	,
L	

report concerns (check one): ⊠Original Grant □Class I Change □Class II Ch Project No. :: 1606C244 Equipment :: WIRELESS STEREO HEADPHONES Model Name :: SE-MJ553BT-K; SE-MJ553BT-W; SE-MJ553BT-R Applicant :: Onkyo Yaesu Bidg,2-3-12, Yaesu, Chuo-ku, Tokyo Address :: Onkyo Yaesu Bidg,2-3-12, Yaesu, Chuo-ku, Tokyo Date of Receipt :: Jun. 23, 2016 Date of Test :: Jun. 23, 2016 ~ Jul. 08, 2016 Issued Date :: Jul. 11, 2016 Tested by :: BTL Inc. Testing Engineer ::	C244 LESS STEREO HEADPHONES J553BT-K; SE-MJ553BT-W; SE-MJ553BT-R b&Pioneer Innovations Corporation b Yaesu Bldg,2-3-12, Yaesu, Chuo-ku, Tokyo 028 Japan 23, 2016 23, 2016 23, 2016 ~ Jul. 08, 2016 1, 2016
Date of Test : Jun. 23, 2016 ~ Jul. 08, 2016 Issued Date : Jul. 11, 2016 Tested by : BTL Inc. Testing Engineer : : Shawn Xiao) : Chavid Maoo : (David Maoo) : Authorized Signatory : :	23, 2016 ~ Jul. 08, 2016 1, 2016
Technical Manager : : David Mao (David Mao) (David Mao) Authorized Signatory : : See Mac	
(David Mao) Authorized Signatory : Seven In	: <u>Shawn XIO</u>
Authorized Signatory : See h	
	Seen h
	(Steven Lu)
BTJ No.3, Jinshagang 1st Re	

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

BTL's report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

This report is the confidential property of the client. As a mutual protection to the clients, the public and **BTL-self**, extracts from the test report shall not be reproduced except in full with **BTL**'s authorized written approval.

BTL's laboratory quality assurance procedures are in compliance with the **ISO Guide 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Table of Contents F	Page
1. CERTIFICATION	7
2 . SUMMARY OF TEST RESULTS	8
2.1 TEST FACILITY	9
2.2 MEASUREMENT UNCERTAINTY	9
3 . GENERAL INFORMATION	10
3.1 GENERAL DESCRIPTION OF EUT	10
3.2 DESCRIPTION OF TEST MODES	12
3.3 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING	12
3.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTE	D 13
3.5 DESCRIPTION OF SUPPORT UNITS	13
4 . EMC EMISSION TEST	14
4.1 CONDUCTED EMISSION MEASUREMENT	14
4.1.1 POWER LINE CONDUCTED EMISSION LIMITS 4.1.2 TEST PROCEDURE	14 14
4.1.2 TEST PROCEDURE 4.1.3 DEVIATION FROM TEST STANDARD	14
4.1.4 TEST SETUP	15
4.1.5 EUT OPERATING CONDITIONS 4.1.6 EUT TEST CONDITIONS	15
4.1.7 TEST RESULTS	15 15
4.2 RADIATED EMISSION MEASUREMENT	16
4.2.1 RADIATED EMISSION LIMITS	16
4.2.2 TEST PROCEDURE 4.2.3 DEVIATION FROM TEST STANDARD	17 17
4.2.3 DEVIATION FROM TEST STANDARD 4.2.4 TEST SETUP	17
4.2.5 EUT OPERATING CONDITIONS	19
4.2.6 EUT TEST CONDITIONS	19
4.2.7 TEST RESULTS (9KHZ TO 30MHZ) 4.2.8 TEST RESULTS (30MHZ TO 1000 MHZ)	19 20
4.2.9 TEST RESULTS (ABOVE 1000 MHZ)	20
5 . NUMBER OF HOPPING CHANNEL	21
5.1 APPLIED PROCEDURES	21
5.1.1 TEST PROCEDURE	21
5.1.2 DEVIATION FROM STANDARD 5.1.3 TEST SETUP	21 21
5.1.4 EUT OPERATION CONDITIONS	21
5.1.5 EUT TEST CONDITIONS	21
5.1.6 TEST RESULTS	21

Table of Contents	Page
6 . AVERAGE TIME OF OCCUPANCY	22
6.1 APPLIED PROCEDURES / LIMIT	22
6.1.1 TEST PROCEDURE	22
6.1.2 DEVIATION FROM STANDARD	22
6.1.3 TEST SETUP	22
6.1.4 EUT OPERATION CONDITIONS	23
6.1.5 EUT TEST CONDITIONS 6.1.6 TEST RESULTS	23 23
7. HOPPING CHANNEL SEPARATION MEASUREMENT	23
7.1 APPLIED PROCEDURES / LIMIT 7.1.1 TEST PROCEDURE	24 24
7.1.2 DEVIATION FROM STANDARD	24 24
7.1.3 TEST SETUP	24
7.1.4 EUT TEST CONDITIONS	24
7.1.5 TEST RESULTS	24
8 . BANDWIDTH TEST	25
8.1 APPLIED PROCEDURES	25
8.1.1 TEST PROCEDURE	25
8.1.2 DEVIATION FROM STANDARD	25
8.1.3 TEST SETUP 8.1.4 EUT OPERATION CONDITIONS	25 25
8.1.5 EUT TEST CONDITIONS	25
8.1.6 TEST RESULTS	25
9 . PEAK OUTPUT POWER TEST	26
9.1 APPLIED PROCEDURES / LIMIT	26
9.1.1 TEST PROCEDURE	26
9.1.2 DEVIATION FROM STANDARD	26
9.1.3 TEST SETUP 9.1.4 EUT OPERATION CONDITIONS	26
9.1.4 EUT OPERATION CONDITIONS 9.1.5 EUT TEST CONDITIONS	26 26
9.1.6 TEST RESULTS	26
10 . ANTENNA CONDUCTED SPURIOUS EMISSION	27
10.1 APPLIED PROCEDURES / LIMIT	27
10.1.1 TEST PROCEDURE	27
10.1.2 DEVIATION FROM STANDARD	27
10.1.3 TEST SETUP	27
10.1.4 EUT OPERATION CONDITIONS	27
10.1.5 EUT TEST CONDITIONS 10.1.6 TEST RESULTS	27 27
11 . MEASUREMENT INSTRUMENTS LIST	28

「日本別

Table of Contents Page **12. EUT TEST PHOTO** 30 **ATTACHMENT A - CONDUCTED EMISSION** 34 ATTACHMENT B - RADIATED EMISSION (9KHZ-30MHZ) 37 ATTACHMENT C - RADIATED EMISSION (30MHZ TO 1000MHZ) 39 ATTACHMENT D - RADIATED EMISSION (ABOVE 1000MHZ) 46 **ATTACHMENT E - NUMBER OF HOPPING CHANNEL** 73 ATTACHMENT F - AVERAGE TIME OF OCCUPANCY 75 ATTACHMENT G - HOPPING CHANNEL SEPARATION MEASUREMENT 88 **ATTACHMENT H - BANDWIDTH** 93 **ATTACHMENT I - PEAK OUTPUT POWER** 98 **ATTACHMENT J - ANTENNA CONDUCTED SPURIOUS EMISSION** 103

REPORT ISSUED HISTORY

Issued No.	Description	Issued Date
BTL-FCCP-1-1606C244	Original Issue.	Jul. 11, 2016

1. CERTIFICATION

Equipment : Brand Name :	WIRELESS STEREO HEADPHONES Pioneer
	SE-MJ553BT-K; SE-MJ553BT-W; SE-MJ553BT-R
	Onkyo&Pioneer Innovations Corporation
Manufacturer :	Onkyo&Pioneer Innovations Corporation
Address :	Onkyo Yaesu Bldg,2-3-12, Yaesu, Chuo-ku, Tokyo 104-0028 Japan
Factory :	Shenzhen Grandsun Electronic Co., Ltd.
Address :	East Park, Gaoqiao Industrial Zone, Pingdi Street, Longgang, Shenzhen
	City,Guangdong Province,P.R.China
Date of Test :	Jun. 23, 2016 ~ Jul. 08, 2016
	Engineering Sample
Standard(s) :	FCC Part15, Subpart C (15.247)/ ANSI C63.10-2013

The above equipment has been tested and found compliance with the requirement of the relative standards by BTL Inc.

The test data, data evaluation, and equipment configuration contained in our test report (Ref No. BTL-FCCP-1-1606C244) were obtained utilizing the test procedures, test instruments, test sites that has been accredited by the Authority of TAF according to the ISO-17025 quality assessment standard and technical standard(s).

2. SUMMARY OF TEST RESULTS

Test procedures according to the technical standard(s):

Applied Stand	Applied Standard(s): 47 CFR Part 15, Subpart C				
Standard(s) Section	Test Item	Judgment	Remark		
15.207	Conducted Emission	PASS			
15.247(d)	Antenna conducted Spurious Emission	PASS			
15.247 (a)(1)	Hopping Channel Separation	PASS			
15.247(a)(1)	Bandwidth	PASS			
15.247 (b)(1)	Peak Output Power	PASS			
15.247(d) 15.209	Radiated Spurious Emission	PASS			
15.247 (a)(1)(iii)	Number of Hopping Frequency	PASS			
15.247 (a)(1)(iii)	Dwell Time	PASS			
15.205	Restricted Bands	PASS			
15.203	Antenna Requirement	PASS			

Note:

(1)" N/A" denotes test is not applicable in this test report

2.1 TEST FACILITY

The test facilities used to collect the test data in this report is at the location of No.3, Jinshagang 1st Road, Shixia, Dalang Town, Dongguan, Guangdong, China. BTL's test firm number for FCC: 319330

2.2 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2.

The measurement instrumentation uncertainty considerations contained in CISPR 16-4-2.

The reported uncertainty of measurement $y \pm U$, where expanded uncertainty U is based on a standard uncertainty multiplied by a coverage factor of **k=2**, providing a level of confidence of approximately **95** %.

A. Conducted Measurement :

Test Site Method		Measurement Frequency Range	U, (dB)
DG-C02	CISPR	150 KHz ~ 30MHz	2.32

B. Radiated Measurement :

Weabareme				
Test Site	Method	Measurement Frequency	Ant.	U, (dB)
		Range	H/V	•, (•=)
		9KHz~30MHz	V	3.79
		9KHz~30MHz	H/V	3.57
		30MHz ~ 200MHz		3.82
		30MHz ~ 200MHz		3.78
DG-CB03	CISPR	200MHz ~ 1,000MHz	V	4.10
	CISER	200MHz ~ 1,000MHz	H	4.06
		1GHz~18GHz	V	3.12
		1GHz~18GHz	H	3.68
		18GHz~40GHz	V	4.15
		18GHz~40GHz	Н	4.14

Note: Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

Equipment	WIRELESS STEREO HEADPHONES	
Brand Name	Pioneer	
Model Name	SE-MJ553BT-K; SE-MJ553BT-W; SE-MJ553BT-R	
Model Difference	Only differ in appearance	colour.
	Operation Frequency	2402~2480 MHz
	Modulation Technology	GFSK(1Mbps)
Output Power (Max.)	Bit Rate of Transmitter	π /4-DQPSK(2Mbps) 8-DPSK(3Mbps)
	Output Power Max.	3.88 dBm(1Mbps) 3.97 dBm(3Mbps)
Power Source	 #1 Supplied from AC/DC adapter (support unit). #2 Supplied from USB port. #3 Supplied from battery. 	
Power Rating	#1 I/P: AC 100-240V 50/60Hz #2 DC 5V #3 DC 3.7V 250mAh 0.25Wh	

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

2. Channel List:

BTL

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	27	2429	54	2456
01	2403	28	2430	55	2457
02	2404	29	2431	56	2458
03	2405	30	2432	57	2459
04	2406	31	2433	58	2460
05	2407	32	2434	59	2461
06	2408	33	2435	60	2462
07	2409	34	2436	61	2463
08	2410	35	2437	62	2464
09	2411	36	2438	63	2465
10	2412	37	2439	64	2466
11	2413	38	2440	65	2467
12	2414	39	2441	66	2468
13	2415	40	2442	67	2469
14	2416	41	2443	68	2470
15	2417	42	2444	69	2471
16	2418	43	2445	70	2472
17	2419	44	2446	71	2473
18	2420	45	2447	72	2474
19	2421	46	2448	73	2475
20	2422	47	2449	74	2476
21	2423	48	2450	75	2477
22	2424	49	2451	76	2478
23	2425	50	2452	77	2479
24	2426	51	2453	78	2480
25	2427	52	2454		
26	2428	53	2455		

3. Table for Filed Antenna:

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)
1	N/A	N/A	PIFA	N/A	4.10

3.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description
Mode 1	TX Mode Note (1)

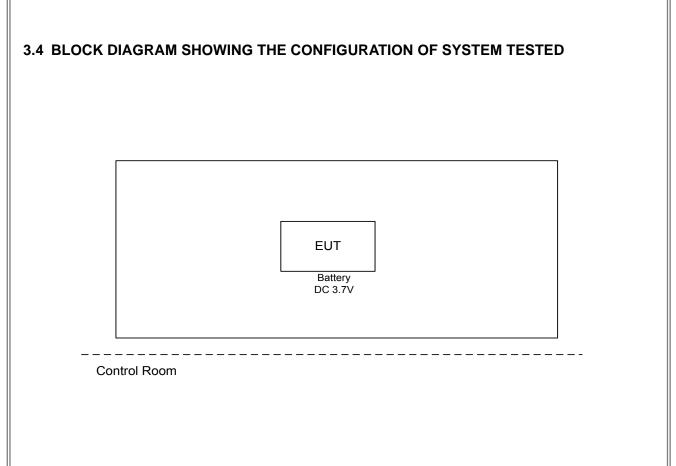
The EUT system operated these modes were found to be the worst case during the pre-scanning test as following:

For Conducted Emission		
Final Test Mode	Description	
Mode 1	TX Mode	

	For Radiated Emission
Final Test Mode	Description
Mode 1	TX Mode Note (1)

Note:

- (1) The measurements are performed at the high, middle, low available channels.
- (2) The measurements for Hopping Channel Separation, Bandwidth and Peak Output Power were tested during 1Mbps, 2Mbps and 3Mbps, the worst case are 1Mbps and 3Mbps, only worst case was documented.
- (3) USB port and battery are evaluated, USB port is the worst case of conduction test, and battery is the worst case of other projects.


3.3 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING

During testing, channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of FHSS

Test Software Version		CSR	
Frequency	2402 MHz	2441 MHz	2480 MHz
Parameters(1Mbps)	28	3	2
Parameters(3Mbps)	42	26	23

3.5 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	FCC ID	Series No.
-	-	-	-	-	-

Item	Shielded Type	Ferrite Core	Length	Note
-	-	-	-	-

4. EMC EMISSION TEST

4.1 CONDUCTED EMISSION MEASUREMENT

4.1.1 POWER LINE CONDUCTED EMISSION LIMITS (Frequency Range 150KHz-30MHz)

	Conducted Limit (dBµV)		
Frequency of Emission (MHz)	Quasi-peak	Average	
0.15 -0.50	66 to 56*	56 to 46*	
0.50 -5.0	56	46	
5.0 -30.0	60	50	

Note:

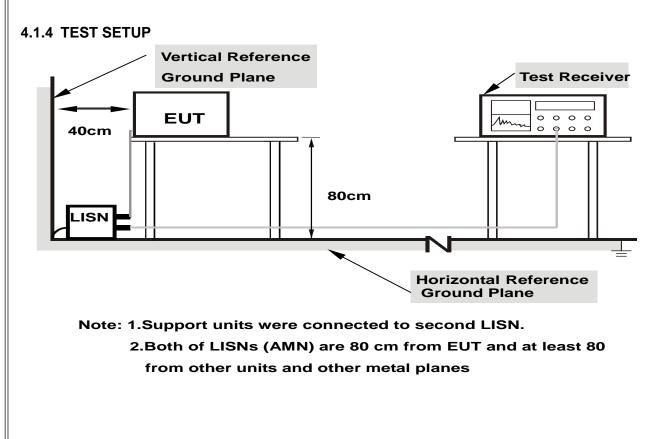
(1) The limit of " * " decreases with the logarithm of the frequency

 (2) The test result calculated as following: Measurement Value = Reading Level + Correct Factor Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor(if use) Margin Level = Measurement Value - Limit Value

The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 KHz

4.1.2 TEST PROCEDURE


- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item –EUT Test Photos.

4.1.3 DEVIATION FROM TEST STANDARD

No deviation

<mark>3ĨL</mark>

4.1.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical function (as a customer would normally use it), EUT was programmed to be in continuously transmitting/receiving data or hopping on mode.

4.1.6 EUT TEST CONDITIONS

Temperature: 25°C Relative Humidity: 55% Test Voltage: AC 120V/60Hz

4.1.7 TEST RESULTS

Please refer to the Attachment A.

Remark:

- (1) All readings are QP Mode value unless otherwise stated AVG in column of Note. If the QP Mode Measured value compliance with the QP Limits and lower than AVG Limits, the EUT shall be deemed to meet both QP & AVG Limits and then only QP Mode was measured, but AVG Mode didn't perform in this case, a "*" marked in AVG Mode column of Interference Voltage Measured.
- (2) Measuring frequency range from 150KHz to 30MHz.

4.2 RADIATED EMISSION MEASUREMENT

4.2.1 RADIATED EMISSION LIMITS (Frequency Range 9KHz -1000MHz)

In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

	dB(uV/m) (at 3 meters)	
Frequency (MHz)	Peak	Average
Above 1000	74	54

Notes:

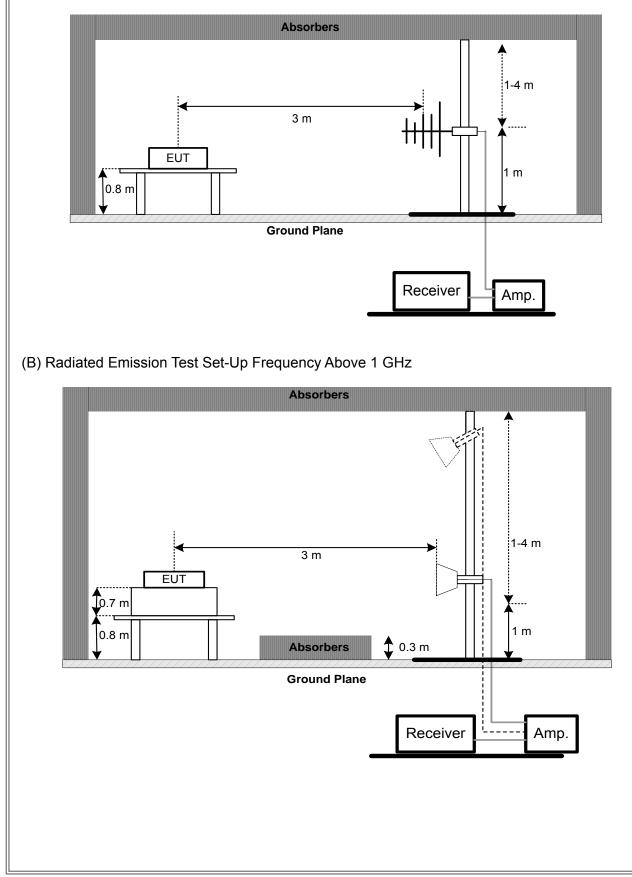
- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m) =20log Emission level (uV/m).
- (4) The test result calculated as following:
- Measurement Value = Reading Level + Correct Factor Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use) Margin Level = Measurement Value - Limit Value

Spectrum Parameter	Setting	
Attenuation	Auto	
Start Frequency	1000 MHz	
Stop Frequency	10th carrier harmonic	
RBW / VBW		
(emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average	

Spectrum Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9KHz ~90KHz for PK/AVG detector
Start ~ Stop Frequency	90KHz ~110KHz for QP detector
Start ~ Stop Frequency	110KHz ~490KHz for PK/AVG detector
Start ~ Stop Frequency	490KHz ~30MHz for QP detector
Start ~ Stop Frequency	30MHz~1000MHz for QP detector

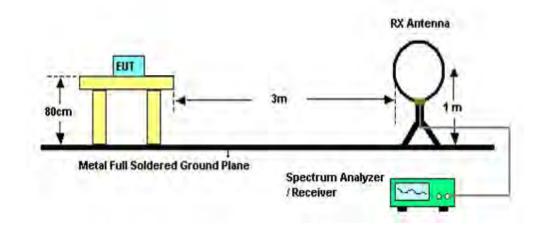
4.2.2 TEST PROCEDURE

- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8 m or 1.5m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1GHz)
- All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1GHz)
- i. For the actual test configuration, please refer to the related Item -EUT Test Photos.


4.2.3 DEVIATION FROM TEST STANDARD

No deviation

4.2.4 TEST SETUP


(A) Radiated Emission Test Set-Up Frequency Below 1 GHz

(C) For Radiated Emissions Below 30MHz

4.2.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 4.1.5 unless otherwise a special operating condition is specified in the follows during the testing

4.2.6 EUT TEST CONDITIONS

Temperature: 25°C Relative Humidity: 55% Test Voltage: DC 3.7V

4.2.7 TEST RESULTS (9KHZ TO 30MHZ)

Please refer to the Attachment B

Remark:

- (1) The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.
- (2) Distance extrapolation factor = 40 log (specific distance / test distance) (dB).
- (3) Limit line = specific limits (dBuV) + distance extrapolation factor.

4.2.8 TEST RESULTS (30MHZ TO 1000 MHZ)

Please refer to the Attachment C.

Remark:

- (1) All readings are Peak unless otherwise stated QP in column of "Note". Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
- (2) Measuring frequency range from 30MHz to 1000MHz.
- (3) If the peak scan value lower limit more than 20dB, then this signal data does not show in table.

4.2.9 TEST RESULTS (ABOVE 1000 MHZ)

Please refer to the Attachment D.

Remark:

- (1) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission
- (2) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (3) EUT Orthogonal Axis:
 - "X" denotes Laid on Table; "Y" denotes Vertical Stand; "Z" denotes Side Stand
- (4) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna
- (5) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

5. NUMBER OF HOPPING CHANNEL

5.1 APPLIED PROCEDURES

FCC Part15 (15.247), Subpart C					
Section	Test Item	Frequency Range (MHz)	Result		
15.247(a)(1)(iii)	Number of Hopping Channel	2400-2483.5	PASS		

Spectrum Parameters	Setting	
Attenuation	Auto	
Span Frequency	> Operating Frequency Range	
RBW	100 KHz	
VBW	100 KHz	
Detector	Peak	
Trace	Max Hold	
Sweep Time Auto		

5.1.1 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW=100KHz, VBW=100KHz, Sweep time = Auto.

5.1.2 DEVIATION FROM STANDARD

No deviation.

5.1.3 TEST SETUP

EUT	SPECTRUM
	ANALYZER

5.1.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 4.1.5 unless otherwise a special operating condition is specified in the follows during the testing.

5.1.5 EUT TEST CONDITIONS

Temperature: 25°C Relative Humidity: 55% Test Voltage: DC 3.7V

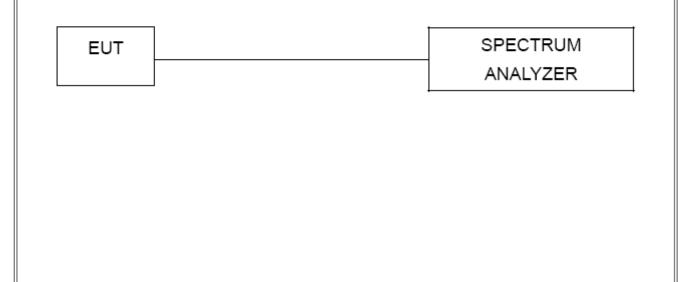
5.1.6 TEST RESULTS

Please refer to the Attachment E

6. AVERAGE TIME OF OCCUPANCY

6.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C						
Section	Test Item	Limit	Frequency Range (MHz)	Result		
15.247(a)(1)(iii)	Average Time of Occupancy	0.4sec	2400-2483.5	PASS		


6.1.1 TEST PROCEDURE

- a. The transmitter output (antenna port) was connected to the spectrum analyzer
- b. Set RBW of spectrum analyzer to 1MHz and VBW to 1MHz.
- c. Use a video trigger with the trigger level set to enable triggering only on full pulses.
- d. Sweep Time is more than once pulse time.
- e. Set the center frequency on any frequency would be measure and set the frequency span to zero span.
- f. Measure the maximum time duration of one single pulse.
- g. Set the EUT for DH5, DH3 and DH1 packet transmitting.
- \tilde{h} . Measure the maximum time duration of one single pulse.
- i. DH5 Packet permit maximum 1600/ 79 / 6 = 3.37 hops per second in each channel (5 time slots TX, 1 time slot RX). So, the dwell time is the time duration of the pulse times 3.37 x 31.6 = 106.6 within 31.6 seconds.
- j. DH3 Packet permit maximum 1600 / 79 / 4 = 5.06 hops per second in each channel (3 time slots TX, 1 time slot RX). So, the dwell time is the time duration of the pulse times 5.06 x 31.6 = 160 within 31.6 seconds.
- k. DH1 Packet permit maximum 1600 / 79 /2 = 10.12 hops per second in each channel (1 time slot TX, 1 time slot RX). So, the dwell time is the time duration of the pulse times 10.12 x 31.6 = 320 within 31.6 seconds.

6.1.2 DEVIATION FROM STANDARD

No deviation.

6.1.3 TEST SETUP

6.1.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 4.1.5 unless otherwise a special operating condition is specified in the follows during the testing.

6.1.5 EUT TEST CONDITIONS

Temperature: 25°C Relative Humidity: 55% Test Voltage: DC 3.7V

6.1.6 TEST RESULTS

Please refer to the Attachment F

7. HOPPING CHANNEL SEPARATION MEASUREMENT

7.1 APPLIED PROCEDURES / LIMIT

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 KHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	> Measurement Bandwidth or Channel Separation
RBW	30 KHz
VBW	100 KHz
Detector Peak	
Trace Max Hold	
Sweep Time Auto	

7.1.1 TEST PROCEDURE

- a. The EUT must have its hopping function enabled
- b. Span = wide enough to capture the peaks of two adjacent channels Resolution (or IF) Bandwidth (RBW) ≥ 1% of the span Video (or Average) Bandwidth (VBW) ≥ RBW Sweep = Auto Detector function = Peak Trace = Max Hold

7.1.2 DEVIATION FROM STANDARD

No deviation.

7.1.3 TEST SETUP

Spectrum Analayzer

EUT

7.1.4 EUT TEST CONDITIONS

Temperature: 25°C Relative Humidity: 55% Test Voltage: DC 3.7V

7.1.5 TEST RESULTS

Please refer to the Attachment G

8. BANDWIDTH TEST

8.1 APPLIED PROCEDURES

FCC Part15 (15.247) , Subpart C				
Section	Test Item	Frequency Range		
Section	restitem	(MHz)		
15.247(a)(2)	Bandwidth	2400-2483.5		

Spectrum Parameter	Setting			
Attenuation	Auto			
Span Frequency	> Measurement Bandwidth or Channel Separation			
RBW	30 KHz (20dB Bandwidth) / 30 KHz (Channel Separation)			
VBW	100 KHz (20dB Bandwidth) / 100 KHz (Channel Separation)			
Detector	Peak			
Trace	Max Hold			
Sweep Time	Auto			

8.1.1 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 30KHz, VBW=100KHz, Sweep Time = Auto.

8.1.2 DEVIATION FROM STANDARD

No deviation.

8.1.3 TEST SETUP

EUT	SPECTRUM	
	ANALYZER	

8.1.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 4.1.5 unless otherwise a special operating condition is specified in the follows during the testing.

8.1.5 EUT TEST CONDITIONS

Temperature: 25°C Relative Humidity: 55% Test Voltage: DC 3.7V

8.1.6 TEST RESULTS

Please refer to the Attachment H

9. PEAK OUTPUT POWER TEST

9.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247), Subpart C					
Section Test Item		Limit	Frequency Range (MHz)	Result	
15.247(b)(1)	Peak Output Power	1 Watt or 30dBm (hopping channel >75) 0.125Watt or 21dBm (hopping channel <75	2400-2483.5	PASS	

9.1.1 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 1MHz/3MHz, VBW= 1MHz/3MHz, Sweep time = Auto.

9.1.2 DEVIATION FROM STANDARD

No deviation.

9.1.3 TEST SETUP

EUT	SPECTRUM
	ANALYZER

9.1.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 4.1.5 unless otherwise a special operating condition is specified in the follows during the testing.

9.1.5 EUT TEST CONDITIONS

Temperature: 25°C Relative Humidity: 55% Test Voltage: DC 3.7V

9.1.6 TEST RESULTS

Please refer to the Attachment I

10. ANTENNA CONDUCTED SPURIOUS EMISSION

10.1 APPLIED PROCEDURES / LIMIT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits.

10.1.1 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 100KHz, VBW=100KHz, Sweep time = Auto.
- c. Offset=antenna gain+cable loss

10.1.2 DEVIATION FROM STANDARD

No deviation.

10.1.3 TEST SETUP

10.1.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 4.1.5 unless otherwise a special operating condition is specified in the follows during the testing.

10.1.5 EUT TEST CONDITIONS

Temperature: 25°C Relative Humidity: 55% Test Voltage: DC 3.7V

10.1.6 TEST RESULTS

Please refer to the Attachment J

п

11. MEASUREMENT INSTRUMENTS LIST

	Conducted Emission Measurement					
I	tem	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
	1	LISN	EMCO	3816/2	0052765	Mar. 27, 2017
	2	LISN	R&S	ENV216	101447	Mar. 27, 2017
	3	Test Cable	emci	RG223(9KHz-30 MHz)	C_17	Mar. 10, 2017
	4	EMI Test Receiver	R&S	ESCI	100382	Mar. 27, 2017
	5	50Ω Terminator	SHX	TF2-3G-A	08122901	Mar. 27, 2017
	6	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A

	Radiated Emission Measurement					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until	
1	Active Loop Antenna	R&S	HFH2-Z2	830749/020	Sep. 07, 2016	
2	Antenna	Schwarbeck	VULB9160	9160-3232	Mar. 27, 2017	
3	Amplifier	HP	8447D	2944A09673	Nov. 09, 2016	
4	Receiver	AGILENT	N9038A	MY52130039	Oct. 11, 2016	
5	Test Cable	emci	LMR-400(30MH z-1GHz)	C-01	Jun. 27, 2017	
6	Control	СТ	SC100	N/A	N/A	
7	Position Control	MF	MF-7802	MF780208416	N/A	
8	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A	
9	Antenna	ETS	3115	00075789	Mar. 27, 2017	
10	Amplifier	Agilent	8449B	3008A02274	Nov. 01, 2016	
11	Test Cable	emci	EMC104-SM-S M-10000(1GHz - 26.5GHz)	C-68	Jun. 27, 2017	
12	Broad-Band Horn Antenna	Schwarzbeck	BBHA 9170	9170319	Apr. 23, 2017	
13	Microwave Preamplifier With Adaptor	EMC INSTRUMENT	EMC2654045	980039 & HA01	Mar. 27, 2017	

	Number of Hopping Channel					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until	
1	EXA Spectrum Analyzer	Agilent	N9010A	MY50520044	Mar. 27, 2017	

	Average Time of Occupancy					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until	
1	EXA Spectrum Analyzer	Agilent	N9010A	MY50520044	Mar. 27, 2017	

	Hopping Channel Separation Measurement					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until	
1	EXA Spectrum Analyzer	Agilent	N9010A	MY50520044	Mar. 27, 2017	

	Bandwidth					
It	em	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
	1	EXA Spectrum Analyzer	Agilent	N9010A	MY50520044	Mar. 27, 2017

	Peak Output Power					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until	
1	EXA Spectrum Analyzer	Agilent	N9010A	MY50520044	Mar. 27, 2017	

	Antenna Conducted Spurious Emission					
It	tem	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
	1	EXA Spectrum Analyzer	Agilent	N9010A	MY50520044	Mar. 27, 2017

Remark: "N/A" denotes no model name, serial no. or calibration specified. All calibration period of equipment list is one year.

12. EUT TEST PHOTO

Conducted Measurement Photos

Radiated Measurement Photos

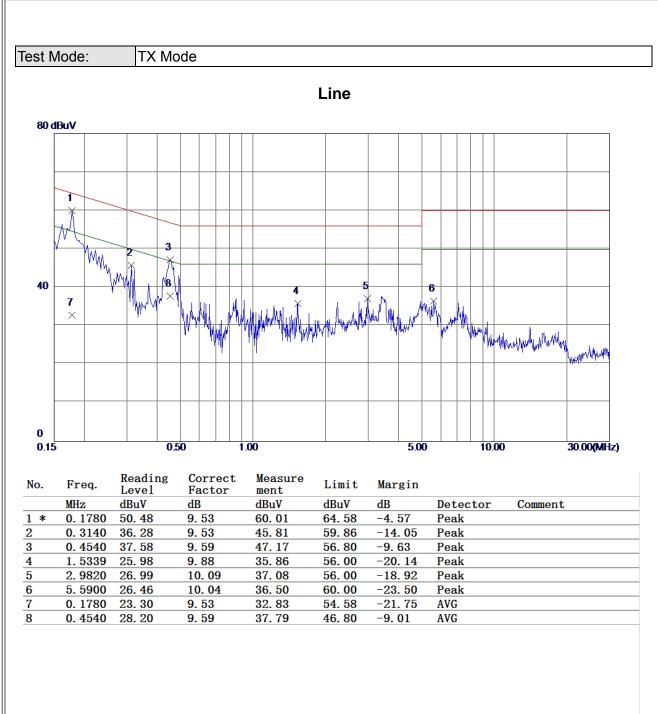
9KHz to 30MHz

Radiated Measurement Photos

30MHz to 1000MHz

Radiated Measurement Photos

Above 1000MHz



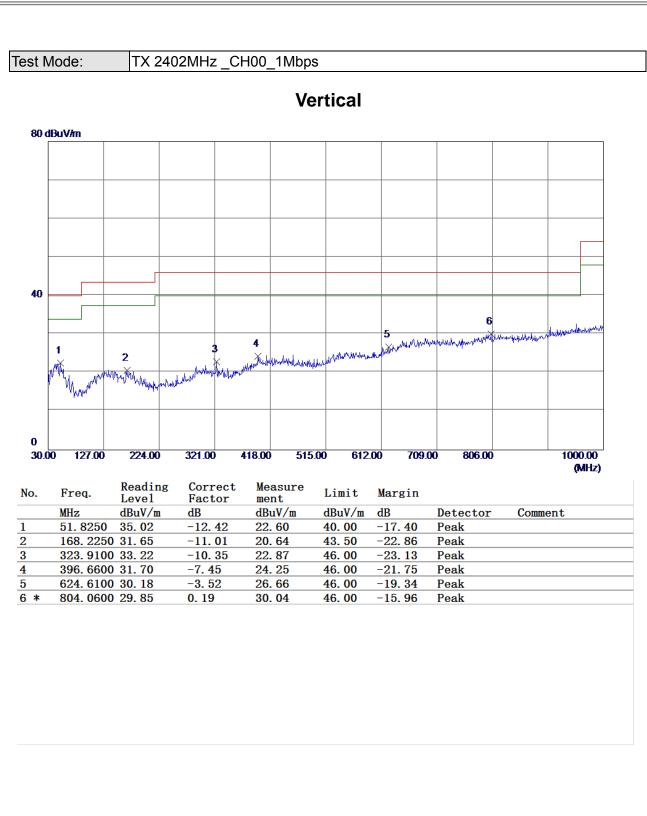
ATTACHMENT A - CONDUCTED EMISSION

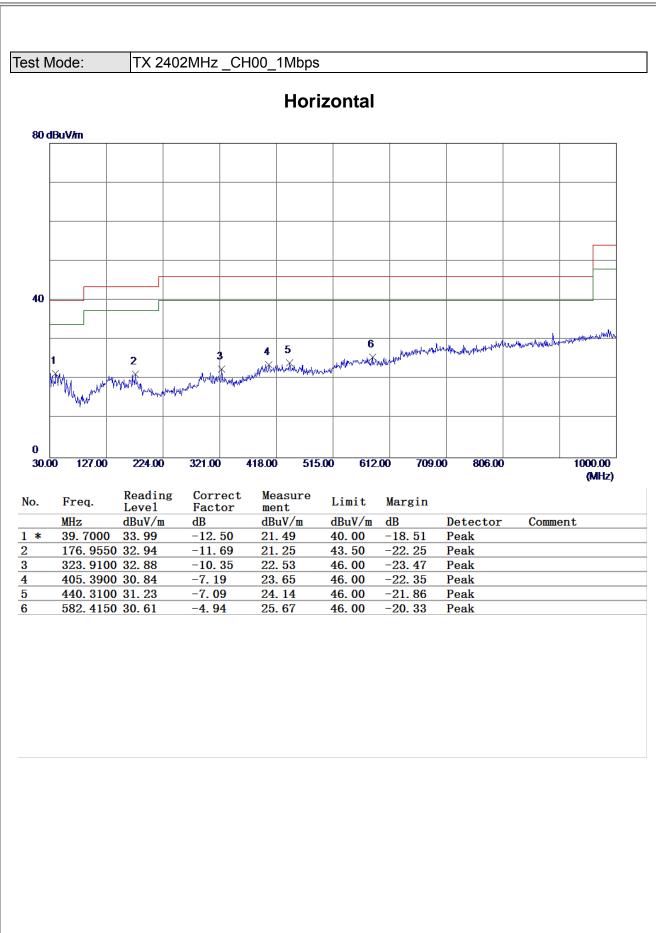

BTL

BTL

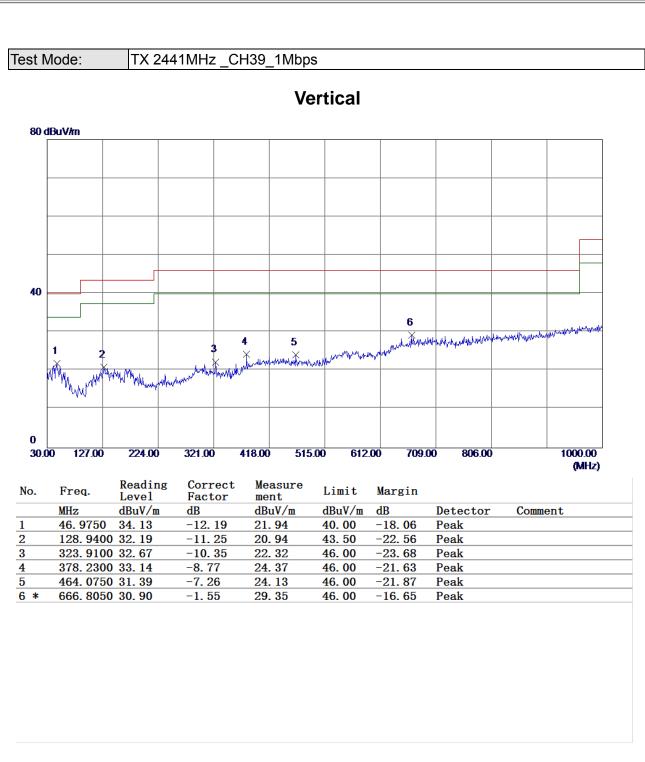
ATTACHMENT B - RADIATED EMISSION (9KHZ-30MHZ)

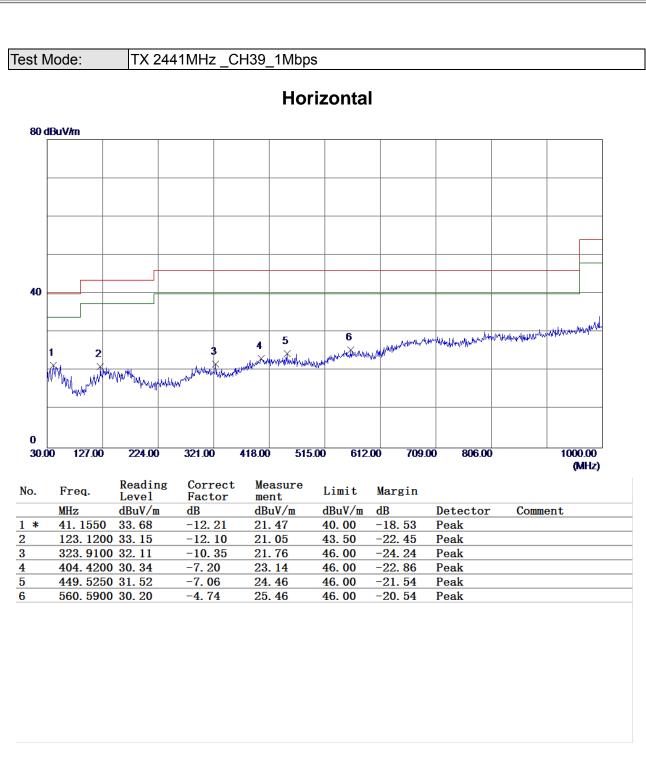
Test Mode:	TX I	Mode					
				1			
Frequency (MHz)	Ant 0°/90°	Read level dBuV/m	Factor (dB)	Measured(FS) (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Note
0.0152	0°	13.76	24.6040	38.3640	123.9674	-85.6034	AVG
0.0152	0°	15.21	24.6040	39.8140	143.9674	-104.1534	PEAK
0.0329	0°	6.19	23.4830	29.6730	117.2603	-87.5873	AVG
0.0329	0°	8.33	23.4830	31.8130	137.2603	-105.4473	PEAK
0.0417	0°	3.56	22.9257	26.4857	115.2015	-88.7158	AVG
0.0417	0°	5.19	22.9257	28.1157	135.2015	-107.0858	PEAK
0.0625	0°	1.28	22.1500	23.4300	111.6866	-88.2566	AVG
0.0625	0°	2.45	22.1500	24.6000	131.6866	-107.0866	PEAK
0.7216	0°	21.47	20.5091	41.9791	70.4383	-28.4592	QP
2.2583	0°	24.55	19.3450	43.8950	69.5400	-25.6450	QP
				1 1		-TT	
Frequency (MHz)	Ant 0°/90°	Read level dBuV/m	Factor (dB)	Measured(FS) (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Note
0.0129	90°	13.05	24.3000	37.3500	125.3924	-88.0424	AVG
0.0129	90°	14.72	24.3000	39.0200	145.3924	-106.3724	PEAK
0.0372	90°	7.15	23.2107	30.3607	116.1934	-85.8327	AVG
0.0372	90°	8.61	23.2107	31.8207	136.1934	-104.3727	PEAK
0.0507	90°	4.28	22.3860	26.6660	113.5041	-86.8381	AVG
0.0507	90°	6.33	22.3860	28.7160	133.5041	-104.7881	PEAK
0.0713	90°	1.36	21.9740	23.3340	110.5424	-87.2084	AVG
0.0713	90°	2.74	21.9740	24.7140	130.5424	-105.8284	PEAK
0.6218	90°	20.31	20.1898	40.4998	71.7312	-31.2315	QP
2.0547	90°	24.17	19.4672	43.6372	69.5400	-25.9028	QP

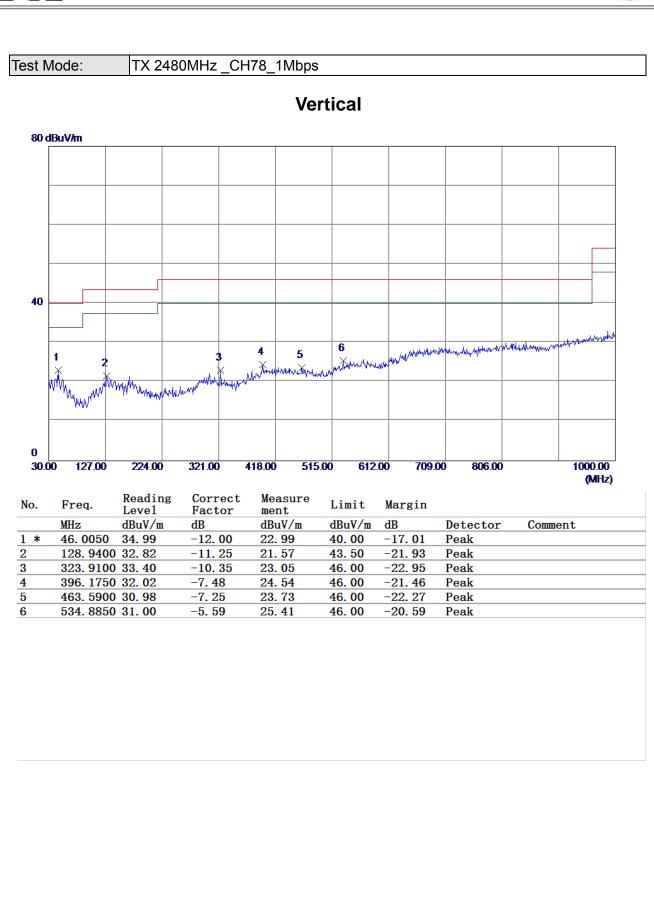



ATTACHMENT C - RADIATED EMISSION (30MHZ TO 1000MHZ)

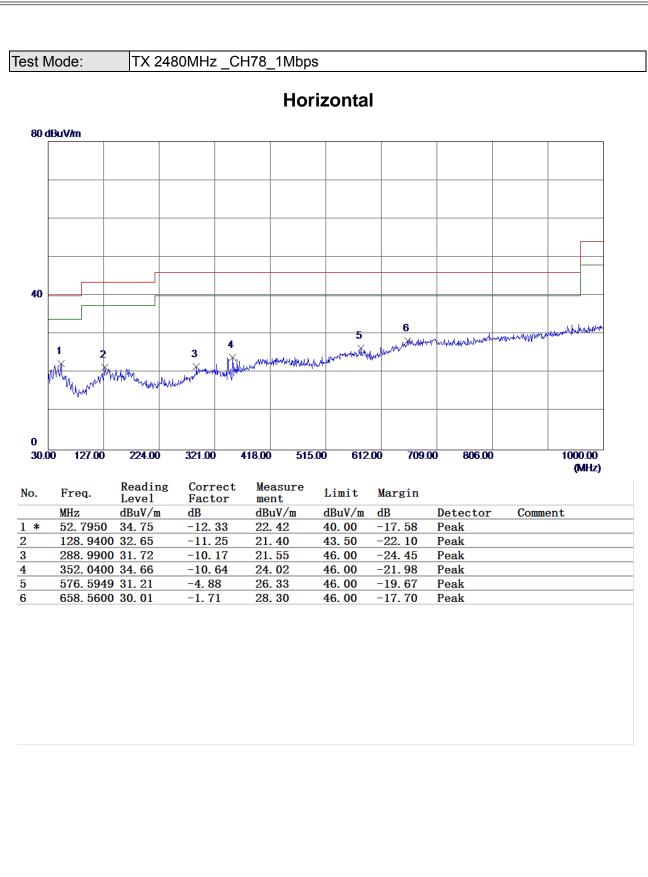
<u>3ĩL</u>

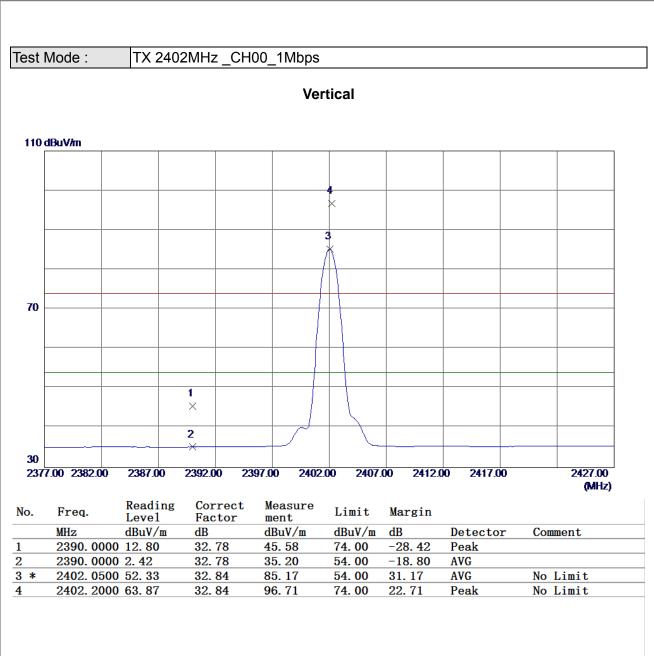


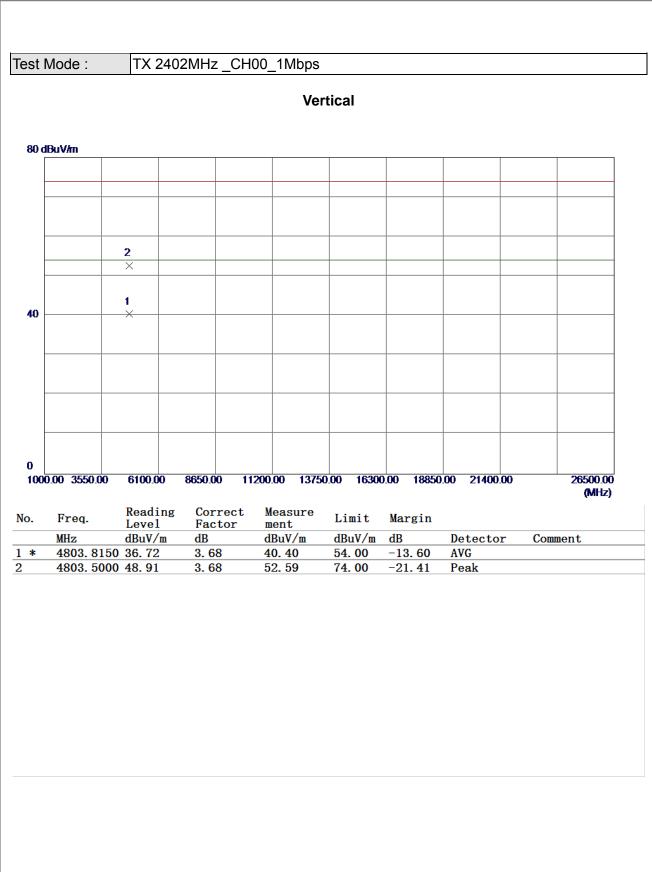

3ĩL



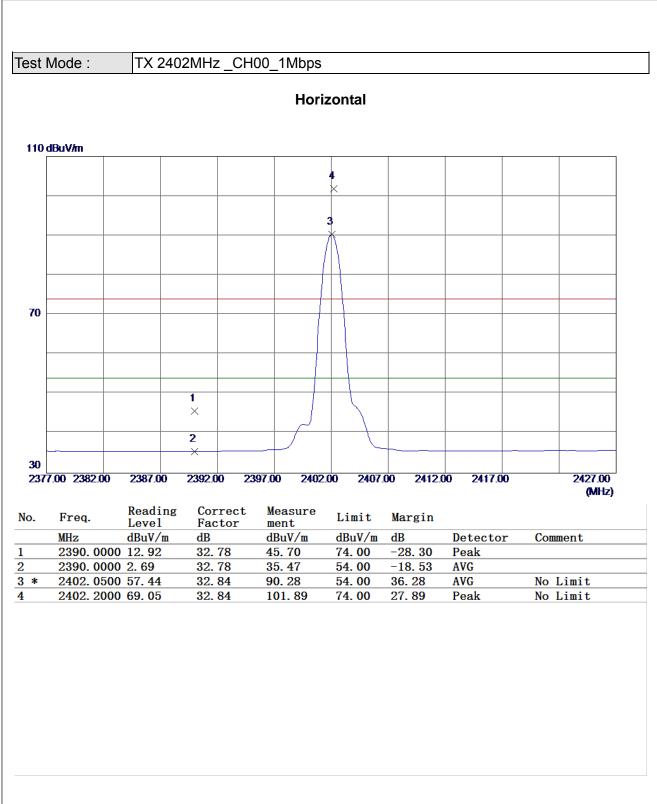
<u>3ĩL</u>

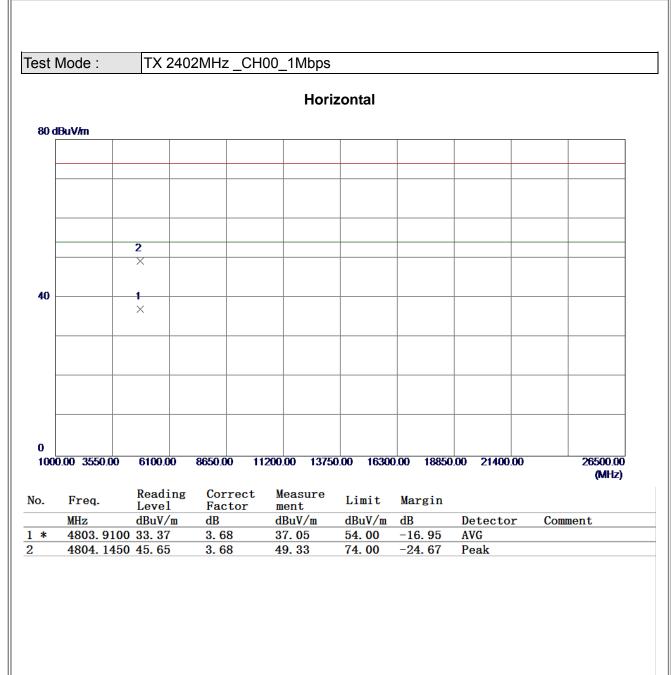


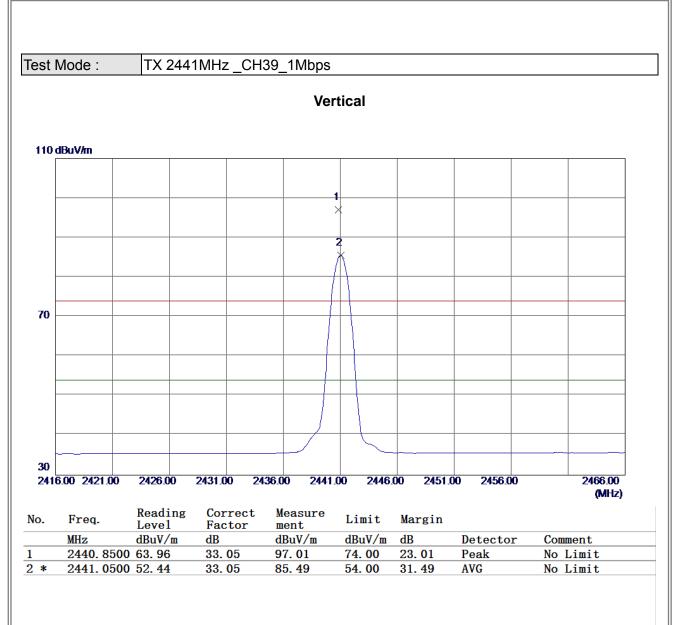



ATTACHMENT D - RADIATED EMISSION (ABOVE 1000MHZ)

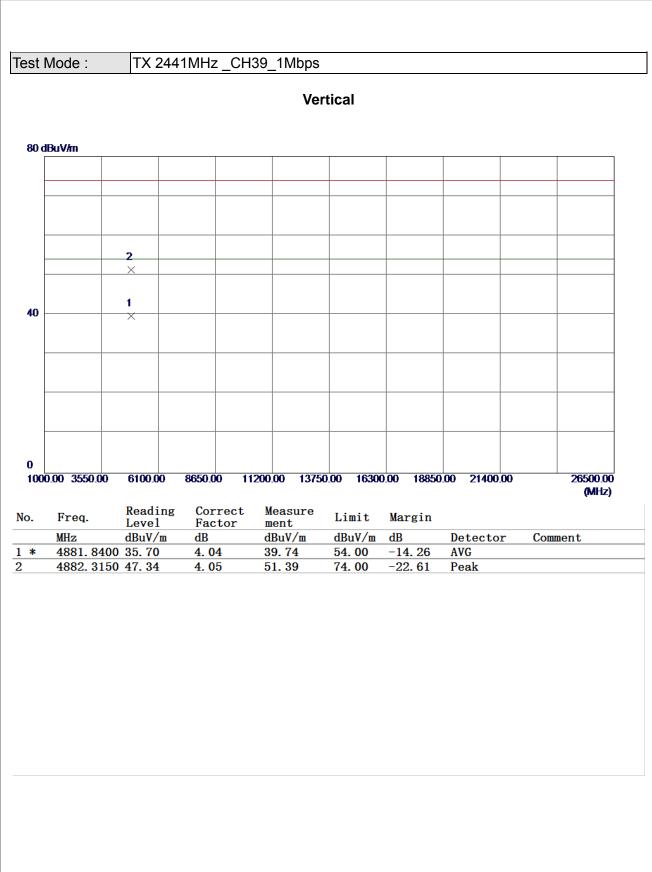
<u>3ĩL</u>

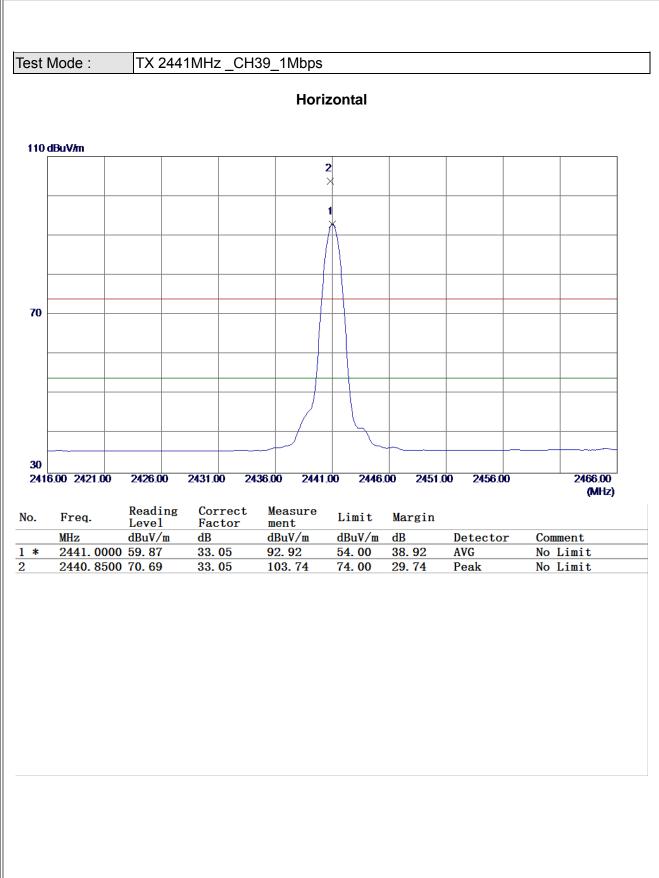


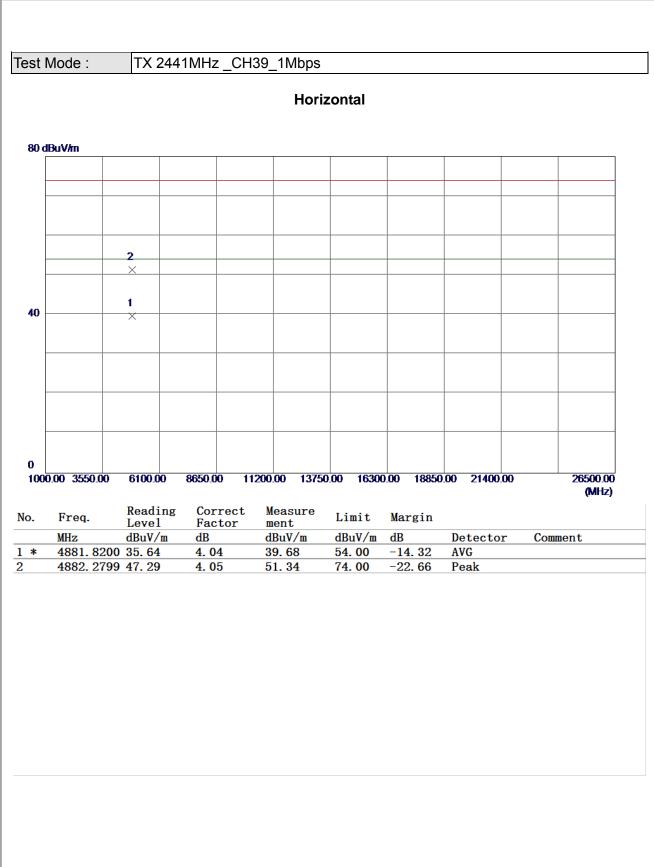


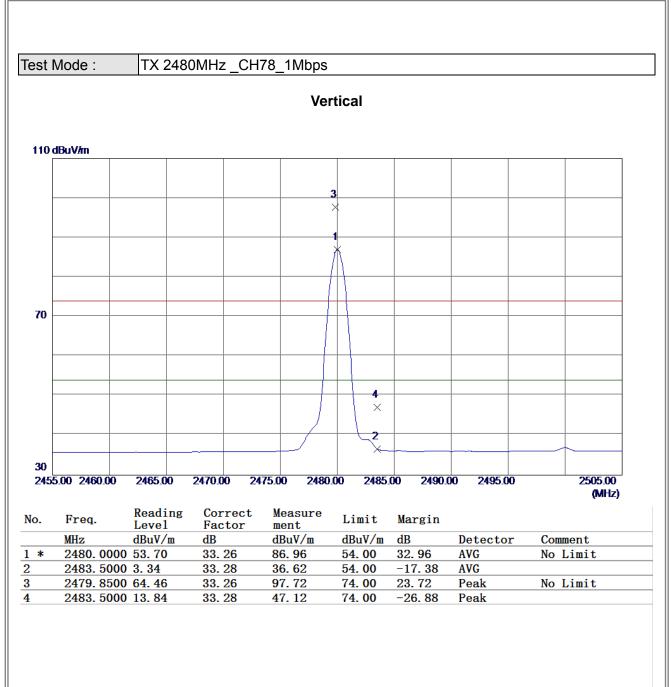


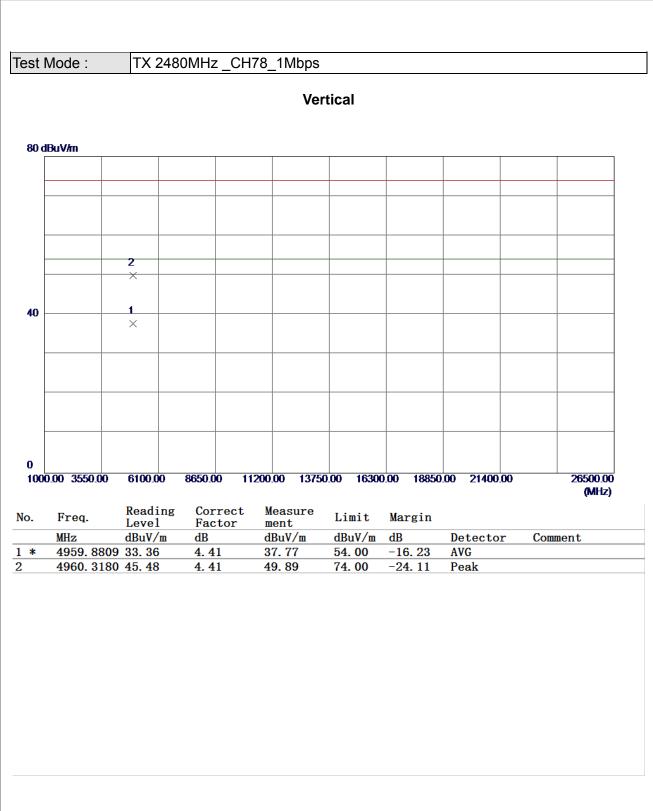
<u>3TL</u>

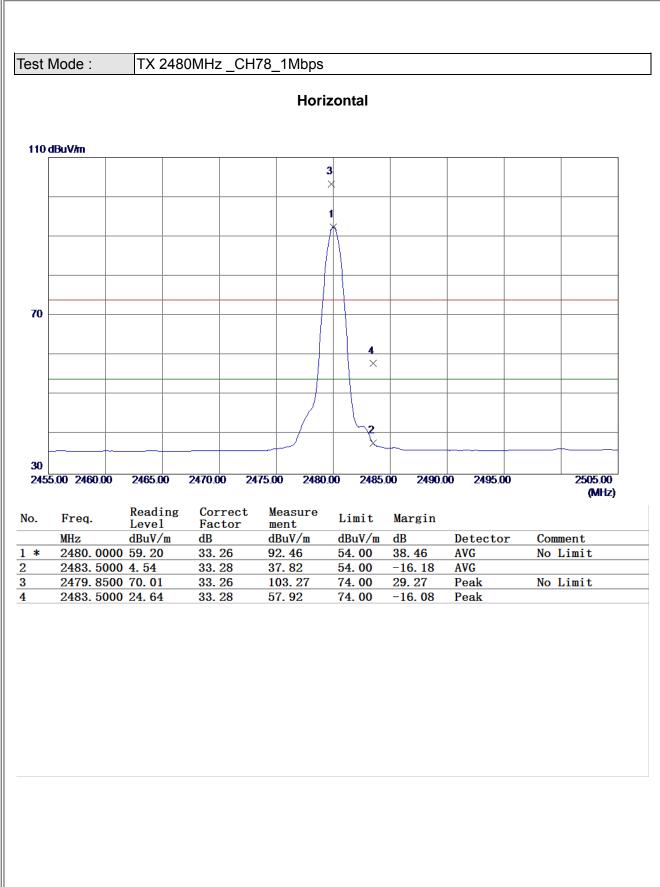


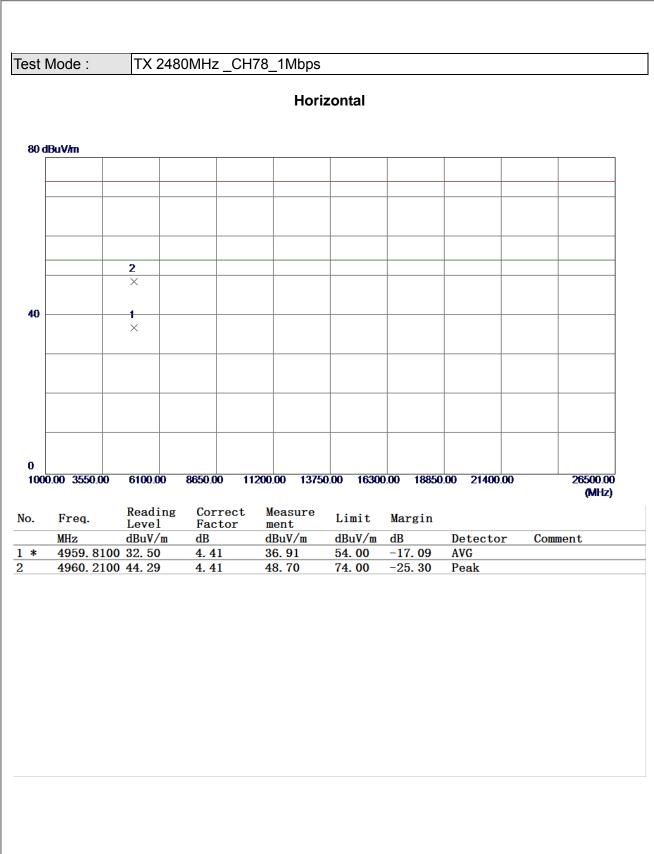




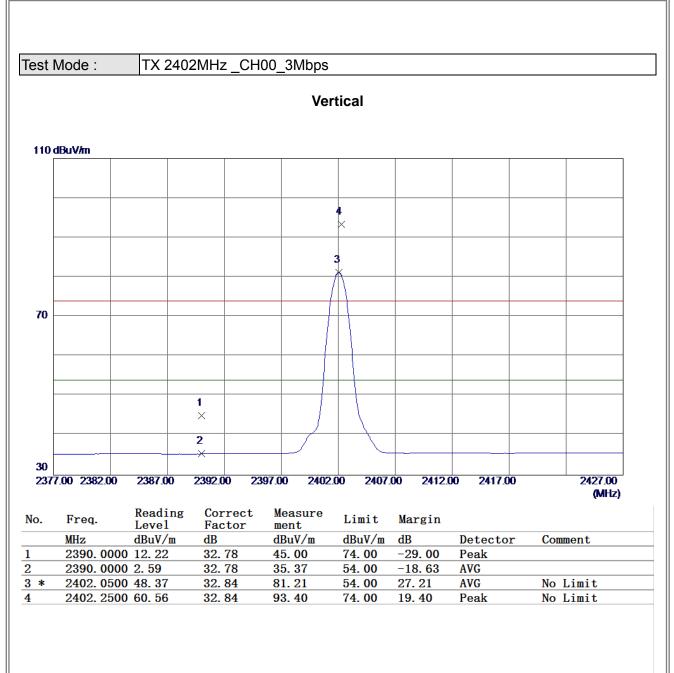


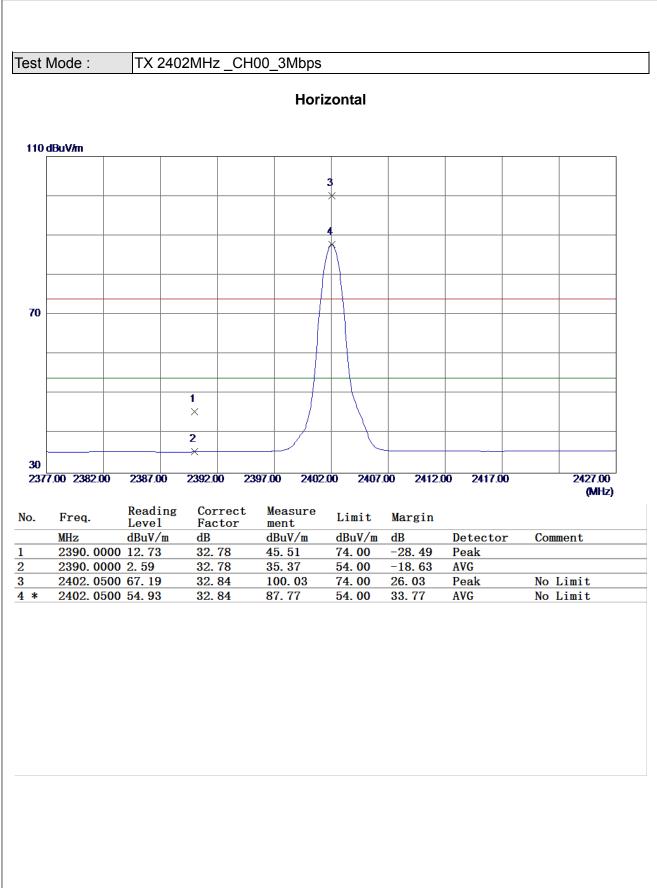


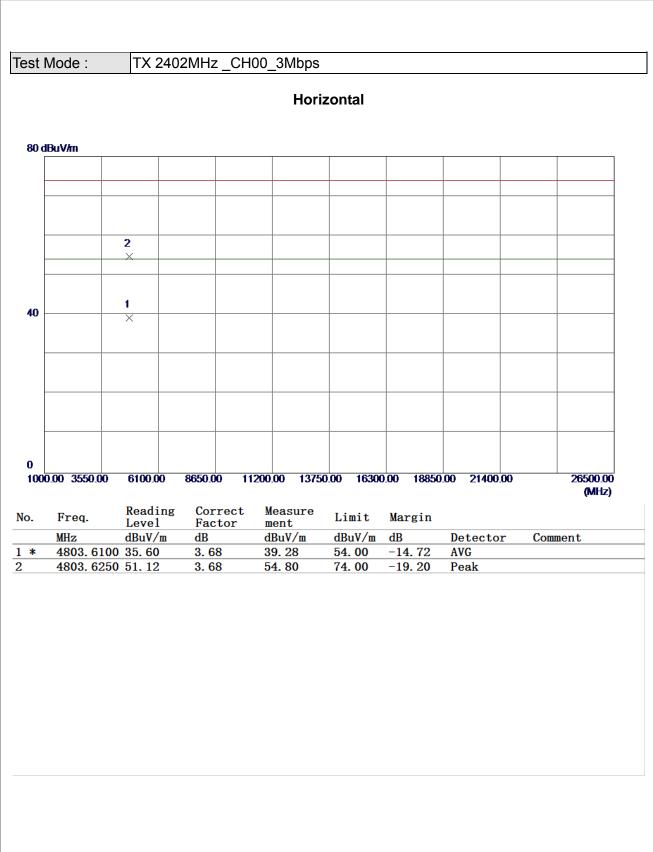


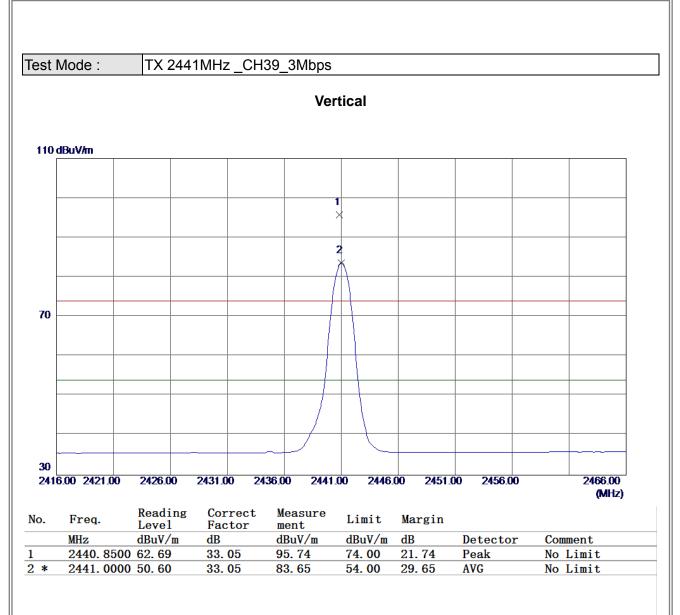


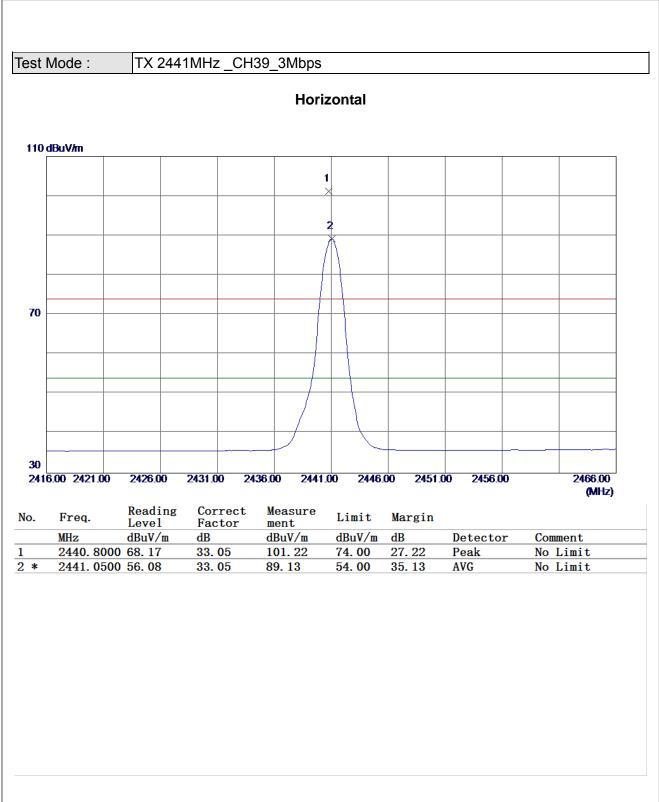
<u>3ĩL</u>

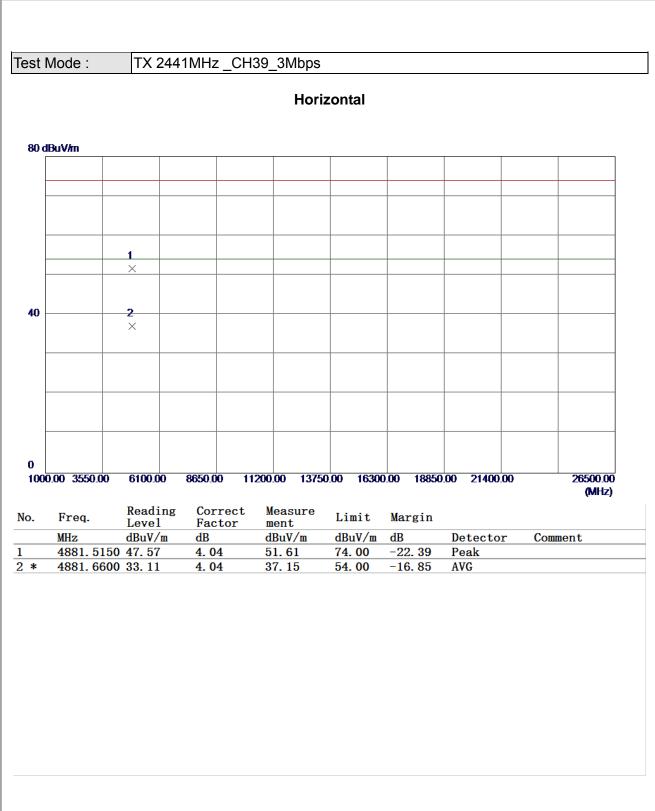




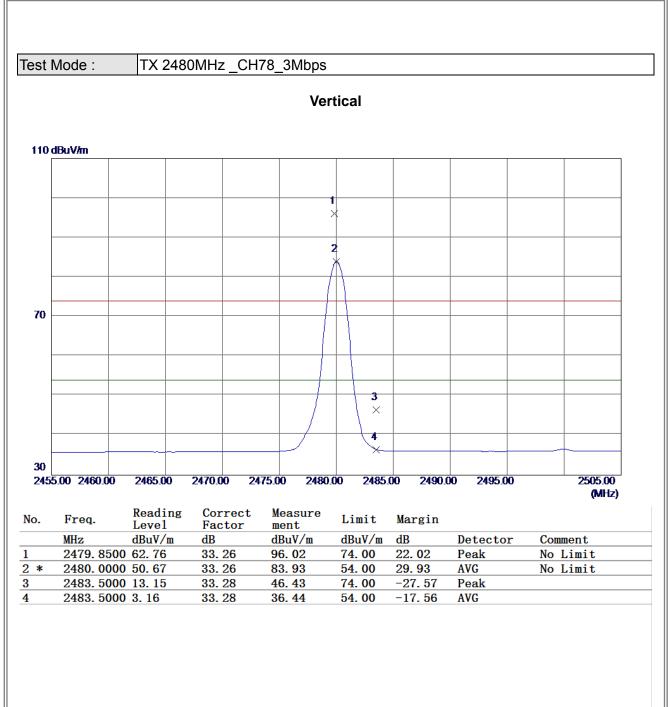


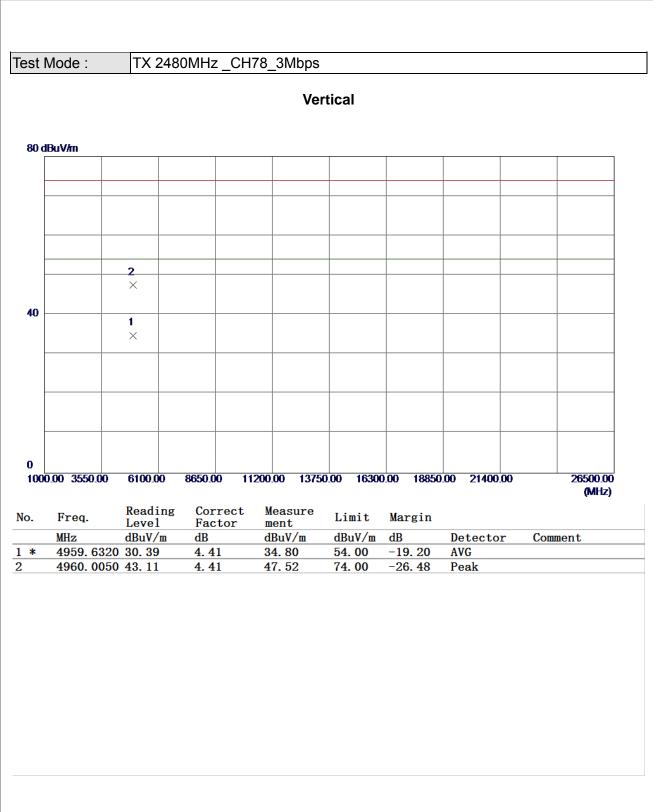


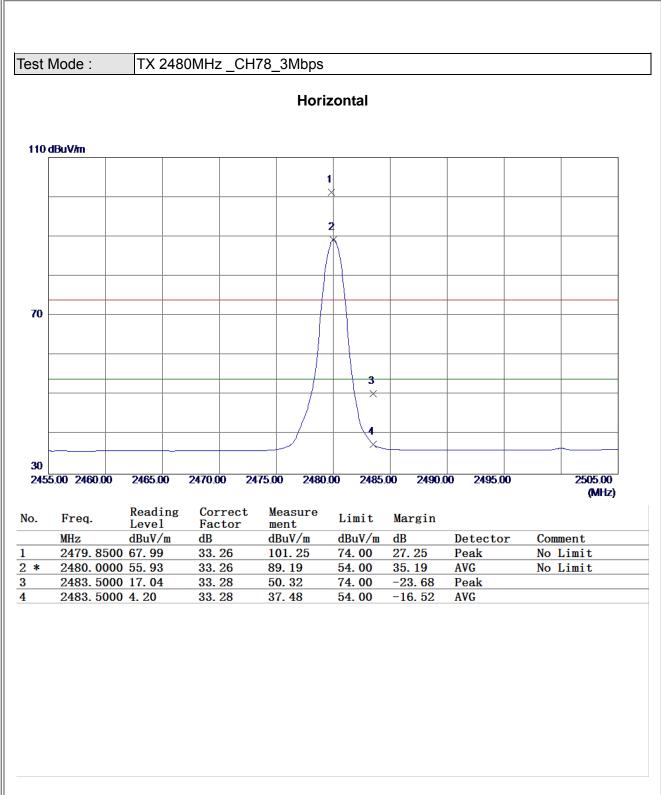


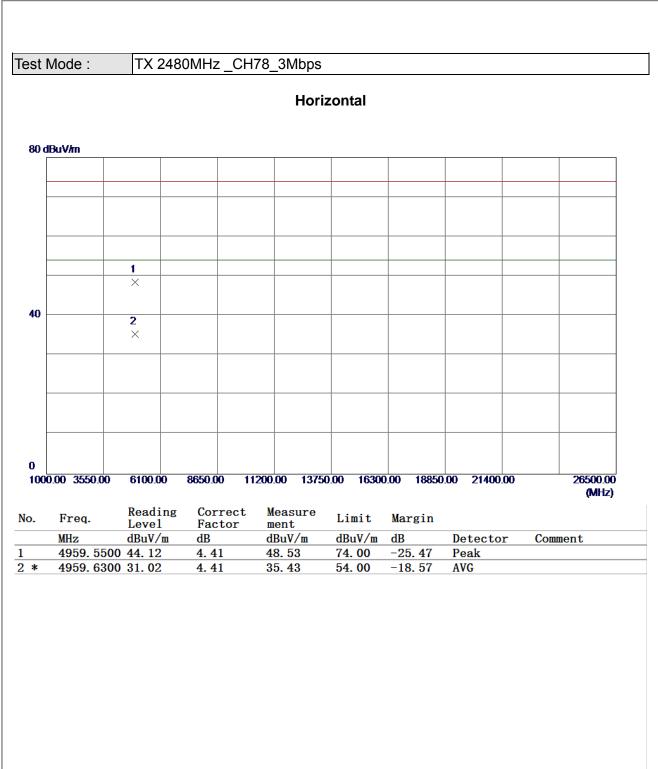


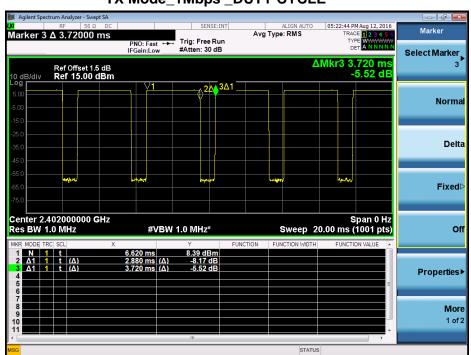
Test Mode : TX 2441MHz _CH39_3Mbps Vertical 80 dBuV/m 1 X 40 2 \times 0 1000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) Reading Correct Measure Limit No. Freq. Margin Factor Leve1 ment dBuV/m MHz dBuV/m dB dBuV/m dB Detector Comment 4881. 4350 45. 62 1 4.04 49.66 74.00 -24. 34 Peak 2 * 4881.6150 33.04 4.04 37.08 54.00 -16.92 AVG







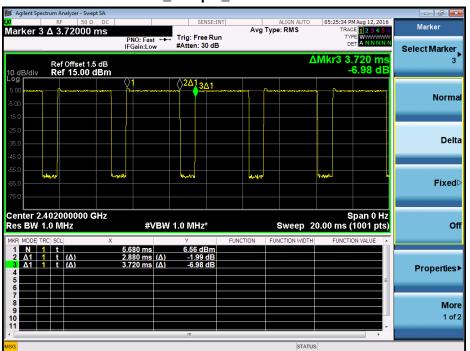




TX Mode_1Mbps _DUTY CYCLE

Duty cycle: TX 2402 DUTYMHz

Duty cycle = T_{ON} / T_{Total}


T_{ON}: 2.88 msec

T_{Total}: 3.72 msec

Duty cycle: 77.42%

Duty Factor = 10 log(1/Duty cycle)

Duty Factor = 1.11

TX Mode_3Mbps _DUTY CYCLE

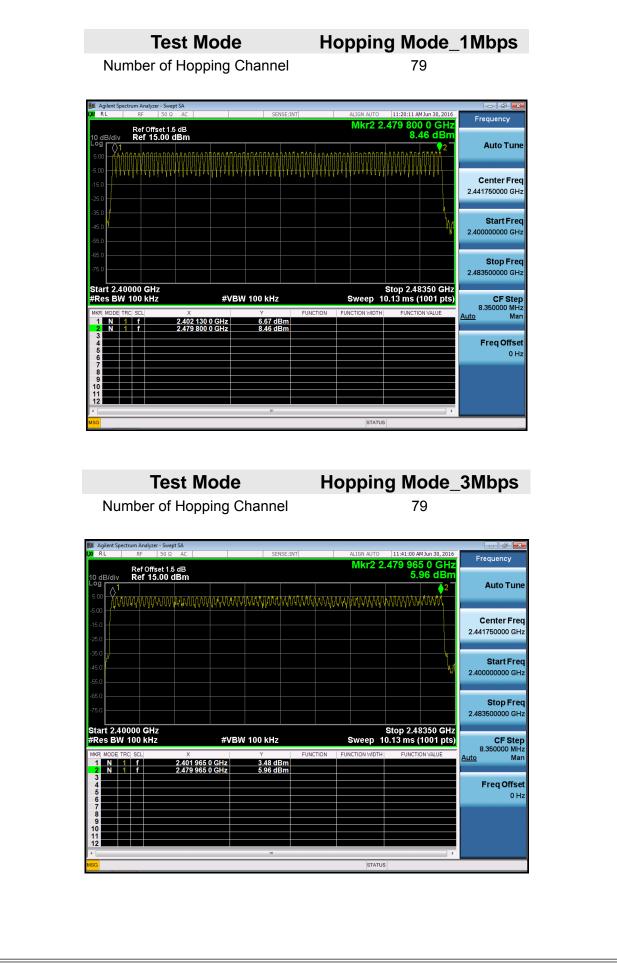
Duty cycle: TX 2402 DUTYMHz

Duty cycle = T_{ON} / T_{Total}

T_{ON}: 2.88 msec

T_{Total}: 3.72 msec

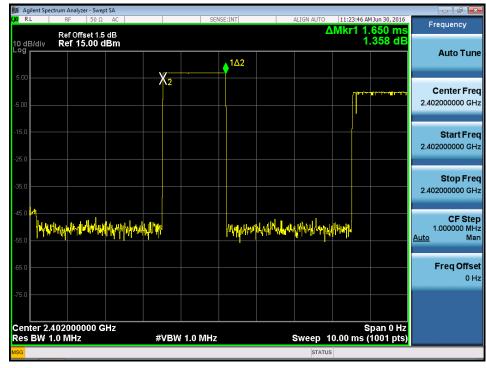
Duty cycle: 77.42%


Duty Factor = 10 log(1/Duty cycle)

Duty Factor = 1.11

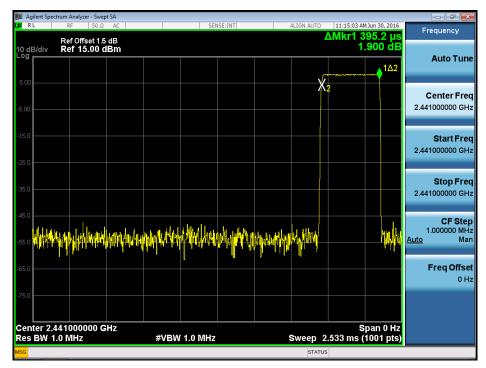
ATTACHMENT E - NUMBER OF HOPPING CHANNEL


ATTACHMENT F - AVERAGE TIME OF OCCUPANCY



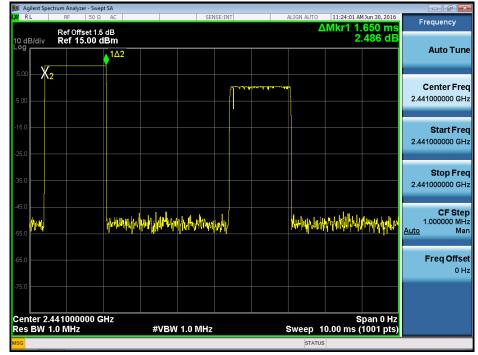
Test Mode :	TX Mode_1Mbps				
Data Packet	Frequency (MHz)	Pulse Duration (ms)	Dwell Time (s)	Limits (s)	Test Result
DH5	2402	2.9000	0.3093	0.4000	Pass
DH3	2402	1.6500	0.1760	0.4000	Pass
DH1	2402	0.3825	0.0408	0.4000	Pass
DH5	2441	2.9000	0.3093	0.4000	Pass
DH3	2441	1.6500	0.1760	0.4000	Pass
DH1	2441	0.3952	0.0422	0.4000	Pass
DH5	2480	2.8800	0.3072	0.4000	Pass
DH3	2480	1.6500	0.1760	0.4000	Pass
DH1	2480	0.3977	0.0424	0.4000	Pass

CH00-DH3

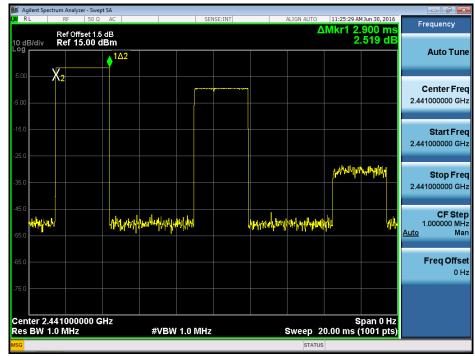


3ĨL

CH00-DH5



CH39-DH1



3โL

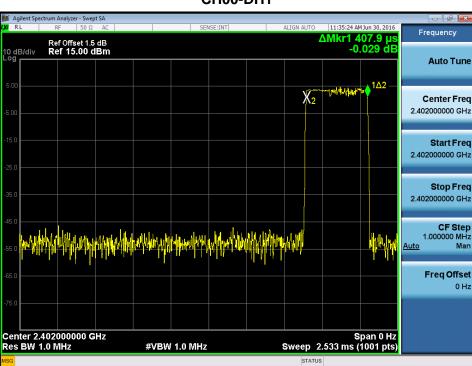
CH39-DH3

CH39-DH5



BĨL

CH78-DH3

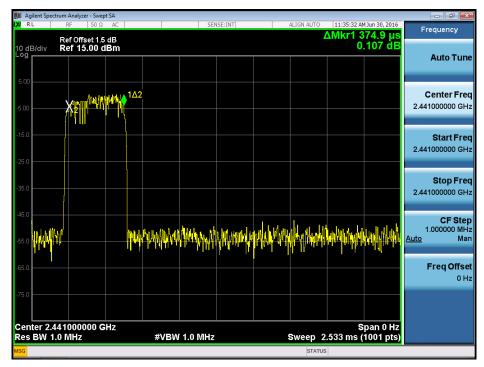

CH78-DH5



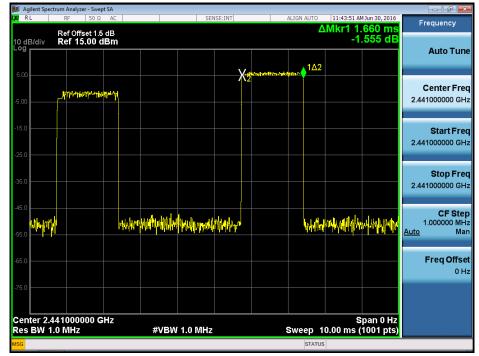
Test Mode :	TX Mode_3Mbps				
Data Packet	Frequency	Pulse Duration(ms)	Dwell Time(s)	Limits(s)	Test Result
DH5	2402	2.9000	0.3093	0.4000	Pass
DH3	2402	1.6600	0.1771	0.4000	Pass
DH1	2402	0.4079	0.0435	0.4000	Pass
DH5	2441	2.8800	0.3072	0.4000	Pass
DH3	2441	1.6600	0.1771	0.4000	Pass
DH1	2441	0.3749	0.0400	0.4000	Pass
DH5	2480	2.9200	0.3115	0.4000	Pass
DH3	2480	1.6600	0.1771	0.4000	Pass
DH1	2480	0.3724	0.0397	0.4000	Pass

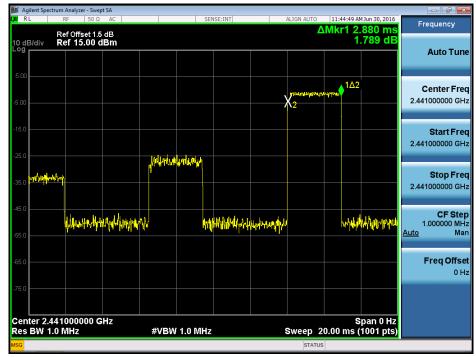
CH00-DH1

CH00-DH3

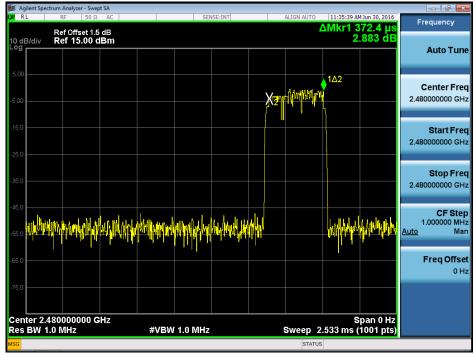


3ĨL

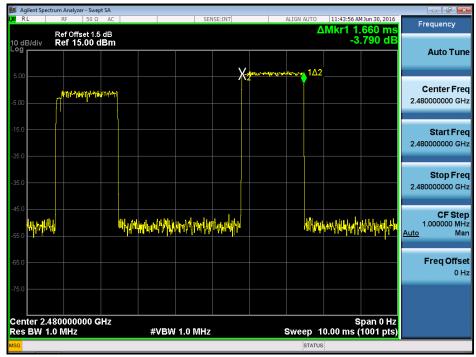

CH00-DH5


CH39-DH1

CH39-DH3



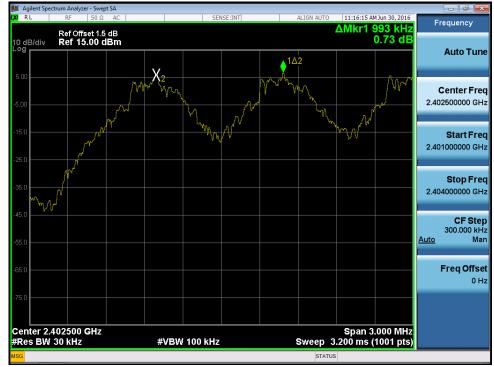
CH39-DH5



3โL

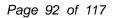
CH78-DH3

BTL


ATTACHMENT G - HOPPING CHANNEL SEPARATION MEASUREMENT

Test Mode : H	Test Mode : Hopping on _1Mbps								
Frequency	Channel Separation	2/3 of 20dB Bandwidth	Test Result						
(MHz)	(MHz)	(MHz)	1 CSt 1 CSuit						
2402	0.993	0.618	Pass						
2441	0.996	0.591	Pass						
2480	0.993	0.590	Pass						

Test Mode :	est Mode : Hopping on _3Mbps									
Frequency (MHz)	Channel Separation (MHz)	2/3 of 20dB Bandwidth (MHz)	Test Result							
2402	0.992	0.804	Pass							
2441	1.008	0.805	Pass							
2480	0.995	0.804	Pass							



Center 2.479500 GHz #Res BW 30 kHz

Alignment Completed

#VBW 100 kHz

0 Hz

Span 3.000 MHz Sweep 3.200 ms (1001 pts)

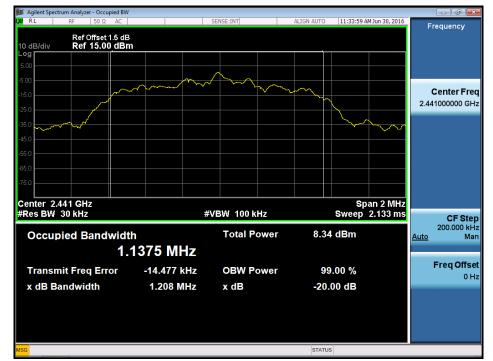
STATUS

ATTACHMENT H - BANDWIDTH

Test Mode : T	Test Mode : TX Mode _1Mbps									
Frequency	20dB Bandwidth	99% Occupied BW	Test Result							
(MHz)	(MHz)	(MHz)	Test Result							
2402	0.926	0.842	Pass							
2441	0.886	0.839	Pass							
2480	0.885	0.834	Pass							

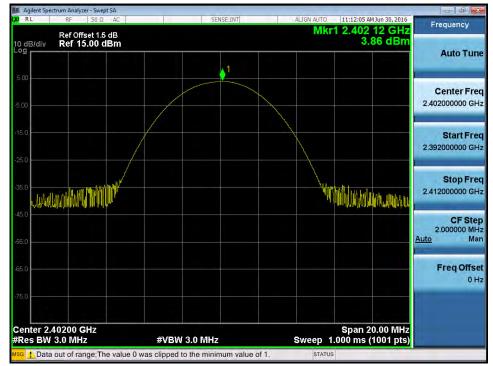
CH39

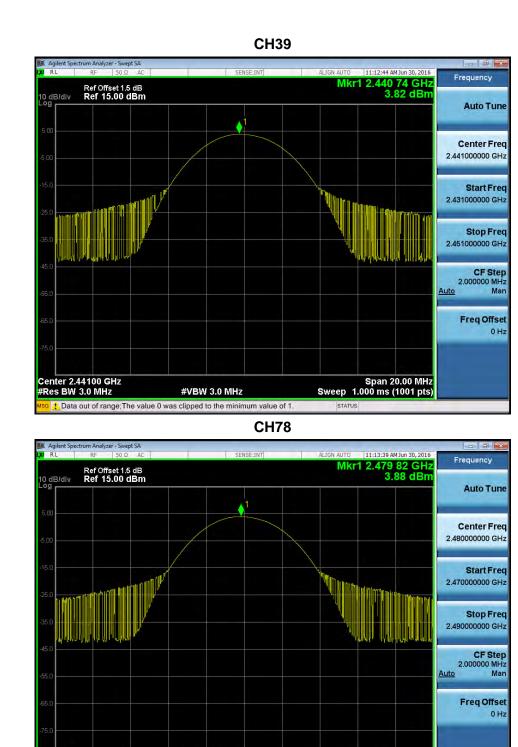
CH78


Test Mode :	Test Mode : TX Mode _3Mbps										
Frequency (MHz)	20dB Bandwidth (MHz)	99% Occupied BW (MHz)	Test Result								
2402	1.205	1.137	Pass								
2441	1.208	1.137	Pass								
2480	1.206	1.138	Pass								

CH39

CH78


ATTACHMENT I - PEAK OUTPUT POWER

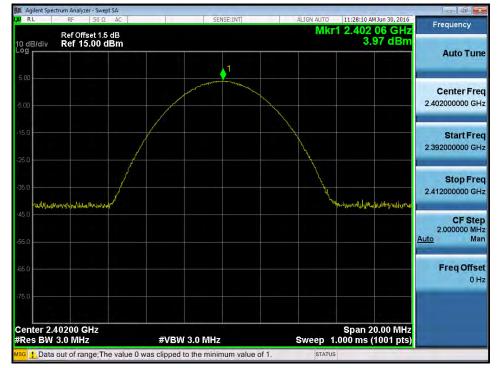


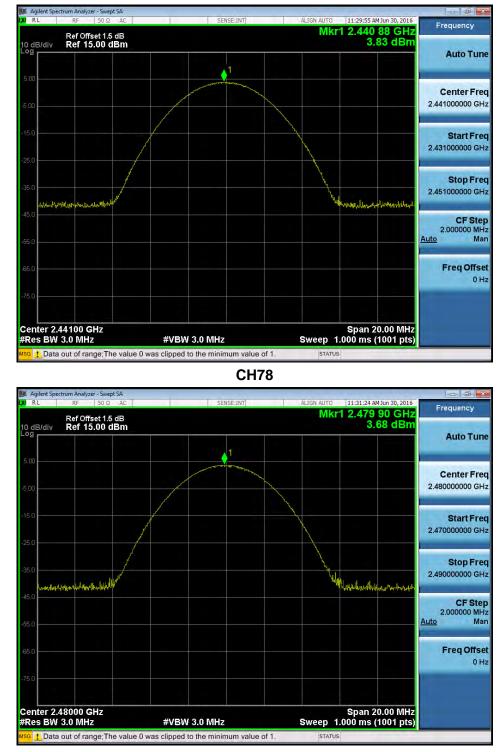
Test Mode :	TX Mode _1Mb	os			
			1		1
Frequency	Conducted Power	Conducted Power	Max. Limit	Max. Limit	Test Result
(MHz)	(dBm)	(W)	(dBm)	(W)	Test Result
2402	3.86	0.0024	30.00	1.00	Pass
2441	3.82	0.0024	30.00	1.00	Pass
2480	3.88	0.0024	30.00	1.00	Pass

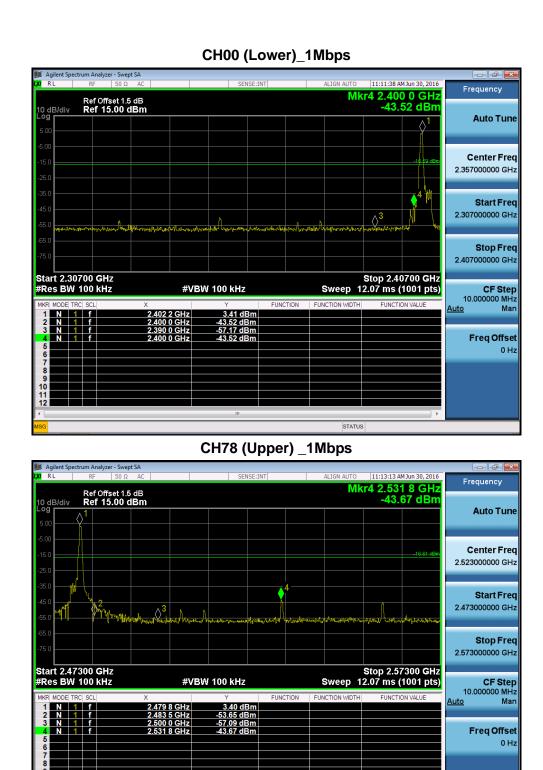
#VBW 3.0 MHz

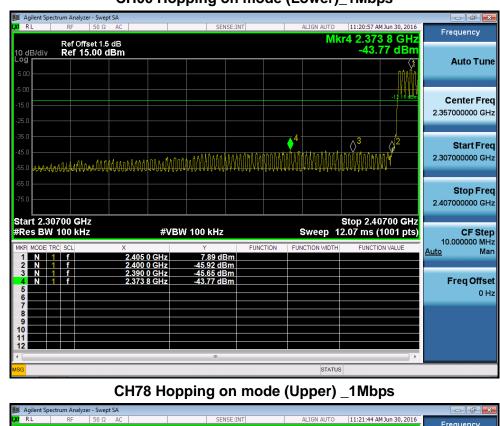
1. Data out of range; The value 0 was clipped to the minimum value of 1.

Span 20.00 MHz Sweep 1.000 ms (1001 pts)

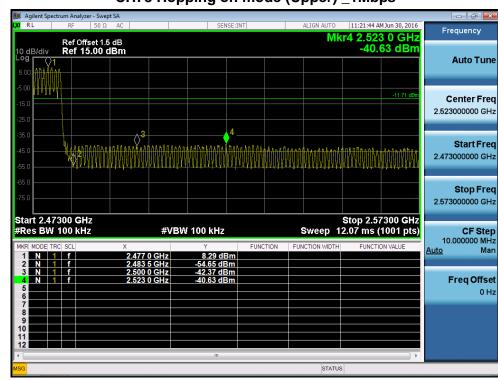

Center 2.48000 GHz #Res BW 3.0 MHz

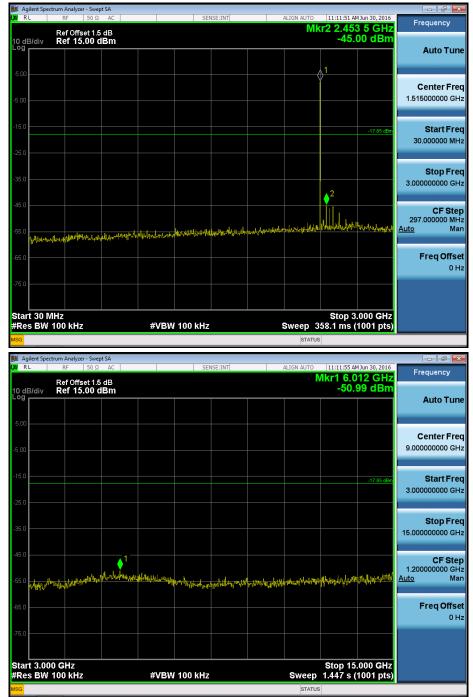

Test Mode :	Test Mode : TX Mode _3Mbps										
	Conducted Dewer	Conducted Dower	Max Limit	Max Limit							
Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result						
2402	3.97	0.0025	21.00	1.00	Pass						
2441	3.83	0.0023	21.00	1.00	Pass						
2480	3.68	0.0023	21.00	1.00	Pass						





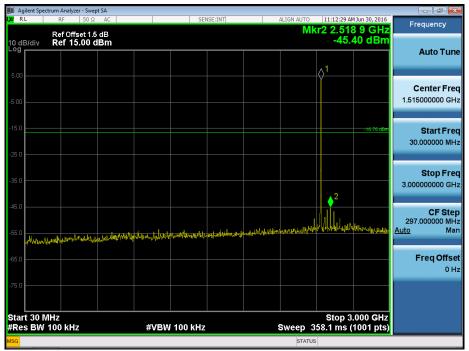
ATTACHMENT J - ANTENNA CONDUCTED SPURIOUS EMISSION



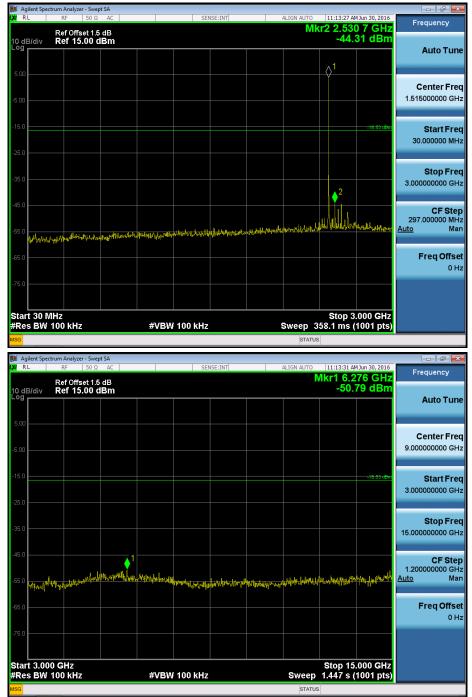


STATUS

CH00 Hopping on mode (Lower)_1Mbps

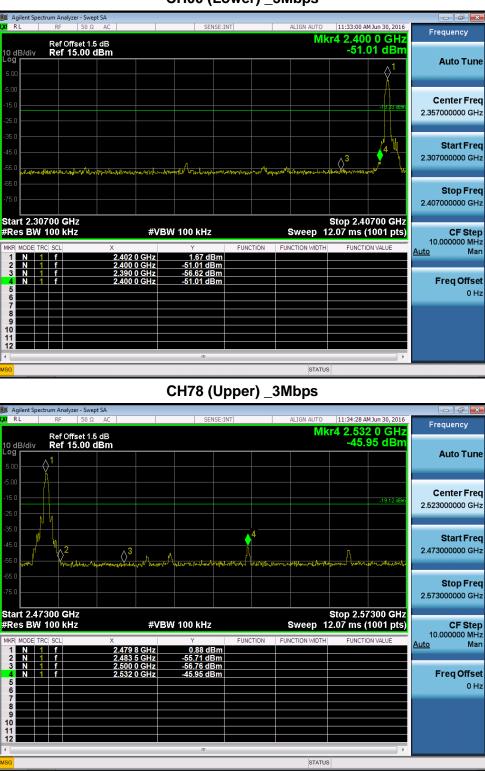


CH00 (10 Harmonic of the frequency) _1Mbps

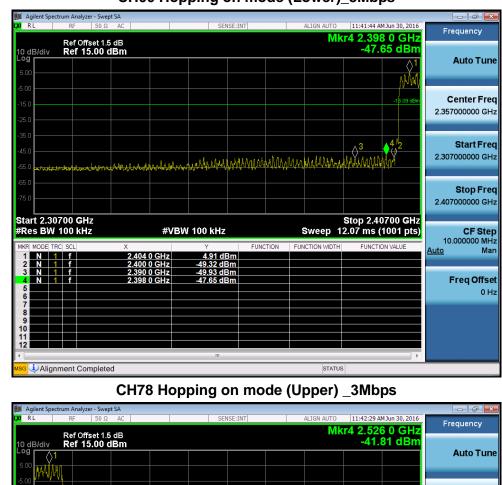


CH39 (10 Harmonic of the frequency) _1Mbps

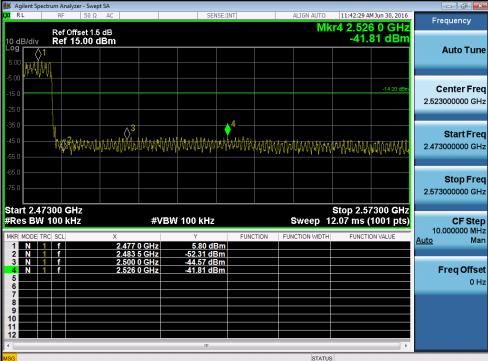
📜 Agilent Spe 🗶 RL	RF 50 Ω	AC		CT1	NSE:INT		ALIGN AUTO	11-10-00 44	M Jun 30, 2016	
N KL				SEI	NDE:111				84 GHz	Frequency
10 dB/div	Ref Offset 1.5 Ref 15.00 d	dB Bm							64 dBm	
10 dB/div Log										Auto Tu
5.00										
										Center Fi
-5.00										9.000000000
-15.0									-16.76 dBm	Start Fr
										3.000000000
-25.0										
										Stop Fr
-35.0										15.000000000
-45.0		1								CF St
		Mullinhan								1.200000000
-55.0	where the property of the second	rhad have a start of the start	had the form pays	And	- International Action	Winning	allow for for for the	and the plant	to deallow a state with a	<u>Auto</u> N
ANA's is				19 19 19 19 19 19 19 19 19 19 19 19 19 1						
-65.0										Freq Off
										0
-75.0										
								Oton 45		
									.000 GHz	
	0 GHz 100 kHz		#VBW	100 kHz			Sweep	1.447 s f	1001 pts)	
start 3.00 #Res BW			#VBW	100 kHz					1001 pts)	
			#VBW	100 kHz			Sweep		1001 pts)	
#Res BW	100 kHz		#VBW				STATUS			
#Res BW	100 kHz ctrum Analyzer - Swept RF 50 Ω	AC	#VBW		NSE:INT		STATUS	11:12:37 A		Fraguanay
#Res BW	100 kHz	AC dB	#VBW				STATUS	11:12:37 A	M Jun 30, 2016	Frequency
#Res BW	100 kHz ctrum Analyzer - Swept RF 50 Ω Ref Offset 1.5	AC dB	#VBW				STATUS	11:12:37 A	MJun 30, 2016	Frequency
#Res BW MSG Agilent Spec RL 10 dB/div	100 kHz ctrum Analyzer - Swept RF 50 Ω Ref Offset 1.5	AC dB	#VBW				STATUS	11:12:37 A	MJun 30, 2016	Frequency
#Res BW	100 kHz ctrum Analyzer - Swept RF 50 Ω Ref Offset 1.5	AC dB	#VBW				STATUS	11:12:37 A	MJun 30, 2016	Frequency Auto Tu
#Res BW MSG Agilent Spec Agilent Agilent Spec Agilent Spe	100 kHz ctrum Analyzer - Swept RF 50 Ω Ref Offset 1.5	AC dB	#VBW				STATUS	11:12:37 A	MJun 30, 2016	Frequency Auto Tu Center Fi
#Res BW Agilent Spec Agilent Spec R O G 5.00	100 kHz ctrum Analyzer - Swept RF 50 Ω Ref Offset 1.5	AC dB	#VBW				STATUS	11:12:37 A	MJun 30, 2016	Frequency Auto Tu Center F
#Res BW wsg aggint Special aggint Sp	100 kHz ctrum Analyzer - Swept RF 50 Ω Ref Offset 1.5	AC dB	#VBW				STATUS	11:12:37 A	MJun 30, 2016	Frequency Auto Tu Center Fi
#Res BW MSG Agilent Spec Agilent Agilent Spec Agilent Spe	100 kHz ctrum Analyzer - Swept RF 50 Ω Ref Offset 1.5	AC dB	#VBW				STATUS	11:12:37 A	MJun 30, 2016	Frequency Auto Tu Center Fr 20.75000000 0 Start Fr
#Res BW xss Agilent Spec X RL 10 dB/div -5.00 -15.0	100 kHz ctrum Analyzer - Swept RF 50 Ω Ref Offset 1.5	AC dB	#VBW				STATUS	11:12:37 A	^{MJun 30, 2016} 503 GHz 34 dBm	Frequency Auto Tu Center Fr 20.75000000 0 Start Fr 15.00000000 0
#Res BW wsg aggint Special aggint Sp	100 kHz ctrum Analyzer - Swept RF 50 Ω Ref Offset 1.5	AC dB	#VBW				STATUS	11:12:37 A	^{MJun 30, 2016} 503 GHz 34 dBm	Frequency Auto Tu Center Fr 20.75000000 0 Start Fr
#Res BW wsg and the second se	100 kHz ctrum Analyzer - Swept RF 50 Ω Ref Offset 1.5	AC dB	#VBW				STATUS	11:12:37 A	^{MJun 30, 2016} 503 GHz 34 dBm	Frequency Auto Tu Center Fr 20.75000000 0 Start Fr
#Res BW xss Agilent Spec X RL 10 dB/div -5.00 -15.0	100 kHz ctrum Analyzer - Swept RF 50 Ω Ref Offset 1.5	AC dB	#VBW				STATUS	11:12:37 A	^{MJun 30, 2016} 503 GHz 34 dBm	Frequency Auto Tu Center Fi 20.750000000 C Start Fi 15.000000000 C
#Res BW wsg 10 Agilent Spece 21 Agilent Spece 25 00 -5 00 -5 00 -5 0 -5 0 -5 0 -5 0 -5	100 kHz ctrum Analyzer - Swept RF 50 Ω Ref Offset 1.5	AC dB	#VBW				STATUS	11:12:37 AI kr1 25.6 -40.	MJun 30, 2016 503 GHz 34 dBm	Frequency Auto Tu Center Fr 20.750000000 0 Start Fr 15.00000000 0 Stop Fr
#Res BW wsg and the second se	100 kHz ctrum Analyzer - Swept RF 50 Ω Ref Offset 1.5	AC dB Bm		SEP	NSE:INT			11:12:37 A	MJun 30, 2016 503 GHz 34 dBm	Frequency Auto Tu Center Fr 20.75000000 0 Start Fr 15.00000000 0 Stop Fr 26.50000000 0
#Res BW vsG 10 dB/div c 0 c 0 c 0 c 0 c 0 c 0 c 0 c	100 kHz ctrum Analyzer - Swept RF 50 Ω Ref Offset 1.5	AC dB		SEP	NSE:INT	A A WALL AND A A A A A A A A A A A A A A A A A A		11:12:37 AI kr1 25.6 -40.	MJun 30, 2016 503 GHz 34 dBm	Frequency Auto Tu Center Fri 20.75000000 0 Start Fri 15.00000000 0 Stop Fri 26.50000000 0 CF St 1.150000000 0
#Res BW wsg 10 Agilent Spece 21 Agilent Spece 25 00 -5 00 -5 00 -5 0 -5 0 -5 0 -5 0 -5	100 kHz ctrum Analyzer - Swept RF 50 Ω Ref Offset 1.5	AC dB Bm		SEP	NSE:INT			11:12:37 AI kr1 25.6 -40.	MJun 30, 2016 503 GHz 34 dBm	Frequency Auto Tu Center Fr 20.75000000 0 Start Fr 15.00000000 0 Stop Fr 26.50000000 0
#Res BW vsG 10 dB/div 500 -500 -5	100 kHz ctrum Analyzer - Swept RF 50 Ω Ref Offset 1.5	AC dB Bm		SEP	NSE:INT			11:12:37 AI kr1 25.6 -40.	MJun 30, 2016 503 GHz 34 dBm	Frequency Auto Tu Center Fr 20.750000000 C Start Fr 15.00000000 C Stop Fr 26.50000000 C CF St 1.150000000 C
#Res BW vsG 10 dB/div 10 dB/div 500 -500 -500	100 kHz ctrum Analyzer - Swept RF 50 Ω Ref Offset 1.5	AC dB Bm		SEP	NSE:INT			11:12:37 AI kr1 25.6 -40.	MJun 30, 2016 503 GHz 34 dBm	Frequency Auto Tu Center Fr 20.750000000 C Start Fr 15.00000000 C Stop Fr 26.50000000 C CF St 1.150000000 C Auto Tu Creating Creating Stop Fr 26.50000000 C Freq Offs
#Res BW vsG 10 dB/div 500 -500 -5	100 kHz ctrum Analyzer - Swept RF 50 Ω Ref Offset 1.5	AC dB Bm		SEP	NSE:INT			11:12:37 AI kr1 25.6 -40.	MJun 30, 2016 503 GHz 34 dBm	Frequency Auto Tu Center Fr 20.750000000 C Start Fr 15.00000000 C Stop Fr 26.50000000 C CF St 1.150000000 C Auto Tu Creating Creating Stop Fr 26.50000000 C Freq Offs
#Res BW vsG 10 dB/div 500 -500 -5	100 kHz ctrum Analyzer - Swept RF 50 Ω Ref Offset 1.5	AC dB Bm		SEP	NSE:INT			11:12:37 AI kr1 25.6 -40.	MJun 30, 2016 503 GHz 34 dBm	Frequency Auto Tu Center Fr 20.750000000 C Start Fr 15.00000000 C Stop Fr 26.50000000 C CF St 1.150000000 C Auto Tu Creating Creating Stop Fr 26.50000000 C Freq Offs
#Res BW vsg 10 dB/div 500 -500 -5	100 kHz ctrum Analyzer - Swept RF 50 Ω Ref Offset 1.5	AC dB Bm		SEP	NSE:INT			11:12:37 AI kr1 25.6 -40.	MJun 30, 2016 503 GHz 34 dBm	Frequency Auto Tu Center Fr 20.750000000 C Start Fr 15.00000000 C Stop Fr 26.50000000 C CF St 1.150000000 C Auto Tu Creating Creating Stop Fr 26.50000000 C Freq Offs
#Res BW	100 kHz ctrum Analyzer - Swept RF 50 Ω Ref Offset 1.5 Ref 15.00 d	AC dB Bm		SEP	NSE:INT			11:12:37 Al kr1 25.6 -40.	MJun 30, 2016 503 GHz 34 dBm 	Frequency Auto Tu Center Fr 20.750000000 C Start Fr 15.00000000 C Stop Fr 26.50000000 C CF St 1.150000000 C Auto Tu Creating Creating Stop Fr 26.50000000 C Freq Offs
#Res BW vsg 10 dB/div 500 -500 -5	100 KHz ctrum Analyzer - Swept Ref 050 Ω Ref 0ffset 1.5 Ref 15.00 d 	AC dB Bm		SEP				11:12:37 Al kr1 25.6 -40.	MJun 30, 2016 503 GHz 34 dBm	Frequency Auto Tu Center Fr 20.750000000 C Start Fr 15.00000000 C Stop Fr 26.50000000 C CF St 1.150000000 C

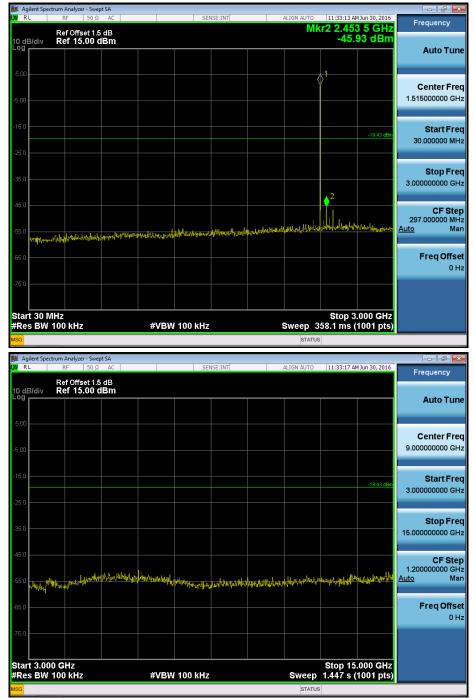


CH78 (10 Harmonic of the frequency) _1Mbps

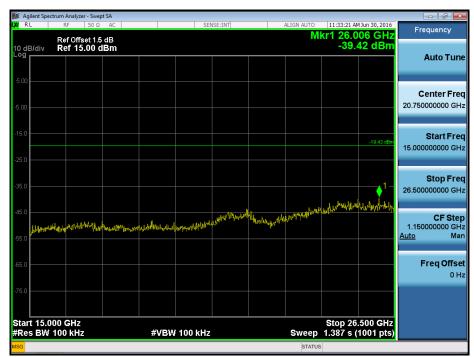

Agilent Spectrum Analyzer - Sv RL RF 50			SEI	SE:INT		ALIGN AUTO	11:13:35 A	M Jun 30, 2016	
Ref Offset	.5 dB								Frequency
o dB/div Ref 15.00	dBm								Auto Tu
5.00									
5.00									Center Fi 20.75000000 G
5.0								-16.53 dBm	Diana E
									Start F 15.000000000
25.0									Stop F
95.0									26.500000000
15.0 1 11111111111111111111111111111111111				I WHITH WHAT	Mului a Mit	MAN ANALAM	h far ann an the against	inanang galanda	CF St
55.0	y dan waaliyyydd	water	Kina (na faran da fa Faran da faran da fara	,					1.150000000 <u>Auto</u>
55.0									Freq Off
									C
75.0									
tart 15.000 GHz Res BW 100 kHz		#VB14/	100 kHz			Sweep	Stop 26	500 GHz (1001 pts)	
SG		77 D 99	TOWKI			STATUS		(Toor pts)	

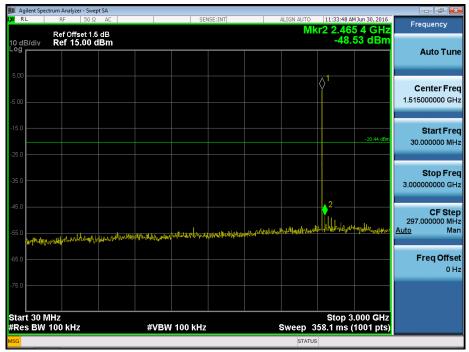
BL



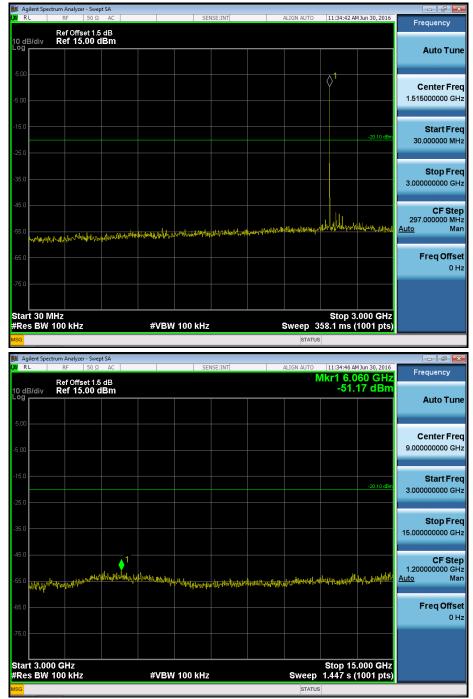


CH00 (Lower) _3Mbps


CH00 Hopping on mode (Lower)_3Mbps



CH00 (10 Harmonic of the frequency) _3Mbps



CH39 (10 Harmonic of the frequency) _3Mbps

	ctrum Analyzer - Swep	AC			ICC. THIT			11.00.50 4		6
XI RL	RF 50 Ω			SEN	ISE:INT		ALIGN AUTO		MJun 30, 2016	Frequency
	Ref Offset 1.5 Ref 15.00 d	dB							93 dBm	
10 dB/div	Kei 15.00 u	ып								Auto Tu
5.00										
										Center Fr
-5.00										9.000000000 G
-5.00										
-15.0										Start Fr
									-20.44 dBm	3.00000000 G
-25.0										
										Stop Fr
-35.0										15.000000000 G
-45.0										
		\								CF St 1.200000000 G
-55.0 11. 1	1. merunater	and make the	myrumhym	Lau	t bint at 1	.W	فرياب الاعتبابية	shul and	and a soft of the	<u>Auto</u> N
Mug P	. All Manakok			anallanaphy.ettr		uniter and the second	A ALLA PUT AL	a line a line of the second		
-65.0										Freq Off
-65.0										0
										Ů
-75.0										
								Stop 15	.000 GHz	
Start 3 00								atop 13	.000 9112	
Start 3.00 #Res BW			#VBW	100 kHz			Sweep	1.447 s ((1001 pts)	
Start 3.00 #Res BW			#VBW	100 kHz					(1001 pts)	
			#VBW	100 kHz			Sweep Status		(1001 pts)	
#Res BW	100 kHz		#VBW		ICENTRIC		STATUS		(1001 pts)	
#Res BW	100 kHz ctrum Analyzer - Swep RF 50 Ω	AC	#VBW		ISE:INT		STATUS	11:33:56 A	(1001 pts) MJun 30, 2016	Frequency
#Res BW //SG // Agilent Spec	100 kHz ctrum Analyzer - Swep RF 50 Ω Ref Offset 1.5	AC dB	#VBW		ISE:INT		STATUS	11:33:56 A	(1001 pts)	Frequency
#Res BW	100 kHz ctrum Analyzer - Swep RF 50 Ω	AC dB	#VBW		ISE:INT		STATUS	11:33:56 A	(1001 pts) MJun 30, 2016)97 GHz	Frequency
#Res BW //SG // Agilent Spec	100 kHz ctrum Analyzer - Swep RF 50 Ω Ref Offset 1.5	AC dB	#VBW		ISE:INT		STATUS	11:33:56 A	(1001 pts) MJun 30, 2016)97 GHz	Frequency
#Res BW //SG // Agilent Spec	100 kHz ctrum Analyzer - Swep RF 50 Ω Ref Offset 1.5	AC dB	#VBW		ISE:INT		STATUS	11:33:56 A	(1001 pts) MJun 30, 2016)97 GHz	Frequency
#Res BW	100 kHz ctrum Analyzer - Swep RF 50 Ω Ref Offset 1.5	AC dB	#VBW		ISE:INT		STATUS	11:33:56 A	(1001 pts) MJun 30, 2016)97 GHz	Frequency Auto Tu
#Res BW	100 kHz ctrum Analyzer - Swep RF 50 Ω Ref Offset 1.5	AC dB	#VBW		ISE:INT		STATUS	11:33:56 A	(1001 pts) MJun 30, 2016)97 GHz	Frequency Auto Tu Center Fr
#Res BW #SG #SG #Agilent Spec # Agilent Spec # Agil	100 kHz ctrum Analyzer - Swep RF 50 Ω Ref Offset 1.5	AC dB	#VBW		ISE:INT		STATUS	11:33:56 A	(1001 pts) MJun 30, 2016)97 GHz	Frequency Auto Tu Center Fr
#Res BW Asg Agilent Spece X RL 10 dB/div 5.00 -5.00	100 kHz ctrum Analyzer - Swep RF 50 Ω Ref Offset 1.5	AC dB	#VBW		ISE:INT		STATUS	11:33:56 A	(1001 pts) MJun 30, 2016)97 GHz	Frequency Auto Tu Center Fr 20.75000000 G
#Res BW #SG #SG #Agilent Spec # Agilent Spec # Agil	100 kHz ctrum Analyzer - Swep RF 50 Ω Ref Offset 1.5	AC dB	#VBW		KSE:INT		STATUS	11:33:56 A	(1001 pts) MJun 30, 2016 97 GHz 59 dBm	Frequency Auto Tu Center Fr 20.75000000 C Start Fr
#Res BW Asg Agilent Spec W Agilent Spec To dB/div O G S CO -S CO -	100 kHz ctrum Analyzer - Swep RF 50 Ω Ref Offset 1.5	AC dB	#VBW		ISE:INT		STATUS	11:33:56 A	(1001 pts) MJun 30, 2016)97 GHz	Frequency Auto Tu Center Fr 20.75000000 G Start Fr
#Res BW Asg Agilent Spece X RL 10 dB/div 5.00 -5.00	100 kHz ctrum Analyzer - Swep RF 50 Ω Ref Offset 1.5	AC dB	#VBW		ise:int		STATUS	11:33:56 A	(1001 pts) MJun 30, 2016 97 GHz 59 dBm	Frequency
#Res BW #ssg #ssg # Agitent Species # RL 10 dB/div og -5.00 -5.00 -5.00 -5.00 -25.0	100 kHz ctrum Analyzer - Swep RF 50 Ω Ref Offset 1.5	AC dB	#VBW		ISE:INT		STATUS	11:33:56 A	(1001 pts) MJun 30, 2016 97 GHz 59 dBm	Frequency Auto Tu Center Fr 20.75000000 G Start Fr
#Res BW Asg Agilent Spec W Agilent Spec To dB/div O G S CO -S CO -	100 kHz ctrum Analyzer - Swep RF 50 Ω Ref Offset 1.5	AC dB	#VBW		ISE:INT		STATUS	11:33:56 A	(1001 pts) MJun 30, 2016 97 GHz 59 dBm	Frequency Auto Tu Center Fr 20.75000000 G Start Fr 15.00000000 G
#Res BW #ssg #ssg # Agitent Species # RL 10 dB/div og -5.00 -5.00 -5.00 -5.00 -25.0	100 kHz ctrum Analyzer - Swep RF 50 Ω Ref Offset 1.5	AC dB	#VBW		KSE:INT		STATUS	11:33:56 A kr1 25.C -40.	(1001 pts) Mun 30, 2016 D97 GHz 59 dBm	Frequency Auto Tu Center Fr 20.75000000 C Start Fr 15.00000000 C
#Res BW #ssg #ssg # Agitent Species # RL 10 dB/div og -5.00 -5.00 -5.00 -5.00 -25.0	100 kHz	AC dB		SEN				11:33:56 A kr1 25.C -40.	(1001 pts) MJun 30, 2016 97 GHz 59 dBm	Frequency Auto Tu Center Fr 20.75000000 C Start Fr 15.00000000 C Stop Fr 26.50000000 C
#Res BW KSG	100 kHz	AC dB BM		SEN		The second se		11:33:56 A kr1 25.C -40.	(1001 pts) Mun 30, 2016 D97 GHz 59 dBm	Frequency Auto Tu Center Fr 20.75000000 G Start Fr 15.00000000 G Stop Fr 26.50000000 G
#Res BW KSG	100 kHz ctrum Analyzer - Swep RF 50 Ω Ref Offset 1.5	AC dB		SEN				11:33:56 A kr1 25.C -40.	(1001 pts) Mun 30, 2016 D97 GHz 59 dBm	Frequency Auto Tu Center Fr 20.75000000 G Start Fr 15.00000000 G Stop Fr 26.50000000 G
#Res BW #ses #ses 10 dB/div og 5 00 -500 <td>100 kHz</td> <td>AC dB BM</td> <td></td> <td>SEN</td> <td></td> <td></td> <td></td> <td>11:33:56 A kr1 25.C -40.</td> <td>(1001 pts) Mun 30, 2016 D97 GHz 59 dBm</td> <td>Frequency Auto Tu Center Fr 20.75000000 G Start Fr 15.00000000 G Stop Fr 26.50000000 G</td>	100 kHz	AC dB BM		SEN				11:33:56 A kr1 25.C -40.	(1001 pts) Mun 30, 2016 D97 GHz 59 dBm	Frequency Auto Tu Center Fr 20.75000000 G Start Fr 15.00000000 G Stop Fr 26.50000000 G
#Res BW rss	100 kHz	AC dB BM		SEN				11:33:56 A kr1 25.C -40.	(1001 pts) Mun 30, 2016 D97 GHz 59 dBm	Frequency Auto Tu Center Fr 20.750000000 C Start Fr 15.00000000 C Stop Fr 26.50000000 C CF St 1.150000000 C
#Res BW #ses 10 10 450 25 -500 <td>100 kHz</td> <td>AC dB BM</td> <td></td> <td>SEN</td> <td></td> <td></td> <td></td> <td>11:33:56 A kr1 25.C -40.</td> <td>(1001 pts) Mun 30, 2016 D97 GHz 59 dBm</td> <td>Frequency Auto Tu Center Fr 20.75000000 G Start Fr 15.00000000 G Stop Fr 26.50000000 G</td>	100 kHz	AC dB BM		SEN				11:33:56 A kr1 25.C -40.	(1001 pts) Mun 30, 2016 D97 GHz 59 dBm	Frequency Auto Tu Center Fr 20.75000000 G Start Fr 15.00000000 G Stop Fr 26.50000000 G
#Res BW #css #sss 10 dB/div cs 00 .5	100 kHz	AC dB BM		SEN				11:33:56 A kr1 25.C -40.	(1001 pts) Mun 30, 2016 D97 GHz 59 dBm	Frequency Auto Tu Center Fit 20.750000000 G Start Fit 15.00000000 G Stop Fit 26.50000000 G CF St 1.150000000 G Auto Tu CF St 1.150000000 G Freq Offs
#Res BW rss	100 kHz	AC dB BM		SEN				11:33:56 A kr1 25.C -40.	(1001 pts) Mun 30, 2016 D97 GHz 59 dBm	Frequency Auto Tu Center Fit 20.750000000 G Start Fit 15.00000000 G Stop Fit 26.50000000 G CF St 1.150000000 G Auto Tu CF St 1.150000000 G Freq Offs
#Res BW #css #sss 10 dB/div cs 00 .5	100 kHz	AC dB BM		SEN				11:33:56 A kr1 25.C -40.	(1001 pts) Mun 30, 2016 D97 GHz 59 dBm	Start Fr 20.750000000 G Start Fr 15.00000000 G Stop Fr 26.50000000 G CF Si 1.150000000 G Auto Tu Creater Fr 26.50000000 G Stop Fr 26.50000000 G Freq Off
#Res BW 456	100 kHz	AC dB BM		SEN				11:33:56 AK Kr1 25.0 -40.	1001 pts)	Start Fr 20.75000000 G Start Fr 15.00000000 G Stop Fr 26.50000000 G L150000000 G Auto Tuto Freq Offs 0
#Res BW #css #sss 10 dB/div cs 00 .5	100 KHZ	AC dB BM		SEN	al and a second		STATUS	11:33:56 Al kr1 25.0 -40.	(1001 pts) Mun 30, 2016 D97 GHz 59 dBm	Stort Frequency Auto Tu Center Fr 20.750000000 G Start Fr 15.00000000 G Stop Fr 26.500000000 G Auto Tu CF St 1.150000000 G Auto Tu Freq Offs 0

CH78 (10 Harmonic of the frequency) _3Mbps

	ctrum Analyzer - Swej									
XU RL	RF 50 Ω			SEI	NSE:INT		ALIGN AUTO		MJun 30, 2016	Frequency
10 dB/div	Ref Offset 1.5 Ref 15.00 (iBm						-40.	79 dBm	Auto Tur
-5.00										Center Fre 20.750000000 GH
-15.0									-20.10 dBm	Start Fre 15.000000000 Gi
35.0								in a rear and the second second	1 Ludi asidaa	Stop Fre 26.500000000 GI
45.0	her man here have a start of the second start of the second start of the second start of the second start of the	the phanese	n y y y y y y y y y y y y y y y y y y y	Madinianaliana	uproseled hade	ht.outopicidel.httl	ALE		i di Sulphi i Lord	CF Ste 1.150000000 G <u>Auto</u> M
65.0										Freq Offs 0
75.0	000 GHz							Stop 26	.500 GHz	
	100 kHz		#VBW	100 kHz			Sweep	1.387 s (1001 pts)	