FCC 47 CFR PART 15 SUBPART C

TEST REPORT

For

Yanzi IoT Gateway Plus

Trade Name: Yanzi

Issued to

Yanzi Networks AB Isafjordsgatan 32C, 16440, Kista, Sweden

Issued by

Compliance Certification Services Inc. Wugu Laboratory No.11, Wugong 6th Rd., Wugu Dist., New Taipei City 24891, Taiwan. (R.O.C.) http://www.ccsrf.com service@ccsrf.com Issued Date: March 22, 2017

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document.

Revision History

Rev.	Issue Date	Revisions	Effect Page	Revised By
00	March 22, 2017	Initial Issue	ALL	Doris Chu
01	March 27, 2017	 Modify Frequency Range. Added 15.203 in test summary. 	P.5, P.10	Angel Cheng

TABLE OF CONTENTS

1. TI	EST RESULT CERTIFICATION	. 4
2. E	UT DESCRIPTION	. 5
3. TI	EST METHODOLOGY	. 6
3.1 3.2 3.3	EUT CONFIGURATION FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS DESCRIPTION OF TEST MODES	. 6
4 IN	ISTRUMENT CALIBRATION	. 8
4.1 4.2 4.3	MEASURING INSTRUMENT CALIBRATION MEASUREMENT EQUIPMENT USED MEASUREMENT UNCERTAINTY	. 8
5 TI	EST SUMMARY	10
6 F.	ACILITIES AND ACCREDITATIONS	11
6.1 6.2 6.3	FACILITIES EQUIPMENT TABLE OF ACCREDITATIONS AND LISTINGS	11
7 S	ETUP OF EQUIPMENT UNDER TEST	13
7.1 7.2	SETUP CONFIGURATION OF EUT SUPPORT EQUIPMENT	
8 F	CC PART 15.247 REQUIREMENTS	14
8.1 8.2 8.3 8.4	OCCUPIED BANDWIDTH(99%) AND 6 DB BANDWIDTH PEAK POWER AVERAGE POWER BAND EDGES MEASUREMENT	18 19
8.5	CONDUCTED BAND EDGE AND CONDUCTED SPURIOUS EMISSION	26
8.6 8.7	PEAK POWER SPECTRAL DENSITY RADIATED EMISSIONS	35
8.8	POWERLINE CONDUCTED EMISSIONS	47
APPE	NDIX I PHOTOGRAPHS OF TEST SETUP	50
APPE	NDIX 1 - PHOTOGRAPHS OF EUT	

1. TEST RESULT CERTIFICATION

Applicant:	Yanzi Networks AB Isafjordsgatan 32C, 16440, Kista, Sweden
Equipment Under Test:	Yanzi loT Gateway Plus
Trade Name:	Yanzi
Model:	DR2-8910XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Date of Test:	February 16 ~ March 15, 2017

APPLICABLE STANDARDS					
STANDARD TEST RESULT					
FCC 47 CFR Part 15 Subpart C No non-compliance noted					
Deviation from Applicable Standard					
N/A					

We hereby certify that:

The above equipment was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10: 2013 and the energy emitted by the sample EUT tested as described in this report is in compliance with the requirements of FCC Rules Part 15.207, 15.209, 15.247.

The test results of this report relate only to the tested sample EUT identified in this report.

Approved by:

sem Cleang

Sam Chuang Manager Compliance Certification Services Inc. Tested by:

Kevin Kuo

Kevin Kuo Engineer Compliance Certification Services Inc.

2. EUT DESCRIPTION

Product	Yanzi IoT Gateway Plus		
Trade Name	Yanzi		
Model Number	DR2-8910XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		
Model Discrepancy	All the above models are identical except for the designation of model numbers. The suffix of (where X may be any alphanumeric character or blank) on model number is just for marketing purpose only.		
Received Date	January 24, 2017		
Power Adapter	120Vac		
Frequency Range	IEEE 802.15.4: 2405~2475MHz		
Transmit Power	17.16 dBm		
Modulation Technique	IEEE 802.15.4: OQPSK (Offset Quadrature Phase Shift Keyed)		
Number of Channels	15 Channels		
Antenna Specification	IEEE 802.15.4: Gain: 2.8 dBi		
Antenna Designation	IEEE 802.15.4: PIFA Antenna		

Remark:

1. The sample selected for test was production product and was provided by manufacturer.

3. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10: 2013 and FCC CFR 47 Part 15.207, 15.209, 15.247, KDB 558074 D01 DTS Meas Guidance v03r05.

3.1 EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

3.2 FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS

MHz	MHz	MHz	GHz	
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15	
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46	
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75	
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5	
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2	
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5	
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7	
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4	
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5	
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2	
8.362 - 8.366	156.52475 -	2483.5 - 2500	17.7 - 21.4	
8.37625 - 8.38675	156.52525	2655 - 2900	22.01 - 23.12	
8.41425 - 8.41475	156.7 - 156.9	3260 - 3267	23.6 - 24.0	
12.29 - 12.293	162.0125 - 167.17	3332 - 3339	31.2 - 31.8	
12.51975 - 12.52025	167.72 - 173.2	3345.8 - 3358	36.43 - 36.5	
12.57675 - 12.57725	240 - 285	3600 - 4400	$(^{2})$	
13.36 - 13.41	322 - 335.4			

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

 $^{\rm 1}$ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. $^{\rm 2}$ Above 38.6

(b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

3.3 DESCRIPTION OF TEST MODES

The EUT (model: DR2-8910) had been tested under operating condition.

Software used to control the EUT for staying in continuous transmitting mode was programmed.

After verification, all tests were carried out with the worst case test modes as shown below except radiated spurious emission below 1GHz and power line conducted emissions below 30MHz, which worst case was in normal link mode only.

Channel Low and Channel High were chosen for full testing.

AC Power Line Conducted Emission					
Test Condition	Test Condition AC Power line conducted emission for line and neutral				
Voltage/Hz	Voltage/Hz 120V/60Hz				
Test Mode Mode 1:EUT power by AC adapter.					
Worst Mode	Worst Mode Mode 1 Mode 2 Mode 3 Mode 4				

Radiated Emission Measurement Above 1G						
Test Condition	Test Condition Band edge, Emission for Unwanted and Fundamental					
Voltage/Hz	120V/60Hz					
Test Mode	Mode 1:EUT power by AC adapter.					
Worst Mode	Worst Mode Mode 1 Mode 2 Mode 3 Mode 4					
Worst Position	 Placed in fixed position. Placed in fixed position at X-Plane (E2-Plane) Placed in fixed position at Y-Plane (E1-Plane) Placed in fixed position at Z-Plane (H-Plane) 					
Worst Polarity	Worst Polarity 🛛 Horizontal 🗌 Vertical					

Radiated Emission Measurement Below 1G						
Test Condition	Test Condition Radiated Emission Below 1G					
Voltage/Hz	Voltage/Hz 120V/60Hz					
Test Mode	Test Mode Mode 1:EUT power by AC adapter.					
Worst Mode	Worst Mode Mode 1 Mode 2 Mode 3 Mode 4					

Remark:

1. The worst mode was record in this test report.

2. EUT pre-scanned in three axis ,X,Y, Z and two polarity, Horizontal and Vertical for radiated measurement. The worst case(Y-Plane and Horizontal) were recorded in this report

3. For AC power line conducted emission and below 1G radiation emission were performed the EUT transmit at the highest output power channel as worse case.

4 INSTRUMENT CALIBRATION

4.1 MEASURING INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

4.2 MEASUREMENT EQUIPMENT USED

Equipment Used for Emissions Measurement

Remark: Each piece of equipment is scheduled for calibration once a year.

Conducted Emissions Test Site						
Name of Equipment Manufacturer Model Serial Number Calibration Date Calibration D						
Power Meter	Anritsu	ML2495A	1012009	07/04/2016	07/03/2017	
Power Sensor	Anritsu	MA2411B	917072	07/04/2016	07/03/2017	
Spectrum Analyzer	R&S	FSV 40	101073	10/05/2016	10/04/2017	

Wugu 966 Chamber A						
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due	
Bilog Antenna	Sunol Sciences	JB3	A030105	07/03/2016	07/02/2017	
Pre-Amplifier	MITEQ	AMF-6F-2604 00-40-8P	985646	01/10/2017	01/09/2018	
Pre-Amplifier	EMEC	EM330	060609	06/08/2016	06/07/2017	
Spectrum Analyzer	Agilent	E4446A	US42510252	12/05/2016	12/04/2017	
Loop Ant	COM-POWER	AL-130	121051	02/25/2016	02/24/2017	
Antenna Tower	CCS	CC-A-1F	N/A	N.C.R	N.C.R	
Controller	CCS	CC-C-1F	N/A	N.C.R	N.C.R	
Turn Table	CCS	CC-T-1F	N/A	N.C.R	N.C.R	
Software	EZ-EMC (CCS-3A1RE)					

Conducted Emission Room # B							
Name of Equipment	Name of Equipment Manufacturer Model Serial Number Calibration Date Calibration Due						
EMI Test Receiver	R&S	ESCI	101073	08/20/2016	08/19/2017		
LISN	R&S	ENV216	101054	05/11/2016	05/10/2017		
LISN	Schwarzbeck	NSLK8128	5012	04/15/2016	04/14/2017		
Software	CCS-3A1-CE						

Remark:

1. Each piece of equipment is scheduled for calibration once a year and Precision Dipole is scheduled for calibration once three years.

2. N.C.R. = No Calibration Request.

4.3 MEASUREMENT UNCERTAINTY

PARAMETER	UNCERTAINTY
Powerline Conducted Emission	+/- 1.2575
3M Semi Anechoic Chamber / <200M	+/- 4.0138
3M Semi Anechoic Chamber / 200M~1000M	+/- 3.9483
3M Semi Anechoic Chamber / 1G~8G	+/- 2.5975
3M Semi Anechoic Chamber / 8G~18G	+/- 2.6112
3M Semi Anechoic Chamber / 18G~26G	+/- 2.7389
3M Semi Anechoic Chamber / 26G~40G	+/- 2.9683

Remark: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

5 TEST SUMMARY

FCC Standard Sec.	Report Sec.	Test Item	Result
15.203	2	Antenna requirement	Pass
15.247(a)(2)	8.1	Occupied bandwidth(99%) and 6 db bandwidth	Pass
15.247(b)(3)	8.2	Peak power	Pass
15.205(a),15.209(a)	8.4	Band edges measurement	Pass
15.247(d)	8.5	Conducted band edge and conducted spurious emission	Pass
15.247(e)	8.6	Peak power spectral density	Pass
15.205(a),15.209(a)	8.7	Radiated Emissions	Pass
15.207(a)	8.8	Powerline conducted emissions	Pass

6 FACILITIES AND ACCREDITATIONS

6.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

No.199, Chunghsen Road, Hsintien City, Taipei Hsien, Taiwan, R.O.C.

Tel: 886-2-2217-0894 / Fax: 886-2-2217-1029

No.11, Wugong 6th Rd., Wugu Dist., New Taipei City 24891, Taiwan. (R.O.C.)

Tel: 886-2-2299-9720 / Fax: 886-2-2298-4045

No.81-1, Lane 210, Bade 2nd Rd., Lujhu Township, Taoyuan County 33841, TAIWAN, R.O.C.

Tel: 886-3-324-0332 / Fax: 886-3-324-5235

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10: 2013 and CISPR Publication 22.

6.2 EQUIPMENT

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, biconical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers.

Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

6.3 TABLE OF ACCREDITATIONS AND LISTINGS

Country	Agency	Scope of Accreditation	Logo
USA	FCC	3M Semi Anechoic Chamber (FCC MRA: TW1039) to perform FCC Part 15 measurements	FCC MRA: TW1039
Taiwan	TAF	LP0002, RTTE01, FCC Method-47 CFR Part 15 Subpart C, D, E, RSS-210, RSS-310 IDA TS SRD, AS/NZS 4268, AS/NZS 4771, TS 12.1 & 12,2, ETSI EN 300 440-1, ETSI EN 300 440-2, ETSI EN 300 328, ETSI EN 300 220-1, ETSI EN 300 220-2, ETSI EN 301 893, ETSI EN 301 489-1/3/7/17 FCC OET Bulletin 65 + Supplement C, EN 50360, EN 50361, EN 50371, RSS 102, EN 50383, EN 50385, EN 50392, IEC 62209, CNS 14958-1, CNS 14959 FCC Method –47 CFR Part 15 Subpart B IEC / EN 61000-3-2, IEC / EN 61000-3-3, IEC / EN 61000-4-2/3/4/5/6/8/11	Testing Laboratory 1309
Canada	Industry Canada	3M Semi Anechoic Chamber (IC 2324G-1 / IC 2324G-2) to perform	Canada IC 2324G-1 IC 2324G-2

* No part of this report may be used to claim or imply product endorsement by A2LA or any agency of the US Government.

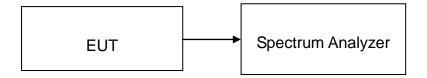
7 SETUP OF EQUIPMENT UNDER TEST

7.1 SETUP CONFIGURATION OF EUT

See test photographs attached in Appendix II for the actual connections between EUT and support equipment.

7.2 SUPPORT EQUIPMENT

No.	Device Type	Brand	Model	Series No.	FCC ID	Data Cable	Power Cord
1.	DC Power Source	GWINSTEK	SPS-3610	N/A	N/A	N/A	N/A
2.	PC	HP	HP Compag d530 CMT	N/A	DoC	N/A	N/A
3.	Monitor	DELL	U2410F	N/A	DoC	N/A	N/A
4	KeyBoard	DELL	SK-8115	N/A	DoC	N/A	N/A
5	Mouse	DELL	M-UAL-96	N/A	DoC	N/A	N/A
6	IPC	NEXCOM	NISE50	N/A	N/A	N/A	N/A


Remark:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

8 FCC PART 15.247 REQUIREMENTS

8.1 OCCUPIED BANDWIDTH(99%) AND 6 DB BANDWIDTH

TEST CONFIGURATION

OCCUPIED BANDWIDTH(99%)

The resolution bandwidth shall be set to as close to 1% of the selected span as is possible without being below 1%. The video bandwidth shall be set to 3 times the resolution bandwidth. Video averaging is not permitted. Where practical, a sampling detector shall be used since a peak or, peak hold.

6 DB BANDWIDTH

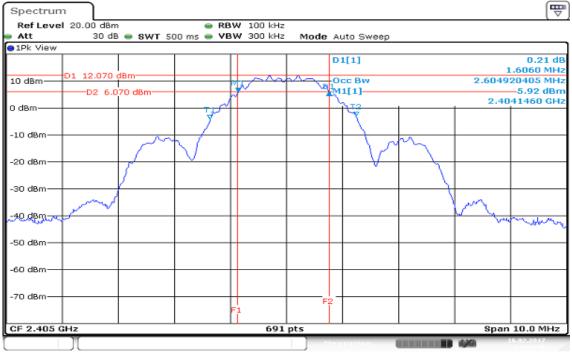
According to §15.247(a)(2), systems using digital modulation techniques may operate in the 902 - 928 MHz, 2400 - 2483.5 MHz, and 5725 - 5850 MHz bands. The minimum 6dB bandwidth shall be at least 500 kHz.

TEST PROCEDURE

- 1. Place the EUT on the table and set it in the transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as RBW = 100 kHz, VBW= 300 kHz, Span = 3 MHz, Detector = Peak, Sweep = auto.
- 4. Set spectrum analyzer as OBW(99%) function.
- 5. Mark the peak frequency and –6dB (upper and lower) frequency.
- 6. Repeat until all the rest channels are investigated.

TEST RESULTS

No non-compliance noted.


Test Data

Channel	Frequency (MHz)	99% Bandwidth (MHz)	6dB Bandwidth (kHz)	6dB Bandwidth Limit (kHz)
Low	2405	2.6049	1.6060	
Mid	2440	2.6049	1.6060	>500
High	2475	2.5904	1.6210	


Test Plot

CH Low

Date: 16.FEB.2017 14:53:46

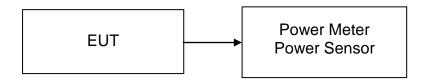
CH Mid

Date: 16.FEB.2017 15:12:06

CH High

Spectrum			
Ref Level 20.00 dBm	RBW 100 kHz		
Att 30 dB SWT IPk View	500 ms 👄 VBW 300 kHz	Mode Auto Sweep	
IPK VIBW		D1[1]	1.37 dB
			1.6210 MHz
10 dBm 01 7.760 dBm	~ ~ ~	Occ Bw	2.590448625 MHz 1.06 dBm
D2 1.760 dBm	Ju ~ n	at with 1	2.4741170 GHz
0 dBm	T1		
	7	U ²	
10 dBm			
20 dBm	Ψ (\sim
30 dBm	v l		
40 dBm			
menanter the w			V marina
50 dBm			
60 dBm			
70 dBm		F2	
	F1		
CF 2.475 GHz	691	pts	Span 10.0 MHz
1 T		Measuring	45 03 0017

Date: 15.MAR.2017 15:34:40


8.2 PEAK POWER

<u>LIMIT</u>

The maximum peak output power of the intentional radiator shall not exceed the following:

- 1. According to §15.247(b)(3), for systems using digital modulation in the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz: 1 Watt.
- 2. According to §15.247(b)(4), the conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Test Configuration

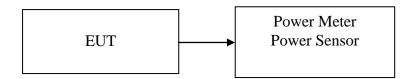
TEST PROCEDURE

The transmitter output is connected to the Power Meter. The Power Meter is set to the peak power detection.

TEST RESULTS

No non-compliance noted

Test Data


Channel	Frequency (MHz)	Output Power (dBm)	Output Power (W)	Limit (W)	Test Result
Low	2405	*17.16	0.0520		PASS
Mid	2440	16.73	0.0471	1	PASS
High	2475	13.64	0.0231		PASS

8.3 AVERAGE POWER

<u>LIMIT</u>

None; for reporting purposes only.

Test Configuration

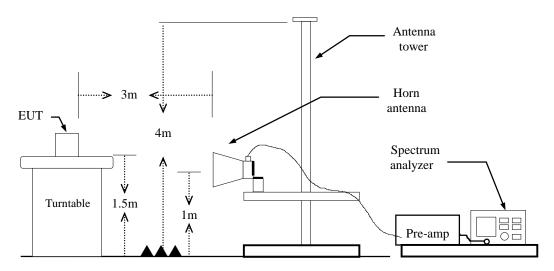
TEST PROCEDURE

The transmitter output is connected to the Power Meter. The Power Meter is set to the avg power detection.

TEST RESULTS

No non-compliance noted.

Test Data


Channel	Frequency (MHz)	Output Power (dBm)	Output Power (W)
Low	2405	16.85	0.0484
Mid	2440	16.43	0.0440
High	2475	13.26	0.0212

8.4 BAND EDGES MEASUREMENT

<u>LIMIT</u>

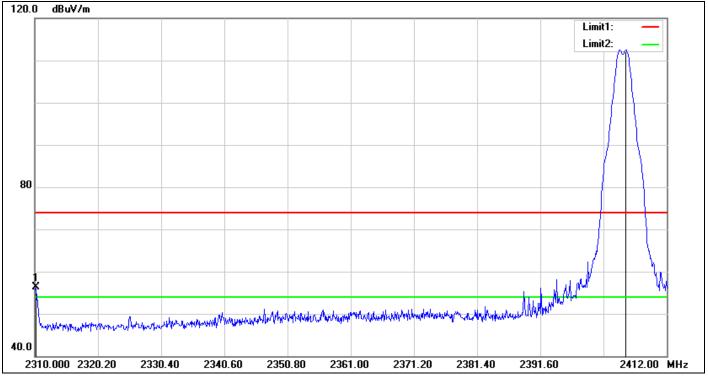
According to §15.247(d), in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in 15.209(a) (see Section 15.205(c)).

TEST CONFIGURATION

TEST PROCEDURE

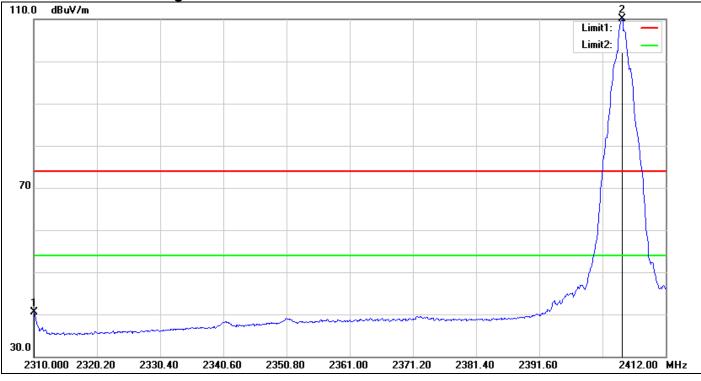
For Radiated

- 1. The EUT is placed on a turntable, which is 1.5m above the ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
- 4. Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission:
 - (a) PEAK: RBW=1MHz / VBW=3MHz / Sweep=AUTO
 - (b) AVERAGE: RBW=1MHz, if duty cycle≥98%, VBW=10Hz. if duty cycle<98% VBW=1/T. IEEE 802.15.4: ≥85%, VBW=300Hz
- 5. Repeat the procedures until all the PEAK and AVERAGE versus POLARIZATION are measured.
- Result = Spectrum Reading + cable loss(spectrum to Amp) Amp Gain + Cable loss(Amp to receive Ant)+ Receive Ant

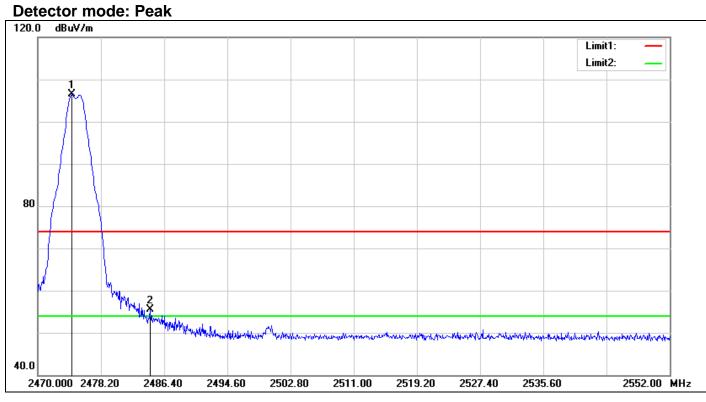

DUTY (<u>E</u>						R	т		4.00
Ref 119 #Peak Log 10 dB/ Offst 6	dBµV		#A	tten 16 dl	3					▲ Mkr2	2 4.32 ms 1.88 dB
dB LgAv W1 S2			2R								
Center 2)0 GHz						<u>,</u>		4.0	Span 0 Hz
Res BW 1 Marker 1R 1a 2R 2a)))	Type Time Time Time Time	2 3 2	VBW 1 M Axis .68 ms .63 ms .68 ms .32 ms	IHZ	Amplit 39.32 di -0.78 39.32 di 1.88	ude BµV dB BµV	<u>veep</u>	<u>10 ms</u>	(1001 pts)

TEST RESULTS

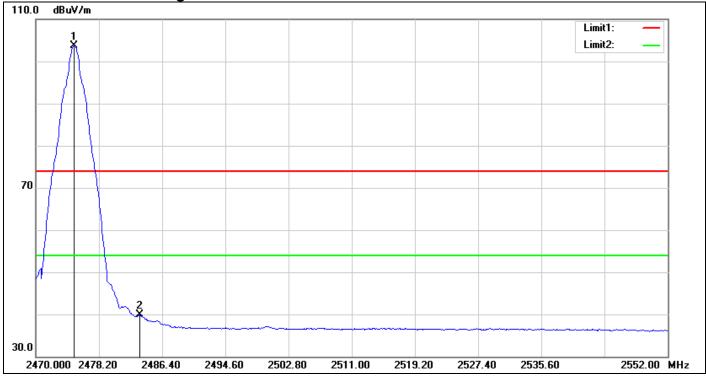
Refer to attach spectrum analyzer data chart.


Band Edges (CH Low)

Detector mode: Peak


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2310.204	59.22	-3.00	56.22	74.00	-17.78	peak
2	2405.370	114.86	-2.42	112.44	-	-	peak

Detector mode: Average


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2310.102	43.52	-3.00	40.52	54.00	-13.48	AVG
2	2404.962	112.45	-2.42	110.03	-	-	AVG

Band Edges (CH High)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2474.428	108.46	-2.05	106.41	-	-	peak
2	2484.596	57.51	-1.98	55.53	74.00	-18.47	peak

Detector mode: Average

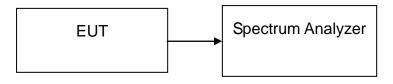
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2475.002	105.82	-2.05	103.77	-	-	AVG
2	2483.500	41.86	-1.99	39.87	54.00	-14.13	AVG

8.5 CONDUCTED BAND EDGE AND CONDUCTED SPURIOUS EMISSION

In any 100 kHz bandwidth outside the authorized frequency band,

Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a)

TEST PROCEDURE

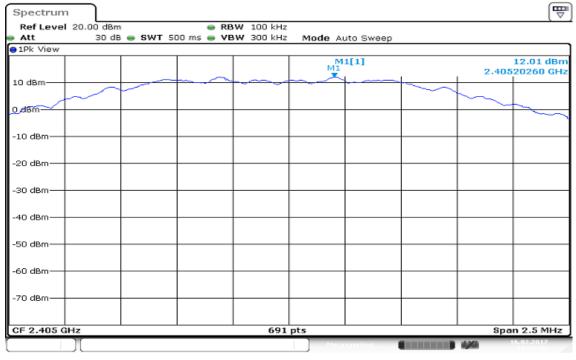

According to KDB 558074 D01 v03r05, and 15.247(d)

1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.

2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.

3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

TEST CONFIGURATION

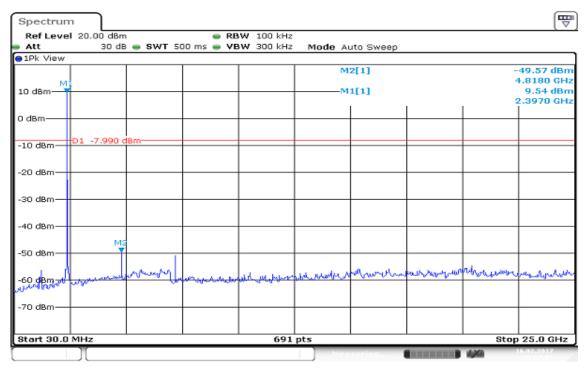


TEST RESULTS

Refer to attach spectrum analyzer data chart.

Test Data

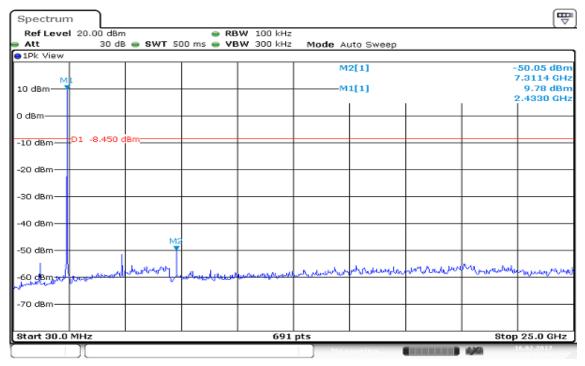
Low CH_100kHz PSD Reference Level


Date: 16.FEB.2017 15:05:42

Low CH_Conducted Band Edge

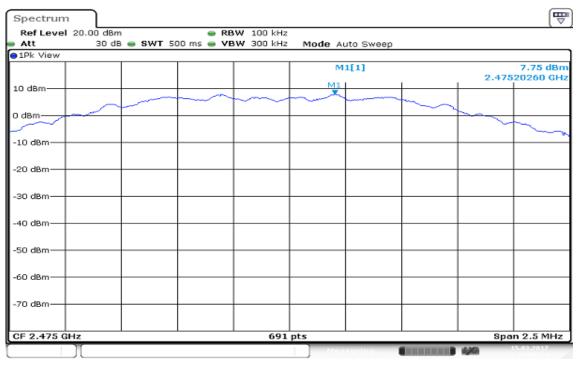
Date: 16.FEB.2017 15:08:37

Low CH_Conducted Spurious Emission

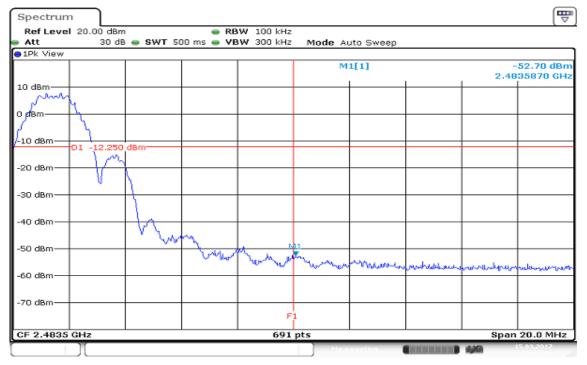

Date: 16.FEB.2017 15:07:10

Mid CH_100kHz PSD Reference Level

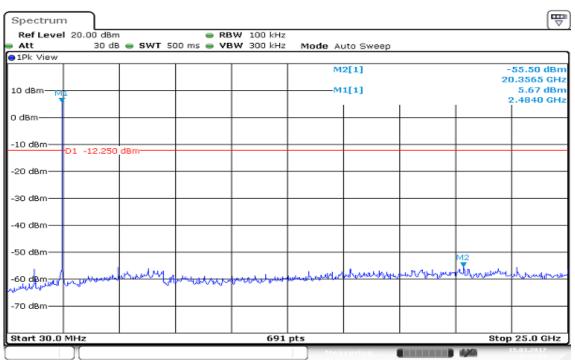
Date: 16.FEB.2017 15:19:05


Mid CH_ Conducted Spurious Emission

Date: 16.FEB.2017 15:22:10


High CH_100kHz PSD Reference Level

FCC ID: 2AE7LDR2-8910

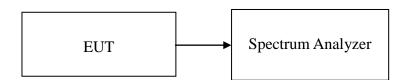


Date: 15.MAR.2017 15:39:25

High CH_Conducted Band Edge

Date: 15.MAR.2017 15:42:16

High CH_Conducted Spurious Emission


Date: 15.MAR.2017 15:43:31

8.6 PEAK POWER SPECTRAL DENSITY

<u>LIMIT</u>

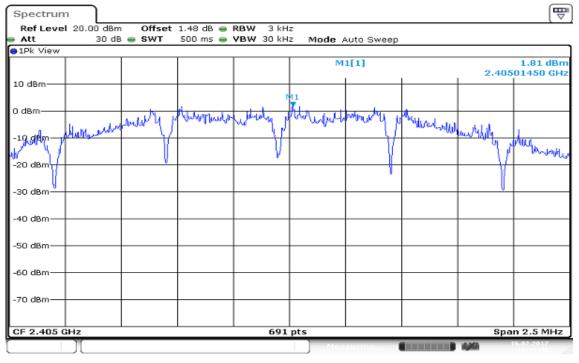
- 1. According to §15.247(e), for digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.
- 2. According to §15.247(f), the digital modulation operation of the hybrid system, with the frequency hopping turned off, shall comply with the power density requirements of paragraph (d) of this section.

Test Configuration

TEST PROCEDURE

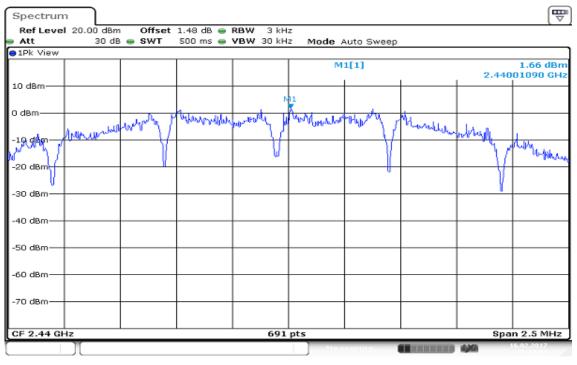
- 1. Place the EUT on the table and set it in transmitting mode. Remove the antenna from the EUT and then connect a low oss RF cable from the antenna port to the spectrum analyzer.
- 2. Set the spectrum analyzer as RBW = 3kHz, VBW = 30 kHz, Sweep tome = auto couple.
- 3. Trace mode = max hold
- 4. Repeat the above procedure until the measurements for all frequencies are completed.

TEST RESULTS

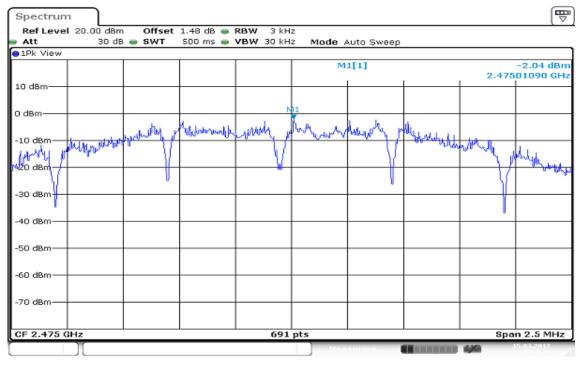

No non-compliance noted

Test Data

Channel	Frequency (MHz)	PPSD (dBm)	Limit (dBm)	Test Result
Low	2405	1.81		PASS
Mid	2440	1.66	8.00	PASS
High	2475	-2.04		PASS


Test Plot

PPSD (CH Low)


Date: 16.FEB.2017 16:31:45

PPSD (CH Mid)

Date: 16.FEB.2017 15:18:01

PPSD (CH High)

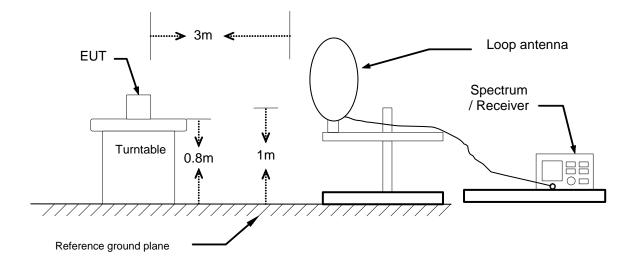
Date: 15.MAR.2017 15:38:15

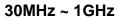
8.7 RADIATED EMISSIONS

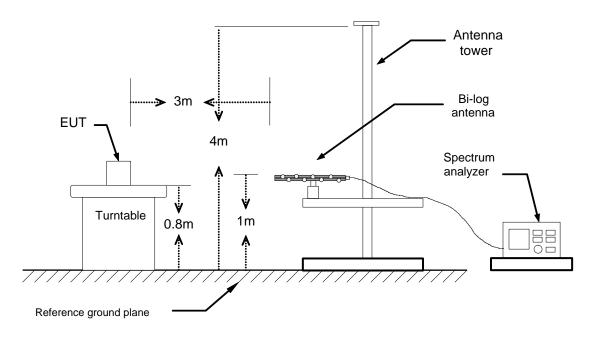
<u>LIMIT</u>

1. According to §15.209(a), except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

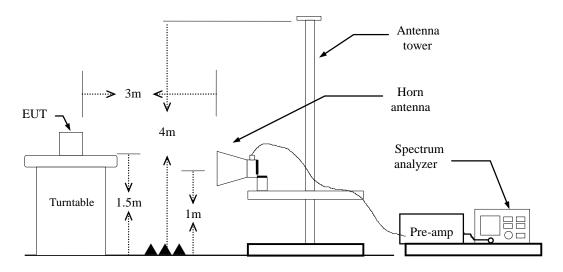
Frequency (MHz)	Field Strength (μV/m)	Measurement Distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3


Remark: Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.


2. In the emission table above, the tighter limit applies at the band edges.


Frequency (MHz)	Field Strength (µV/m at 3-meter)	Field Strength (dBµV/m at 3-meter)
0.009 - 0.490	2400/F(kHz) +80	20LOG((2400/F(kHz))+80)
0.490 - 1.705	24000/F(kHz) +40	20LOG((24000/F(kHz))+40)
1.705 – 30.0	30	69.54
30-88	100	40
88-216	150	43.5
216-960	200	46
Above 960	500	54

Test Configuration


9kHz ~ 30MHz

Above 1 GHz

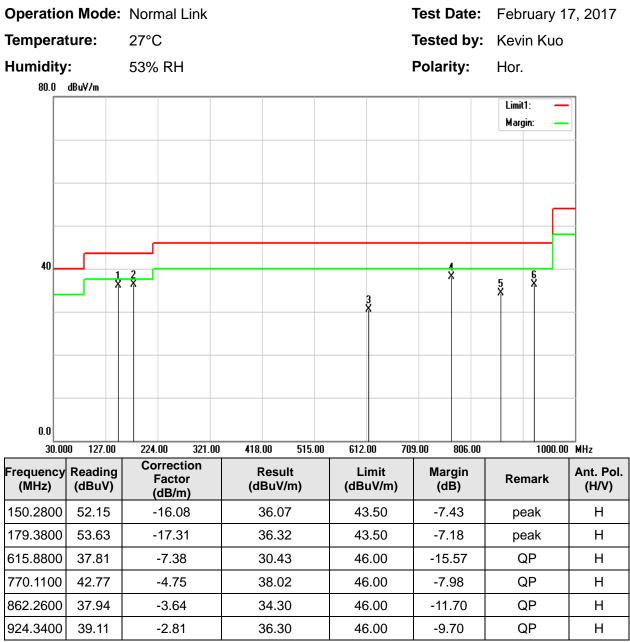
TEST PROCEDURE

- 1. The EUT is placed on a turntable, Above 1 GHz is 1.5m high and below 1 GHz is 0.8m high above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Set the spectrum analyzer in the following setting as:

Below 1GHz:

RBW=100kHz / VBW=300kHz / Sweep=AUTO

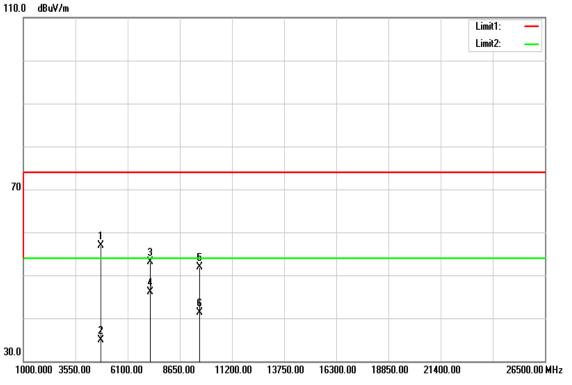
Above 1GHz:

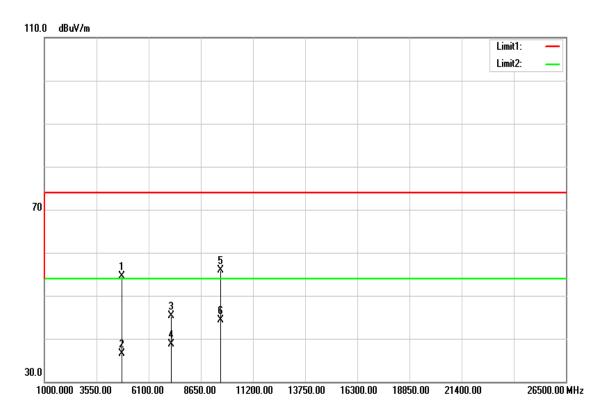

- (a) PEAK: RBW=VBW=1MHz / Sweep=AUTO
 (b) AVERAGE: RBW=1MHz, if duty cycle≥98%, VBW=10Hz.
 - if duty cycle<98% VBW=1/T. IEEE 802.15.4: ≧85%, VBW=300Hz
- 7. Repeat above procedures until the measurements for all frequencies are complete.
- 8. Result = Spectrum Reading + cable loss(spectrum to Amp) Amp Gain + Cable loss(Amp to receive Ant)+ Receive Ant

Note: We checked every harmonics frequencies from Fundamental frequencies with reduced VBW, and we mark a point to prove pass or not if we find any emission. For this case, there are no emissions hidden in the noise floor.

TEST RESULTS

Below 1GHz										
Operation Mo	de: Normal	Link				-	Test Date:	Feb	ruary 1	7, 2017
Temperature:	27°C					-	Tested by	: Kev	in Kuo	
Humidity:	53% RH	4				I	Polarity:	Ver.		
80.0 dBuV/m										_
								Limi Mar		
										_
										-
40							5			
					4		Î			
			3		ľ				6 X	
			З Х							
0.0										
	.00 224.00	321.00	418.00	515.00	612.00	709).00 806.00)	1000.00	 MHz
Frequency Readi (MHz) (dBu		or	Resul (dBuV/r		Lim (dBuV		Margin (dB)	Re	mark	Ant. Pol. (H/V)
31.9400 39.8			30.46		40.0	0	-9.54	(ΩP	V
117.3000 49.1	4 -15.9	98	33.16		43.5	0	-10.34	(ΩP	V
461.6500 37.8	2 -9.9	7	27.85		46.0	0	-18.15	(ΩP	V
615.8800 41.0	9 -7.3	8	33.71		46.0	0	-12.29	(ΩP	V
770.1100 45.0	0 -4.7	5	40.25		46.0	0	-5.75	(ΩP	V
924.3400 33.5	4 -2.8	1	30.73		46.0	0	-15.27	(ΩP	V

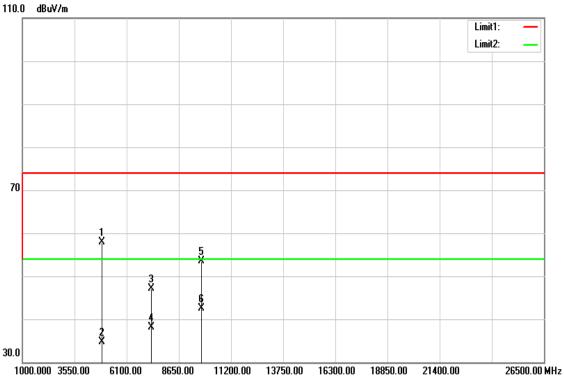

- 1. No emission found between lowest internal used/generated frequency to 30MHz (9kHz~30MHz)
- 2. Radiated emissions measured in frequency range from 30 MHz to 1000MHz were made with an instrument using peak/quasi-peak detector mode.
- 3. Quasi-peak test would be performed if the peak result were greater than the quasi-peak limit or as required by the applicant.
- 4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 5. Margin (dB) = Result (dBuV/m) Limit (dBuV/m).


- 1. No emission found between lowest internal used/generated frequency to 30MHz (9kHz~30MHz)
- 2. Radiated emissions measured in frequency range from 30 MHz to 1000MHz were made with an instrument using peak/quasi-peak detector mode.
- 3. Quasi-peak test would be performed if the peak result were greater than the quasi-peak limit or as required by the applicant.
- 4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 5. Margin (dB) = Result (dBuV/m) Limit (dBuV/m).

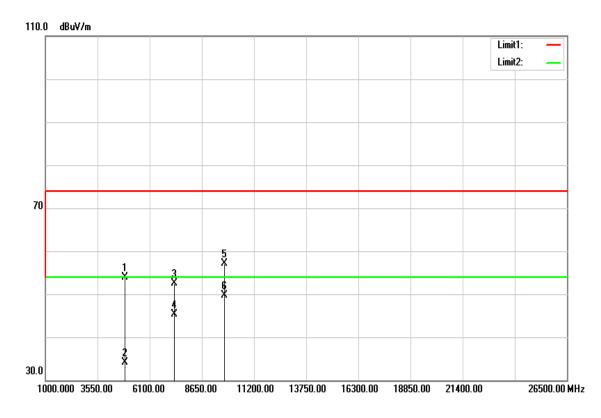
Above 1 GHz IEEE 802.15.4 / TX / CH Low

Polarity: Vertical

Above 1 GHz

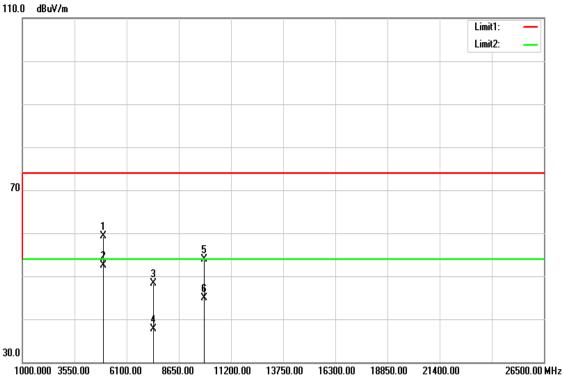

Operation Mode:	IEEE 802.15	.4 / TX / CH	Low	Test Date	e: Februa	ry 17, 2017
Temperature:	27°C			Tested by	y: Kevin K	luo
Humidity:	53 % RH			Polarity:	Ver. / H	or.
		1				

Frequency (MHz)	Reading (dBuV)	Correction (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
4806.000	51.93	5.05	56.98	74.00	-17.02	peak	V
4806.000	29.80	5.05	34.85	54.00	-19.15	AVG	V
7214.000	40.54	12.65	53.19	74.00	-20.81	peak	V
7214.000	33.40	12.65	46.05	54.00	-7.95	AVG	V
9620.000	34.33	17.60	51.93	74.00	-22.07	peak	V
9620.000	23.71	17.60	41.31	54.00	-12.69	AVG	V
4806.000	49.49	5.05	54.54	74.00	-19.46	peak	Н
4806.000	31.53	5.05	36.58	54.00	-17.42	AVG	Н
7215.000	32.67	12.65	45.32	74.00	-28.68	peak	Н
7215.000	25.97	12.65	38.62	54.00	-15.38	AVG	Н
9620.000	38.39	17.60	55.99	74.00	-18.01	peak	Н
9620.000	26.77	17.60	44.37	54.00	-9.63	AVG	Н
Domark.							

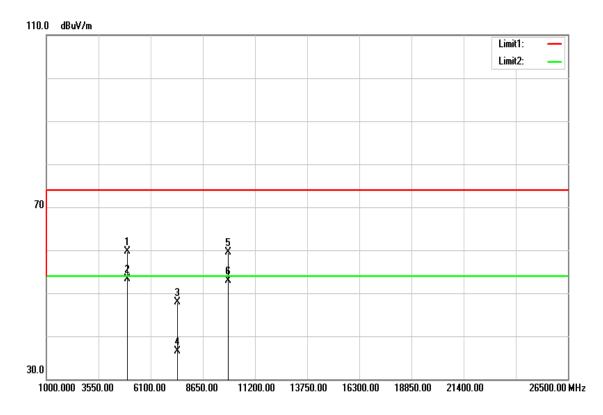

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

IEEE 802.15.4 / TX / CH Mid

Polarity: Vertical


Operation Mode:	IEEE 802.15.4 / TX / CH Mid	Test Date:	February 17, 2017
Temperature:	27°C	Tested by:	Kevin Kuo
Humidity:	53 % RH	Polarity:	Ver. / Hor.

Frequency (MHz)	Reading (dBuV)	Correction (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
4883.000	52.65	5.26	57.91	74.00	-16.09	peak	V
4883.000	29.43	5.26	34.69	54.00	-19.31	AVG	V
7320.000	34.04	12.97	47.01	74.00	-26.99	peak	V
7320.000	25.06	12.97	38.03	54.00	-15.97	AVG	V
9760.000	35.81	17.60	53.41	74.00	-20.59	peak	V
9760.000	24.97	17.60	42.57	54.00	-11.43	AVG	V
4883.000	48.71	5.26	53.97	74.00	-20.03	peak	Н
4883.000	28.88	5.26	34.14	54.00	-19.86	AVG	Н
7319.000	39.53	12.96	52.49	74.00	-21.51	peak	Н
7319.000	32.38	12.96	45.34	54.00	-8.66	AVG	Н
9762.000	39.47	17.60	57.07	74.00	-16.93	peak	Н
9762.000	32.15	17.60	49.75	54.00	-4.25	AVG	Н


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

IEEE 802.15.4 / TX / CH High

Polarity: Vertical

Polarity: Horizontal

Operation Mode:	IEEE 802.15.4 / TX / CH High	Test Date:	March 14, 2017
Temperature:	27°C	Tested by:	Kevin Kuo
Humidity:	53 % RH	Polarity:	Ver. / Hor.

Frequency (MHz)	Reading (dBuV)	Correction (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
4946.000	53.84	5.43	59.27	74.00	-14.73	peak	V
4946.000	47.06	5.43	52.49	54.00	-1.51	AVG	V
7425.000	34.99	13.28	48.27	74.00	-25.73	peak	V
7425.000	24.36	13.28	37.64	54.00	-16.36	AVG	V
9902.000	36.27	17.60	53.87	74.00	-20.13	peak	V
9902.000	27.22	17.60	44.82	54.00	-9.18	AVG	V
4946.000	54.23	5.43	59.66	74.00	-14.34	peak	Н
4946.000	47.86	5.43	53.29	54.00	-0.71	AVG	Н
7425.000	34.61	13.28	47.89	74.00	-26.11	peak	Н
7425.000	23.19	13.28	36.47	54.00	-17.53	AVG	Н
9902.000	41.95	17.60	59.55	74.00	-14.45	peak	Н
9902.000	35.23	17.60	52.83	54.00	-1.17	AVG	Н

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

8.8 POWERLINE CONDUCTED EMISSIONS

<u>LIMIT</u>

According to §15.207(a), except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Frequency Range	Limits (dBµV)				
(MHz)	Quasi-peak	Average			
0.15 to 0.50	66 to 56*	56 to 46*			
0.50 to 5	56	46			
5 to 30	60	50			

Test Configuration

See test photographs attached in Appendix II for the actual connections between EUT and support equipment.

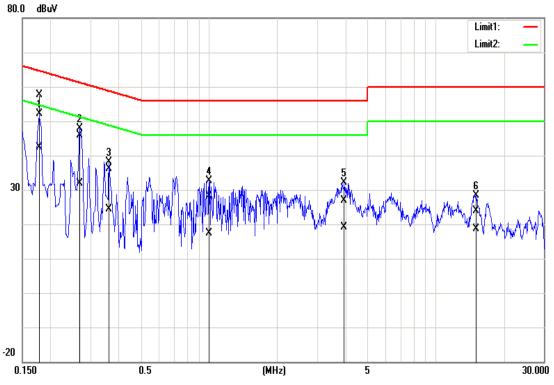
TEST PROCEDURE

- 1. The EUT was placed on a table, which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured were complete.

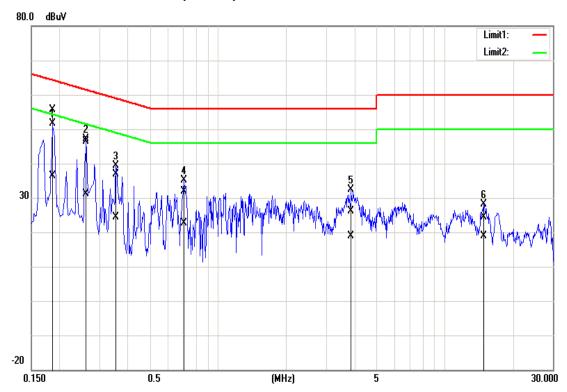
TEST RESULTS

The initial step in collecting conducted data is a spectrum analyzer peak scan of the measurement range. Significant peaks are then marked as shown on the following data page, and these signals are then quasi-peaked.

<u>Test Data</u>


Operation Mode:	Normal Link	Test Date:	February 20, 2017
Temperature:	24°C	Tested by:	Kevin Kuo
Humidity:	56% RH		

Freq. (MHz)	QP Reading (dBuV)	AV Reading (dBuV)	Corr. factor (dB/m)	QP Result (dBuV/m)	AV Result (dBuV/m)	QP Limit (dBuV)	AV Limit (dBuV)	QP Margin (dB)	AV Margin (dB)	Note
0.1780	57.63	42.31	-0.03	57.60	42.28	64.58	54.58	-6.98	-12.30	L1
0.2700	45.83	31.90	-0.04	45.79	31.86	61.12	51.12	-15.33	-19.26	L1
0.3620	36.13	24.42	-0.05	36.08	24.37	58.68	48.68	-22.60	-24.31	L1
1.0020	28.07	17.33	-0.05	28.02	17.28	56.00	46.00	-27.98	-28.72	L1
3.9540	26.87	19.17	-0.05	26.82	19.12	56.00	46.00	-29.18	-26.88	L1
15.1260	23.94	18.68	-0.08	23.86	18.60	60.00	50.00	-36.14	-31.40	L1
0.1860	55.71	36.45	-0.10	55.61	36.35	64.21	54.21	-8.60	-17.86	L2
0.2620	46.61	31.17	-0.11	46.50	31.06	61.37	51.37	-14.87	-20.31	L2
0.3540	36.94	24.55	-0.12	36.82	24.43	58.87	48.87	-22.05	-24.44	L2
0.7060	31.97	22.82	-0.13	31.84	22.69	56.00	46.00	-24.16	-23.31	L2
3.8700	26.37	19.13	-0.13	26.24	19.00	56.00	46.00	-29.76	-27.00	L2
14.9060	24.55	19.22	-0.28	24.27	18.94	60.00	50.00	-35.73	-31.06	L2


- 1. Measuring frequencies from 0.15 MHz to 30MHz.
- 2. The emissions measured in frequency range from 0.15 MHz to 30MHz were made with an instrument using Quasi-peak detector and average detector.
- 3. The IF bandwidth of SPA between 0.15MHz and 30MHz was 10 kHz; the IF bandwidth of Test Receiver between 0.15MHz and 30MHz was 9 kHz;
- 4. L1 = Line One (Live Line) / L2 = Line Two (Neutral Line)

Test Plots

Conducted emissions (Line 1)

Conducted emissions (Line 2)

