3mm | # APPENDIX D: RELEVANT PAGES FROM DIPOLE VALIDATION KIT REPORT(S) 03/0364/01 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client SMQ (Auden) Accreditation No.: SCS 108 Certificate No: D635V2-4d141_Sep12 ### CALIBRATION CERTIFICATE Object D835V2 - SN: 4d141 Calibration procedure(s) QA CAL-05.v8 Calibration procedure for dipole validation kits above 700 MHz Calibration date: September 24, 2012 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 a 3)°C and humidity < 70%, Calibration Equipment used (M&TE critical for calibration) Calibrated by: Approved by: | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|-----------------------------------|------------------------| | Power meter EPM-442A | GB37480704 | 05-Oct-11 (No. 217-01451) | Oct-12 | | Power sensor HP 8481A | US37292783 | 05-Oct-11 (No. 217-01451) | Oct-12 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 27-Mar-12 (No. 217-01530) | Apr-13 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 27-Mar-12 (No. 217-01533) | Apr-13 | | Reference Probe ES3DV3 | SN: 3205 | 30-Dec-11 (No. ES3-3205_Dec11) | Dec-12 | | DAE4 | SN: 601 | 27-Jun-12 (No. DAE4-601_Jun12) | Jun-13 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power sensor HP 8481A | MY41092317 | 18-Oct-02 (in house check Oct-11) | In house check: Oct-13 | | RF generator R&S SMT-06 | 100005 | 04-Aug-99 (in house check Oct-11) | In house check: Oct-13 | | Network Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (in house check Oct-11) | In house check: Oct-12 | | | | | | Function Laboratory Technician Technical Manager Israe El-Nacuq Katja Pokovic Name Men El-Dassis Issued: September 24, 2012 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D835V2-4d141_Sep12 Page 1 of 8 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurick, Switzerland S Schweizerischer Kallbrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - EC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 #### Additional Documentation: d) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms
oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D835V2-4d141_Sep12 Page 2 of 8 #### Measurement Conditions DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.2 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 835 MHz ± 1 MHz | | #### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.5 | 0.90 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 41.3 ± 6 % | 0.90 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 2.34 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 9.35 mW /g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 1.53 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 6.12 mW /g ± 16.5 % (k=2) | Body TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.2 | 0.97 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 53.2 ± 6 % | 1.00 mha/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | #### SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 2.44 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 9.46 mW / g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 1.60 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 6.25 mW / g ± 16.5 % (k=2) | Certificate No: D835V2-4d141_Sep12 #### Appendix #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 52.6 Ω - 2.7 jΩ | |--------------------------------------|-----------------| | Return Loss | - 28.7 dB | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 50.1 Ω - 1.9 μΩ | |--------------------------------------|-----------------| | Return Loss | - 34.6 dB | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.391 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | |-----------------|----------------| | Manufactured on | March 27, 2012 | Certificate No: D835V2-4d141_Sep12 Page 4 of 8 ### DASY5 Validation Report for Head TSL Date: 24.09.2012 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d141 Communication System: CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.9 \text{ mho/m}$; $\epsilon_r = 41.3$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(6.07, 6.07, 6.07); Calibrated: 30.12.2011; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 27.06.2012 Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 DASY52 52.8.2(969); SEMCAD X 14.6.6(6824) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm 2/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.647 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 3.447 mW/g SAR(1 g) = 2.34 mW/g; SAR(10 g) = 1.53 mW/gMaximum value of SAR (measured) = 2.71 W/kg 0 dB = 2.71 W/kg = 8.66 dB W/kg ### Impedance Measurement Plot for Head TSL #### DASY5 Validation Report for Body TSL Date: 24.09.2012 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d141 Communication System: CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 1 \text{ mho/m}$; $\epsilon_r = 53.2$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(6.02, 6.02, 6.02); Calibrated: 30.12.2011; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 27.06.2012 Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 DASY52 52.8.2(969); SEMCAD X 14.6.6(6824) #### Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.345 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 3.541 mW/g SAR(1 g) = 2.44 mW/g; SAR(10 g) = 1.6 mW/gMaximum value of SAR (measured) = 2.85 W/kg ## Impedance Measurement Plot for Body TSL ## D835V2, Extended Dipole Calibrations Per IEEE Std 1528-2003, the dipole should have a return loss better than -20dB at the test frequency to reduce uncertainty in the power measurement. Per KDB 865664 D01,if dipoles are verified in return loss(<-20dB,within 20% of prior calibration),and in impedance (within 5 ohm of prior calibration),the annual calibration is not necessary and the calibration interval can be extended. #### Justification of the extended calibration | D835V2 | | | | | | | |------------------------|---------------------|--------------|----------------------------|----------------|---------------------------------|----------------| | 835 Head | | | | | | | | Date of
Measurement | Return-Loss
(dB) | Delta
(%) | Real
Impedance
(ohm) | Delta
(ohm) | Imaginary
Impedance
(ohm) | Delta
(ohm) | | 9.24.2012 | -28.730 | | 52.612 | | 2.697 | | | 9.24.2013 | -28.420 | 1.07 | 52.828 | 0.216 | 3.452 | 0.755 | | 9.24.2014 | -27.920 | 2.81 | 52.943 | 0.331 | 3.689 | 0.092 | | D835V2 | | | | | | | | |------------------------|---------------------|--------------|----------------------------|----------------|---------------------------------|----------------|--| | | 835 Body | | | | | | | | Date of
Measurement | Return-Loss
(dB) | Delta
(%) | Real
Impedance
(ohm) | Delta
(ohm) | Imaginary
Impedance
(ohm) | Delta
(ohm) | | | 9.24.2012 | -34.618 | | 50.109 | | 1.918 | | | | 9.24.2013 | -34.142 | 1.37 | 49.537 | 0.572 | 2.534 | 0.616 | | | 9.24.2014 | -33.973 | 1.86 | 49.123 | 0.986 | 2.902 | 0.984 | | The return loss is \leq -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration. SE 10364/02 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage S Servizio svizzero di teratura S Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA. Multilateral Agreement for the recognition of calibration certificates. Client SMQ (Auden) Certificate No: D1900V2-5d162_Sep12 ## CALIBRATION CERTIFICATE Object D1900V2 - SN: 5d162 Calibration procedure(s) QA CAL-05.v8 Calibration procedure for dipole validation kits above 700 MHz Calibration date: September 21, 2012 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed
laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Calibrated by: Approved by: | Primary Standards | ID # | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|-----------------------------------|------------------------| | Power meter EPM-442A | GB37480704 | 05-Oct-11 (No. 217-01451) | Oct-12 | | Power sensor HP 8481A | US37292783 | 05-Oct-11 (No. 217-01451) | Oct-12 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 27-Mar-12 (No. 217-01530) | Apr-13 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 27-Mer-12 (No. 217-01533) | Apr-13 | | Reference Probe ES3DV3 | SN: 3205 | 30-Dec-11 (No. ES3-3205_Dec11) | Dec-12 | | DAE4 | SN: 601 | 27-Jun-12 (No. DAE4-601_Jun12) | Jun-13 | | Secondary Standards | ID # | Check Date (in house) | Scheduled Check | | Power sensor HP 8481A | MY41092317 | 18-Oct-02 (in house check Oct-11) | In house check: Oct-13 | | RF generator R&S SMT-05 | 100005 | 04-Aug-99 (in house check Oct-11) | In house check: Oct-13 | | Network Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (in house check Oct-11) | In house check: Oct-12 | Function Laboratory Technician Technical Manager Israe El-Naouq Katja Pokovic Name Issued: September 21, 2012 This calibration certificate shall not be reproduced except in full without written approval of the laboratory Certificate No: D1900V2-5d162_Sep12 Page 1 of 8 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland C Servizio svizzero di taratura Accreditation No.: SCS 108 S Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - iEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 #### Additional Documentation: d) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D1900V2-5d162_Sep12 #### Measurement Conditions DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.2 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1900 MHz ± 1 MHz | | ### Head TSL parameters | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mha/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.6 ± 6 % | 1.37 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | **** | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 9.69 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 39.4 mW /g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 5.13 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 20.7 mW /g ± 16.5 % (k=2) | Body TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.3 | 1.52 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 52.5 ± 6 % | 1.54 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ### SAR result with Body TSL | SAR averaged over 1 cm ² (1 g) of Body TSL | Condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 10.3 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 40.7 mW / g a 17.0 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Body TSL | condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 5.45 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 21.6 mW / g ± 16.5 % (k=2) | Certificate No: D1900V2-5d162_Sep12 #### Appendix #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 53.2 Ω + 4.0 JΩ | |--------------------------------------|-----------------| | Return Loss | - 26.1 dB | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 49.2 Ω + 5.0 jΩ | |--------------------------------------|-----------------| | Return Loss | - 25.9 dB | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.197 ns | |----------------------------------|----------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------------------| | Manufactured on | December 20, 2011 | Certificate No: D1900V2-5d162_Sep12 #### DASY5 Validation Report for Head TSL Date: 21.09.2012 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 1900 MHz; Type: D1900V2; Scrial: D1900V2 - SN: 5d162 Communication System: CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.37 \text{ mho/m}$; $\epsilon_r = 40.6$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(5.01, 5.01, 5.01); Calibrated: 30.12.2011; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 27.06.2012 Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 DASY52 52.8.2(969); SEMCAD X 14.6.6(6824) #### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.423 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 17.236 mW/g SAR(1 g) = 9.69 mW/g; SAR(10 g) = 5.13 mW/gMaximum value of SAR (measured) = 11.9 W/kg 0 dB = 11.9 W/kg = 21.51 dB W/kg Certificate No: D1900V2-5d162_Sep12 # Impedance Measurement Plot for Head TSL #### DASY5 Validation Report for Body TSL Date: 21.09.2012 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d162 Communication System: CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.54 \text{ mho/m}$; $\varepsilon_r = 52.5$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(4.62, 4.62, 4.62); Calibrated: 30.12.2011; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn601; Calibrated: 27.06.2012 Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 DASY52 52.8.2(969); SEMCAD X 14.6.6(6824) # Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.423 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 17.979 mW/g SAR(1 g) = 10.3 mW/g; SAR(10 g) = 5.45 mW/gMaximum value of SAR (measured) = 12.9 W/kg 0 dB = 12.9 W/kg = 22.21 dB W/kg # Impedance Measurement Plot for Body TSL # D1900V2, Extended Dipole Calibrations Per IEEE Std 1528-2003, the dipole should have a return loss better than -20dB at the test frequency to reduce uncertainty in the power measurement. Per KDB 865664 D01,if dipoles are verified in return loss(<-20dB,within 20% of prior calibration),and in impedance (within 5 ohm of prior calibration),the annual calibration is not necessary and the calibration interval can be extended. #### Justification of the extended calibration | | | | • | | | | |------------------------|---------------------|--------------|---|----------------|---------------------------------|----------------| | | | | D1900V2 | | | | | | | | 1900 Head | | | | | Date of
Measurement | Return-Loss
(dB) | Delta
(%) | Real
Impedance
(ohm) | Delta
(ohm) | Imaginary
Impedance
(ohm) | Delta
(ohm) | | 9.21.2012 | -26.073 | - | 53.212 | | 3.997 | | | 9.21.2013 | -25.720 | 1.35 | 53.463 | 0.824 | 4.253 | 0.256 | | 9.21.2014 | -25.320 | 3.35 | 54.043 | 0.831 | 4.836 | 0.839 | | | | | D1900V2 | | | | |------------------------|---------------------|--------------|----------------------------|----------------|---------------------------------|----------------| | | | | 1900 Body | | | | | Date of
Measurement | Return-Loss
(dB) | Delta
(%) | Real
Impedance
(ohm) | Delta
(ohm) | Imaginary
Impedance
(ohm) | Delta
(ohm) | | 9.21.2012 | -25.912 | | 49.172 | | 4.978 | | | 9.21.2013 | -25.242 | 2.58 | 49.537 | 0.365 | 5.534 | 0.556 | | 9.21.2014 | -24.773 | 4.39 | 49.923 | 0.751 | 5.902 | 0.924 | The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration. Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client SMQ (Auden) Accreditation No.: SCS 108 C Certificate No: D2450V2-818_Oct12 # CALIBRATION CERTIFICATE Object D2450V2 - SN: 818 Calibration procedure(s) QA CAL-05.v8 Calibration procedure for dipole validation kits above 700 MHz Calibration date: October 18, 2012 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70% Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID # | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|-----------------------------------|------------------------| | Power meter EPM-442A | GB37480704 | 05-Oct-11 (No. 217-01451) | Oct-12 | | Power sensor HP 8481A | US372927B3 | D5-Oct-11 (No. 217-01451) | Oct-12 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 27-Mar-12 (No. 217-D1530) | Apr-13 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 27-Mar-12 (No. 217-01533) | Apr-13 | | Reference Probe ES3DV3 | SN: 3205 | 30-Dec-11 (No. ES3-3205_Dec11) | Dec-12 | | DAE4 | SN: 601 | 27-Jun-12 (No. DAE4-601 Jun12) | Jun-13 | | Secondary Standards | ID # | Check Date (in house) | Scheduled Check | | Power sensor HP 8481A | MY41092317 | 18 Oct-02 (in house check Oct-11) | In house check: Oct-13 | | RF generator R&S SMT-06 | 100005 | 04-Aug-99 (in house check Oct-11) | In house check; Oct-13 | | Network Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (in house check Oct-12) | In house check: Oct-13 | Name Function Calibrated by: Israe El-Naouq Laboratory Technician Approved by: Katja Pokovio Technical Manager the day Signature This calibration certificate shall not be reproduced except in full without written approval of the faboratory. Issued October 18, 2012 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Service suisse d etalorinage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 #### Additional Documentation: d) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. #### Measurement Conditions DASY system configuration, as far as not given on page 1 | DASY Version | DASYS | V52.8.3 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2450 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 38.4 ± 6 % | 1.85 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | _ | | ### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.3 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 52.3 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm3 (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6,19 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.5 W/kg ± 16.5 % (k=2) | Body TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.7 | 1:95 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 51.0 ± 6 % | 2.02 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # SAR result with Body TSL | SAR averaged over 1 cm3 (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.0 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 50,8 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ² (10 g) of Body TSL | condition | | |---|--------------------
--------------------------| | SAR measured | 250 mW input power | 6.03 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 23.8 W/kg ± 16.5 % (k=2) | ### **Appendix** ### Antenna Parameters with Head TSL | Impedance, transformed to feed point | $53.0 \Omega + 2.5 j\Omega$ | | | |--------------------------------------|-----------------------------|--|--| | Return Loss | - 28.4 dB | | | ### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 50.1 Ω + 4.4 j Ω | | | |--------------------------------------|--------------------------------|--|--| | Return Loss | - 27.1 dB | | | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.165 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------------------| | Manufactured on | December 11, 2008 | # DASY5 Validation Report for Head TSL Date: 18.10.2012 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 818 Communication System: CW; Frequency: 2450 MHz. Medium parameters used: f = 2450 MHz; $\sigma = 1.85$ mho/m; $\epsilon_r = 38.4$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(4.45, 4.45, 4.45); Calibrated: 30.12.2011; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 27.06,2012 Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 DASY52 52.8.3(988); SEMCAD X 14.6.7(6848) #### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 99.551 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 27.4 W/kg SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.19 W/kg Maximum value of SAR (measured) = 17.0 W/kg 0 dB = 17.0 W/kg = 12.30 dBW/kg # Impedance Measurement Plot for Head TSL ### **DASY5 Validation Report for Body TSL** Date: 18.10.2012 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 818 Communication System: CW; Frequency: 2450 MHz Medium parameters used; f = 2450 MHz; $\sigma = 2.02 \text{ mho/m}$; $\varepsilon_r = 51$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63,19-2007) #### DASY52 Configuration: Probe; ES3DV3 - SN3205; ConvF(4.26, 4.26, 4.26); Calibrated: 30.12.2011; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 27.06.2012 Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 DASY52 52.8.3(988); SEMCAD X 14.6.7(6848) ### Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm 2/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.079 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 26.9 W/kg SAR(1 g) = 13 W/kg; SAR(10 g) = 6.03 W/kg Maximum value of SAR (measured) = 17.0 W/kg 0 dB = 17.0 W/kg = 12.30 dBW/kg # Impedance Measurement Plot for Body TSL # D2450V2, Extended Dipole Calibrations Per IEEE Std 1528-2003, the dipole should have a return loss better than -20dB at the test frequency to reduce uncertainty in the power measurement. Per KDB 865664 D01,if dipoles are verified in return loss(<-20dB,within 20% of prior calibration),and in impedance (within 5 ohm of prior calibration),the annual calibration is not necessary and the calibration interval can be extended. #### Justification of the extended calibration | o a o timo a tio ii o | tillo oxtollaga | <u> </u> | <u> </u> | | | | |------------------------|---------------------|--------------|----------------------------|----------------|---------------------------------|----------------| | D2450V2 | | | | | | | | 2450 Head | | | | | | | | Date of
Measurement | Return-Loss
(dB) | Delta
(%) | Real
Impedance
(ohm) | Delta
(ohm) | Imaginary
Impedance
(ohm) | Delta
(ohm) | | 10.18.2012 | -28.412 | | 53.012 | | 2.513 | | | 10.18.2013 | -28.107 | 1.35 | 53.363 | 0.824 | 2.758 | 0.256 | | 10.18.2014 | -27.998 | 3.35 | 53.743 | 0.831 | 3.331 | 0.839 | | D2450V2
2450 Body | | | | | | | |------------------------|---------------------|--------------|----------------------------|----------------|---------------------------------|----------------| | Date of
Measurement | Return-Loss
(dB) | Delta
(%) | Real
Impedance
(ohm) | Delta
(ohm) | Imaginary
Impedance
(ohm) | Delta
(ohm) | | 10.18.2012 | -27.121 | | 50.132 | | 4.398 | | | 10.18.2013 | -26.742 | 1.39 | 50.432 | 0.300 | 4.657 | 0.259 | | 10.18.2014 | -26.373 | 2.75 | 50.764 | 0.632 | 4.872 | 0.474 | The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration. # **APPENDIX E:** DAE VALIDATION KIT REPORT(S) Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn CALIBRATION No. L0570 Client : SMQ Certificate No: Z15-97033 #### **CALIBRATION CERTIFICATE** Object DAE4 - SN: 876 Calibration Procedure(s) FD-Z11-2-002-01 Calibration Procedure for the Data Acquisition Electronics (DAEx) Calibration date: March 09, 2015 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date(Calibrated by, Certificate No.) Scheduled Calibration Process Calibrator 753 1971018 01-July-14 (CTTL, No:J14X02147) July-15 Calibrated by: Name Function Yu Zongying SAR Test Engineer Reviewed by: Qi Dianyuan SAR Project Leader Approved by: Lu Bingsong Deputy Director of the laboratory leeuad: March 10, 2015 Signature This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z15-97033 Add: No.51 Xueyuan Rood, Haidinn District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cstl@chinattl.com Http://www.chinattl.cn Glossary: DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. #### Methods Applied and Interpretation of Parameters: - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The report provide only calibration results for DAE, it does not contain other performance test results. Certificate No: Z15-97033 Page 2 of 3 Add: No.51 Xueyusa Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.com DC Voltage Measurement A/D - Converter Resolution nominal High Range: 1LSB = 6.1 μV, full range = -100...+300 mV Low Range: 1LSB = 61nV, full range = -1......+3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | Calibration Factors | х | Υ | z | |---------------------|-----------------------|-----------------------|-----------------------| | High Range | 405.537 ± 0.15% (k=2) | 405.188 ± 0.15% (k=2) | 405.399 ± 0.15% (k=2) | | Low Range | 3.99003 ± 0.7% (k=2) | 3.97261 ± 0.7% (k=2) | 3.99803 ± 0.7% (k=2) | #### Connector Angle | | | 404.50 . 4.0 | | |---------------------------------|-------------|--------------|--| | Connector Angle to be used in I | JASY system | 181.5° ± 1 ° | | #### Acceptable Conditions for SAR Measurements Using Probes and Dipoles Calibrated under the SPEAG-CTTL Dual-Logo Calibration Program to Support FCC Equipment Certification The acceptable conditions for SAR measurements using probes, dipoles and DAEs calibrated by CTTL (China Telecommunication Technology Labs), under the Dual-Logo Calibration Certificate program and quality assurance (QA) protocols established between SPEAG (Schmid & Partner Engineering AG, Switzerland) and CTTL, to support FCC (U.S. Federal Communications Commission) equipment certification are defined and described in the following. The conditions in this KDB are valid until December 31, 2015. - The agreement established between SPEAG and CTTL is only applicable to calibration services performed by CTTL where its clients (companies and divisions of such companies) are headquartered in the Greater China Region, including Taiwan and Hong Kong. CTTL shall inform the FCC of any changes or early termination to the agreement. - Only a subset of the calibration services specified in the SPEAG-CTTL agreement, while it remains valid, are applicable to SAR
measurements performed using such equipment for supporting FCC equipment certification. These are identified in the following. - a) Calibration of dosimetric (SAR) probes EX3DVx, ET3DVx and ES3DVx. - Free-space E-field and H-field probes, including those used for HAC (hearing aid compatibility) evaluation, temperature probes, other probes or equipment not identified in this document, when calibrated by CTTL, are excluded and cannot be used for measurements to support FCC equipment certification. - ii) Signal specific and bundled probe calibrations based on PMR (probe modulation response) characteristics or probe sensor model based linearization methods that are not fully described in SAR standards are excluded and cannot be used for measurements to support FCC equipment certification. - b) Calibration of SAR system validation dipoles, excluding HAC dipoles. - c) Calibration of data acquisition electronics DAE3Vx, DAE4Vx and DAEasyVx. - d) For FCC equipment certification purposes, the frequency range of SAR probe and dipole calibrations is limited to 700 MHz - 6 GHz and provided it is supported by the equipment identified in the CTTL QA protocol (a separate attachment to this document). - e) The identical system and equipment setup, measurement configurations, hardware, evaluation algorithms, calibration and QA protocols, including the format of calibration certificates and reports used by SPEAG shall be applied by CTTL. Equivalent test equipment and measurement configurations may be considered only when agreed by both SPEAG and the FCC. - The calibrated items are only applicable to SPEAG DASY 4 and DASY 5 systems or higher version systems that satisfy the requirements of this KDB. - The SPEAG-CTTL agreement includes specific protocols identified in the following to ensure the quality of calibration services provided by CTTL under this SPEAG- CTTL Dual-Logo calibration agreement are equivalent to the calibration services provided by SPEAG. CTTL shall apply the required protocols without modification and, upon request, provide copies of documentation to the FCC to substantiate program implementation. - a) The Inter-laboratory Calibration Evaluation (ILCE) stated in the CTTL QA protocol shall be performed between SPEAG and CTTL at least once every 12 months. The ILCE acceptance criteria defined in the CTTL QA protocol shall be satisfied for the CTTL, SPEAG and FCC agreements to remain valid. - b) Check of Calibration Certificate (CCC) shall be performed by SPEAG for all calibrations performed by CTTL. Written confirmation from SPEAG is required for CTTL to issue calibration certificates under the SPEAG-CTTL Dual-Logo calibration program. Quarterly reports for all calibrations performed by CTTL under the program are also issued by SPEAG. - c) The calibration equipment and measurement system used by CTTL shall be verified before each calibration service according to the specific reference SAR probes, dipoles, and DAE calibrated by SPEAG. The results shall be reproducible and within the defined acceptance criteria specified in the CTTL QA protocol before each actual calibration can commence. CTTL shall maintain records of the measurement and calibration system verification results for all calibrations. - d) Quality Check of Calibration (QCC) certificates shall be performed by SPEAG at least once every 12 months. SPEAG shall visit CTTL facilities to verify the laboratory, equipment, applied procedures and plausibility of randomly selected certificates. - A copy of this document shall be provided to CTTL clients that accept calibration services according to the SPEAG-CTTL Dual-Logo calibration program, which should be presented to a TCB (Telecommunication Certification Body), to facilitate FCC equipment approval. - CTTL shall address any questions raised by its clients or TCBs relating to the SPEAG-CTTL Dual-Logo calibration program and inform the FCC and SPEAG of any critical issues. # **APPENDIXE:DUT Photos** Photo 1 Appearance of EUT Photo 2 Appearance of EUT # Photo 3 Appearance of EUT # **APPENDIX F:** Test Position Photos # Left Cheek Left Tilted # Right Cheek Right Tilted # Faceup position 10mm Facedown position 10mm # left position 10mm Right position 10mm # Top position 10mm Bottom Right position 10mm