FCC Test Report

Report No.: AGC05320160702FE02

FCC ID	: 2AE7RSTKSYNC5E
APPLICATION PURPOSE	: Original Equipment
PRODUCT DESIGNATION	: Smart Phone
BRAND NAME	: STK
MODEL NAME	: SYNC 5E
CLIENT	: Santok Limited.
DATE OF ISSUE	: Aug. 12, 2016
STANDARD(S)	: FCC Part 22H & 24E Rules
REPORT VERSION	: V1.0

Attestation of Global Compliance (Shenzhen) Co., Ltd. AGC

CAUTION:

This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.

ation of

24

Report No.: AGC05320160702FE02 Page 2 of 114

REPORT REVISE RECORD

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	/	Aug. 12, 2016	Valid	Original Report

TABLE OF CONTENTS

TABLE OF CONTENTS	
1. VERIFICATION OF COMPLIANCE	5
2. GENERAL INFORMATION	6
2.1 PRODUCT DESCRIPTION	6
2.2 RELATED SUBMITTAL(S) / GRANT (S)	8
2.3 TEST METHODOLOGY	
2.4 TEST FACILITY	8
2.5 MEASUREMENT INSTRUMENTS	
2.6 SPECIAL ACCESSORIES	
2.7 EQUIPMENT MODIFICATIONS	10
3. SYSTEM TEST CONFIGURATION	11
3.1 EUT CONFIGURATION	11
3.2 EUT EXERCISE	11
3.3 GENERAL TECHNICAL REQUIREMENTS	11
3.4 CONFIGURATION OF EUT SYSTEM	12
4. SUMMARY OF TEST RESULTS	13
5. DESCRIPTION OF TEST MODES	13
6. OUTPUT POWER	14
6.1 CONDUCTED OUTPUT POWER	14
6.2 RADIATED OUTPUT POWER	23
6.3. PEAK-TO-AVERAGE RATIO	27
7. OCCUPIED BANDWIDTH	29
7.1 MEASUREMENT METHOD	29
7.2 PROVISIONS APPLICABLE	29
7.3 MEASUREMENT RESULT	
APPENDIX A:BANDWIDTH	
8. BAND EDGE	44
8.1 MEASUREMENT METHOD	44

Report No.: AGC05320160702FE02 Page 4 of 114

8.2 PROVISIONS APPLICABLE	44
8.3 MEASUREMENT RESULT	45
APPENDIX B: BAND EDGES COMPLIANCE	
9. SPURIOUS EMISSION	53
9.1 CONDUCTED SPURIOUS EMISSION	53
APPENDIX C: SPURIOUS EMISSION AT ANTENNA TERMINAL	
9.2 RADIATED SPURIOUS EMISSION	91
10. MAINS CONDUCTED EMISSION	95
10.1 MEASUREMENT METHOD	95
10.2 PROVISIONS APPLICABLE	95
10.3 MEASUREMENT RESULT	96
11. FREQUENCY STABILITY	98
11.1 MEASUREMENT METHOD	98
11.2 PROVISIONS APPLICABLE	
11.3 MEASUREMENT RESULT	100
Appendix D:Frequency Stability	100
PHOTOGRAPHS OF TEST SETUP	106
PHOTOGRAPHS OF EUT	

Applicant	Santok Limited.		
Address	Santok house,Unit L, Braintree Industrial Estate Braintree Road, South		
	RuislipMiddlesex, HA4 0EJ United Kingdom.		
Manufacturer	Santok Limited.		
Address	Santok house, Unit L, Braintree Industrial Estate Braintree Road, South		
	RuislipMiddlesex, HA4 0EJ United Kingdom.		
Product Designation	Smart Phone		
Brand Name	STK		
Test Model	SYNC 5E		
Date of test	July 27, 2016~Aug. 11, 2016		
Deviation	None		
Condition of Test Sample	Normal		

1. VERIFICATION OF COMPLIANCE

We hereby certify that:

The above equipment was tested by Dongguan Precise Testing Service Co., Ltd. The data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI/TIA- 603-D-2010. The sample tested as described in this report is in compliance with the FCC Rules Part 22H and 24E.

The test results of this report relate only to the tested sample identified in this report.

Tested By	Vota Zhang	
	Dota Zhang(Zhang Jianfeng)	Aug. 12, 2016
Reviewed By	Bore xie	
	Bart Xie(Xie Xiaobin)	Aug. 12, 2016
Approved By	Solya shary	
	Solger Zhang(Zhang Hongyi)	Aug. 12, 2016
	Authorized Officer	Aug. 12, 2010

2. GENERAL INFORMATION

2.1 PRODUCT DESCRIPTION

A major technical description of EUT is described as following:

Product Designation:	Smart Phone	
Hardware version:	Y813_MB_V2-1	
Software version:	Sync_5e_DS_819_V0.0.1_20160627	
Frequency Bands:	GSM 850 PCS 1900 (U.S. Bands) GSM 900 DCS 1800 (Non-U.S. Bands) UMTS FDD Band II UMTS FDD Band V (U.S. Bands) UMTS FDD Band I UMTS FDD Band V (U.S. Bands)	
Antenna:	PIFA Antenna	
Type of Modulation	GSM / GPRS : GMSK HSPA:QPSK/16QAM HSUPA:BPSK WCDMA : QPSK	
Antenna gain(GSM):	-0.7dBi	
Power Supply:	DC 3.8V by battery	
Battery parameter:	DC3.8/1950mAh	
Adapter Input:	AC100-240V, 50-60Hz 0.15A	
Adapter Output:	DC5V,1A	
Dual Card:	WCDMA / GSM Card Slot GSM Card Slot	
GPRS Class	12	
Extreme Vol. Limits:	DC3.4 V to 4.35V (Normal: DC3.8 V)	
Extreme Temp. Tolerance	-10℃ to +50℃	
*** Note: The High Voltage D	C4.35V and Low Voltage DC3.4V were declared by manufacturer, The	

EUT couldn't be operating normally with higher or lower voltage.

Other functions have been performed according to verification procedure except for Bluetooth and MS function. Card 1 can't transmit with Card 2 simultaneously.

- *** **Note:** 1.The maximum power levels are GSM for MCS-4: GMSK link, and RMC 12.2kbps mode for WCDMA band II, WCDMA band V, only these modes were used for all tests.
 - 2. We found out the test mode with the highest power level after we analyze all the data rates. So we chose the worst case as a representative.

Report No.: AGC05320160702FE02 Page 7 of 114

WCDMA Card Slot:

	Maximum ERP/EIRP	Max. Conducted Power	Max. Average
	(dBm)	(dBm)	Burst Power (dBm)
GSM 850	30.96	32.34	31.27
PCS 1900	27.82	29.55	28.62
UMTS BAND II	21.61	23.02	21.72
UMTS BAND V	21.76	23.31	21.88

GSM Card Slot:

	Maximum ERP/EIRP	Max. Conducted Power	Max. Average	
	(dBm)	(dBm)	Burst Power (dBm)	
GSM 850	30.22	31.68	30.89	
PCS 1900	27.40	28.73	28.11	

2.2 RELATED SUBMITTAL(S) / GRANT (S)

This submittal(s) (test report) is intended for FCC ID: 2AE7RSTKSYNC5E, filing to comply with the FCC Part 22H&24E requirements.

2.3 TEST METHODOLOGY

The radiated emission testing was performed according to the procedures of ANSI/TIA-603-D-2010, and FCC CFR 47 Rules of 2.1046, 2.1047, 2.1049, 2.1051, 2.1053, 2.1055, 2.1057. KDB 971168 D01 Power Meas License Digital Systems v02r02

Site	Dongguan Precise Testing Service Co., Ltd.		
Location	Building D,Baoding Technology Park,Guangming Road2,Dongcheng District, Dongguan, Guangdong, China,		
FCC Registration No.	371540		
Description	The test site is constructed and calibrated to meet the FCC requirements in documents of ANSI/TIA-603-D-2010.		

2.5 MEASUREMENT INSTRUMENTS

Name of Equipment	Manufacturer	Model Number	Serial Number	Last Calibration	Due Calibration
EMI Test Receiver	Rohde & Schwarz	ESCI	101417	July 3, 2016	July 2, 2017
Trilog Broadband Antenna (25M-1GHz)	SCHWARZBECK	VULB9168	D69250	Mar 1, 2016	Feb 28, 2017
Trilog Broadband Antenna(substituted antenna) (25M-1GHz)	SCHWARZBECK	VULB9160	9160-3355	July 3, 2016	July 2, 2017
Signal Amplifier	SCHWARZBECK	BBV 9475	9745-0013	July 3, 2016	July 2, 2017
RF Cable	SCHWARZBECK	AK9515E	96221	July 3, 2016	July 2, 2017
3m Anechoic Chamber	CHENGYU	966	PTS-001	June 5, 2016	June 4, 2017
MULTI-DEVICE Positioning Controller	Max-Full	MF-7802	MF780208339	N/A	N/A
Active loop antenna (9K-30MHz)	Schwarzbeck	FMZB1519	1519-038	June 5, 2016	June 4, 2017
Spectrum analyzer	Agilent	E4407B	MY46185649	June 5, 2016	June 4, 2017
Horn Antenna (1G-18GHz)	SCHWARZBECK	BBHA9120D	9120D-1246	July 10, 2016	July 9, 2017
Horn Antenna(substituted antenna) (1G-18GHz)	ETS LINDGREN	3117	00034609	Mar 1, 2016	Feb 28, 2017

Report No.: AGC05320160702FE02 Page 9 of 114

Spectrum Analyzer	Agilent	E4411B	MY4511453	July 3, 2016	July 2, 2017
Signal Amplifier	SCHWARZBECK	BBV 9718	9718-269	July 6, 2016	July 5, 2017
RF Cable	SCHWARZBECK	AK9515H	96220	July 7, 2016	July 6, 2017
Horn Ant (18G-40GHz)	Schwarzbeck	BBHA 9170	9170-181	June 5, 2016	June 4, 2017
Artificial Mains Network	Narda	L2-16B	000WX31025	July 7, 2016	July 6, 2017
Artificial Mains Network (AUX)	Narda	L2-16B	000WX31026	July 7, 2016	July 6, 2017
RF Cable	SCHWARZBECK	AK9515E	96222	July 3, 2016	July 2, 2017
Shielded Room	CHENGYU	843	PTS-002	June 5, 2016	June 4, 2017
COMMUNICATION TESTER	AGILENT	8960	GB46490550	July 25, 2015	July 24, 2016
RF attenuator	N/A	RFA20db	68	N/A	N/A
Signal Generator	AGILENT	N5182A	MY50140530	Oct 16,2015	Oct 15,2016
Signal Generator(substituted equipment)	AGILENT	E8257D	MY45141029	Oct 16,2015	Oct 15,2016

2.6 SPECIAL ACCESSORIES

The battery and the charger, earphone supplied by the applicant were used as accessories and being tested with EUT intended for FCC grant together.

2.7 EQUIPMENT MODIFICATIONS

Not available for this EUT intended for grant.

3. SYSTEM TEST CONFIGURATION

3.1 EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commission's requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

3.2 EUT EXERCISE

The Transmitter was operated in the maximum output power mode through Communication Tester. The TX frequency was fixed which was for the purpose of the measurements.

Item Number	Item	Description	FCC Rules
1	1 Output Power	Conducted output power	2.1046/22.913(a) (2) / 24.232
1		Radiated output power	(C)
2	Peak-to-Average Ratio	Peak-to-Average Ratio	24.232(d)
		Conducted	
3	Spurious Emission	spurious emission	2.1051 / 22.917 / 24.238
		Radiated spurious emission	
4	Mains Conducted Emi	ssion	15.107 / 15.207
5	Frequency Stability		2.1055/22.355 /24.235
6	Occupied Bandwidth		2.1049 (h)(i)
7	Emission Bandwidth		22.917(a)/24.238(a)
8	Band Edge		22.917(a)/24.238(a)

3.3 GENERAL TECHNICAL REQUIREMENTS

3.4 CONFIGURATION OF EUT SYSTEM

Fig. 2-1 Configuration of EUT System

EUT

Accessory

Table 2-1 Equipment Used in EUT System

ltem	Equipment	Model No.	ID or Specification	Note
1	Smart Phone	SYNC 5E	2AE7RSTKSYNC5E	EUT
2	Adapter	HJ-0501000B3-US	DC5V /1000mA	Accessory
3	Battery	SYNC 5E DC3.8V/1950mAh A		Accessory
4	Earphone	SYNC 5E	N/A	Accessory
5	USB Cable	SYNC 5E	N/A	Accessory

***Note: All the accessories have been used during the test. The following "EUT" in setup diagram means EUT system.

Item **Item Description** FCC Rules Result Number Conducted **Output Power** 2.1046/22.913(a) (2) / **Output Power** 1 Pass Radiated 24.232 (c) **Output Power** Peak-to-Average Peak-to-Average 2 Pass 24.232(d) Ratio Ratio Conducted Spurious Emission 3 Spurious Emission 2.1051 / 22.917 / 24.238 Pass Radiated **Spurious Emission** 4 Mains Conducted Emission 15.107 / 15.207 Pass 2.1055/22.355 5 Frequency Stability Pass /24.235 Occupied Bandwidth 6 2.1049 (h)(i) Pass 7 **Emission Bandwidth** 22.917(a)/24.238(a) Pass 8 Band Edge 22.917(a)/24.238(a) Pass

4. SUMMARY OF TEST RESULTS

5. DESCRIPTION OF TEST MODES

During the testing, the EUT was controlled via Rhode & Schwarz Digital Radio Communication Tester (CMU 200) to ensure max power transmission and proper modulation. Three channels (The top channel, the middle channel and the bottom channel) were chosen for testing on both GSM and PCS frequency band.

- ***Note: 1.GSM/GPRS 850, GSM/GPRS 1900, WCDMA/HSPA band II, WCDMA/HSPA band V, mode have been tested during the test.
 - 2. All modes of operation and data rates were investigated. The test results shown in the following sections represent the worst case emissions
 - 3. All antenna port conducted emissions testing was performed on a test bench with the antenna Port of the EUT connected to the spectrum analyzer through calibrated cables and attenuators.

6. OUTPUT POWER

6.1 CONDUCTED OUTPUT POWER

6.1.1 MEASUREMENT METHOD

The transmitter output port was connected to base station.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Measure the maximum burst average power and average power for other modulation signal.

The EUT was setup for the max output power with pseudo random data modulation. Power was measured with Spectrum Analyzer. The measurements were performed on all modes (GSM/GPRS850, GSM/GPRS1900, WCDMA/HSPA band II, WCDMA/HSPA band V) at 3 typical channels (the Top Channel, the Middle Channel and the Bottom Channel) for each band.

6.1.2 MEASUREMENT RESULT

	Conducted Output Power Limits for GSM850/EDGE band				
Mode	Nominal Peak Power	Tolerance(dB)			
GSM	33 dBm (2W)	- 2			
	Conducted Output Power Limits for PCS1900/EDGE band				
Mode	Nominal Peak Power Tolerance(dl				
GSM	30 dBm (1W)	- 2			
	Conducted Output Power Limits for UMTS band II				
Mode	Nominal Peak Power Tolerance(
WCDMA	24 dBm (0.25W)	- 2			
	Conducted Output Power Limits for UMTS band V				
Mode	Nominal Peak Power	Tolerance(dB)			
WCDMA	24 dBm (0.25W)	- 2			

Mede	Frequency	Reference	Peak	Tolerance	Avg.Burst	Duty cycle	Frame
Mode	(MHz)	Power	Power		Power	Factor(dB)	Power(dBm)
	824.2	33	32.34	-0.66	31.27	-9	22.27
GSM850	836.6	33	31.89	-1.11	31.14	-9	22.14
	848.8	33	31.85	-1.15	31.20	-9	22.2
	824.2	33	31.43	-1.57	30.12	-9	21.12
GPRS850	836.6	33	31.18	-1.82	30.34	-9	21.34
(1 Slot)	848.8	33	31.22	-1.78	30.13	-9	21.13
GPRS850	824.2	30	29.17	-0.83	28.42	-6	22.42
	836.6	30	29.32	-0.68	28.39	-6	22.39
(2 Slot)	848.8	30	29.18	-0.82	28.27	-6	22.27
	824.2	28.23	27.28	-0.95	26.11	-4.26	21.85
GPRS850	836.6	28.23	27.04	-1.19	26.46	-4.26	22.2
(3 Slot)	848.8	28.23	27.03	-1.2	26.37	-4.26	22.11
0000050	824.2	27	26.27	-0.73	25.44	-3	22.44
GPRS850	836.6	27	26.12	-0.88	25.38	-3	22.38
(4 Slot)	848.8	27	26.23	-0.77	25.75	-3	22.75

GSM 850:

Mode	Frequency (MHz)	Reference Power	Peak Power	Tolerance	Avg.Burst Power	Duty cycle Factor(dB)	Frame Power(dBm)
	1850.2	30	29.55	-0.45	28.62	-9	19.62
GSM1900	1880	30	29.21	-0.79	28.44	-9	19.44
	1909.8	30	29.32	-0.68	28.38	-9	19.38
00004000	1850.2	30	28.51	-1.49	27.04	-9	18.04
GPRS1900	1880	30	28.17	-1.83	27.28	-9	18.28
(1 Slot)	1909.8	30	28.63	-1.37	27.14	-9	18.14
00004000	1850.2	27	26.18	-0.82	25.32	-6	19.32
GPRS1900	1880	27	26.27	-0.73	25.24	-6	19.24
(2 Slot)	1909.8	27	26.28	-0.72	25.27	-6	19.27
	1850.2	25.23	24.31	-0.92	23.15	-4.26	18.89
GPRS1900 (3 Slot)	1880	25.23	24.29	-0.94	23.36	-4.26	19.1
	1909.8	25.23	24.21	-1.02	23.18	-4.26	18.92
	1850.2	24	23.39	-0.61	22.39	-3	19.39
GPRS1900	1880	24	23.61	-0.39	22.17	-3	19.17
(4 Slot)	1909.8	24	23.48	-0.52	22.55	-3	19.55

PCS 1900:

UMTS BAND II

Mode	Frequency (MHz)	Reference power	Peak Power	Tolerance	Avg.Burst Power
	1852.6	24	23.02	-0.98	21.72
WCDMA 1900 RMC	1880	24	22.89	-1.11	21.51
	1907.4	24	22.75	-1.25	21.42
	1852.6	24	22.44	-1.56	21.18
WCDMA 1900 AMR	1880	24	22.38	-1.62	21.19
, uvii (1907.4	24	22.17	-1.83	21.13
	1852.6	24	22.19	-1.81	20.71
HSDPA Subtest 1	1880	24	22.38	-1.62	20.29
Cubicot	1907.4	24	22.49	-1.51	20.23
	1852.6	24	22.56	-1.44	20.17
HSDPA Subtest 2	1880	24	22.38	-1.62	20.25
Custoor 2	1907.4	24	22.47	-1.53	20.39
	1852.6	24	22.29	-1.71	20.42
HSDPA Subtest 3	1880	24	22.35	-1.65	20.18
Cubicor o	1907.4	24	22.18	-1.82	20.23
	1852.6	24	22.29	-1.71	20.49
HSDPA Subtest 4	1880	24	22.15	-1.85	20.15
	1907.4	24	22.12	-1.88	20.17
	1852.6	24	22.74	-1.26	20.29
HSUPA Subtest 1	1880	24	22.33	-1.67	20.32
Cubicot	1907.4	24	22.42	-1.58	20.14
	1852.6	24	22.26	-1.74	20.24
HSUPA Subtest 2	1880	24	22.29	-1.71	20.37
Cubicol 2	1907.4	24	22.15	-1.85	20.16
	1852.6	24	22.28	-1.72	20.12
HSUPA Subtest 3	1880	24	22.32	-1.68	20.38
	1907.4	24	22.26	-1.74	20.52
	1852.6	24	22.27	-1.73	20.14
HSUPA Subtest 4	1880	24	22.21	-1.79	20.06
	1907.4	24	22.14	-1.86	20.33
HSUPA	1852.6	24	22.13	-1.87	20.15
Subtest 5	1880	24	22.19	-1.81	20.23

Report No.: AGC05320160702FE02 Page 18 of 114

	1907.4 24	22.15	-1.85	20.11
--	-----------	-------	-------	-------

UMTS BAND V

Mode	Frequency (MHz)	Reference power	Peak Power	Tolerance	Avg.Burst Power
	826.6	24	23.31	-0.69	21.88
WCDMA 850 RMC	836.4	24	23.07	-0.93	21.57
	846.4	24	23.13	-0.87	21.72
	826.6	24	22.69	-1.31	21.34
WCDMA 850 AMR	836.4	24	22.58	-1.42	21.18
,	846.4	24	22.64	-1.36	21.28
	826.6	24	22.17	-1.83	20.14
HSDPA Subtest 1	836.4	24	22.23	-1.77	20.22
	846.4	24	22.43	-1.57	20.21
	826.6	24	22.19	-1.81	20.12
HSDPA Subtest 2	836.4	24	22.34	-1.66	20.14
	846.4	24	22.36	-1.64	20.02
	826.6	24	22.15	-1.85	20.17
HSDPA Subtest 3	836.4	24	22.22	-1.78	20.26
	846.4	24	22.18	-1.82	20.19
	826.6	24	22.52	-1.48	20.34
HSDPA Subtest 4	836.4	24	22.16	-1.84	20.25
	846.4	24	22.21	-1.79	20.16
	826.6	24	22.31	-1.69	20.15
HSUPA Subtest 1	836.4	24	22.29	-1.71	20.29
	846.4	24	22.56	-1.44	20.24
	826.6	24	22.27	-1.73	20.23
HSUPA Subtest 2	836.4	24	22.16	-1.84	20.21
	846.4	24	22.32	-1.68	20.29
	826.6	24	22.47	-1.53	20.2
HSUPA Subtest 3	836.4	24	22.51	-1.49	20.15
	846.4	24	22.18	-1.82	20.16
	826.6	24	22.23	-1.77	20.34
HSUPA Subtest 4	836.4	24	22.47	-1.53	20.15
	846.4	24	22.11	-1.89	20.32
HSUPA	826.6	24	22.16	-1.84	20.37
Subtest 5	836.4	24	22.23	-1.77	20.14

Report No.: AGC05320160702FE02 Page 20 of 114

8	346.4 24	22.18	-1.82	20.38
---	----------	-------	-------	-------

According to 3GPP 25.101 sub-clause 6.2.2, the maximum output power is allowed to be reduced by following the table.

Table 6.1aA: UE maximum output power with HS-DPCCH and E-DCH

UE Transmit Channel Configuration	CM(db)	MPR(db)		
For all combinations of ,DPDCH,DPCCH	of ,DPDCH,DPCCH			
HS-DPDCH, E-DPDCH and E-DPCCH	0≤ CM≤3.5	MAX(CM-1,0)		
Note: CM=1 for $\beta_c/\beta_d=12/15$, $\beta_{hs}/\beta_c=24/15$. For all other combinations of DPDCH, DPCCH,				
HS-DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.				

The device supports MPR to solve linearity issues (ACLR or SEM) due to the higher peak-to average ratios (PAR) of the HSUPA signal. This prevents saturating the full range of the TX DAC inside of device and provides a reduced power output to the RF transceiver chip according to the Cubic Metric (a function of the combinations of DPDCH, DPCCH, HS-DPCCH, E-DPDCH and E-DPCCH).

When E-DPDCH channels are present the beta gains on those channels are reduced firsts to try to get the power under the allowed limit. If the beta gains are lowered as far as possible, then a hard limiting is applied at the maximum allowed level.

The SW currently recalculates the cubic metric every time the beta gains on the E-DPDCH are reduced. The cubic metric will likely get lower each time this is done .However, there is no reported reduction of maximum output power in the HSUPA mode since the device also provides a compensate for the power back-off by increasing the gain of TX_AGC in the transceiver (PA) device.

The end effect is that the DUT output power is identical to the case where there is no MPR in the device.

6.2 RADIATED OUTPUT POWER

6.2.1 MEASUREMENT METHOD

The measurements procedures specified in ANSI/TIA-603-D-2010 were applied.

1. Effective Radiated Power (ERP) and Equivalent Isotropic Radiated Power (EIRP) measurements are performed using the substitution method described in ANSI/TIA-603-D-2010 with the EUT transmitting into an integral antenna. Measurements on signal operating below 1GHz are performed using dipole antennas. Measurements on signals operating above 1GHz are performed using broadband horn antennas. All measurements are performed as RMS average measurements while the EUT operating at its maximum duty cycle, at maximum power, and at the approximate frequencies.

2. In an anechoic antenna test chamber, a half-wave dipole antenna for the frequency band of interest is placed at the reference centre of the chamber. An RF Signal source for the frequency band of interest is connected to the dipole with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A known (measured) power (Pin) is applied to the input of the dipole, and the power received (Pr) at the chamber's probe antenna is recorded.

3. The substitution method is used. Substitution values at each frequency are measured before and saved to the test software. A "reference path loss" is established as ARpl=Pin + 2.15 - Pr. The ARpl is the attenuation of "reference path loss", and including the gain of receive antenna, the cable loss and the air loss. The measurement results are obtained as described below: Power=PMea+ARpl

4. The EUT is substituted for the dipole at the reference centre of the chamber and a scan is performed to obtain the radiation pattern.

5. From the radiation pattern, the co-ordinates where the maximum antenna gain occurs are identified.

6. The EUT is then put into continuously transmitting mode at its maximum power level.

7. Power mode measurements are performed with the receiving antenna placed at the coordinates determined in Step 3 to determine the output power as defined in Rule 24.232 (b) and (c). The "reference path loss" from Step1 is added to this result.

8. This value is EIRP since the measurement is calibrated using a half-wave dipole antenna of known gain (2.15 dBi) and known input power (Pin).

9. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.15dBi...

6.2.2 PROVISIONS APPLICABLE

This is the test for the maximum radiated power from the EUT. Rule Part 24.232(b) specifies, "Mobile/portable stations are limited to 2 watts e.i.r.p. Peak power" and 24.232(c) specifies that "Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage." Rule Part 22.913(a) specifies "Maximum ERP. The effective radiated power (ERP) of base transmitters and cellular repeaters must not exceed 500 Watts. The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts."

Report No.: AGC05320160702FE02 Page 24 of 114

Mode	Nominal Peak Power
GSM 850	<=38.45 dBm (7W)
PCS 1900	<=33 dBm (2W)
UMTS BAND II	<=33 dBm (2W)
UMTS BANDV	<=38.45 dBm (7W)

6.2.3 MEASUREMENT RESULT

Radiated Power (ERP) for GSM 850						
		Re	sult			
Mode	Frequency	Frequency Max. Peak ERP		Conclusion		
		(dBm)	Of Max. ERP			
	824.2	30.96	Horizontal	Pass		
	836.6	30.72	Horizontal	Pass		
GSM850	848.8	30.64	Horizontal	Pass		
0310000	824.2	29.81	Vertical	Pass		
	836.6	28.54	Vertical	Pass		
	848.8	28.66	Vertical	Pass		

Radiated Power (E.I.R.P) for PCS 1900						
		Re	Result			
Mode	Frequency	Max. Peak	Polarization	Conclusion		
		E.I.R.P.(dBm)	Of Max. E.I.R.P.			
	1850.2	27.49	Horizontal	Pass		
	1880.0	27.82	Horizontal	Pass		
GSM 1900	1909.8	27.57	Horizontal	Pass		
00101 1900	1850.2	26.73	Vertical	Pass		
	1880.0	26.61	Vertical	Pass		
	1909.8	25.55	Vertical	Pass		

Radiated Power (E.I.R.P) for UMTS band II						
		Res	Result			
Mode	Frequency	Max. Peak E.I.R.P	Polarization			
		(dBm)	Of Max. E.I.R.P			
	1852.6	21.61	Horizontal	Pass		
	1880	21.43	Horizontal	Pass		
RMC	1907.4	21.28	Horizontal	Pass		
12.2kbps	1852.6	21.33	Vertical	Pass		
	1880	20.81	Vertical	Pass		
	1907.4	20.93	Vertical	Pass		

Radiated Power (ERP) for UMTS band V						
		R	esult			
Mode	Frequency	FrequencyMax. Peak ERPPolarization(dBm)Of Max. E.I.R.P.		Conclusion		
	826.6	21.76	Horizontal	Pass		
	836.4	20.51	Horizontal	Pass		
RMC	846.4	21.51	Horizontal	Pass		
12.2kbps	826.6	20.63	Vertical	Pass		
	836.4	20.48	Vertical	Pass		
	846.4	21.32	Vertical	Pass		

Note: Above is the worst mode data.

6.3. PEAK-TO-AVERAGE RATIO

6.3.1 MEASUREMENT METHOD

Use one of the procedures presented in 4.1 to measure the total peak power and record as PPk. Use one of the applicable procedures presented 4.2 to measure the total average power and record as PAvg. Both the peak and average power levels must be expressed in the same logarithmic units (e.g., dBm). Determine the PAPR from:

PAPR (dB) = PPk (dBm) - PAvg (dBm).

6.3.2 PROVISIONS APPLICABLE

This is the test for the Peak-to-Average Ratio from the EUT.

Power Complementary Cumulative Distribution Function (CCDF) curves provide a means for characterizing the power peaks of a digitally modulated signal on a statistical basis. A CCDF curve depicts the probability of the peak signal amplitude exceeding the average power level. Most contemporary measurement instrumentation include the capability to produce CCDF curves for an input signal provided that the instrument's resolution bandwidth can be set wide enough to accommodate the entire input signal bandwidth. In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

6.3.3 MEASUREMENT RESULT

Modes	GSM850(GSM)		
Channel	128	190	251
Chainer	(Low)	(Mid)	(High)
Frequency	824.2	836.6	848.8
(MHz)	024.2	030.0	0-0.0
Peak-To-Average Ratio (dB)/GSM	1.07	0.75	0.65

Modes	PCS 1900 (GSM)				
Channel	512	661	810		
	(Low)	(Mid)	(High)		
Frequency	1850.2 1880 1909.8				
(MHz)	1050.2	1000	1909.0		
Peak-To-Average Ratio (dB)/GSM	0.93	0.77	0.94		

Report No.: AGC05320160702FE02 Page 28 of 114

Modes	UMTS BAND II				
Channel	9663	9800	9937		
Onamier	(Low)	(Mid)	(High)		
Frequency (MHz)	1852.6	1880	1907.4		
Peak-To-Average Ratio (dB)	1.3	1.38	1.33		

Modes	UMTS BAND V				
Channel	4358	4407	4457		
	(Low)	(Mid)	(High)		
Frequency (MHz)	826.6	836.6	846.4		
Peak-To-Average Ratio (dB)	1.43	1.5	1.41		

7. OCCUPIED BANDWIDTH

7.1 TEST OVERVIEW

1. The Occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper Frequency limits, the mean power radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured.

2. RBW=1 \sim 5% of the expected OBW, VBW>=3 x RBW, Detector=Peak, Trace mode=max hold, Sweep=auto couple, and the trace was allowed to stabilize.

7.2 PROVISIONS APPLICABLE

The emission bandwidth is defined as two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26dB below the transmitter power

7.3 MEASUREMENT RESULT

APPENDIX A:BANDWIDTH

Test Results

Test	Test	Test	Occupied Bandwidth	Emission Bandwidth	Verdict
Band	Mode	Channel	(KHZ)	(KHZ)	verdict
		LCH	247.47	317.64	PASS
GSM850	GSM	MCH	241.66	312.28	PASS
		HCH	238.89	322.32	PASS

Test Band	Test Mode	Test Channel	Occupied Bandwidth (KHZ)	Emission Bandwidth (KHZ)	Verdict
		LCH	247.63	317.13	PASS
GSM1900	GSM	MCH	243.53	307.52	PASS
		НСН	245.95	316.16	PASS

For GSM

Test Band=GSM850

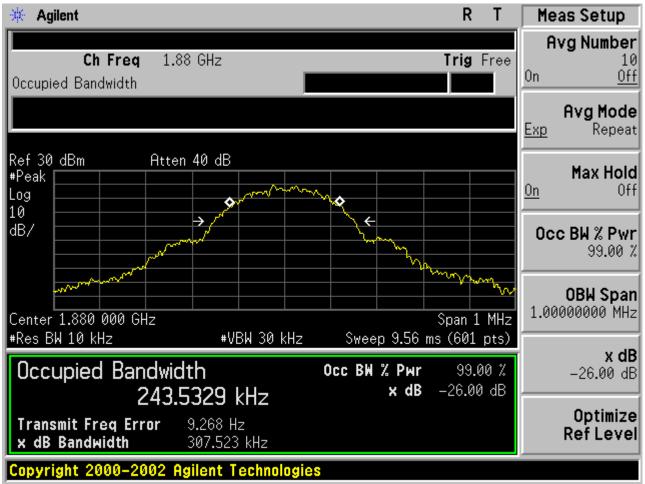
Test Mode=GSM

Test Channel=LCH

🔆 Agilent			R	Т	Meas Setup
Ch Freg 824.2	MUS		Tria		Avg Number
Ch Freq 824.2 Occupied Bandwidth	MHZ		Trig	Free	0n <u>0ff</u>
	,				Avg Mode
					<u>Exp</u> Repeat
Ref 30 dBm Atten 41 #Peak	0 dB				Max Hold
	A market	^			<u>On</u> Off
dB/ →		+ 			Occ BW % Pwr
					99.00 %
Journal and a second				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	OBW Span
Center 824.200 MHz			Span 1		1.00000000 MHz
#Res BW 10 kHz	₩VBW 30 kHz	Sweep 9.56 m	s (601	pts)	x dB
Occupied Bandwidth			99.0		-26.00 dB
247.46	86 kHz	× dB	-26.00	dВ	Ontimina
	228 kHz 7.640 kHz				Optimize Ref Level
Copyright 2000-2002 Agile					

Test Channel=MCH

Test Channel=HCH


Test Band=GSM1900

Test Mode=GSM

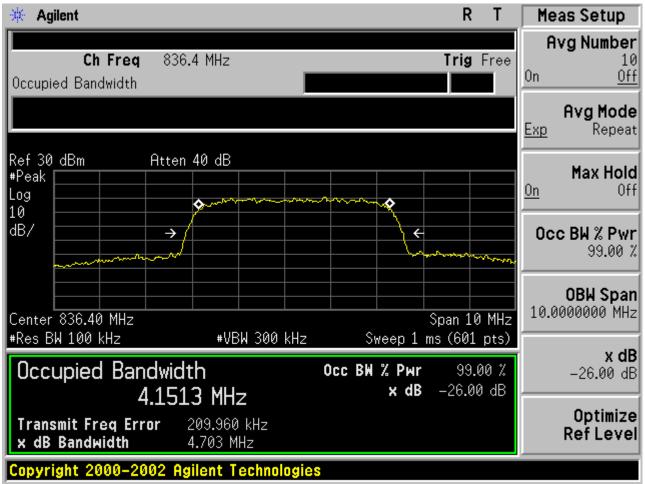
Test Channel=LCH

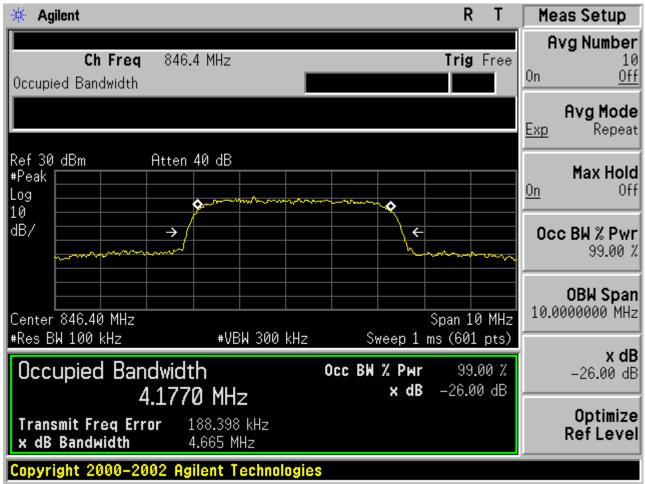
Test Channel=MCH

Test Channel=HCH

Report No.: AGC05320160702FE02 Page 37 of 114

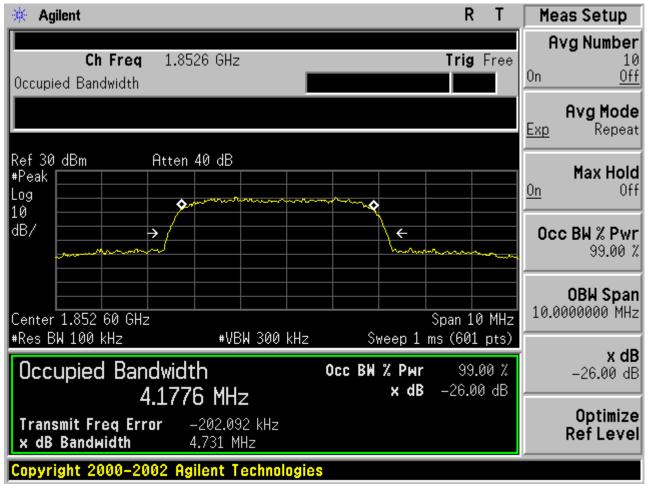
Test Band	Test	Test	Occupied Bandwidth	Emission Bandwidth	Verdict
	Mode	Channel	(KHZ)	(KHZ)	
		LCH	4.1819	4.733	PASS
WCDMA850	UMTS	MCH	4.1513	4.703	PASS
		HCH	4.1770	4.665	PASS

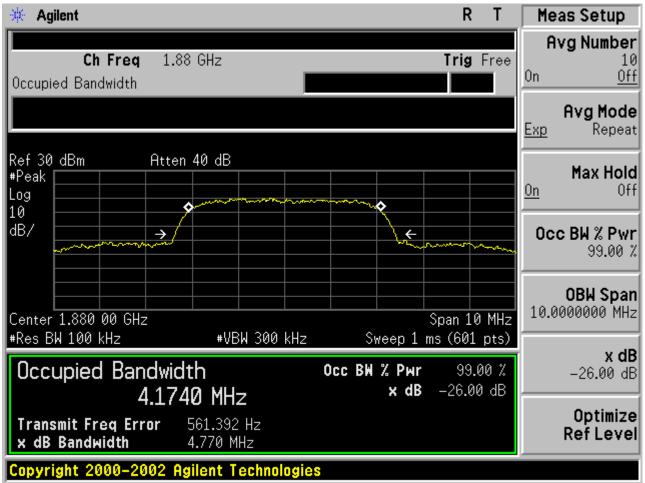

Test Band	Test	Test	Occupied Bandwidth	Emission Bandwidth	Verdict
	Mode	Channel	(KHZ)	(KHZ)	
		LCH	4.1776	4.731	PASS
WCDMA1900	UMTS	MCH	4.1740	4.770	PASS
		HCH	4.1649	4.715	PASS

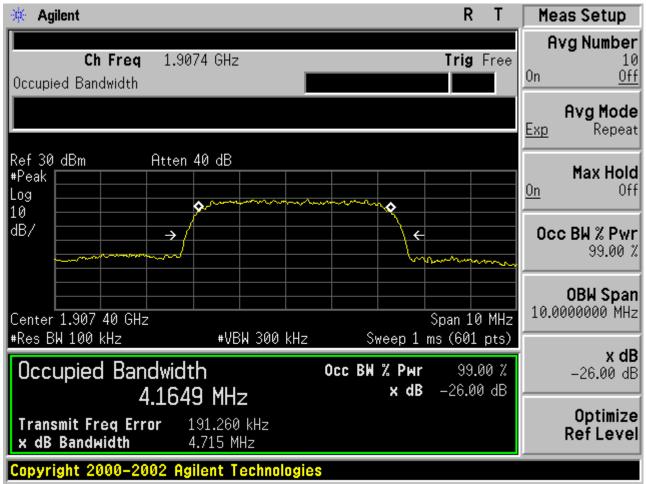

For WCDMA

Test Band=WCDMA850

Test Mode=UMTS


* Agilent	RT	Amplitude
Ch Freq 826.6 MHz	Trig Free	RefLevel 30.00 dBm
Occupied Bandwidth		
		Attenuation 40.00 dB
		<u>Auto</u> Man
Ref 30 dBm Atten 40 dB #Peak		Scale/Div
Log		10.00 dB
dB/ →		Scale Type
		Log Lin
Center 826.60 MHz	Span 10 MHz	Presel Center
#Res BW 100 kHz #VBW 300 kHz	Sweep 1 ms (601 pts)	
Decurried Penduidth	Осс ВЖ % Рwr 99.00 %	Presel Adjust
Occupied Bandwidth	иссын л рып 55.00 л х dB – 26.00 dB	0.00000000 Hz
4.1819 MHz		More
Transmit Freq Error -217.178 kHz		1 of 3
x dB Bandwidth 4.733 MHz		
Copyright 2000-2002 Agilent Technologie	S	





Test Band=WCDMA1900

Test Mode=UMTS

8. BAND EDGE

8.1 MEASUREMENT METHOD

1. All out of band emissions are measured with an analyzer spectrum connected to the antenna terminal of the EUT while the EUT at its maximum duty cycle, at maximum power, and at the approximate frequencies. All data rates were investigated to determine the worst case configuration

2. The test set up and general procedure is similar to conducted peak output power test. Only different for setting the measurement configuration of the measuring instrument of Spectrum Analyzer.

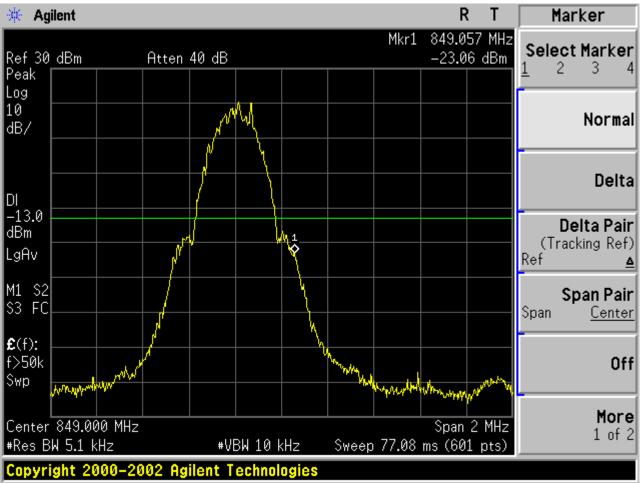
- 3. Start and stop frequency were set such that the band edge would be placed in the center of the plot.
- 4. Span was set large enough so as to capture all out of band emissions near the band edge.
- 5. RBW>1% of the emission bandwidth, VBW >=3 x RBW, Detector=RMS, Number of points>=2 x Span/RBW, Trace mode=max hold, Sweep time=auto couple, and the trace was allowed to stabilize

8.2 PROVISIONS APPLICABLE

As Specified in FCC rules of 22.917(a) and 24.238(a) and KDB 971168 V02r02

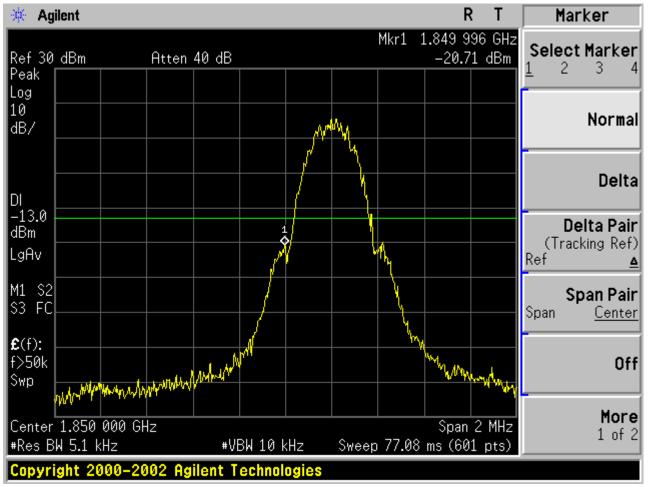
8.3 MEASUREMENT RESULT

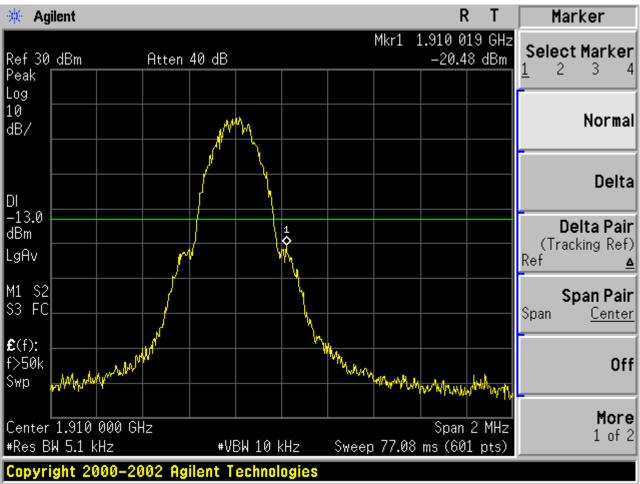
APPENDIX B: BAND EDGES COMPLIANCE


Test Results

For GSM

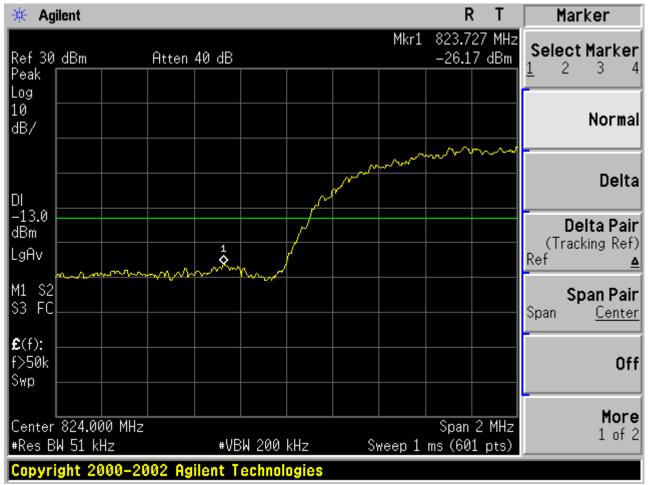
Test Band=GSM850

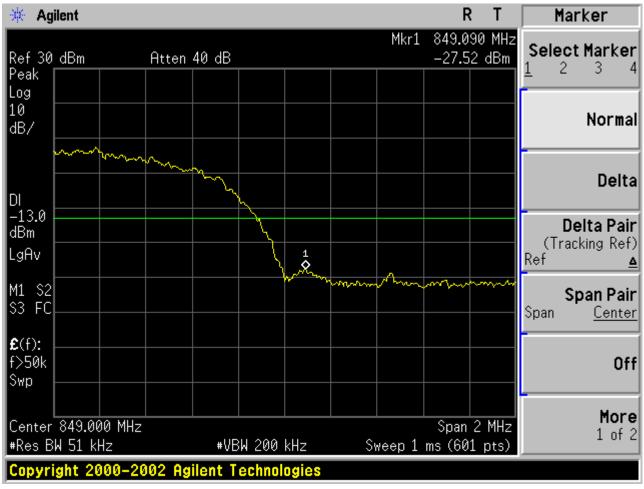

Test Mode=GSM



Test Band=GSM1900

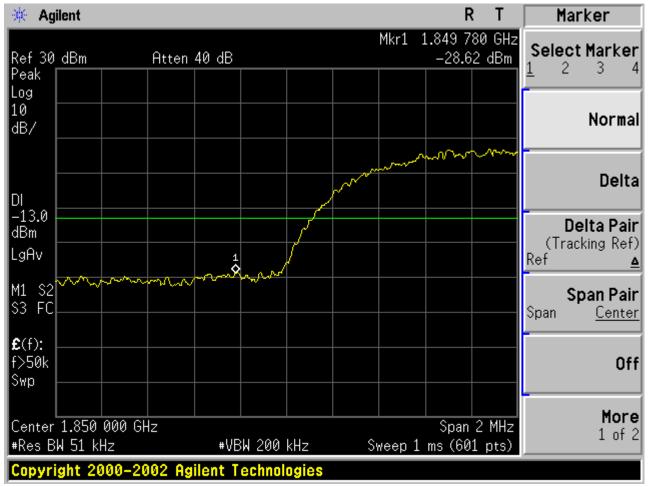
Test Mode=GSM

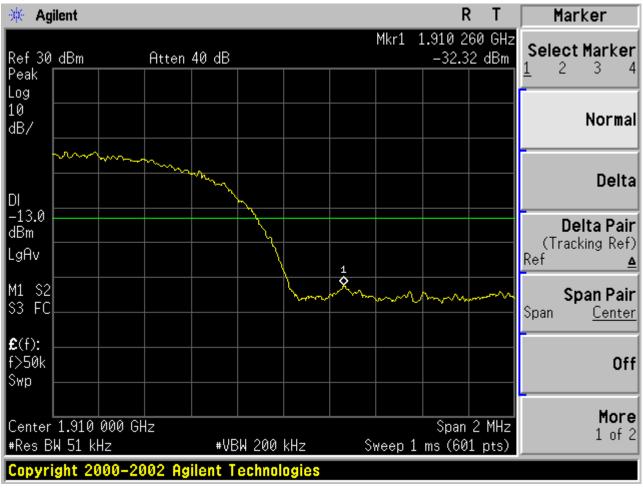




For WCDMA

Test Band=WCDMA850


Test Mode=UMTS



Test Band=WCDMA1900

Test Mode=UMTS

9. SPURIOUS EMISSION

9.1 CONDUCTED SPURIOUS EMISSION

9.1.1 MEASUREMENT METHOD

The following steps outline the procedure used to measure the conducted emissions from the EUT. 1. The level of the carrier and the various conducted spurious and harmonic frequency is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at maximum power, and at the approximate frequencies. All data rates were investigated to determine the worst case configuration.

2. Determine frequency range for measurements: From CFR 2.1057 the spectrum should be investigated from the lowest radio frequency generated in the equipment up to at least the 10th harmonic of the carrier frequency. For the equipment of PCS1900 band, this equates to a frequency range of 30 MHz to 19.1 GHz, data taken from 30 MHz to 20 GHz. For GSM 850, data taken from 30 MHz to 9 GHz.

3. Determine EUT transmit frequencies: the following typical channels were chosen to conducted emissions testing.

Typical Channels for testing of GSM 850							
Channel	Frequency (MHz)						
128	824.2						
190	836.6						
251	848.8						

Typical Channels for testing of PCS 1900							
Channel	Frequency (MHz)						
512	1850.2						
661	1880.0						
810	1909.8						

Typical Channels for testing of UMTS band II							
Channel Frequency (MHz)							
9663	1852.6						
9800	1880						
9937	1907.4						

Typical Channels for testing of UMTS band V							
Channel	Frequency (MHz)						
4358	826.6						
4407	836.4						
4457	846.4						

9.1.2 PROVISIONS APPLICABLE

On any frequency outside frequency band of the USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log(P) dB. For all power levels +30 dBm to 0 dBm, this becomes a constant specification limit of -13 dBm.

9.1.3 MEASUREMENT RESULT

APPENDIX C: SPURIOUS EMISSION AT ANTENNA TERMINAL

Test Results

Test Band=GSM850

Test Mode=GSM

Report No.: AGC05320160702FE02 Page 55 of 114

🔆 Agilent			R	T Peak Search
Ref 30 dBm Peak	Atten 40 dB		Mkr2 897.2 I -45.63 d	
Log 10 dB/			\$	Next Pk Right
DI -13.0				Next Pk Left
dBm LgAv				Min Search
M1 S2 S3 FC			2	Pk-Pk Search
£(f): FTun Swp		(in the formation of the date of the party of the second		Mkr → CF
Start 30.0 MHz #Res BW 100 kHz	#VBW 30	0 kHz Sweep	Stop 1.000 0 0 92.83 ms (8192 p	
Copyright 2000-	2002 Agilent Techn	ologies		

Report No.: AGC05320160702FE02 Page 56 of 114

🔆 Agilent				RT	Peak Search
Ref 30 dBm Peak	Atten 40 dB			7.561 GH -37.90 dBm	
Log 10 dB/					Next Pk Right
DI					Next Pk Left
-13.0 dBm LgAv					Min Search
M1 S2 S3 FC		<mark>n (normalis (no jest))</mark> jenesko prol ⁱⁿ		Hard State of State of States	Pk-Pk Search
£(f): Herein Hand	and the state of t			an faire an	Mkr → CF
Start 1.000 GHz #Res BW 1 MHz	#VBk	I 3 MHz Sw	Stop Stop eep 13.65 ms	0 9.000 GH: (8192 pts)	
	2002 Agilent Tec				

🔆 Ag	jilent								F	? Т	Peak Search
Ref 30 Peak	dBm		Atten	40 dB				Mk	r2 825 -50.2	5.9 MHz 7 dBm	Next Peak
Log 10 dB/											Next Pk Right
DI											Next Pk Left
-13.0 dBm LgAv											Min Search
M1 S2 S3 FC									2		Pk-Pk Search
€(f): FTun Swp	ha in transiti Maria			a a shekara b					2	a li an la mualle Thirthean anns an stàit	Mkr → CF
	30.0 MH: 30 100 I			#VE	3W 300	kHz	Sweep	Stop 92.83 m) 1.000 1s (819		More 1 of 2
Copyri	ight 20	00-20	02 Aş	gilent T	echnol	ogies					

Report No.: AGC05320160702FE02 Page 58 of 114

🔆 Agilent			RT	Peak Search
Ref 30 dBm Peak	Atten 40 dB		Mkr1 3.096 GHz -37.65 dBm	Next Peak
Log 10 dB/				Next Pk Right
				Next Pk Left
-13.0 dBm LgAv				Min Search
M1 S2 S3 FC		na jilay salah sa kun jampa jilan na sa kini ku ja ku		Pk-Pk Search
£(f): FTun Swp				Mkr → CF
Start 1.000 GHz #Res BW 1 MHz			Stop 9.000 GHz .3.65 ms (8192 pts)	More 1 of 2

Mkr1 848.8 MHz Peak Q <thq< th=""> Q <thq< th=""></thq<></thq<>	🔆 Agiler	nt						R	Т	Peak Search
10 dB/ Next Pk Right DI Next Pk Left -13.0 Next Pk Left Jan Min Search Jan Min Search Min Search Pk-Pk Search Étrun Start 30.0 MHz	Peak	Bm	Atten 4	40 dB			Mkr:	24.48		Next Peak
DI -13.0 Min Search LgAv Min Search M1 S2 S3 FC Pk-Pk Search £(f): 2 Mkr → CF Swp Start 30.0 MHz Stop 1.000 0 GHz More	10							4		Next Pk Right
dBm LgAv M1 S2 S3 FC E(f): FTun Swp Start 30.0 MHz Min Search Pk-Pk Search Mkr + CF More 1 of 2										Next Pk Left
S3 FC £(f): FTun Swp Start 30.0 MHz Start 30.0 MHz FC Start 30.0 MHz FC Start 30.0 MHz Start 30.0 MHz FC Start 30.0 MHz FC FC Start 30.0 MHz FC FC FC FC FC FC FC FC FC FC	dBm									Min Search
£(f): ◆ Mkr → CF Swp Start 30.0 MHz Stop 1.000 0 GHz 1 of 2	\$3 FC					2				Pk-Pk Search
Start 30.0 MHZ Stop 1.000 0 GHZ 1 of 2	FTun 🤐	i han a shi ki ka shi ka ka sa shi bina s Mana sa	lateri tu di sta			○			inn Reinn Reinne	Mkr → CF
Copyright 2000–2002 Agilent Technologies	#Res BW 1	100 kHz	02.04			Sweep :				

Report No.: AGC05320160702FE02 Page 60 of 114

🔆 Agil	lent					R	T	Peak Search
Ref 30 Peak	dBm	Atten 40 d	B		Mkr1 -	6.980 -38.01		Next Peak
Log 10 dB/								Next Pk Right
DI 12.0								Next Pk Left
-13.0 dBm LgAv								Min Search
M1 S2 S3 FC	Lipson and the state of the							Pk-Pk Search
€(f): FTun Swp -								Mkr → CF
# Res B⊭	.000 GHz 1 MHz		#VBW 3 MHz		Stop 13.65 ms) 9.000 (8192 p		More 1 of 2
Copyrig	ght 2000-2	002 Agilent	Technolog	ies				

Test Band=GSM1900

Test Mode=GSM

🔆 Agilent			RT	Peak Search
Ref 30 dBm Peak	Atten 40 dB		Mkr1 827.9 MH —51.97 dBm	
Log 10 dB/				Next Pk Right
DI				Next Pk Left
dBm LgAv				Min Search
M1 S2 S3 FC				Pk-Pk Search
			1 I file of the test of the second state of the test of te	Mkr → CF
Start 30.0 MHz #Res BW 100 kHz	#VBW 30)0 kHz Sweep	Stop 1.000 0 GH: 92.83 ms (8192 pts)	
Copyright 2000-2	002 Agilent Techr	nologies		

Report No.: AGC05320160702FE02 Page 62 of 114

🔆 Agilent						RT	Peak Search
Ref 30 dBm Peak	1	Atten 40 dB				.850 GHz 1.86 dBm	Next Peak
Log 10 dB/							Next Pk Right
DI -13.0							Next Pk Left
dBm LgAv							Min Search
M1 S2 S3 FC	, in the second s				terleg selver at a selver a		Pk-Pk Search
£(f): FTun Swp							Mkr→CF
Start 1.000 (#Res BW 1 M		#\	/BW 3 MHz	Sweep 1	Stop 7 0.38 ms (8	.000 GHz 192 pts)	More 1 of 2
Copyright 2	000-20	02 Agilent T	echnologie				

Report No.: AGC05320160702FE02 Page 63 of 114

🔆 Ag	jilent								R	2 T	Peak Search
Ref 30 Peak	dBm		Atten	40 dB				Mkr:		72 GHz 9 dBm	Next Peak
Log 10 dB/											Next Pk Right
DI -13.0											Next Pk Left
dBm LgAv											Min Search
M1 S2 S3 FC					ala da ana						Pk-Pk Search
€(f): FTun Swp											Mkr → CF
Start 7 #Res B	W 1 MH	Z			BW 3 M		Sweep	Sto 13.65 m		00 GHz 2 pts)	More 1 of 2
Copyri	ight 20	100-20	102 Ag	ilent T	echnol	ogies					

Report No.: AGC05320160702FE02 Page 64 of 114

🔆 Agilent				RT	Peak Search
Ref 30 dBm Peak	Atten 40 dB		Mkr	1 15.866 GH -36.71 dBr	
Log 10 dB/					Next Pk Right
					Next Pk Left
-13.0 dBm LgAv					Min Search
M1 S2 S3 FC			n da se filla i su da la la se a fila se da s La se da s		Pk-Pk Search
£(f): FTun Swp					Mkr → CF
Start 13.600 GHz #Res BW 1 MHz		BW 3 MHz	Sto Sweep 16.38 m	p 20.000 GH ns (8192 pts	
Copyright 2000-	2002 Agilent T	echnologies			

🔆 Ag	jilent								R	2 T	Peak Search
Ref 30 Peak	dBm		Atten	40 dB				Mk		0.8 MHz 0 dBm	Next Peak
Log 10 dB/											Next Pk Right
DI											Next Pk Left
-13.0 dBm LgAv											Min Search
M1 S2 S3 FC											Pk-Pk Search
€(f): FTun Swp	d bedden dieg Transmissioner								-	di da la plita da di Najara da Sang	Mkr → CF
#Res B	30.0 MH W 100	kHz			300 W		Sweep		o 1.000 ns (819		More 1 of 2
Copyr	ight 20	100-20	102 Ag	ilent T	echnol	ogies					

Report No.: AGC05320160702FE02 Page 66 of 114

🔆 Agilent					R	Т	Peak Search
Ref 30 dBm Peak	A:	tten 40 dB			Mkr2 3.07 -39.2		Next Peak
Log 10 dB/	\$						Next Pk Right
DI -13.0							Next Pk Left
dBm LgAv							Min Search
M1 S2 S3 FC					n fa fil an film an an fil		Pk-Pk Search
£(f): FTun Swp							Mkr → CF
Start 1.000 (#Res BW 1 M		#VE	W 3 MHz	Sweep 10.3	Stop 7.00 38 ms (819;		More 1 of 2
Copyright 2	000-2002	2 <mark>Agilent</mark> Te	chnologies				

Report No.: AGC05320160702FE02 Page 67 of 114

🔆 Agilent				RT	Peak Search
Ref 30 dBm Peak	Atten 40 dB			.923 GHz .51 dBm	Next Peak
Log 10 dB/					Next Pk Right
					Next Pk Left
-13.0 dBm LgAv					Min Search
M1 S2 S3 FC		na an a			Pk-Pk Search
£ (f): FTun Swp					Mkr → CF
Start 7.000 GHz #Res BW 1 MHz	#VBW	3 MHz Swe	Stop 13. ep 13.65 ms (81	600 GHz .92 pts)	More 1 of 2
	2002 Agilent Tec				

Report No.: AGC05320160702FE02 Page 68 of 114

R T Peak Search						lent	🔆 Ag
(r1 19.973 GHz				0		JD	D. C. DA
-36.70 dBm Next Peak			40 aB	Atten		abm	Ref 30 Peak
							Log
Next Pk Right							10 dB/
							uD7
Next Pk Left							
Next PK Left							DI
							–13.0 dBm
Min Search							uom LgAv
Pk-Pk Search		ور ساري ارا العدار		يرارين والمعالية	و الدفر الارا المعر و	dabar	M1 S2 S3 FC
			Provide States	the difference in	and an angle of the	and the factor of the	JJ FC
							£ (f):
Mkr → CF							FTun Swp
							- 11 J
top 20.000 GHz 1 of 2					GHz	3.600	Start 1
ms (8192 pts)	Z	BW 3 M	#₩		z	W 1 MH	# Res B

Mkr1 349.3 MHz -51.82 dBm Next Peak Log Image: State of the stat
10 Mext Pk Right 01 Next Pk Left -13.0 Min Search dBm Min Search LgAv Pk-Pk Search 01 1
DI -13.0 dBm LgAv M1 S2 S3 FC Acrossoft Acrossoft
dBm LgAv Min Search M1 S2 S3 FC Pk-Pk Search
S3 FC Pk-Pk Search
$\mathbf{f}(\mathbf{f})$
$\begin{array}{c} E(r):\\ FTun\\ Swp \end{array} \xrightarrow{Mun} Mun Mun$
Start 30.0 MHz Stop 1.000 0 GHz More 1 of 2 #Res BW 100 kHz #VBW 300 kHz Sweep 92.83 ms (8192 pts) 1 of 2 Copyright 2000-2002 Agilent Technologies Copyright 2000-2002 Agilent Technologies Copyright 2000-2002 Agilent Technologies

Report No.: AGC05320160702FE02 Page 70 of 114

🔆 Agilent						R	Т	Peak Search
Ref 30 dBm Peak	At	ten 40 dB			Mkr	2 3.17 -38.56		Next Peak
Log 10 dB/	1							Next Pk Right
DI -13.0								Next Pk Left
dBm LgAv								Min Search
		2 •				والمتأور والكورا		Pk-Pk Search
£(f): FTun Swp								Mkr→CF
Start 1.000 G #Res BW 1 MH		#VI	3W 3 MHz	Sweep	Sti 10.38 m	op 7.000 s (8192		More 1 of 2
Copyright 20	00-2002	Agilent T	echnologie	S				

Report No.: AGC05320160702FE02 Page 71 of 114

🔆 Agilent				RT	Peak Search
Ref 30 dBm Peak	Atten 40 dB		Mk	r1 7.100 GH -37.24 dBr	
Log 10 dB/					Next Pk Right
					Next Pk Left
-13.0 dBm LgAv					Min Search
M1 S2 1 S3 FC					Pk-Pk Search
£ (f): FTun Swp					Mkr → CF
Start 7.000 GHz #Res BW 1 MHz	#VBI	N 3 MHz	Sto Sweep 13.65 m	p 13.600 GH ns (8192 pts	
	-2002 Agilent Teo				

Report No.: AGC05320160702FE02 Page 72 of 114

🔆 Agi	lent								F	₹ T	Peak Search
			<u>`</u>	10 15				Mkr		06 GHz	
Ref 30 Peak 🛛	dBm		Htten	40 dB					-36.1	9 dBm	Next Peak
Log											
10											Next Pk Right
dB/											_
ы											Next Pk Left
DI -13.0											
dBm											Min Search
LgAv											
M1 S2	1										
S3 FC		ale "Johrand		ha ala ka		dillored.	and a location	and a start	, pathan		Pk-Pk Search
£ (f):						Sind and the	a labelea (la albala).		and the second		
FTun											Mkr → CF
Swp -											1111 9 01
											Harra
Start 13.600 GHz Stop 20.000 GHz											More 1 of 2
#Res BW 1 MHz #VBW 3 MHz Sweep 16.38 ms (8192 pts)											
Copyright 2000–2002 Agilent Technologies											

Test Band=WCDMA850

Test Mode=UMTS

Test Channel=LCH

🔆 Agilent			RT	Peak Search
Ref 30 dBm Peak	Atten 40 dB	Mkı	r2 608.0 MHz -50.51 dBm	Next Peak
Log 10 dB/			1 ¢	Next Pk Right
DI				Next Pk Left
-13.0 dBm LgAv				Min Search
M1 S2 S3 FC		2		Pk-Pk Search
£(f): FTun Tellerederedered Swp				Mkr → CF
Start 30.0 MHz #Res BW 100 kHz	#VBW 300 k		1.000 0 GHz s (8192 pts)	More 1 of 2
Copyright 2000-20	02 Agilent Technolo	gies		

Report No.: AGC05320160702FE02 Page 74 of 114

🔆 Ag	ilent								R	: Т	Peak Search
Ref 30 Peak	dBm		Atten	40 dB				Mk		16 GHz 3 dBm	Next Peak
Log 10 dB/											Next Pk Right
DI											Next Pk Left
-13.0 dBm LgAv											Min Search
M1 S2 S3 FC									a da da ser da da ser da s Tanta da ser d		Pk-Pk Search
£ (f): FTun Swp											Mkr → CF
#Res B	000 GH W 1 MHz	-			вмзм		Sweep	St 13.65 m		00 GHz 2 pts)	More 1 of 2
Copyri	ight 20	00-20	02 Ag	ilent T	echnol	ogies					

🔆 Ag	gilent							R	2 T	Peak Search
Ref 30 Peak) dBm		Atten	40 dB			Mk		3.4 MHz 3 dBm	Next Peak
Log 10 dB/								1		Next Pk Right
DI										Next Pk Left
-13.0 dBm LgAv										Min Search
M1 S2 S3 FC										Pk-Pk Search
€(f): FTun Swp	and a line in parallel the second se				teta di teta teta di pi neri della di secola di si	hand là chian shei Thing an an an an a			i kanad a statk Tahun ay ki ka	Mkr → CF
#Res E	30.0 MH 3W 100 <mark>ight 20</mark>	kHz	002 Ag		W 300 echnol	Sweep	Stop 92.83 m		0 GHz 2 pts)	More 1 of 2

Test Channel=MCH

Report No.: AGC05320160702FE02 Page 76 of 114

🔆 Agilent				RT	Peak Search
Ref 30 dBm Peak	Atten 40 dB			3.140 GHz 3.41 dBm	Next Peak
Log 10 dB/					Next Pk Right
DI					Next Pk Left
-13.0 dBm LgAv					Min Search
M1 S2 S3 FC					Pk-Pk Search
£(f): Create and the second se					Mkr→CF
Start 1.000 GHz #Res BW 1 MHz	#VB	W 3 MHz Sw	Stop 9 eep 13.65 ms (8	.000 GHz 192 pts)	More 1 of 2
Copyright 2000-	-2002 Agilent Te				

🔆 Agilent			R	T Peak Sear	ch
Ref 30 dBm Peak	Atten 40 dB		Mkr2 748.9 -50.73		eak
Log 10 dB/			1	Next Pk Ri	ght
				Next Pk L	.eft
-13.0 dBm LgAv				Min Sea	rch
M1 S2 S3 FC			3	Pk-Pk Sea	rch
£(f): FTun waste blude adala Swp				Mkr-j	• CF
Start 30.0 MHz #Res BW 100 kHz	#VBW 30		Stop 1.000 0 92.83 ms (8192	GHZ 1	ore of 2
Copyright 2000-20	002 Hglient Techn	ologies			

Test Channel=HCH

Report No.: AGC05320160702FE02 Page 78 of 114

🔆 Agilent				R	Τſ	Peak Search
Ref 30 dBm Peak	Atten 40 dB		Mk	r1 7.286 -37.85 (Next Peak
Log 10 dB/						Next Pk Right
						Next Pk Left
-13.0 dBm LgAv						Min Search
M1 S2 S3 FC						Pk-Pk Search
£(f): FTun Swp						Mkr→CF
Start 1.000 GHz #Res BW 1 MHz	#VE	3W 3 MHz	Sweep 13.65 m	op 9.000 1s (8192 p		More 1 of 2
Copyright 2000-	-2002 Agilent To	echnologies				

Test Band=WCDMA1900

Test Mode=UMTS

Test Channel=LCH

🔆 Agilent			R	T Peak Search
Ref 30 dBm Peak	Atten 40 dB		Mkr1 641.2 -52.09	
Log 10 dB/				Next Pk Right
DI				Next Pk Left
-13.0 dBm LgAv				Min Search
M1 S2 S3 FC				Pk-Pk Search
€(f): FTun chunghu Withong Swp	al (al) markets a bar markets a fill bind i fill at the Process provide the second system is the process of the second system is the second system is the second system		ي در المانية المربوبية، ومن عمر المربوبية المربوبية والمعالية. مربوب المربوبية المرب	Mkr → CF
Start 30.0 MHz #Res BW 100 kHz	#VBW 300) kHz Sweep	Stop 1.000 0 92.83 ms (8192	
Copyright 2000-20	002 Agilent Techno	ologies		

Report No.: AGC05320160702FE02 Page 80 of 114

🔆 Agilent		RT	Peak Search
Peak	40 dB	Mkr2 3.073 GHz -37.44 dBm	Next Peak
Log 10 \$ dB/			Next Pk Right
			Next Pk Left
-13.0 dBm LgAv			Min Search
M1 S2 S3 FC			Pk-Pk Search
£(f): FTun Swp			Mkr → CF
Start 1.000 GHz #Res BW 1 MHz		Stop 7.000 GHz 10.38 ms (8192 pts)	More 1 of 2
Copyright 2000-2002 Ag	ilent Technologies		

Report No.: AGC05320160702FE02 Page 81 of 114

🔆 Agilent			RT	Peak Search
Ref 30 dBm Peak	Atten 40 dB		Mkr1 13.565 GHz –37.22 dBm	Next Peak
Log 10 dB/				Next Pk Right
				Next Pk Left
-13.0 dBm LgAv				Min Search
M1 S2 S3 FC Alexandration	i lang dan ping barang sa ki baran dapatan ang sa pangan Mang barang sa			Pk-Pk Search
£ (f): FTun Swp				Mkr → CF
Start 7.000 GHz #Res BW 1 MHz	#VBW 3	MHz Sweep	Stop 13.600 GHz 13.65 ms (8192 pts)	More 1 of 2
Copyright 2000-	2002 Agilent Tech	nologies		

Report No.: AGC05320160702FE02 Page 82 of 114

🔆 Agilent				RT	Peak Search
Ref 30 dBm Peak	Atten 40 dB		Mkr1	19.863 GH -36.38 dBm	
Log 10 dB/					Next Pk Right
DI					Next Pk Left
-13.0 dBm LgAv					Min Search
M1 S2 S3 FC with the standard	an a la l				Pk-Pk Search
£(f): FTun Swp					Mkr → CF
Start 13.600 GHz #Res BW 1 MHz	#VE	BW 3 MHz Si	Stop Weep 16.38 ms	20.000 GHz (8192 pts)	
Copyright 2000-	2002 Agilent Te	chnologies			

🔆 Ag	ilent								F	2 T	Peak Search
Ref 30 Peak	dBm		Atten	40 dB				Mk		0.2 MHz 5 dBm	Next Peak
Log 10 dB/											Next Pk Right
DI -13.0											Next Pk Left
dBm LgAv											Min Search
M1 S2 S3 FC											Pk-Pk Search
£ (f): FTun Swp		analda ditti Sangis ayu									Mkr → CF
Start 3 #Res B	W 100	kHz			W 300		Sweep) 1.000 ns (819		More 1 of 2
Copyri	ight 20	00-20	002 Ag	ilent T	echnol	ogies					

Test Channel=MCH

Report No.: AGC05320160702FE02 Page 84 of 114

🔆 Agilent				RT	Peak Search
Ref 30 dBm Peak	Atten 40 dB		Mk	r2 3.150 GHz -38.87 dBm	
Log 10 dB/	1 •				Next Pk Right
DI					Next Pk Left
-13.0 dBm LgAv					Min Search
M1 S2 S3 FC					Pk-Pk Search
£(f): FTun Swp					Mkr → CF
Start 1.000 GHz #Res BW 1 MHz		VBW 3 MHz	Sweep 10.38 n	top 7.000 GHz ns (8192 pts)	More 1 of 2
Copyright 2000)-2002 Agilent	lechnologies			

Report No.: AGC05320160702FE02 Page 85 of 114

🔆 Agilent			RT	Peak Search
Ref 30 dBm Peak	Atten 40 dB		Mkr1 10.750 GH: —38.44 dBm	
Log 10 dB/				Next Pk Right
				Next Pk Left
-13.0 dBm LgAv				Min Search
M1 S2 S3 FC				Pk-Pk Search
£(f): FTun Swp				Mkr → CF
Start 7.000 GHz #Res BW 1 MHz	#VBW 3	MHz Sweep	Stop 13.600 GHz 13.65 ms (8192 pts)	
Copyright 2000-	2002 Agilent Techno	ologies		

Report No.: AGC05320160702FE02 Page 86 of 114

🔆 Agilent				R	Т	Peak Search
Ref 30 dBm Peak	Atten 40 dB		M	kr1 18.89 -36.28		Next Peak
Log 10 dB/						Next Pk Right
DI						Next Pk Left
-13.0 dBm LgAv						Min Search
M1 S2 S3 FC <mark>d, and Malacher</mark>	a a sa a sa s	a libele della stati			n an taolat <mark>Ny Trans d</mark> i	Pk-Pk Search
£(f): FTun Swp						Mkr → CF
Start 13.600 GHz #Res BW 1 MHz	#V	BW 3 MHz	Sweep 16.38	top 20.000 ms (8192		More 1 of 2
Copyright 2000-	2002 Agilent T	echnologie	2			

🔆 Ag	ilent								R	: T	Peak Search
Ref 30 Peak	dBm		Atten	40 dB				Mk		3.3 MHz 8 dBm	Next Peak
Log 10 dB/											Next Pk Right
DI											Next Pk Left
-13.0 dBm LgAv											Min Search
M1 S2 S3 FC											Pk-Pk Search
€(f): FTun Swp			d gydail fan y								Mkr → CF
Start 3 #Res B	W 100	kHz	00.0**		W 300		Sweep		o 1.000 ns (819		More 1 of 2
Copyr	ight 20	100-26)02 Ag	lient I	ecnnol	ugies					

Test Channel=HCH

Report No.: AGC05320160702FE02 Page 88 of 114

🔆 Agilent						R	Т	Peak Search
Ref 30 dBm Peak	Atte	en 40 dB			Mkr1	1.90) 15.16		Next Peak
Log 10 dB/	_1 ♦							Next Pk Right
DI -13.0								Next Pk Left
dBm LgAv								Min Search
M1 S2 S3 FC	ad mathematic							Pk-Pk Search
£(f): FTun Swp								Mkr→CF
Start 1.000 GH #Res BW 1 MHz		#VBW	3 MHz	Sweep 10		7.000 (8192		More 1 of 2
Copyright 200	0-2002	Agilent Tec	hnologies					

Report No.: AGC05320160702FE02 Page 89 of 114

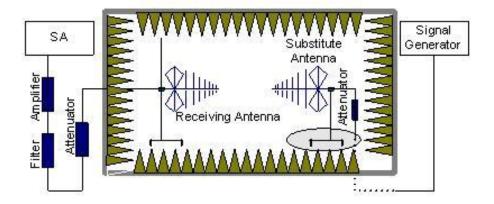
🔆 Agilent				RT	Peak Search
Ref 30 dBm Peak	Atten 40 dB			.406 GHz .36 dBm	Next Peak
Log 10 dB/					Next Pk Right
					Next Pk Left
-13.0 dBm LgAv					Min Search
M1 S2 S3 FC					Pk-Pk Search
£(f): FTun Swp					Mkr→CF
Start 7.000 GHz #Res BW 1 MHz	#VBW	3 MHz Swe	Stop 13. eep 13.65 ms (81	600 GHz .92 pts)	More 1 of 2
Copyright 2000-	2002 Agilent Tec				

Report No.: AGC05320160702FE02 Page 90 of 114

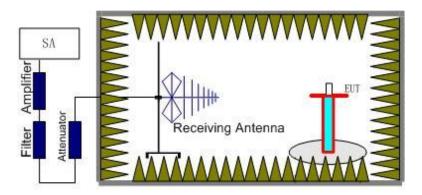
🔆 Agi	ilent								F	₹ T	Peak Search
Ref 30 Peak	dBm		Atten	40 dB				Mkr		78 GHz 2 dBm	Next Peak
Log 10 dB/											Next Pk Right
DI											Next Pk Left
-13.0 dBm LgAv											Min Search
M1 S2 S3 FC	Harrison († 1947) Agreen gebeelder										Pk-Pk Search
€(f): FTun Swp											Mkr → CF
Start 1 #Res Bl				#\	ви з м	lHz	Sweep			00 GHz 2 pts)	More 1 of 2
Copyri	ght 20	000-20	002 Ag	ilent T	echnol	ogies					

Note: 1. Below 30MHZ no Spurious found and The GSM modes is the worst condition.

2. As no emission found in standby or receive mode, no recording in this report.


9.2 RADIATED SPURIOUS EMISSION

9.2.1 MEASUREMENT METHOD


The measurements procedures specified in TIA-603-D-2010 were used for testing. The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment. The resolution bandwidth is set 1MHz as outlined in Part 24.238. The measurements were performed on all modes(GPRS 850, GPRS 1900, HSPA band II, HSPA band V) at 3 typical channels(the Top Channel, the Middle Channel and the Bottom Channel) for each band.

The procedure of radiated spurious emissions is as follows:

a) Pre-calibration With pre-calibration method, the Radiated Spurious Emissions(RSE) is calculated as, RSE=Rx(dBuV)+CL(dB)+SA(dB)+Gain(dBi)-107(dBuV to dBm) The SA is calibrated using following setup.

b) EUT was placed on a 0.8 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the test item for emission measurements. The height of receiving antenna is 0.8m. The test setup refers to figure below. Detected emissions were maximized at each frequency by rotating the test item and adjusting the receiving antenna polarization. The radiated emission measurements of all non-harmonic and harmonics of the transmit frequency through the 10th harmonic were measured with peak detector and 1MHz bandwidth.

Radiated emissions measurements were made only at the upper, middle, and lower carrier frequencies of the PCS 1900 band (1850.2 MHz, 1880 MHz and 1909.8 MHz) ,GSM850 band (824.2MHz, 836.6MHz, 848.8MHz), UMTS band II(1852.6MHz, 1880MHz, 1907.4MHz), UMTS band V(826.6MHz, 836.4MHz, 846.4MHz) . It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of any band into any of the other blocks.

The substitution method is used. Substitution values at each frequency are measured before and saved to the test software. A "reference path loss" is established and the A_{Rpl} is the attenuation of "reference path loss", and including the gain of receive antenna, the gain of the preamplifier, the cable loss and the air loss. The measurement results are obtained as described below: Power=P_{Mea}+A_{Rpl}

9.2.2 PROVISIONS APPLICABLE

(a) On any frequency outside a licensee's frequency block (e.g. A, D, B, etc.) within the USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log(P) dB. The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

Note: only result the worst condition of each test mode:

9.2.3 MEASUREMENT RESULT

GSM 850:

	The Worst Test Results for Channel 251/848.8 MHz						
Frequency(MHz)	Power(dBm)	ARpl (dBm)	PMea(dBm)	Limit (dBm)	Polarity		
1685.23	-45.44	-5.01	-50.45	-13.00	Horizontal		
2456.12	-46.37	-2.18	-48.55	-13.00	Vertical		
3645.78	-47.11	3.46	-43.65	-13.00	Vertical		
4536.58	-42.53	2.79	-39.74	-13.00	Horizontal		

PCS 1900:

	The Worst Test Results for Channel 810/1909.8MHz							
Frequency(MHz)	Power(dBm)	ARpl (dBm)	PMea(dBm)	Limit (dBm)	Polarity			
1429.36	-41.47	-3.22	-44.69	-13.00	Vertical			
2563.47	-43.68	-0.24	-43.92	-13.00	Vertical			
3645.26	-41.05	3.98	-37.07	-13.00	Horizontal			
4563.56	-45.47	11.56	-33.91	-13.00	Vertical			
5689.25	-43.42	17.89	-25.53	-13.00	Horizontal			

UMTS band II:

	The Worst Test Results for Channel 9938/1907.4MHz							
Frequency(MHz)	Power(dBm)	ARpl (dBm)	PMea(dBm)	Limit (dBm)	Polarity			
2000.00	-38.72	-2.25	-40.97	-13.00	Vertical			
9548.50	-41.58	-3.03	-44.61	-13.00	Horizontal			
13367.40	-45.34	-1.87	-47.21	-13.00	Horizontal			
15277.80	-46.38	8.52	-37.86	-13.00	Vertical			
17931.60	-42.22	18.7	-23.52	-13.00	Horizontal			

	The Worst Test Results for Channel 4458/846.4MHz						
Frequency(MHz)	Power(dBm)	ARpl (dBm)	PMea(dBm)	Limit (dBm)	Polarity		
1598.26	-45.41	-2.26	-47.67	-13.00	Vertical		
2365.78	-42.25	-3.12	-45.37	-13.00	Horizontal		
4967.65	-46.31	-1.74	-48.05	-13.00	Horizontal		
6457.86	-40.17	8.74	-31.43	-13.00	Vertical		
7896.56	-49.36	17.89	-31.47	-13.00	Horizontal		

UMTS band V:

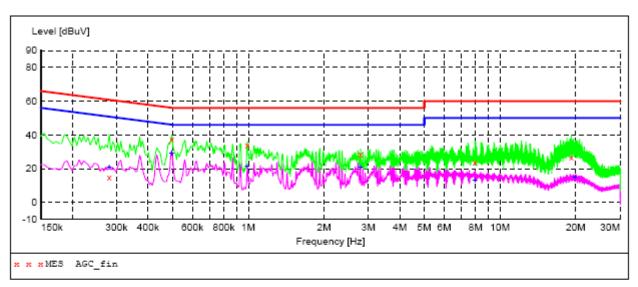
Note: ARpl= Factor=Antenna Factor+ Cable loss-Amplifier gain.

The "Factor" value can be calculated automatically by software of measurement system.

Below 30MHZ no Spurious found and The GSM modes is the worst condition.

10. MAINS CONDUCTED EMISSION

10.1 MEASUREMENT METHOD


The measurement procedure specified in ANSI/TIA-603-D-2010 was used for testing. Conducted Emission was measured with travel charger.

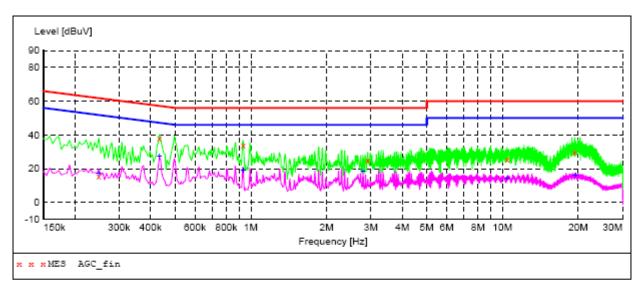
10.2 PROVISIONS APPLICABLE

Frequency of Emission (MHz)	Conducted Limit(dBuV)			
	Quasi-Peak	Average		
0.15 – 0.5	66 to 56 *	56 to 46 *		
0.5 – 5	56	46		
5 – 30	60	50		
*Decreases with the logarithm of the frequency.				
*The lower limit shall apply at the transition freque	ncy.			

Note: The GSM850 mode is the worst condition and the test result as following:

10.3 MEASUREMENT RESULT

LINE CONDUCTED EMISSION - L


MEASUREMENT RESULT: "AGC fin"

PE AUX
STATE
ND ON
ND ON
FND ON
IND ON
AND ON
GND ON
ST SND ON SND ON SND ON SND ON SND ON

MEASUREMENT RESULT: "AGC fin2"

2016/7/30 15:29

Frequency	Level	Transd	Limit	Margin	Detector	Line	PE	AUX STATE
MHz	dBuV	dB	dBuV	dB				SIALL
0.280500	20.70	10.3	51	30.1	AV	L1	GND	ON
0.496500	29.30	10.3	46	16.8	AV	L1	GND	ON
0.991500	21.30	10.4	46	24.7	AV	L1	GND	ON
2.791500	20.60	10.5	46	25.4	AV	L1	GND	ON
7.948500	13.00	10.7	50	37.0	AV	L1	GND	ON
19.869000	14.60		50	35.4	AV	L1	GND	ON

LINE CONDUCTED EMISSION - N

MEASUREMENT RESULT: "AGC fin"

2016/7/30 15: Frequency		Transd	Limit	Margin	Detector	Line	PE	AUX
11cquenoy	20102	110100	2211120	1141 9211	20000002			STATE
MHz	dBuV	dB	dBuV	dB				DIALE
0.249000	15.70	10.3	62	46.1	QP	Ν	GND	ON
0.433500	37.80	10.3	57	19.4	QP	N	GND	ON
0.933000	33.90	10.4	56	22.1	QP	Ν	GND	ON
2.913000	24.90	10.5	56	31.1	QP	Ν	GND	ON
10.432500	25.40	10.8	60	34.6	QP	N	GND	ON
19.342500	29.50	12.0	60	30.5	QP	Ν	GND	ON

MEASUREMENT RESULT: "AGC fin2"

evel Transd	Limit	Margin	Detector	Line	PE	AUX
						STATE
iBuV dB	dBuV	dB				
	5.0	24.4			CNID	017
.40 10.3	52	34.4	AV	N	GND	ON
1.60 10.3	47	19.6	AV	N	GND	ON
.30 10.4	46	26.7	AV	N	GND	ON
3.30 10.5	46	27.7	AV	Ν	GND	ON
10.8	50	36.0	AV	Ν	GND	ON
5.80 12.0	50	34.2	AV	Ν	GND	ON
	BuV dB 2.40 10.3 2.60 10.3 0.30 10.4 3.30 10.5 3.00 10.8	BuV dB dBuV 2.40 10.3 52 2.60 10.3 47 0.30 10.4 46 3.30 10.5 46 0.30 10.8 50	BuV dB dBuV dB 2.40 10.3 52 34.4 2.60 10.3 47 19.6 0.30 10.4 46 26.7 3.30 10.5 46 27.7 3.00 10.8 50 36.0	BuV dB dBuV dB 2.40 10.3 52 34.4 AV 2.60 10.3 47 19.6 AV 0.30 10.4 46 26.7 AV 3.30 10.5 46 27.7 AV 3.00 10.8 50 36.0 AV	BuV dB dBuV dB 2.40 10.3 52 34.4 AV N 2.60 10.3 47 19.6 AV N 0.30 10.4 46 26.7 AV N 0.30 10.5 46 27.7 AV N 0.00 10.8 50 36.0 AV N	BuV dB dBuV dB 7.40 10.3 52 34.4 AV N GND 7.60 10.3 47 19.6 AV N GND 0.30 10.4 46 26.7 AV N GND 0.30 10.5 46 27.7 AV N GND 0.30 10.5 46 27.7 AV N GND 0.00 10.8 50 36.0 AV N GND

Note: The GSM850 mode is the worst condition.

11. FREQUENCY STABILITY

11.1 MEASUREMENT METHOD

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the EUT in a "call mode". This is accomplished with the use of R&S CMU200 DIGITAL RADIO COMMUNICATION TESTER.

1. Measure the carrier frequency at room temperature.

2. Subject the EUT to overnight soak at -10 $^\circ\!\mathbb{C}$.

3.With the EUT, powered via nominal voltage, connected to the CMU200 and in a simulated call on channel 661 for PCS 1900 band, channel 190 for GSM 850 band, channel 9400 for UMTS band II and channel 4175 for UMTS band V measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.

4.Repeat the above measurements at 10° C increments from -10° C to $+55^{\circ}$ C. Allow at least 1 1/2 hours at each temperature, unpowered, before making measurements.

5. Re-measure carrier frequency at room temperature with nominal voltage. Vary supply voltage from minimum voltage to maximum voltage, in 0.1Volt increments re-measuring carrier frequency at each voltage. Pause at nominal voltage for 1 1/2 hours unpowered, to allow any self-heating to stabilize, before continuing.

6. Subject the EUT to overnight soak at +55℃.

7. With the EUT, powered via nominal voltage, connected to the CMU200 and in a simulated call on the centre channel, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.

8. Repeat the above measurements at 10° C increments from $+55^{\circ}$ C to -10° C. Allow at least 1 1/2 hours at each temperature, unpowered, before making measurements.

9.At all temperature levels hold the temperature to +/- 0.5° during the measurement procedure.

11.2 PROVISIONS APPLICABLE

11.2.1 For Hand carried battery powered equipment

According to the ANSI/TIA-603-D-2010, the frequency stability of the carrier shall be accurate to within 0.1 ppm of the received frequency from the base station. This accuracy is sufficient to meet Sec. 24.235, Frequency Stability. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. As this transceiver is considered "Hand carried, battery powered equipment" Section 2.1055(d)(2) applies. This requires that the lower voltage for frequency stability testing be specified by the manufacturer. This transceiver is specified to operate with an input voltage of between 3.4V DC and 4.2V DC, with a nominal voltage of 4.2V DC. Operation above or below these voltage limits is prohibited by transceiver software in order to prevent improper operation as well as to protect components from overstress. These voltages represent a tolerance of -10 % and +12.5 %. For the purposes of measuring frequency stability these voltage limits are to be used.

11.2.2 For equipment powered by primary supply voltage

According to the ANSI/TIA-603-D-2010, the frequency stability of the carrier shall be accurate to within 0.1 ppm of the received frequency from the base station. This accuracy is sufficient to meet Sec. 24.235, Frequency Stability. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. For this EUT section 2.1055(d)(1) applies. This requires varying primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment, the normal environment temperature is 20°C.

11.3 MEASUREMENT RESULT

Appendix D:Frequency Stability

Test Results

Frequency Error vs. Voltage:

Test	Test	Test	Test	Test	Freq.Error	Freq.vs.rated	Limit	Vardiat	
Band	Mode	Channel	Temp.	Volt.(V)	(Hz)	(ppm)	(ppm)	Verdict	
			ΤN	3.4	14.08	0.02	±2.5	PASS	
		LCH	ΤN	3.7	12.33	0.01	±2.5	PASS	
			ΤN	4.2	17.89	0.02	±2.5	PASS	
		МСН		ΤN	3.4	14.27	0.02	±2.5	PASS
GSM850	GSM		ΤN	3.7	15.50	0.02	±2.5	PASS	
			ΤN	4.2	11.95	0.01	±2.5	PASS	
			ΤN	3.4	18.34	0.02	±2.5	PASS	
		НСН	ΤN	3.7	17.50	0.02	±2.5	PASS	
			ΤN	4.2	15.69	0.02	±2.5	PASS	

Test	Test	Test	Test	Test	Freq.Error	Freq.vs.rated	Limit	Verdict
Band	Mode	Channel	Temp.	Volt.	(Hz)	(ppm)	(ppm)	
				(V)				
			ΤN	3.4	16.14	0.01	±2.5	PASS
		LCH	ΤN	3.7	23.12	0.01	±2.5	PASS
			ΤN	4.2	28.93	0.02	±2.5	PASS
			ΤN	3.4	23.25	0.01	±2.5	PASS
GSM1900	GSM	MCH	ΤN	3.7	13.50	0.01	±2.5	PASS
			ΤN	4.2	15.37	0.01	±2.5	PASS
		НСН	ΤN	3.4	29.25	0.02	±2.5	PASS
			ΤN	3.7	16.59	0.01	±2.5	PASS
			ΤN	4.2	14.33	0.01	±2.5	PASS

Report No.: AGC05320160702FE02 Page 101 of 114

Test Test Test Test Test Freq.Error Freq.vs.rated Limit Verdict Band Mode Channel Volt. Temp. (Hz) (ppm) (ppm) VN -10 12.01 0.01 ±2.5 PASS VN 15.43 0.02 0 ±2.5 PASS VN 0.02 ±2.5 PASS 10 13.37 GSM PASS **GSM850** LCH VN 20 12.14 0.01 ±2.5 VN 30 14.85 0.02 ±2.5 PASS VN 40 12.72 0.02 PASS ±2.5 VN 50 PASS 22.34 0.03 ±2.5 VN -10 13.17 0.02 ±2.5 PASS VN PASS 0 16.40 0.02 ±2.5 VN 10 12.72 0.02 ±2.5 PASS **GSM850** GSM MCH VN 20 17.24 0.02 ±2.5 PASS VN 30 17.37 0.02 ±2.5 PASS VN 40 14.14 0.02 ±2.5 PASS PASS VN 50 15.17 0.02 ±2.5 VN -10 20.34 0.02 ±2.5 PASS VN 0 13.95 0.02 ±2.5 PASS VN 15.24 0.02 PASS 10 ±2.5 **GSM850** GSM HCH VN 20 16.27 0.02 ±2.5 PASS VN 30 ±2.5 18.34 0.02 PASS VN 40 0.02 PASS 15.17 ±2.5 VN 14.46 PASS 50 0.02 ±2.5

Frequency Error vs. Temperature:

Report No.: AGC05320160702FE02 Page 102 of 114

Test	Test	Test	Test	Test	Freq.Error	Freq.vs.rated	Limit	Verdict
Band	Mode	Channel	Volt.	Temp.	(Hz)	(ppm)	(ppm)	
			VN	-10	15.17	0.01	±2.5	PASS
			VN	0	21.37	0.01	±2.5	PASS
			VN	10	20.53	0.01	±2.5	PASS
GSM1900	GSM	LCH	VN	20	15.50	0.01	±2.5	PASS
			VN	30	26.47	0.01	±2.5	PASS
			VN	40	20.15	0.01	±2.5	PASS
			VN	50	18.47	0.01	±2.5	PASS
			VN	-10	22.21	0.01	±2.5	PASS
			VN	0	21.05	0.01	±2.5	PASS
			VN	10	16.85	0.01	±2.5	PASS
GSM1900	GSM	MCH	VN	20	21.95	0.01	±2.5	PASS
			VN	30	14.27	0.01	±2.5	PASS
			VN	40	20.15	0.01	±2.5	PASS
			VN	50	16.27	0.01	±2.5	PASS
			VN	-10	28.15	0.01	±2.5	PASS
			VN	0	27.51	0.01	±2.5	PASS
			VN	10	31.19	0.02	±2.5	PASS
GSM1900	GSM	НСН	VN	20	22.73	0.01	±2.5	PASS
			VN	30	19.95	0.01	±2.5	PASS
			VN	40	26.67	0.01	±2.5	PASS
			VN	50	17.56	0.01	±2.5	PASS

Report No.: AGC05320160702FE02 Page 103 of 114

Frequency Error vs. Voltage:

Test	Test	Test	Test	Test	Freq.Error	Freq.vs.rated	Limit	Verdict
Band	Mode	Channel	Temp.	Volt.	(Hz)	(ppm)	(ppm)	
				(V)				
			TN	3.4	-13.28	-0.02	±2.5	PASS
		LCH	TN	3.7	-11.44	-0.01	±2.5	PASS
			TN	4.2	-14.19	-0.02	±2.5	PASS
		МСН	TN	3.4	-10.53	-0.01	±2.5	PASS
WCDMA850	UMTS		TN	3.7	-11.44	-0.01	±2.5	PASS
			TN	4.2	-5.72	-0.01	±2.5	PASS
		НСН	TN	3.4	-16.94	-0.02	±2.5	PASS
			TN	3.7	-11.44	-0.02	±2.5	PASS
			TN	4.2	-17.17	-0.02	±2.5	PASS

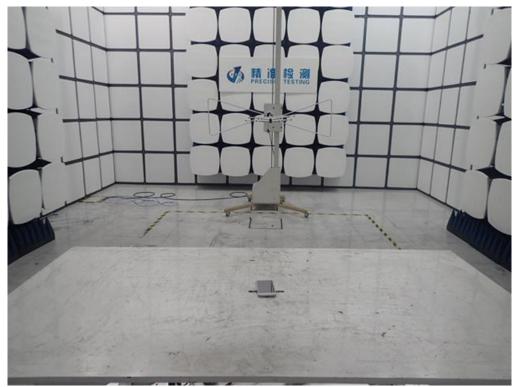
Test	Test	Test	Test	Test	Freq.Error	Freq.vs.rated	Limit	Verdict
Band	Mode	Channel	Temp.	Volt.	(Hz)	(ppm)	(ppm)	
				(V)				
			ΤN	3.4	38.68	0.02	±2.5	PASS
		LCH	TN	3.7	35.48	0.02	±2.5	PASS
			ΤN	4.2	30.90	0.02	±2.5	PASS
			TN	3.4	40.97	0.02	±2.5	PASS
WCDMA1900	UMTS	MCH	TN	3.7	35.48	0.02	±2.5	PASS
			TN	4.2	37.54	0.02	±2.5	PASS
			ΤN	3.4	37.54	0.02	±2.5	PASS
		НСН	TN	3.7	35.48	0.02	±2.5	PASS
			ΤN	4.2	49.90	0.03	±2.5	PASS

Report No.: AGC05320160702FE02 Page 104 of 114

Frequency Error vs. Temperature:

Test	Test	Test	Test	Test	Freq.Error	Freq.vs.rated	Limit	Verdict
Band	Mode	Channel	Volt.	Temp.	(Hz)	(ppm)	(ppm)	
			VN	-10	-8.93	-0.01	±2.5	PASS
			VN	0	-14.19	-0.02	±2.5	PASS
			VN	10	-13.96	-0.02	±2.5	PASS
WCDMA850	UMTS	LCH	VN	20	-15.79	-0.02	±2.5	PASS
			VN	30	-11.90	-0.01	±2.5	PASS
			VN	40	-12.36	-0.01	±2.5	PASS
			VN	50	-12.13	-0.01	±2.5	PASS
			VN	-10	-9.61	-0.01	±2.5	PASS
			VN	0	10.07	0.01	±2.5	PASS
			VN	10	-7.78	-0.01	±2.5	PASS
WCDMA850	UMTS	MCH	VN	20	-5.95	-0.01	±2.5	PASS
			VN	30	-5.95	-0.01	±2.5	PASS
			VN	40	-11.90	-0.01	±2.5	PASS
			VN	50	-6.87	-0.01	±2.5	PASS
			VN	-10	-14.42	-0.02	±2.5	PASS
			VN	0	-9.38	-0.01	±2.5	PASS
			VN	10	-14.42	-0.02	±2.5	PASS
WCDMA850	UMTS	НСН	VN	20	-13.96	-0.02	±2.5	PASS
			VN	30	-15.56	-0.02	±2.5	PASS
			VN	40	-14.65	-0.02	±2.5	PASS
			VN	50	-14.65	-0.02	±2.5	PASS

Report No.: AGC05320160702FE02 Page 105 of 114


Test	Test	Test	Test	Test	Freq.Error	Freq.vs.rated	Limit	Verdict
Band	Mode	Channe	Volt.	Temp	(Hz)	(ppm)	(ppm	
		I)	
			VN	-10	35.02	0.02	±2.5	PASS
			VN	0	32.96	0.02	±2.5	PASS
WCDMA			VN	10	43.03	0.02	±2.5	PASS
1900	UMTS	LCH	VN	20	41.20	0.02	±2.5	PASS
1900			VN	30	43.03	0.02	±2.5	PASS
			VN	40	44.63	0.02	±2.5	PASS
			VN	50	30.44	0.02	±2.5	PASS
		МСН	VN	-10	41.43	0.02	±2.5	PASS
			VN	0	31.13	0.02	±2.5	PASS
WCDMA			VN	10	33.87	0.02	±2.5	PASS
1900	UMTS		VN	20	41.43	0.02	±2.5	PASS
1900			VN	30	43.03	0.02	±2.5	PASS
			VN	40	35.25	0.02	±2.5	PASS
			VN	50	42.34	0.02	±2.5	PASS
			VN	-10	53.56	0.03	±2.5	PASS
			VN	0	38.91	0.02	±2.5	PASS
WCDMA			VN	10	39.83	0.02	±2.5	PASS
1900	UMTS	НСН	VN	20	33.87	0.02	±2.5	PASS
1900			VN	30	40.51	0.02	±2.5	PASS
			VN	40	51.50	0.03	±2.5	PASS
			VN	50	48.75	0.03	±2.5	PASS

Report No.: AGC05320160702FE02 Page 106 of 114

PHOTOGRAPHS OF TEST SETUP CONDUCTED EMISSION

RADIATED SPURIOUS EMISSION

Report No.: AGC05320160702FE02 Page 107 of 114

CONDUCTED MEASUREMENTS

Report No.: AGC05320160702FE02 Page 108 of 114

PHOTOGRAPHS OF EUT

TOTAL VIEW OF EUT

THE LABEL OF ADAPTER

Report No.: AGC05320160702FE02 Page 109 of 114

THE LABEL OF BATTERY

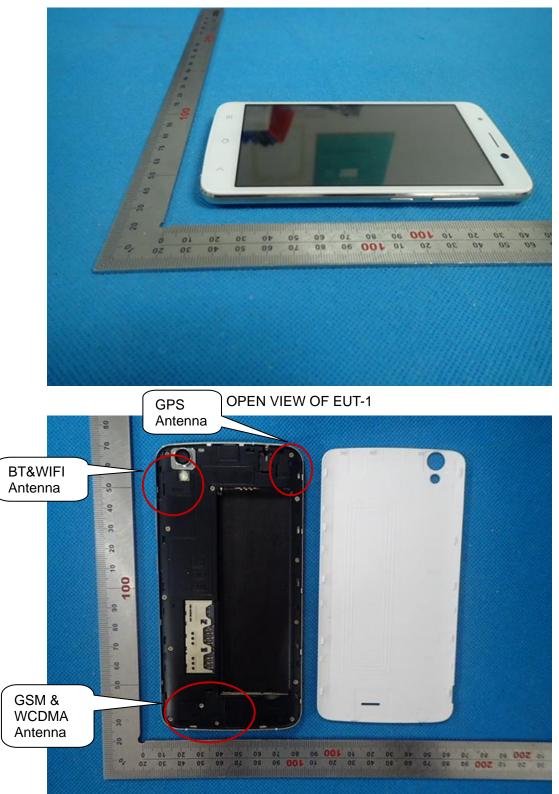
TOP VIEW OF EUT

Report No.: AGC05320160702FE02 Page 110 of 114

BOTTOM VIEW OF EUT

FRONT VIEW OF EUT

Report No.: AGC05320160702FE02 Page 111 of 114



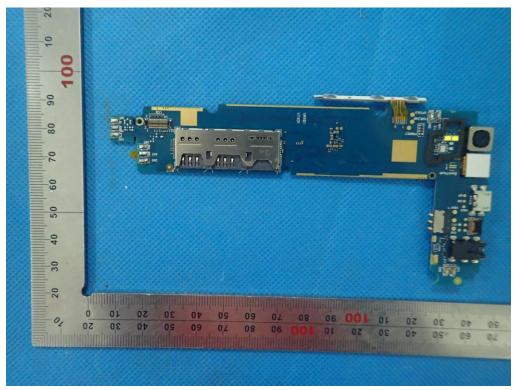
BACK VIEW OF EUT

LEFT VIEW OF EUT

Report No.: AGC05320160702FE02 Page 112 of 114

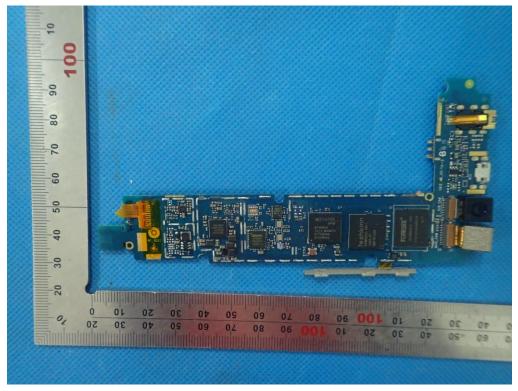
RIGHT VIEW OF EUT

Report No.: AGC05320160702FE02 Page 113 of 114



OPEN VIEW OF EUT-2

OPEN VIEW OF EUT-3



Report No.: AGC05320160702FE02 Page 114 of 114

INTERNAL VIEW OF EUT-1

INTERNAL VIEW OF EUT-2

----END OF REPORT----