

FCC TEST REPORT FCC PART 15 SUBPART C 15.236

Test report On Behalf of Innovative Concepts and Design LLC For Wireless Microphone

Model No.: UHF-6000HHM

FCC ID: 2AE6GUHF-6000HHM-R2

Prepared for : Innovative Concepts and Design LLC 107 Trumbull Street, Bldg F8, Elizabeth, New Jersey, 07206-2165 United States

Prepared By : Shenzhen HUAK Testing Technology Co., Ltd. 1-2/F, Building 19, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Date of Test: Dec. 10, 2018 ~ Dec. 17, 2018

Date of Report: Dec. 17, 2018

Report Number: HK1811141563E

TEST RESULT CERTIFICATION

Applicant's name	Innovative Concepts and Design LLC				
107 Trumbull Street, Bldg F8, Elizabeth, New Jersey, 07206-2165 Un States					
Manufacture's Name	Innovative Concepts and Design LLC				
Address	07 Trumbull Street, Bldg F8, Elizabeth, New Jersey, 07206-2165 United States				
Product description					
Trade Mark:	Gemini				
Product name	Wireless Microphone				
Model and/or type reference	UHF-6000HHM				
Standards	FCC Rules and Regulations Part 15 Subpart C Section 15.236 ANSI C63.10: 2013				

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen HUAK Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen HUAK Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Date of Test	
Date (s) of performance of tests:	Dec. 10, 20
Date of Issue:	Dec. 17, 20

18 ~ Dec. 17, 2018

18

Test Result: Pass

2

2

Testing Engineer

Goog Dian (Gary Qian) Edan Mu

Technical Manager

(Eden Hu)

Authorized Signatory :

(Jason Zhou)

Table of Contents	Page
1. TEST SUMMARY	4
2 . GENERAL INFORMATION	5
2.1 GENERAL DESCRIPTION OF EUT	5
2.2 OPERATION OF EUT DURING TESTING	6
2.3 DESCRIPTION OF TEST SETUP	6
2.4 MEASUREMENT INSTRUMENTS LIST	7
3. MAXIMUM RADIATED POWER	8
3.1TEST LIMIT	8
3.2. MEASUREMENT PROCEDURE	8
3.3. TEST SETUP	8
3.4. TEST RESULT	9
4. OCCUPIED BANDWIDTH	10
4.1TEST LIMIT	10
4.2. MEASUREMENT PROCEDURE	10
4.3. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	10
4.4. MEASUREMENT RESULTS	11
5. EMISSIONS WITHIN THE BAND AND OUTSIDE THIS BAND	13
5.1TEST LIMIT	13
5.2. MEASUREMENT PROCEDURE	13
5.3. TEST SETUP	14
5.4. TEST RESULT	15
6. FREQUENCY STABILITY	20
6.1. TEST LIMIT	20
6.2. MEASUREMENT PROCEDURE	20
6.3. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	20
6.4. MEASUREMENT RESULTS	21
7. PHOTOGRAPH OF TEST	23
8. PHOTOGRAPHS OF EUT	24

1. TEST SUMMARY

1.1 TEST PROCEDURES AND RESULTS

FCC RULES	DESCRIPTION OF TEST	RESULT
§15.236(d)	Maximum radiated power	Compliant
§15.236(f)(2)	Occupied bandwidth	Compliant
§15.236(f)(3)	Frequency stability	Compliant
§15.236(g)	Emissions within the band and outside this band	Compliant
§15.207(a)	Conducted Emission	N/A

Note: N/A means it's not applicable to this item.

1.2 TEST FACILITY

Test Firm	:	Shenzhen HUAK Testing Technology Co., Ltd.
Address	:	1-2/F, Building 19, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China
Designation Number:	:	CN1229

Test Firm Registration Number : 616276

1.3 MEASUREMENT UNCERTAINTY

Measurement Uncertainty		
Conducted Emission Expanded Uncertainty	=	2.23dB, k=2
Radiated emission expanded uncertainty(9kHz-30MHz)	=	3.08dB, k=2
Radiated emission expanded uncertainty(30MHz-1000MHz)	=	4.42dB, k=2
Radiated emission expanded uncertainty(Above 1GHz)	=	4.06dB, k=2

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Operation Frequency	512MHz~537.5MHz
Maximum Radiated Power	9.42dBm
Modulation	FM
Number of channels	256(Channel Spacing is 100kHz)
Antenna Gain	0dBi
Antenna Designation	Integrated Antenna (Met 15.203 Antenna requirement)
Hardware Version	UHF-6000HHM REV-D1
Software Version	UHF-6000HHM REV-D1
Power Supply	DC 3.0V by Battery

2.2 OPERATION OF EUT DURING TESTING

NO.	TEST MODE DESCRIPTION				
1	Transmitting mode(Low channel)				
2	Transmitting mode(Middle channel)				
3	Transmitting mode(High channel)				
Note:					
1. For Radiated Emission, 3axis were chosen for testing for each applicable mode.					

2. All the requirements have been tested by modulating the transmitter with a 2.5 kHz tone at a fixed level which set to the manufacturer's maximum rated input to the modulator.

2.3 DESCRIPTION OF TEST SETUP

Operation of EUT during Radiation and Above1GHz Radiation testing:

2.4 MEASUREMENT INSTRUMENTS LIST

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	L.I.S.N. Artificial Mains Network	R&S	ENV216	HKE-002	Dec. 28, 2017	1 Year
2.	Receiver	R&S	ESCI 7	HKE-010	Dec. 28, 2017	1 Year
3.	RF automatic control unit	Tonscend	JS0806-2	HKE-060	Dec. 28, 2017	1 Year
4.	Spectrum analyzer	R&S	FSP40	HKE-025	Dec. 28, 2017	1 Year
5.	Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 28, 2017	1 Year
6.	Preamplifier	Schwarzbeck	BBV 9743	HKE-006	Dec. 28, 2017	1 Year
7.	EMI Test Receiver	Rohde & Schwarz	ESCI 7	HKE-010	Dec. 28, 2017	1 Year
8.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	HKE-012	Dec. 28, 2017	1 Year
9.	Loop Antenna	Schwarzbeck	FMZB 1519 B	HKE-014	Dec. 28, 2017	1 Year
10.	Horn Antenna	Schewarzbeck	9120D	HKE-013	Dec. 28, 2017	1 Year
11.	Pre-amplifier	EMCI	EMC05184 5SE	HKE-015	Dec. 28, 2017	1 Year
12.	Pre-amplifier	Agilent	83051A	HKE-016	Dec. 28, 2017	1 Year
13.	EMI Test Software EZ-EMC	Tonscend	JS1120-B Version	HKE-083	Dec. 28, 2017	N/A
14.	Shielded room	Shiel Hong	4*3*3	HKE-039	Dec. 28, 2017	3 Year

3. MAXIMUM RADIATED POWER

3.1TEST LIMIT

Standard FCC 15.236

In the bands allocated and assigned for broadcast television and in the 600 MHz service band: 50 mW EIRP; In the 600 MHz guard bands including the duplex gap: 20 mW EIRP

3.2. MEASUREMENT PROCEDURE

- 1. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. EIRP[dBm] = E[dB(μ V)/m]- 95.2

3.3. TEST SETUP

RADIATED EMISSION TEST SETUP 30MHz-1000MHz

3.4. TEST RESULT

Frequency MHz	Polarization	Reading dBm	Factor dB	Level dBm Peak	Limit dBm Average	Margin dB	Pass/Fail
512.0	Horizontal	-3.08	10.52	7.44	17.00	9.56	Pass
512.0	Vertical	-1.10	10.52	9.42	17.00	7.58	Pass
524.8	Horizontal	-3.16	10.52	7.36	17.00	9.64	Pass
524.8	Vertical	-1.29	10.52	9.23	17.00	7.77	Pass
537.5	Horizontal	-3.34	10.52	7.18	17.00	9.82	Pass
537.5	Vertical	-1.31	10.52	9.21	17.00	7.79	Pass

4. OCCUPIED BANDWIDTH 4.1TEST LIMIT

One or more adjacent 25 kHz segments within the assignable frequencies may be combined to form a channel whose maximum bandwidth shall not exceed 200 kHz. The operating bandwidth shall not exceed 200 kHz.

4.2. MEASUREMENT PROCEDURE

- 1. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2, Set the EUT Work on operation frequency.
- 3. Set Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a channel The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW and video bandwidth (VBW) shall be approximately three times RBW; Sweep = auto; Detector function = peak
- 4. Set SPA Trace 1 Max hold, then View.

4.3. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

4.4. MEASUREMENT RESULTS

Test Channel	hannel -26dBc EBW (kHz) 99% OBW (kHz)		Limit (kHz)
512.0MHz	110.5	68.588	200
524.8MHz	111.4	68.659	200
537.5MHz	110.8	68.543	200

TEST PLOT OF BANDWIDTH-Low Channel

TEST PLOT OF BANDWIDTH-Middle Channel

TEST PLOT OF BANDWIDTH-High Channel

Keysight Spectrum Analyzer - Occupied B\	V				
RF 50 Ω AC Center Freg 537.500000 50 Ω AC	MHz Center F	NSE:INT req: 537.500000 MHz	ALIGN AUTO Radio Sto	d: None	Frequency
	#IFGain:Low #Atten: 1	eRun Avg∣Hold: l0 dB	>10/10 Radio De	vice: BTS	
10 dB/div Ref 0.00 dBm					
-10.0					Center Fred
-20.0					537.500000 MHz
-30.0	-	\sim			
-40.0		<u>\</u>			
-50.0					
-60.0		v v			
-70.0 As your And how month	n l		how we served as		
				a for the first of	
-50.0					
Center 537.5 MHz	#\/	RIA(10 kHz	Spa Sween	n 300 kHz	CF Step
WICCS DW SIGN	<i>#</i> •••	544 10 ((12	онсер	40.07 1113	30.000 kHz Auto Man
Occupied Bandwidt	th	Total Power	-14.4 dBm		
6	8.543 kHz				Freq Offset
Transmit Freg Error	-173 Hz	% of OBW Powe	er 99.00 %		0 Hz
x dB Bandwidth	110.8 kHz	x dB	-26.00 dB		
MSG			STATUS		

5. EMISSIONS WITHIN THE BAND AND OUTSIDE THIS BAND

5.1TEST LIMIT

Emissions within the band from one megahertz below to one megahertz above the carrier frequency shall comply with the emission mask in §8.3 of ETSI EN 300 422-1 V1.4.2 (2011-08).

Emissions outside of this band shall comply with the limits specified in section 8.4 of ETSI EN 300 422-1 V1.4.2 (2011-08).

5.2. MEASUREMENT PROCEDURE

- 1. The EUT was placed on the top of the turntable 0.8 or 1.5 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. EIRP[dBm] = E[dB(μ V)/m]- 95.2

Spectrum Parameter	Setting
Start ~Stop Frequency	9KHz~150KHz/RB 200Hz for QP
Start ~Stop Frequency	150KHz~30MHz/RB 9KHz for QP
Start ~Stop Frequency	30MHz~1000MHz/RB 120KHz for QP
Start ~Stop Frequency	1000MHz~6000MHz/RB 1MHz for QP

The following table is the setting of spectrum analyzer and receiver.

Receiver Parameter	Setting
Start ~Stop Frequency	9KHz~150KHz/RB 200Hz for QP
Start ~Stop Frequency	150KHz~30MHz/RB 9KHz for QP
Start ~Stop Frequency	30MHz~1000MHz/RB 120KHz for QP
Start ~Stop Frequency	1000MHz~6000MHz/RB 1MHz for QP

Radiated Emission Test-Setup Frequency Below 30MHz

RADIATED EMISSION TEST SETUP 30MHz-1000MHz

RADIATED EMISSION TEST SETUP ABOVE 1000MHz

5.4. TEST RESULT

EMISSION MASK(Emissions within the band)-Low Channel

EMISSION MASK(Emissions within the band)-Middle Channel

Note: The carrier power is the ref level, and The factor had been edited in the "Input Correction" of the Spectrum Analyzer.

RADIATED EMISSION BELOW 30MHZ

Note: No other emissions found between lowest internal used/generated frequencies to 30MHz.

EUT :	Wireless Microphone	Model Name. :	UHF-6000HHM
Temperature :	20 ℃	Relative Humidtity:	48%
Pressure :	1010 hPa	Test Voltage :	Normal
Test Mode :	Transmitting at 537.5MHz	Polarization :	Horizontal

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	•	MHz	dBm	dBm	dBm	dBm	dB		cm	degree	
1		89.8162	-85.65	17.31	-68.34	-54.00	-14.34	peak			
2		141.5500	-95.22	27.20	-68.02	-36.00	-32.02	peak			
3		232.0832	-89.34	24.14	-65.20	-36.00	-29.20	peak			
4		332.3167	-91.20	29.57	-61.63	-36.00	-25.63	peak			
5	*	537.5007	-29.13	33.39	4.26			peak			
6		802.7667	-102.20	39.21	-62.99	-54.00	-8.99	peak			

RESULT: PASS

HU	AF
×A	⊉≱
N.	وطحلعه

Report No.: HK1811141563E

EUT :	Wireless Microphone	Model Name. :	UHF-6000HHM
Temperature :	20 ℃	Relative Humidtity :	48%
Pressure :	1010 hPa	Test Voltage :	Normal
Test Mode :	Transmitting at 537.5MHz	Polarization :	Vertical

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	•	MHz	dBm	dBm	dBm	dBm	dB		cm	degree	
1		232.0832	-92.84	24.14	-68.70	-36.00	-32.70	peak			
2		332.3167	-95.70	29.57	-66.13	-36.00	-30.13	peak			
3	*	537.5007	-27.13	33.39	6.26			peak			
4		592.5999	-96.26	34.54	-61.72	-54.00	-7.72	peak			
5	į.	663.7332	-95.66	36.22	-59.44	-54.00	-5.44	peak			
6		912.7000	-100.65	40.96	-59.69	-36.00	-23.69	peak			

RESULT: PASS

Note:

Factor=Antenna Factor + Cable loss, Margin=Result-Limit.

The "Factor" value can be calculated automatically by software of measurement system.

The high channel TX was the worst case, and only the data of the worst case record in the report.

The emission signal above the limit is the fundamental wave.

RADIATED EMISSION ABOVE 1GHZ

EUT		Wireless Microphone				del Name.	UHF-	UHF-6000HHM	
Temperature		25°C			Rela	ative Humidity	55.4%	6	
Pressure		960hPa			Tes	t Voltage	Norm	Normal Voltage	
Test Mode Transmitting at 512.0MHz Antenna				enna	Horizo	ontal/ Vertical			
Frequency	Meter Re	ading	Factor	Emission L	evel	Limits	Margin		
(MHz)	(dBn	n)	(dB)	(dBm)		(dBm)	(dB)	value Type	
1024.008	-44.4	17	2.54	-41.93		-30	-11.93	Horizontal	
1024.008	-40.5	52	2.54	-37.98	-37.98 -30		-7.98	Vertical	
1536.112	-43.7	71	3.18 -40.53		-40.53 -30		-10.53	Horizontal	
1536.113 -41.24 3.18			-38.06		-30	-8.06	Vertical		
Remark:									
Factor = Anten	na Factor	+ Cabl	e Loss – Pre-ar	nplifier.					

EUT			Wireless Microphone			Model Name.			UHF-6000HHM		
Tem	perature		25°C			Relative Humidity			55.4%		
Pres	ssure		960hPa			Test Voltage			Normal Voltage		
Tes	t Mode		Transmitting at 524.8MHz				tenna		Horizontal/ Vertical		
	Frequency	Meter	Reading	Factor	Emission Le	vel Limits		Ma	rgin		
	(MHz)	(d	IBm)	(dB)	(dBm)	m)	(dBm)	(0	(dB)	- value Type	
	1049.608	-4	3.25	2.54	-40.71		-30).71	Horizontal	
	1049.608	-4	1.33	2.54	-38.79	-38.79 -30		-8.79		Vertical	
1574.412 -4		-4	45.25 3.18 -		-42.07	-42.07 -30		-12.07		Horizontal	
1574.412 -4		0.36 3.18 -37.18		-37.18	-30 -7		.18	Vertical			
	Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.										

UT		Wireless Microphone				Model Name.			UHF-6000HHM		
Femperature			25°C			Relative Humidity			55.4%		
es	sure		960hPa	l		Те	st Voltage		Normal Voltage		
Fest Mode			Transm	itting at 537.5	MHz	Antenna			Horizontal/ Vertical		
[Frequency	Meter	Reading	Factor	Emission Le	evel	vel Limits		irgin		
ĺ	(MHz)	(d	IBm)	(dB)	(dBm)		(dBm)	(0	dB)	value Type	
Ī	1075.004	-4	4.27	2.54	-41.73		-30	-1	1.73	Horizontal	
	1075.004	-4	0.28	2.54	-37.74	-37.74 -30		-7	.74	Vertical	
Ī	1612.009	-4	3.15	3.18	-39.97	-39.97		-9	.97	Horizontal	
1612.009 -39.68			9.68	3.18	-36.5	-30		-(6.5	Vertical	
Remark:											
	Factor - Anten	na rau		E LUSS - FIE-d							ł

RESULT: PASS

Note:

Other emissions from 1G to 6 GHz are considered as ambient noise. No recording in the test report.

The "Factor" value can be calculated automatically by software of measurement system.

6. FREQUENCY STABILITY

6.1. TEST LIMIT

The frequency tolerance of the carrier signal shall be maintained within $\pm 0.005\%$ of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.

6.2. MEASUREMENT PROCEDURE

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Set the EUT Work on the operation frequency.
- 3. Set SPA Centre Frequency = Operation Frequency, RBW= 1 KHz, VBW≥3×RBW.
- 4. Set SPA Trace 1 Max hold, then View.
- 5. The test extreme voltage is to change the primary supply voltage from 85 to 115 percent of the nominal value
- 6. Extreme temperature rule is -30°C~50°C.

6.3. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

Test frequency: 512.0MHz

Voltage vs. Frequency Stability (Test Temperature: 20°C)

Voltage(V)	Measurement Frequency (MHz)	Max. Deviation (MHz)	Limit(MHz)	Conclusion
2.55	512.0086			
3.00	512.0085	0.0086	0.0256	PASS
3.45	512.0085			

Temperature vs. Frequency Stability (Test Voltage: 3.00V)

Temperature	Measurement Frequency (MHz)	Max. Deviation (MHz)	Limit(MHz)	Conclusion
- 30°C	512.0084	, , , , , , , , , , , , , , , , , , ,		
- 20 ℃	512.0084			
-10 ℃	512.0085			
0 °C	512.0084			
10 ℃	512.0085	0.0087	0.0256	PASS
20 ℃	512.0087			
30 ℃	512.0085			
40 ℃	512.0087			
50 ℃	512.0087			

Test frequency: 524.8MHz

Voltage vs. Frequency Stability (Test Temperature: 20°C)

Voltage(V)	Measurement Frequency (MHz)	Max. Deviation (MHz)	Limit(MHz)	Conclusion
2.55	524.8089			
3.00	524.8088	0.0089	0.02624	PASS
3.45	524.8089			

Temperature vs. Frequency Stability (Test Voltage: 3.00V)

Temperature	Measurement Frequency (MHz)	Max. Deviation (MHz)	Limit(MHz)	Conclusion
- 30 °C	524.8089			
- 20 ℃	524.8089			
-10 ℃	524.8087			
0 °C	524.8088			
10 ℃	524.8087	0.0089	0.02624	PASS
20 ℃	524.8087			
30 ℃	524.8088]		
40 ℃	524.8088			
50 ℃	524.8086			

Test frequency: 537.5MHz

Voltage vs. Frequency Stability (Test Temperature: 20°C)

Voltage(V)	Measurement Frequency (MHz)	Max. Deviation (MHz)	Limit(MHz)	Conclusion
2.55	537.5084			
3.00	537.5085	0.0085	0.026875	PASS
3.45	537.5084			

Temperature vs. Frequency Stability (Test Voltage: 3.00V)

Temperature	Measurement Frequency (MHz)	Max. Deviation (MHz)	Limit(MHz)	Conclusion
- 30°C	537.5083			
- 20 ℃	537.5083			
-10 ℃	537.5082			
0 °C	537.5083			
10 ℃	537.5082	0.0083	0.026875	PASS
20 ℃	537.5081			
30 ℃	537.5082			
40 ℃	537.5082			
50 ℃	537.5083			

7. PHOTOGRAPH OF TEST

8. PHOTOGRAPHS OF EUT

TOP VIEW OF EUT

BOTTOM VIEW OF EUT

FRONT VIEW OF EUT

BACK VIEW OF EUT

LEFT VIEW OF EUT

RIGHT VIEW OF EUT

OPEN VIEW 1 OF EUT

OPEN VIEW 2 OF EUT

02 08 06 01 07 08 04 09 04 90 10 20 10 09 04 90 18/92/17

INTERNAL VIEW OF EUT 1

INTERNAL VIEW OF EUT 2

INTERNAL VIEW OF EUT 3

INTERNAL VIEW OF EUT 4

INTERNAL VIEW OF EUT 5

----END OF REPORT---