Radio Test Report

Report No.:CTA231205005W02

CTATES

CTATES

Issued for

INNOVATIVE CONCEPTS AND DESIGN LLC

458 Florida Grove Road, Perth Amboy, NJ 08861 USA

Product Name: Speaker

Brand Name: gemini

Model Name: WPX-2000

Series Model(s): N/A

FCC ID: 2AE6G-WPX2000

Test Standards: FCC Part15.247

Any reproduction of this document must be done in full. No single part of this document may be reproduced without permission from CTA, all test data presented in this report is only applicable to presented test sample.

CTA TESTING

TEST REPORT

Page 2	of 101 Repo	rt No.: CTA231205005W0	2
TEST	REPORT		
Applicant's Name INNOVATIVE	CONCEPTS AND DESI	GN LLC	
Address	ove Road, Perth Amboy	y, NJ 08861 USA	
Manufacturer's Name INNOVATIVE	CONCEPTS AND DESI	GN LLC	CTAT
Address 458 Florida Gr	ove Road, Perth Amboy	y, NJ 08861 USA	
Product Description			
Product Name Speaker			
Brand Name gemini	CTATES		
Model Name: WPX-2000		CTA TESTIN	
Series Model(s) N/A		CIN CIN	
Test Standards FCC Part15.24	47		
Test Procedure ANSI C63.10-	2013		
under test (EUT) is in compliance with the FCC sample identified in the report. This report shall not be reproduced except in fu may be altered or revised by CTA, personal only Date of Test	II, without the written ap	proval of CTA, this docu the revision of the docur	ment nent.
Date of receipt of test item: 25 Sept. 2023			CTA
Date (s) of performance of tests : 25 Sept. 2023			
Date of Issue: 04 Nov. 2023	0+ NOV. 2023		
Test Result: Pass	, NG		
CONT.	TESTIN		
Testing Engineer :	Zoey Cow	CTATESTIN	
	(Zoey Cao)		
Technical Manager :	Anny Wen		
Technical Manager :	(Amy Wen)	a)G	
Authorized Signatory:	Eric Wang	TESTING	
	(Eric Wang)		

CTA TESTING CTA TESTING **Table of Contents Page** 1. SUMMARY OF TEST RESULTS 1.1 TEST FACTORY 1.2 MEASUREMENT UNCERTAINTY 2. GENERAL INFORMATION 8 2.1 GENERAL DESCRIPTION OF THE EUT 8 2.2 DESCRIPTION OF THE TEST MODES 10 2.3 FREQUENCY HOPPING SYSTEM REQUIREMENTS 10 2.4 TABLE OF PARAMETERS OF TEST SOFTWARE SETTING 12 2.5 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED 12 2.6 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS 14 2.7 EQUIPMENTS LIST 15 3. EMC EMISSION TEST 17 3.1 CONDUCTED EMISSION MEASUREMENT 17 3.2 RADIATED EMISSION MEASUREMENT 21 CTA TESTING 4. CONDUCTED SPURIOUS & BAND EDGE EMISSION 32 4.1 LIMIT 32 **4.2 TEST PROCEDURE** 32 4.3 TEST SETUP 33 4.4 EUT OPERATION CONDITIONS 33 4.5 TEST RESULTS 33 5. NUMBER OF HOPPING CHANNEL 34 5.1 LIMIT 34 5.2 TEST PROCEDURE 34 5.3 TEST SETUP 34 **5.4 EUT OPERATION CONDITIONS** 34 5.5 TEST RESULTS 34 6. AVERAGE TIME OF OCCUPANCY 35 6.1 LIMIT 35 **6.2 TEST PROCEDURE** 35 6.3 TEST SETUP 35 6.4 EUT OPERATION CONDITIONS 35 6.5 TEST RESULTS 35 CTATES 7. HOPPING CHANNEL SEPARATION MEASUREMEN

CTATESTING CTA TESTING **Table of Contents Page 7.1 LIMIT** 36 7.2 TEST PROCEDURE 36 7.3 TEST SETUP 36 7.4 EUT OPERATION CONDITIONS 36 7.5 TEST RESULTS 36 8. BANDWIDTH TEST 37 8.1 LIMIT 37 **8.2 TEST PROCEDURE** 37 37 STATE 37 8.3 TEST SETUP 8.4 EUT OPERATION CONDITIONS 8.5 TEST RESULTS 9. OUTPUT POWER TEST 38 9.1 LIMIT 38 9.2 TEST PROCEDURE 38 9.3 TEST SETUP 39 9.4 EUT OPERATION CONDITIONS 39 9.5 TEST RESULTS 39 10. ANTENNA REQUIREMENT 39 10.1 STANDARD REQUIREMENT 39 39 10.2 EUT ANTENNA **APPENDIX 1-TEST DATA** 40 1. DWELL TIME 40 2. MAXIMUM AVERAGE CONDUCTED OUTPUT POWER 50 56 3. MAXIMUM PEAK CONDUCTED OUTPUT POWER 4. -20DB BANDWIDTH 62 5. CARRIER FREQUENCIES SEPARATION 68 6. NUMBER OF HOPPING CHANNEL 74 7. BAND EDGE **77** 8. BAND EDGE(HOPPING) 84 9. CONDUCTED RF SPURIOUS EMISSION 91 **APPENDIX 2-PHOTOS OF TEST SETUP** CTA TEST

Revision History

TATE	STING	Page 5 of 101	•	ort No.: CTA231205005W02
C.		Revision Hi	<u>story</u>	
Rev.	Issue Date	Report No.	Effect Page	Contents
00	04 Nov. 2023	CTA231205005W02	ALL	Initial Issue

TATESTING CTA TESTING CTA TESTING CTA TESTING CTA TESTING CTATEST CTA TESTING CTA TESTING

CTA TESTING CTA TESTING

CTATESTING

1. SUMMARY OF TEST RESULTS

		FCC Part 15.247,Subpart C			
- 16	Standard Section	Test Item	Judgment	Remark	STA
ESTING	15.207	Conducted Emission	PASS		
	15.247(a)(1)	Hopping Channel Separation	PASS		
ļ	15.247(a)(1)&(b)(1)	Output Power	PASS		
ļ	15.209	Radiated Spurious Emission	PASS	ESTING	5
	15.247(d)	Conducted Spurious & Band Edge Emission	PASS	TATE	
	15.247(a)(1)(iii)	Number of Hopping Frequency	PASS		
	15.247(a)(1)(iii)	Dwell Time	PASS		
Car	15.247(a)(1)	Bandwidth	PASS		
6.	15.205	Restricted bands of operation	PASS		
	Part 15.247(d)/part 15.209(a)	Band Edge Emission	PASS		
	15.203	Antenna Requirement	PASS		CTA.
N	NOTE:			(CIT)	

CTA TESTING

CTA TESTING

(2) All tests are according to ANSI C63.10-2013. CTATES

Page 7 of 101 Report No.: CTA231205005W02

CTATES

CTATEST

CTATESTING

1.1 TEST FACTORY

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an

District, Shenzhen, China

FCC test Firm Registration Number: 517856 IC test Firm Registration Number: 27890

A2LA Certificate No.: 6534.01

CTA TESTING

.__A Certificate No. IC CAB ID: CN0127 1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement y ±U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %. ESTING

	Test	Range	Measurement Uncertainty
	Radiated Emission	30~1000MHz	4.06 dB
	Radiated Emission	1~18GHz	5.14 dB
	Radiated Emission	18-40GHz	5.38 dB
	Conducted Disturbance	0.15~30MHz	2.14 dB
TATES	Output Peak power	30MHz~18GHz	0.55 dB
	Power spectral density	ING /	0.57 dB
CTA CTA TE	Spectrum bandwidth	1	1.1%
	Radiated spurious emission (30MHz-1GHz)	30~1000MHz	4.10 dB
	Radiated spurious emission (1GHz-18GHz)	1~18GHz	4.32 dB
	Radiated spurious emission (18GHz-40GHz)	18-40GHz	5.54 dB

CTATESTING

CTA TESTING

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF THE EUT

	Product Name	Speaker	
	Brand Name	gemini	
TING	Model Name	WPX-2000	
	Series Model(s)	N/A	
	Model Difference	N/A	
	Channel List	Please refer to the Note 3.	
	Bluetooth	Frequency:2402 – 2480 MHz Modulation: GFSK(1Mbps), π/4-DQPSK(2Mbps), 8DPSK(3Mbps)	
	Bluetooth Configuration	5.0	
	Antenna Type	РСВ	
	Antenna Gain	-0.58 dBi	
CTA	Rating	Input: AC 110/230 50-60Hz 5A	
	Hardware version number	VER1.0	
	Software version number	VER47	
	Connecting I/O Port(s)	Please refer to the Note 1.	ES

Note:

- 1. For a more detailed features description, please refer to the manufacturer's specifications or the User Manual.
- 2. The antenna information refer the manufacturer provide report, applicable only to the tested sample identified in the report. Due to the incorrect antenna information, a series of problems such as the accuracy of the test results will be borne by the customer. CTATES

CTATESTING

		C/L	Chanr	nel List		
	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
	00	2402	27	2429	54	2456
	01	2403	28	2430	55	2457
	02	2404	29	2431	56	2458
TING	03	2405	30	2432	57	2459
, , , ,	04	2406	31	2433	58	2460
	05	2407	32	2434	59	2461
	06	2408	33	2435	60	2462
	07	2409	34	2436	61	2463
(1	08	2410	35	2437	62	2464
	09	2411	36	2438	63	2465
	10	2412	37	2439	64	2466
	11	2413	38	2440	65	2467
	12	2414	39	2441	66	2468
	13	2415	40	2442	67	2469
	14	2416	41	2443	68	2470
	15	2417	42	2444	69	2471
	16	2418	43	2445	70	2472
TATE	17	2419	44	2446	71	2473
CV	18	2420	45	2447	72	2474
CTATE	19	2421	46	2448	73	2475
0.1104	20	2422	47	2449	74	2476
	21	2423	48	2450	75	2477
	22	2424	49	2451	76	2478
	23	2425	50	2452	77	2479
	24	2426	51	2453	78	2480
.(G	25	2427	52	2454		
TING	26	2428	53	2455		

CTA TESTING CTA TESTING CTA TESTING

Page 10 of 101 Report No.: CTA231205005W02

2.2 DESCRIPTION OF THE TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Description	Data Rate/Modulation
TX CH00	1Mbps/GFSK
TX CH39	1Mbps/GFSK
TX CH78	1Mbps/GFSK
TX CH00	2 Mbps/π/4-DQPSK
TX CH39	2 Mbps/π/4-DQPSK
TX CH78	2 Mbps/π/4-DQPSK
TX CH00	3 Mbps/8DPSK
TX CH39	3 Mbps/8DPSK
TX CH78	3 Mbps/8DPSK
Hopping	GFSK
Hopping π/4-DQPSK	
Hopping	8DPSK
	TX CH00 TX CH39 TX CH78 TX CH00 TX CH39 TX CH78 TX CH78 TX CH00 TX CH39 TX CH39 TX CH39 TX CH78 Hopping Hopping

Note:

- (1) The measurements are performed at all Bit Rate of Transmitter, the worst data was reported.
- (2) We tested for all available U.S. voltage and frequencies (For 120V, 50/60Hz and 240V, 50/60Hz) for which the device is capable of operation, and the worst case of 120V/ 60Hz is shown in the report.
- (3) The battery is fully-charged during the radiated and RF conducted test.

For AC Conducted Emission

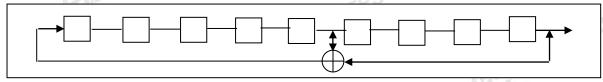
	Test Case	
AC Conducted Emission	Mode 13 : Keeping BT TX	

2.3 FREQUENCY HOPPING SYSTEM REQUIREMENTS

(1)Standard and Limit

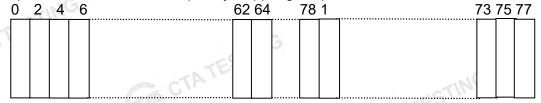
According to FCC Part 15.247(a)(1), The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.


ESTING

The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hop sets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

(2)The Pseudorandom sequence may be generated in a nin-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first one of 9 consecutive ones: i.e. the shift register is initialized with nine ones.


Numver of shift register stages:9

Length of pseudo-random sequence:29-1=511bits Longest sequence of zeros: 8(non-inverted signal)

Liner Feedback Shift Register for Generator of the PRBS sequence

An example of Pseudorandom Frequency Hoppong Sequence as follow:

Each frequency used equally on th average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies ini synchronization with the transmitted signals.

(3)Frequency Hopping System

This transmitter device is frequency hopping device, and complies with FCC part 15.247 rule.

This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each; centred from 2402 to 2480 MHz) in the range 2,400-2,483.5MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock.

Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH-enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

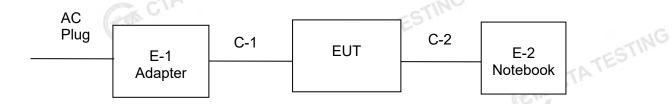
This device was tested with a bluetooth system receiver to check that the device maintained hopping synchronization, and the device complied with these requirements FCC Part 15.247 rule.

2.4 TABLE OF PARAMETERS OF TEST SOFTWARE SETTING

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of FHSS.

Report No.: CTA231205005W02

CTATEST


			Test program: Blueto	ooth
TATESTIN	(Control software) Parameters(1/2/3Mbps)	Packet type: DH1:4:27 2DH1:20:54 3DH1:24:83	Packet type: DH3:11:183 2DH3:26:367 3DH3:27:552	Packet type: DH5:15:339 2DH5:30:679 3DH5:31:1021
	- TAIL		, NG	

RF Function	Туре	Mode Or Modulation type	ANT Gain(dBi)	Power Class	Software For Testing
		1/2		L:-4	TATES
		GFSK	-0.58	M:0	CI
				H:2	
				L:-4	
BT	BR+EDR	π/4-DQPSK	-0.58	M:0	FrequencyTool v0.3.2
65	Ma			H:2	
TES				L:-4	
CTP		8DPSK	-0.58	M:0	
		TES	1.	H:2	

2.5 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Radiated Spurious Emission Test

CTA TESTING

Report No.: CTA231205005W02 Page 13 of 101 GTA TESTING Conducted Emission Test CTA TESTING CTATES AC Plug AC C-2 C-1 **EUT** E-2 CTATESTING E-1 Notebook CTA TESTING CTA TESTING CTA TESTING GTA CTATESTING CTATEST CTA TESTING CTA TESTING CTA TESTING CTA TESTING

Page 14 of 101

2.6 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Report No.: CTA231205005W02

CTA TESTING

Necessary accessories

				tococcary accoccorne	- 11	
	Item	Equipment	Mfr/Brand	Model/Type No.	Length	Note
	G	AC Cable	N/A	N/A	150cm	NO NO
TATESTI			- 10			
3/10		TE	STING			
		CTA CTA		_55	ING	

Support units

l			Support units		TESTING
Item	Equipment	Mfr/Brand	Model/Type No.	Length	Note
	Notebook	LENOVO	Think Pad E470	N/A	N/A
	USB Cable	N/A	N/A	150cm	NO
CTA	TES		TING		
Note	»:	GTA CTA	TEST	TEST	ING

Note:

CTA TESTING

CTATEST (1) For detachable type I/O cable should be specified the length in cm in <code>"Length_"</code> column.

CTATESTING

(2) "YES" is means "with core"; "NO" is means "without core".

2.7 EQUIPMENTS		Page 15 of 101	Repor	t No.: CTA2312	05005W02	
Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date	
LISN	R&S	ENV216	CTA-308	2023/08/02	2024/08/01	
LISN	R&S	ENV216	CTA-314	2023/08/02	2024/08/01	
EMI Test Receiver	R&S	ESPI	CTA-307	2023/08/02	2024/08/01	
EMI Test Receiver	R&S	ESCI	CTA-306	2023/08/02	2024/08/01	
Spectrum Analyzer	Agilent	N9020A	CTA-301	2023/08/02	2024/08/01	
Spectrum Analyzer	R&S	FSP	CTA-337	2023/08/02	2024/08/01	
Vector Signal generator	Agilent	N5182A	CTA-305	2023/08/02	2024/08/01	
Analog Signal Generator	R&S	SML03	CTA-304	2023/08/02	2024/08/01	
WIDEBAND RADIO COMMUNICATIO N TESTER	CMW500	R&S	CTA-302	2023/08/02	2024/08/01	
Temperature and humidity meter	Chigo	ZG-7020	CTA-326	2023/08/02	2024/08/01	
Ultra-Broadband Antenna	Schwarzbeck	VULB9163	CTA-310	2023/10/17	2024/10/16	
Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2023/10/13	2024/10/12	
Loop Antenna	Zhinan	ZN30900C	CTA-311	2023/10/17	2024/10/16	
Horn Antenna	Beijing Hangwei Dayang	OBH100400	CTA-336	2021/08/07	2024/08/06	
Amplifier	Schwarzbeck	BBV 9745	CTA-312	2023/08/02	2024/08/01	
Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2023/08/02	2024/08/01	
Directional coupler	NARDA	4226-10	CTA-303	2023/08/02	2024/08/01	
High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	2023/08/02	2024/08/01	
High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2023/08/02	2024/08/01	
Automated filter bank	Tonscend	JS0806-F	CTA-404	2023/08/02	2024/08/01	
Power Sensor	Agilent	U2021XA	CTA-405	2023/08/02	2024/08/01	
Amplifier	Schwarzbeck	BBV9719	CTA-406	2023/08/02	2024/08/01	

Report	No.:	CTA23	12050	05W02
IXOPOIL				

TESTING		Page 16 of 101	Repoi	t No.: CTA2312	05005W02
Test Equipment	Manufacturer	Model No.	Version number	Calibration Date	Calibration Due Date
EMI Test Software	Tonscend	TS®JS32-RE	5.0.0.2	N/A	N/A
EMI Test Software	Tonscend	TS®JS32-CE	5.0.0.1	N/A	N/A
RF Test Software	Tonscend	TS®JS1120-3	3.1.65	N/A	N/A
RF Test Software	Tonscend	TS®JS1120	3.1.46	N/A	N/A
(Em)		CTATE	STIN		ING
	EMI Test Software EMI Test Software RF Test Software	EMI Test Software Tonscend EMI Test Software Tonscend RF Test Software Tonscend	Test Equipment Manufacturer Model No. EMI Test Software Tonscend TS®JS32-RE EMI Test Software Tonscend TS®JS32-CE RF Test Software Tonscend TS®JS1120-3	Test Equipment Manufacturer Model No. Version number EMI Test Software Tonscend TS®JS32-RE 5.0.0.2 EMI Test Software Tonscend TS®JS32-CE 5.0.0.1 RF Test Software Tonscend TS®JS1120-3 3.1.65	Test Equipment Manufacturer Model No. Version number Calibration Date EMI Test Software Tonscend TS®JS32-RE 5.0.0.2 N/A EMI Test Software Tonscend TS®JS32-CE 5.0.0.1 N/A RF Test Software Tonscend TS®JS1120-3 3.1.65 N/A

CTA TESTING

CTATESTING

3.1 CTA TESTING CTA TESTING CTA TESTING CTATEST CTA TESTING CTA TESTING CTA TESTING

Page 17 of 101

Report No.: CTA231205005W02

CTA TESTING

3. EMC EMISSION TEST

3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 POWER LINE CONDUCTED EMISSION LIMITS

The radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table.

- 10	FREQUENCY (MHz)	Conducted Emiss	sionlimit (dBuV)
ESTIN	FREQUENCT (MIDZ)	Quasi-peak	Average
TATE	0.15 -0.5	66 - 56 *	56 - 46 *
	0.50 -5.0	56.00	46.00
	5.0 -30.0	60.00	50.00

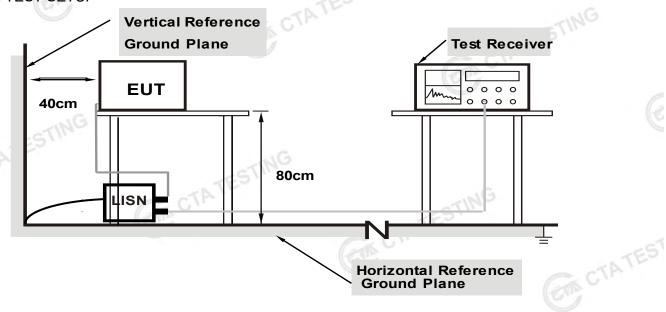
Note:

CTA TESTING

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

CTATESTING

CTA TESTING


The following table is the setting of the receiver

Attenuation 10 dB Start Frequency 0.15 MHz Stop Frequency 30 MHz	
C/r	
Stop Frequency 30 MHz	G
IF Bandwidth 9 kHz	
G	CTATI

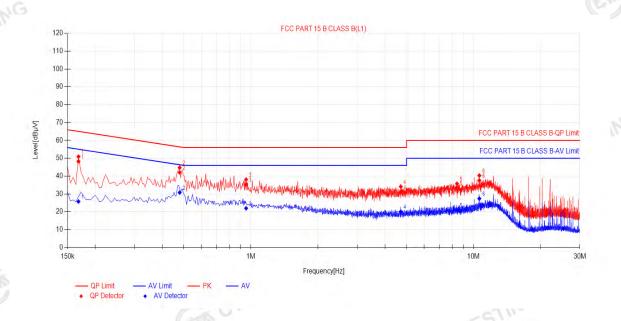
3.1.2 TEST PROCEDURE

- a. The EUT is 0.8 m from the horizontal ground plane and 0.4 m from the vertical ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments are powered from additional LISN(s). The LISN provides 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated if required using the correct terminated. cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN is at least 80 cm from the nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

3.1.3 TEST SETUP

Note: 1. Support units were connected to second LISN.

CTA TESTING

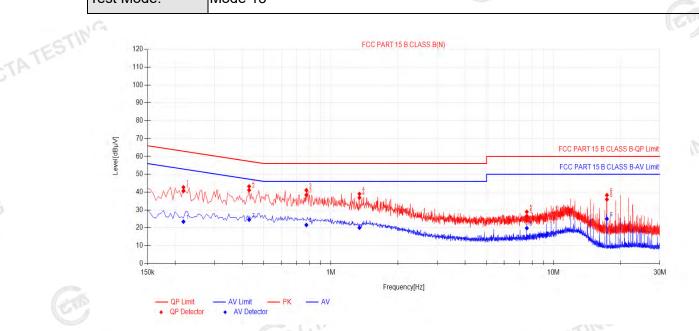

2. Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes support units.

CTATES

3.1.4 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data. CTATEST

Temperature:	26.1(C)	Relative Humidity:	60%RH	
Test Voltage:	AC 120V/60Hz	Phase:	Es	
Test Mode:	Mode 13	(ETA)	•	



	NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB µV]	QP Value [dBµV]	QP Limit [dBµM]	QP Margin [dB]	AV Reading [dBµV]	AV Value [dBµV]	AV Limit [dBµV]	AV Margin [dB]	Verdict
3 0.951 9.97 25.40 35.37 56.00 20.63 12.02 21.99 46.00 24.01 4 4.7085 9.97 21.16 31.13 56.00 24.87 10.14 20.11 46.00 25.89 5 8.421 10.27 23.09 33.36 60.00 26.64 10.69 20.96 50.00 29.04	1	0.168	9.95	38.30	48.25	65.06	16.81	15.85	25.80	55.06	29.26	PASS
4 4.7085 9.97 21.16 31.13 56.00 24.87 10.14 20.11 46.00 25.89 5 8.421 10.27 23.09 33.36 60.00 26.64 10.69 20.96 50.00 29.04	2	0.4785	9.99	32.08	42.07	56.37	14.30	20.80	30.79	46.37	15.58	PASS
5 8.421 10.27 23.09 33.36 60.00 26.64 10.69 20.96 50.00 29.04	3	0.951	9.97	25.40	35.37	56.00	20.63	12.02	21.99	46.00	24.01	PASS
	4	4.7085	9.97	21.16	31.13	56.00	24.87	10.14	20.11	46.00	25.89	PASS
6 10.6125 10.26 27.27 37.53 60.00 22.47 17.17 27.43 50.00 22.57 Note:1).QP Value (dBµV)= QP Reading (dBµV)+ Factor (dB)	5	8.421	10.27	23.09	33.36	60.00	26.64	10.69	20.96	50.00	29.04	PASS
Iote:1).QP Value (dBµV)= QP Reading (dBµV)+ Factor (dB)	6	10.6125	10.26	27.27	37.53	60.00	22.47	17.17	27.43	50.00	22.57	PASS
j. i actor (db)=inscritori 1093 of Elott (db) i Gabic 1093 (db)	ote:1)	.QP Value	e (dBµV))= QP Re	eading (d	dBµV)+ f	actor (d	IB)	27.43	50.00	22.57	ES
). QPMargin(dB) = QP Limit (dBμV) - QP Value (dBμV)	OPI	Margin(dB) = OP I	imit (dR	۱\/\ <u>-</u> OF	Value (dBu\/\				CIP.	

- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
- 4). AVMargin(dB) = AV Limit (dB μ V) AV Value (dB μ V) CTA TESTING

Page 20 of 101

CTATESTING	Page 20 d	of 101 Repor	rt No.: CTA231205005W02
Temperature:	26.1(C)	Relative Humidity:	60%RH
Test Voltage:	AC 120V/60Hz	Phase:	N
Test Mode:	Mode 13		CC

	Fina	l Data Lis	t									
	NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB, µM]	QP Value [dBµV]	QP Limit [dBµM]	QP Margin [dB]	AV Reading [dBµV]	AV Value [dBµV]	AV Limit [dBµV]	AV Margin (dB)	Verdict
TATESTIN	1	0.2175	9.98	30.67	40.65	62.91	22.26	13.46	23.44	52.91	29.47	PASS
TED.	2	0.429	9.96	31.16	41.12	57.27	16.15	14.62	24.58	47.27	22.69	PASS
TA	3	0.7755	10.12	28.28	38.40	56.00	17.80	11.46	21.58	46.00	24.42	PASS
	4	1.3425	10.16	26.76	36.92	56.00	19.08	9.91	20.07	46.00	25.93	PASS
	5	7.5795	10.42	16.25	26.67	60.00	33.33	9.38	19.80	50.00	30.20	PASS
	6	17.349	10.49	25.41	35.90	60.00	24.10	14.52	25.01	50.00	24.99	PASS
	2). Fac).QP Valu ctor (dB)=i Margin(dE	nsertion	loss of L	JSN (dB) + Cabl	e loss (d	•			CTAT	ESTING
	•	Margin(dB	•	•	. ,	· ·	. ,				0	

CTA TESTING

- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
- 4). AVMargin(dB) = AV Limit (dBμV) AV Value (dBμV)

Page 21 of 101 Report No.: CTA231205005W02

CTATEST

3.2 RADIATED EMISSION MEASUREMENT

3.2.1 RADIATED EMISSION LIMITS

In any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the Restricted band specified on Part15.205 (a)&209(a) limit in the table and according to ANSI C63.10-2013 below has to be followed.

LIMITS OF RADIATED EMISSION MEASUREMENT (0.009MHz - 1000MHz)

1	
Field Strength	Measurement Distance
(micorvolts/meter)	(meters)
2400/F(KHz)	300
24000/F(KHz)	30
30	30
100	3
150	3
200	3
500	3
	(micorvolts/meter) 2400/F(KHz) 24000/F(KHz) 30 100 150 200

LIMITS OF RADIATED EMISSION MEASUREMENT (1GHz-25 GHz)

EDEOLIENCY (MHz)	(dBuV/r	m) (at 3M)
FREQUENCY (MHz)	PEAK	AVERAGE
Above 1000	74	54

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

LIMITS OF RESTRICTED FREQUENCY BANDS

	FREQUENCY (MHz)	FREQUENCY (MHz)	FREQUENCY (MHz)	FREQUENCY (GHz)
	0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
	0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
	2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
	4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
	4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
	4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
	6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
	6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
	6.31175-6.31225	123-138	2200-2300	14.47-14.5
	8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
1	8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
(51)	8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
OHIDA	8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
	12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
	12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
	12.57675-12.57725	322-335.4	3600-4400	Above 38.6
	13.36-13.41			C C
	G			(50)
ESTIN				
		NG		

For Radiated Emission

E	or Radiated Emission	CTING	
(24)	Spectrum Parameter	Setting	
	Attenuation	Auto	
	Detector	Peak/QP/AV	
	Start Frequency	9 KHz/150KHz(Peak/QF	P/AV)
	Stop Frequency	150KHz/30MHz(Peak/Ql	P/AV)
TESTI		200Hz (From 9kHz to 0.15	5MHz)/
TATE	RB / VB (emission in restricted	9KHz (From 0.15MHz to 3	0MHz);
	band)	200Hz (From 9kHz to 0.15	5MHz)/
	Car Ci	9KHz (From 0.15MHz to 3	60MHz)

Spectrum Parameter	Setting				
Attenuation	Auto				
Detector	Peak/QP				
Start Frequency	30 MHz(Peak/QP)				
Stop Frequency	1000 MHz (Peak/QP)				
RB / VB (emission in restricted	120 KHz / 300 KHz				
band)	120 KH2 / 300 KH2				
CCV	GTING				

	Spectrum Parameter	Setting			
	Attenuation	Auto	TEST		
	Detector	Peak/AV	(b)		
718	Start Frequency	1000 MHz(Peak/AV)			
TEST"	Stop Frequency	10th carrier hamonic(Peak/AV)	1		
TA	RB / VB (emission in restricted	1 MHz / 3 MHz(Peak)	1		
	band)	1 MHz/1/T MHz(AVG)			
Fc	or Restricted band	7ES11	_		

For Restricted band

Spectrum Parameter	Setting				
Detector	Peak/AV				
Start/Stan Eraguanov	Lower Band Edge: 2310 to 2410 MHz				
Start/Stop Frequency	Upper Band Edge: 2476 to 2500 MHz				
RB / VB	1 MHz / 3 MHz(Peak)				
KD / VD	1 MHz/1/T MHz(AVG)				
CTA CTA	TESTING				
	Carcin				

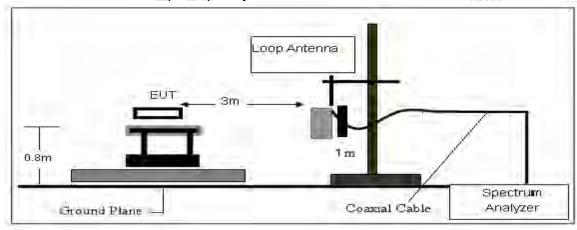
	TESTING	Page 23 of 101	Report No.: CTA231205005W02
G	Receiver Parameter	11.2	Setting
	Attenuation	7 10	Auto
	Start ~ Stop Frequency	9kHz~90	kHz / RB 200Hz for PK & AV
	Start ~ Stop Frequency	90kHz~	-110kHz / RB 200Hz for QP
	Start ~ Stop Frequency	110kHz~49	90kHz / RB 200Hz for PK & AV
	Start ~ Stop Frequency	490kHz	z~30MHz / RB 9kHz for QP
ESTIN	Start ~ Stop Frequency	30MHz~1	1000MHz / RB 120kHz for QP

CTATESTING

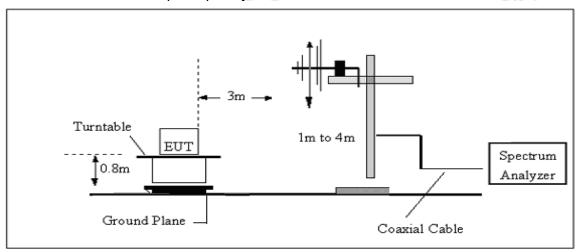
- 3.2.2 TEST PROCEDURE a. The measuring distance at 3 m shall be used for measurements at frequency 0.009MHz up to 1GHz, and above 1GHz.
 - b. The EUT was placed on the top of a rotating table 0.8 m (above 1GHz is 1.5 m) above the ground at a 3 m anechoic chamber test site. The table was rotated 360 degree to determine the position of the highest radiation.
 - c. The height of the equipment shall be 0.8 m (above 1GHz is 1.5 m); the height of the test antenna shall vary between 1 m to 4 m. Horizontal and vertical polarization of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and QuasiPeak detector mode will be re-measured.
- e. If the Peak Mode measured value is compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and no additional QP Mode measurement was
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos.

CTA TESTING

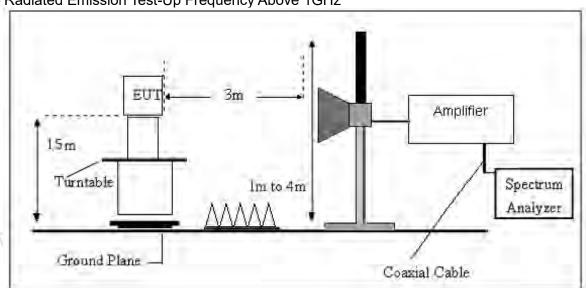
CTATEST Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.


ETA CTATESTING

3.2.3 DEVIATION FROM TEST STANDARD No deviation. CTATESTING


Page 24 of 101 Report No.: CTA231205005W02

3.2.4 TESTSETUP


(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

3.2.5 EUT OPERATING CONDITIONS

Please refer to section 3.1.4 of this report.

ESTING

Page 25 of 101 Report No.: CTA231205005W02

CATESTING 3.2.6 FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows: CTATES

FS = RA + AF + CL - AG

Where

FS = Field Strength

Caple Attenuation F
RA = Reading Amplitude
AG = Amplifier Gain
AF - ^ CL = Cable Attenuation Factor (Cable Loss)

CTA TESTING

CTA TESTING

AG = Amplifier Gain AF = Antenna Factor For example	TESTING					
Frequency	FS	RA	AF 5	CL	AG	Factor
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)	(dB)
300	40	58.1	12.2	1.6	31.9	-18.1

CTATESTING

CTATEST

CTATESTING

CTA TESTING

Factor=AF+CL-AG

Page 26 of 101

Report No.: CTA231205005W02

CTATEST

3.2.7 TEST RESULTS

(9KHz-30MHz)

-63,		rage 20 of 10	i Kepc	711 NO C 1A2312	030034402
3.2.7 TEST RESUL	.TS	TESTING			
(9KHz-30MHz)	GO CTP	, 1-		ESTING	
Temperature:	23.1(C)	Re	elative Humidity:	60%RH	
Test Voltage:	AC 120V/60Hz	Te	est Mode:	TX Mode	CIAT
· C					(-11x)

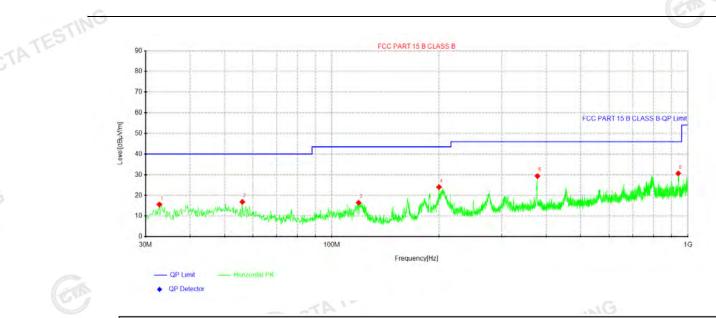
						(- T)
STING	Freq.	Reading	Limit	Margin	State	Toot Dooult
TATES	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F	Test Result
, .		TES!				PASS
	CON C			ESTING		PASS

Note:

CTA TESTING

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB);


CTATESTING

Limit line = specific limits (dBuv) + distance extrapolation factor. Joffic CTATESTING

> CTATESTING CTA TESTING CTA TESTING

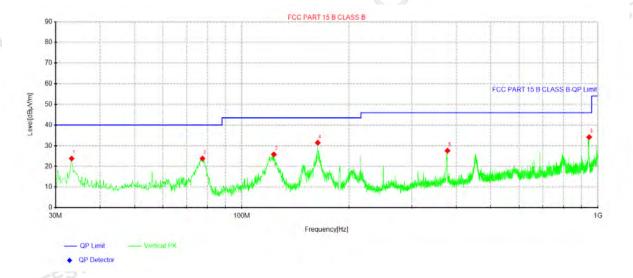
TATESTING (30MHz-1000MHz)

Temperature:	23.1(C)	Relative Humidity:	60%RH	
Test Voltage:	AC 120V/60HZ	Phase:	Horizontal	
Test Mode:	Mode 1/2/3/4/5/6/7/8/9(N	Mode 8 worst mode)		CIATE

Su	Suspected Data List									
NI/		Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Delecito
No	J.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
1	1	32.7888	33.86	15.61	-18.25	40.00	24.39	100	120	Horizontal
2	2	56.0688	34.22	16.86	-17.36	40.00	23.14	100	160	Horizontal
3	3	118.876	36.60	16.48	-20.12	43.50	27.02	100	280	Horizontal
4	1	199.992	43.32	24.03	-19.29	43.50	19.47	100	240	Horizontal
	5	377.866	45.14	29.38	-15.76	46.00	16.62	100	330	Horizontal
6	6	939.011	39.56	30.64	-8.92	46.00	15.36	100	50	Horizontal

Note:1).Level (dBµV/m)= Reading (dBµV)+ Factor (dB/m)

- CTA TESTING 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)


CTA TESTING

4). All modes have been tested, only show the worst case.

Page 28 of 101

TATESTING	Page 28 of	101 Repoi	rt No.: CTA231205005W02			
Temperature:	23.1(C)	Relative Humidity:	60%RH			
Test Voltage:	AC 120V/60HZ	Phase:	Vertical			
Test Mode:	Mode 1/2/3/4/5/6/7/8/9(Mode 8 worst mode)					

CTATESTING

•	Suspected Data List									
	0	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Delevity
	NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
	1	33.2738	41.99	23.83	-18.16	40.00	16.17	100	300	Vertical
	2	77.53	45.05	23.83	-21.22	40.00	16.17	100	130	Vertical
	3	122.998	46.41	25.81	-20.60	43.50	17.69	100	330	Vertical
	4	163.375	52.90	31.48	-21.42	43.50	12.02	100	50	Vertical
	5	377.987	43.34	27.59	-15.75	46.00	18.41	100	50	Vertical
	6	944.467	43.16	34.16	-9.00	46.00	11.84	100	210	Vertical

TATESTING Note:1).Level (dBµV/m)= Reading (dBµV)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

CTA TESTING

4). All modes have been tested, only show the worst case.

Page 29 of 101

Page 29 of 1 (1GHz~25GHz) Spurious emission Requirements

				CAN						
Frequency	Meter Reading	Amplifier	Loss	Antenna Factor	Corrected Factor	Emission Level	Limits	Margin	Detector	Comme
(MHz)	(dBµV)	(dB)	(dB)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
					annel (8DPSK	/2402 MHz)				
3264.66	61.83	44.70	6.70	28.20	-9.80	52.03	74.00	-21.97	PK	Vertica
3264.66	50.75	44.70	6.70	28.20	-9.80	40.95	54.00	-13.05	AV	Vertica
3264.78	61.00	44.70	6.70	28.20	-9.80	51.20	74.00	-22.80	PK	Horizon
3264.78	49.85	44.70	6.70	28.20	-9.80	40.05	54.00	-13.95	AV	Horizon
4804.41	59.50	44.20	9.04	31.60	-3.56	55.94	74.00	-18.06	PK	Vertica
4804.41	49.22	44.20	9.04	31.60	-3.56	45.66	54.00	-8.34	AV	Vertica
4804.38	59.30	44.20	9.04	31.60	-3.56	55.74	74.00	-18.26	PK	Horizon
4804.38	49.86	44.20	9.04	31.60	-3.56	46.30	54.00	-7.70	AV	Horizon
5359.71	49.00	44.20	9.86	32.00	-2.34	46.66	74.00	-27.34	PK	Vertica
5359.71	40.15	44.20	9.86	32.00	-2.34	37.81	54.00	-16.19	AV	Vertica
5359.75	47.35	44.20	9.86	32.00	-2.34	45.01	74.00	-28.99	PK	Horizon
5359.75	38.71	44.20	9.86	32.00	-2.34	36.37	54.00	-17.63	AV	Horizon
7205.71	54.12	43.50	11.40	35.50	3.40	57.52	74.00	-16.48	PK	Vertica
7205.71	44.65	43.50	11.40	35.50	3.40	48.05	54.00	-5.95	AV	Vertica
7205.75	53.62	43.50	11.40	35.50	3.40	57.02	74.00	-16.98	PK	Horizon
7205.75	44.83	43.50	11.40	35.50	3.40	48.23	54.00	-5.77	AV	Horizon
Į.		G		Middle C	hannel (8DPSI					
3264.83	62.19	44.70	6.70	28.20	-9. 8 0	52.39	74.00	-21.61	PK	Vertica
3264.83	51.13	44.70	6.70	28.20	-9.80	41.33	54.00	-12.67	AV	Vertica
3264.58	60.99	44.70	6.70	28.20	-9.80	51.19	74.00	-22.81	PK	Horizon
3264.58	49.89	44.70	6.70	28.20	-9.80	40.09	54.00	-13.91	AV	Horizon
4882.37	58.45	44.20	9.04	31.60	-3.56	54.89	74.00	-19.11	PK	Vertica
4882.37	49.27	44.20	9.04	31.60	-3.56	45.71	54.00	-8.29	AV	Vertic
4882.51	59.53	44.20	9.04	31.60	-3.56	55.97	74.00	-18.03	PK	Horizon
4882.51	49.76	44.20	9.04	31.60	-3.56	46.20	54.00	-7.80	AV	Horizon
5359.63	48.24	44.20	9.86	32.00	-2.34	45.90	74.00	-28.10	PK	Vertica
5359.63	39.38	44.20	9.86	32.00	-2.34	37.04	54.00	-16.96	AV	Vertica
5359.64	47.51	44.20	9.86	32.00	-2.34	45.17	74.00	-28.83	PK	Horizon
5359.64	38.40	44.20	9.86	32.00	-2.34	36.06	54.00	-17.94	AV	Horizon
7323.69	53.82	43.50	11.40	35.50	3.40	57.22	74.00	-16.78	PK	Vertica
7323.69	44.16	43.50	11.40	35.50	3.40	47.56	54.00	-6.44	AV	Vertica
7323.83	54.64	43.50	11.40	35.50	3.40	58.04	74.00	-15.96	PK	Horizon
		43.50	11.40		3.40			-6.95	AV	Horizon

CTATEST

CTATESTING

		TESTIN			Page 3	30 of 101		Report	:No.: CTA2	312050	05W02
	CTA				High Chan	nel (8DPSK	/2480 MHz)				
	3264.86	60.93	44.70	6.70	28.20	-9.80	51.13	74.00	-22.87	PK	Vertical
	3264.86	50.87	44.70	6.70	28.20	-9.80	41.07	54.00	-12.93	AV	Vertical
	3264.75	60.92	44.70	6.70	28.20	-9.80	51.12	74.00	-22.88	PK	Horizontal
	3264.75	51.16	44.70	6.70	28.20	-9.80	41.36	54.00	-12.64	AV	Horizontal
	4960.32	59.37	44.20	9.04	31.60	-3.56	55.81	74.00	-18.19	PK	Vertical
	4960.32	49.35	44.20	9.04	31.60	-3.56	45.79	54.00	-8.21	AV	Vertical
	4960.40	58.35	44.20	9.04	31.60	-3.56	54.79	74.00	-19.21	PK	Horizontal
	4960.40	49.48	44.20	9.04	31.60	-3.56	45.92	54.00	-8.08	AV	Horizontal
	5359.79	48.08	44.20	9.86	32.00	-2.34	45.74	74.00	-28.26	PK	Vertical
- (5359.79	40.01	44.20	9.86	32.00	-2.34	37.66	54.00	-16.34	AV	Vertical
TATE	5359.73	48.04	44.20	9.86	32.00	-2.34	45.70	74.00	-28.30	PK	Horizontal
71	5359.73	38.52	44.20	9.86	32.00	-2.34	36.18	54.00	-17.82	AV	Horizontal
	7439.73	54.39	43.50	11.40	35.50	3.40	57.79	74.00	-16.21	PK	Vertical
	7439.73	44.10	43.50	11.40	35.50	3.40	47.50	54.00	-6.50	AV	Vertical
	7439.87	54.72	43.50	11.40	35.50	3.40	58.12	74.00	-15.88	PK	Horizontal
	7439.87	44.71	43.50	11.40	35.50	3.40	48.11	54.00	-5.89	AV	Horizontal

Note:

CTA TESTING

- 1) Scan with GFSK, π/4-DQPSK, 8DPSK, the worst case is 8DPSK Mode.
- 2) Factor = Antenna Factor + Cable Loss Pre-amplifier. Emission Level = Reading + Factor
- 3) The frequency emission of peak points that did not show above the forms are at least 20dB below the limit, the frequency emission is mainly from the environment noise. Je.

 CTATESTING

Page 31 of 101

Report No.: CTA231205005W02

CTATEST

Restricted band Requirements

8DPSK

		-			460						
			8DPSK		(TING					
		Meter			Antenna	Orrected	Emission				
	Frequency	Reading	Amplifier	Loss	Factor	Factor	Level	Limits	Margin	Detector	Comment
	(MHz)	(dBµV)	(dB)	(dB)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
101	2390.00	67.54	43.80	4.91	25.90	-12.99	54.55	74.00	-19.45	PK	Vertical
TESTIN	2390.00	54.06	43.80	4.91	25.90	-12.99	41.07	54.00	-12.93	AV	Vertical
TATESTIN	2390.00	69.68	43.80	4.91	25.90	-12.99	56.69	74.00	-17.31	PK	Horizontal
	2390.00	52.16	43.80	4.91	25.90	-12.99	39.17	54.00	-14.83	AV	Horizontal
	2483.50	69.61	43.80	5.12	25.90	-12.78	56.83	74.00	-17.17	PK	Vertical
	2483.50	53.51	43.80	5.12	25.90	-12.78	40.73	54.00	-13.27	AV	Vertical
	2483.50	69.29	43.80	5.12	25.90	-12.78	56.51	74.00	-17.49	PK	Horizontal
	2483.50	52.74	43.80	5.12	25.90	-12.78	39.96	54.00	-14.04	AV	Horizontal
li									27	.79	

Note: GFSK, π/4-DQPSK, 8DPSK of the nohopping and hopping mode all have been test, the worst case is 8DPSK of the nohopping mode, this report only show the worst case. CTA TESTING

CTA TESTING CTATESTING CTA TESTING CTA TESTING

4. CONDUCTED SPURIOUS & BAND EDGE EMISSION

4.1 LIMIT

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

4.2 TEST PROCEDURE

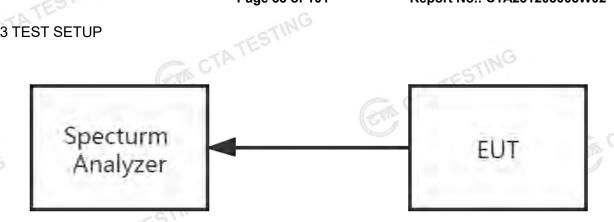
Spectrum Parameter	Setting		
Detector	Peak		
Start/Stop Frequency	30 MHz to 10th carrier harmonic		
RB / VB (emission in restricted band)	100 KHz/300 KHz		
Trace-Mode:	Max hold		

For Band edge

Spectrum Parameter	Setting		
Detector	Peak		
Ctart/Ctan Fraguency	Lower Band Edge: 2300 – 2407 MHz		
Start/Stop Frequency	Upper Band Edge: 2475 – 2500 MHz		
RB / VB (emission in restricted band)	100 KHz/300 KHz		
Trace-Mode:	Max hold		

For Hopping Band edge

CTA TESTING


	I of Hopping band edge			
	Spectrum Parameter		Setting	
TESTI	Detector		Peak	
A	Chart/Chara Financian N	Lower Band Edge: 2300– 2403 MHz		
	Start/Stop Frequency	Upper Band Edge: 2479 – 2500 MHz		
	RB / VB (emission in restricted band)	TEST	100 KHz/300 KHz	62.0
	Trace-Mode:	CTA	Max hold	STING
		0	90	ATES

Page 33 of 101 Report No.: CTA231205005W02

CTATEST

CTA TESTING

4.3 TEST SETUP

The EUT is connected to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. Tune the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. In order to make an accurate measurement, the span is set to be greater than RBW.

CTA TESTING

CTA TESTING

4.4 EUT OPERATION CONDITIONS

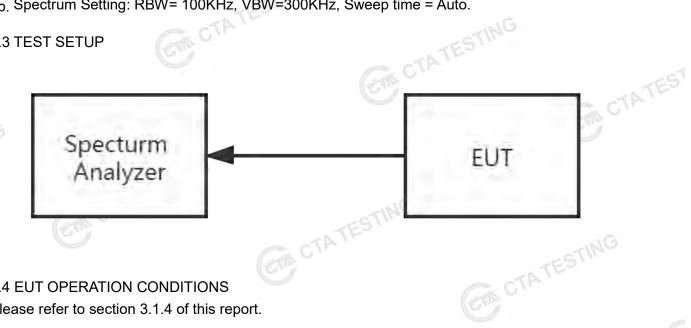
Please refer to section 3.1.4 of this report.

4.5 TEST RESULTS

CTA TESTING

Note: The test data please refer to APPENDIX 1.

5. NUMBER OF HOPPING CHANNEL 5.1 LIMIT


Con	5.1 LIMIT	CTATE.		ESTING		
		FCC Pa	rt 15.247,Sub _l	part C		
	Section	Test Item	Limit	FrequencyRange (MHz)	Result	TATES
TESTIN	15.247 (a)(1)(iii)	Number of Hopping Channel	≥15	2400-2483.5	PASS	
TA	Spectrum	Parameters		Setting		1

Spectrum Parameters	Setting		
Attenuation	Auto		
Span Frequency	> Operating FrequencyRange		
RB	100KHz		
VB	300KHz		
Detector	Peak		
Trace	Max Hold		
Sweep Time	Auto		

5.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. Spectrum Setting: RBW= 100KHz, VBW=300KHz, Sweep time = Auto.

5.3 TEST SETUP

5.4 EUT OPERATION CONDITIONS

Please refer to section 3.1.4 of this report.

5.5 TEST RESULTS

X 1.
CTA TESTING Note: The test data please refer to APPENDIX 1.

6. AVERAGE TIME OF OCCUPANCY

6.1 LIMIT

6.1 LIMIT	CT CT	ATES	TESTING		
	FC	CC Part 15.247,Subpar	rt C		1
Section	Test Item	Limit	FrequencyRange (MHz)	Result	TATES
15.247 (a)(1)(iii)	Average Time of Occupancy	0.4sec	2400-2483.5	PASS	

6.2 TEST PROCEDURE

- a. The transmitter output (antenna port) was connected to the spectrum analyzer.
- b. Set RBW =1MHz/VBW =3MHz.
- c. Use a video trigger with the trigger level set to enable triggering only on full pulses.
- d. Sweep Time is more than once pulse time.
- Set the center frequency on any frequency would be measure and set the frequency span to
- f Measure the maximum time duration of one single pulse.
- g. Set the EUT for DH5, DH3 and DH1 packet transmitting.
- h. Measure the maximum time duration of one single pulse.
- i DH5 Packet permit maximum 1600/79 / 6 = 3.37 hops per second in each channel (5 time slots RX, 1 time slot TX). So the number of pulses in the observation period of 31.6 seconds is $3.37 \times 31.6 = 106.6$.
- j. DH3 Packet permit maximum 1600 / 79 / 4 = 5.06 hops per second in each channel (3 time slots RX, 1 time slot TX). So the number of pulses in the observation period of 31.6 seconds is $5.06 \times 31.6 = 160$.
- k DH1 Packet permit maximum 1600 / 79 / 2 = 10.12 hops per second in each channel (1 time slot RX, 1 time slot TX). So the number of pulses in the observation period of 31.6 seconds is $10.12 \times 31.6 = 320$.

6.3 TEST SETUP

6.4 EUT OPERATION CONDITIONS

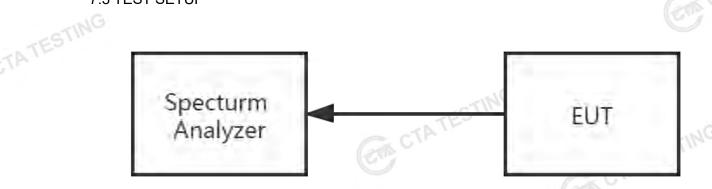
Please refer to section 3.1.4 of this report.

6.5 TEST RESULTS

Note: The test data please refer to APPENDIX 1.

7. HOPPING CHANNEL SEPARATION MEASUREMEN

7.1 LIMIT


Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	> 20 dB Bandwidth or Channel Separation
RB	30 kHz (20dB Bandwidth) / 30 kHz (Channel Separation)
VB	100 kHz (20dB Bandwidth) / 100 kHz (Channel Separation)
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

7.2 TEST PROCEDURE

- a. The transmitter output (antenna port) was connected to the spectrum analyser in peak hold
- b. The resolution bandwidth of 30 kHz and the video bandwidth of 100 kHz were utilised for 20 dB bandwidth measurement.
- c. The resolution bandwidth of 30 kHz and the video bandwidth of 100 kHz were utilised for CTATEST channel separation measurement.

7.3 TEST SETUP

7.4 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

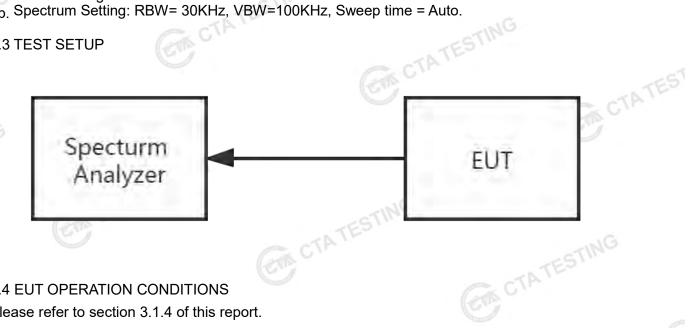
7.5 TEST RESULTS

Note: The test data please refer to APPENDIX 1.

Report No.: CTA231205005W02

8. BANDWIDTH TEST

8.1 LIMIT


		Page 37 Of 101		
BANDWIDTH TES	ST.	STING		
1 LIMIT	CTA CTA	TEC	TESTING	
	FCC	Part15 15.247,Sul	opart C	
Section	Test Item	Limit	FrequencyRange (MHz)	Result
15.247 (a)(1)	Bandwidth	N/A	2400-2483.5	PASS
0	TING		0-44	
	Section 15.247 (a)(1)	FCC Section Test Item	FCC Part15 15.247,Sul Section Test Item Limit 15.247 (a)(1) Bandwidth N/A	FCC Part15 15.247,Subpart C Section Test Item Limit FrequencyRange (MHz) 15.247 (a)(1) Bandwidth N/A 2400-2483.5

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	> Measurement Bandwidth or Channel Separation
RB	30 kHz (20dB Bandwidth) / 30 kHz (Channel Separation)
VB	100 kHz (20dB Bandwidth) / 100 kHz (Channel Separation)
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

8.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. Spectrum Setting: RBW= 30KHz, VBW=100KHz, Sweep time = Auto.

8.3 TEST SETUP

8.4 EUT OPERATION CONDITIONS

Please refer to section 3.1.4 of this report.

8.5 TEST RESULTS

Note: The test data please refer to APPENDIX 1. CTATEST

Report No.: CTA231205005W02

CTA TESTING

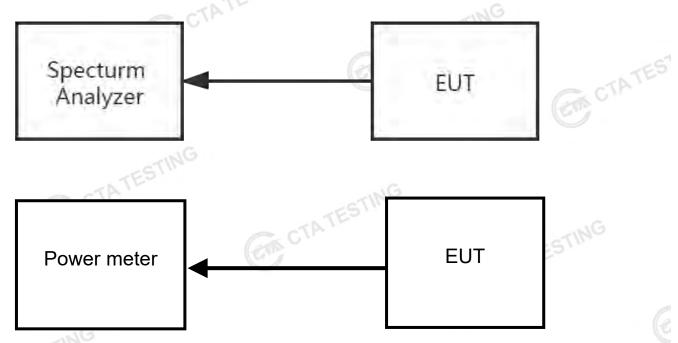
9. OUTPUT POWER TEST

9.1 LIMIT

9. OUTPUT PO	WER TEST	rage 30 of 101	Report No.: CTA2312030	J03 VV 02
9.1 LIMIT	(and	CTATE	TESTING	
		FCC Part 15.247,Subpart	t C	
Section	Test Item	Limit	Frequency Range (MHz)	Result
		1 W or 0.125W		(EM)
15.247 (a)(1)&(b)(1)	Output Power	if channel separation > 2/3 bandwidthprovided thesystems operatewith an output power no greater than125 mW(20.97dBm)	2400-2483.5	PASS

9.2 TEST PROCEDURE

This is an RF-conducted test to evaluate maximum peak output power. Use a direct connection between the antenna port of the unlicensed wireless device and the spectrum analyzer, through suitable attenuation. The hopping shall be disabled for this test:


- a) Use the following spectrum analyzer settings:
- 1) Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel.
- 2) RBW > 20 dB bandwidth of the emission being measured.
- 3) VBW ≥ RBW.
- 4) Sweep: Auto.
- 5) Detector function: Peak.
- 6) Trace: Max hold.
- b) Allow trace to stabilize.
- c) Use the marker-to-peak function to set the marker to the peak of the emission.
- d) The indicated level is the peak output power, after any corrections for external attenuators and
- NOTE—A peak responding power meter may be used, where the power meter and sensor system video bandwidth is greater than the occupied bandwidth of the unlicensed wireless. than a spectrum analyzer.

PKPM1 Peak power meter method:

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DSS bandwidth and shall use a fast-responding diode detector. CTA TEST

9.3 TEST SETUP

9.4 EUT OPERATION CONDITIONS

Please refer to section 3.1.4 of this report.

9.5 TEST RESULTS

Note: The test data please refer to APPENDIX 1.

10. ANTENNA REQUIREMENT

10.1 STANDARD REQUIREMENT

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

10.2 EUT ANTENNA

CTA TESTING

The EUT antenna is PCB Antenna. It comply with the standard requirement.

CTA TESTING

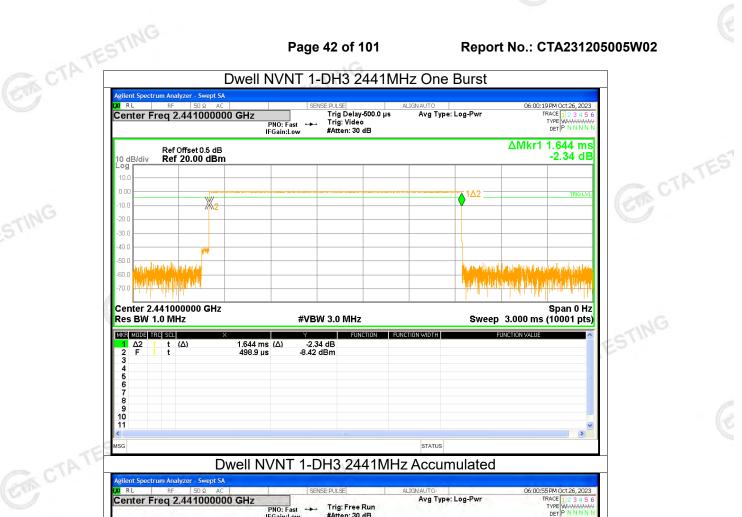
ESTING

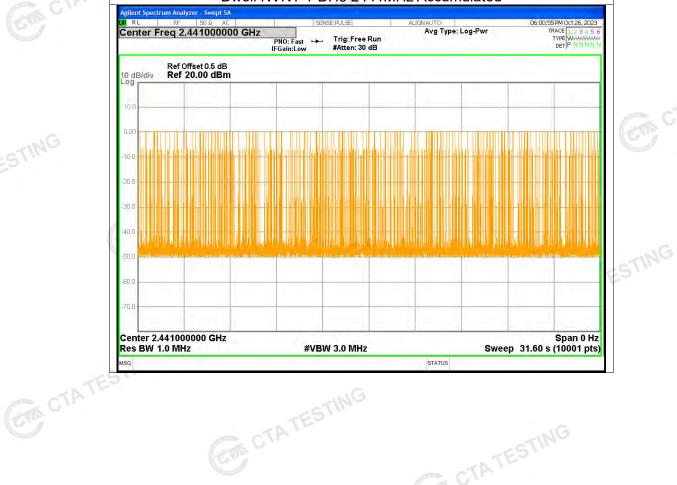
APPENDIX 1-TEST DATA

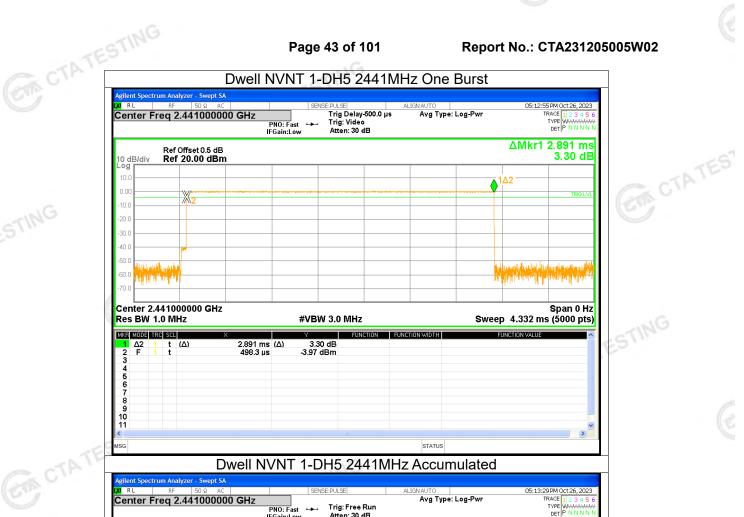

1. Dwell Time

		ESTIN		Page 4	40 of 101	Report No.: CTA231205005W02			
	APPEND		ST DATA	CTATES	TATESTING		CTATESTING		
	Condition	Mode	Frequency (MHz)	Pulse Time (ms)	Total Dwell Time (ms)	Burst Count	Period Time (ms)	Limit (ms)	Verdict
	NVNT	1-DH1	2441	0.38	118.56	312	31600	<=400	Pass
TATE	NVNT	1-DH3	2441	1.644	269.616	164	31600	<=400	Pass
11.	NVNT	1-DH5	2441	2.891	312.228	108	31600	<=400	Pass
	NVNT	2-DH1	2441	0.387	121.131	313	31600	<=400	Pass
	NVNT	2-DH3	2441	1.639	270.435	165	31600	<=400	Pass
	NVNT	2-DH5	2441	2.887	311.796	108	31600	<=400	Pass
	NVNT	3-DH1	2441	0.387	120.744	312	31600	<=400	Pass
	NVNT	3-DH3	2441	1.636	263.396	161	31600	<=400	Pass
	NVNT	3-DH5	2441	2.888	294.576	102	31600	<=400	Pass

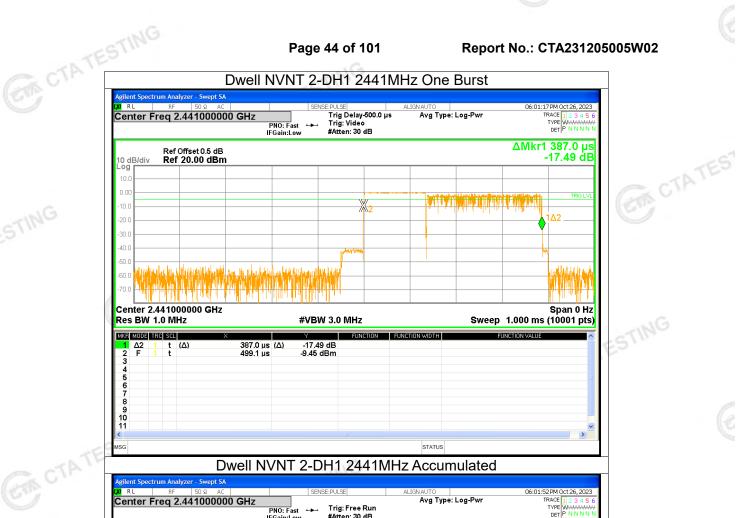
CTA TESTING CTA TESTING CTATEST CTA TESTING CTA TESTING CTA TESTING CTA TESTING

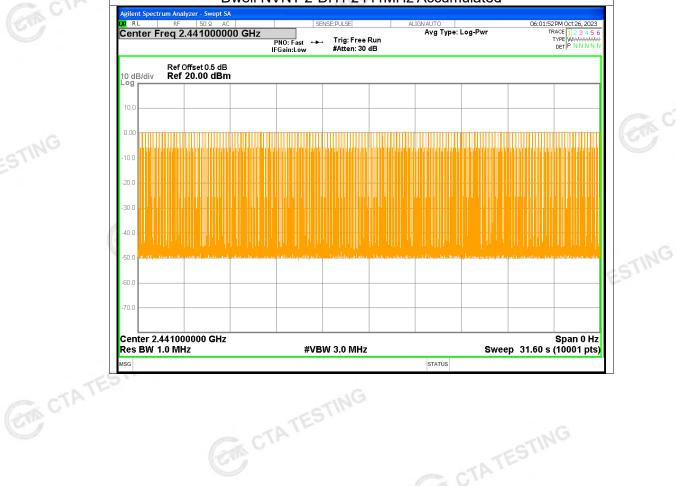

Page 41 of 101 Report No.: CTA231205005W02

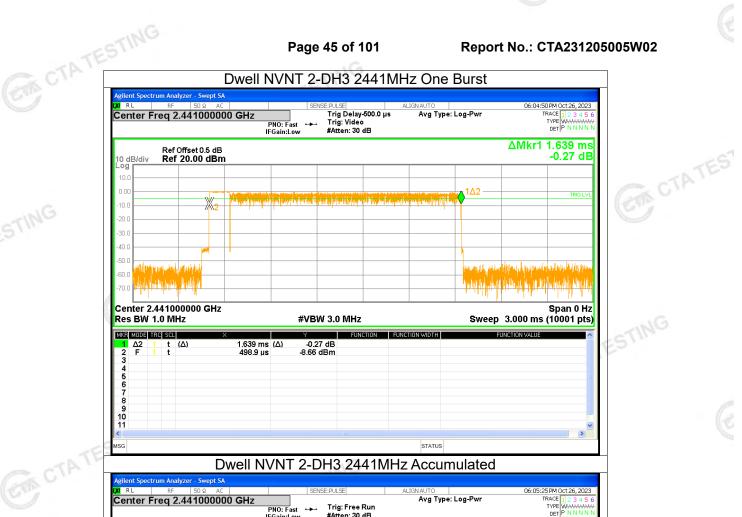

CTATEST


Avg Type: Log-Pwr Trig: Free Run #Atten: 30 dB PNO: Fast +>+ TYPE WANAMA Ref Offset 0.5 dB Ref 20.00 dBm 0.00 30.0 STING Center 2.441000000 GHz Res BW 1.0 MHz Span 0 Hz Sweep 31.60 s (10001 pts) CTATE! #VBW 3.0 MHz CTA TESTING

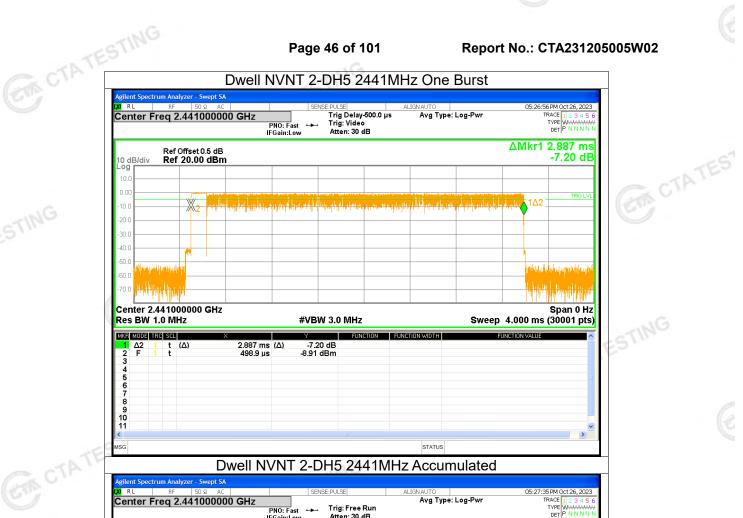
Page 42 of 101 Report No.: CTA231205005W02

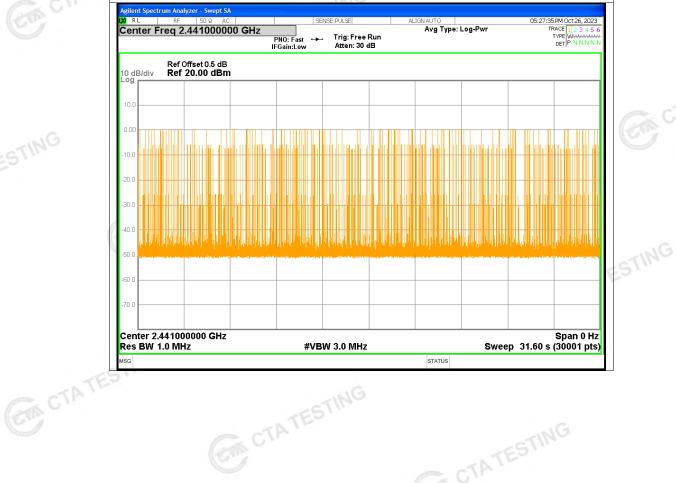


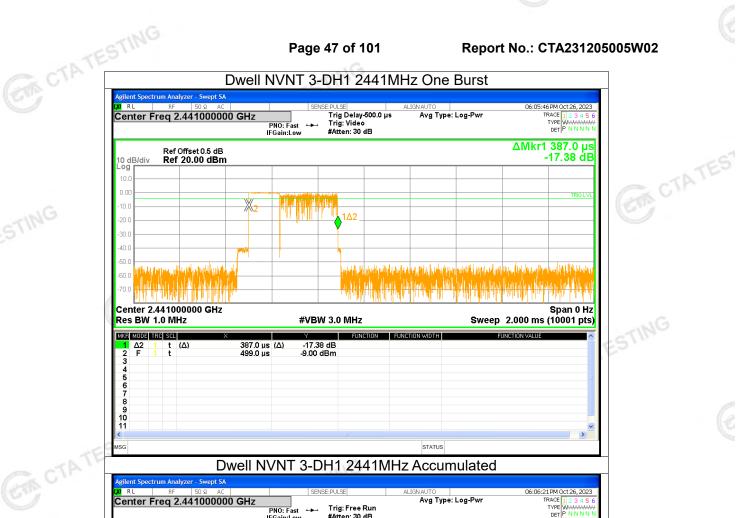

Page 43 of 101 Report No.: CTA231205005W02

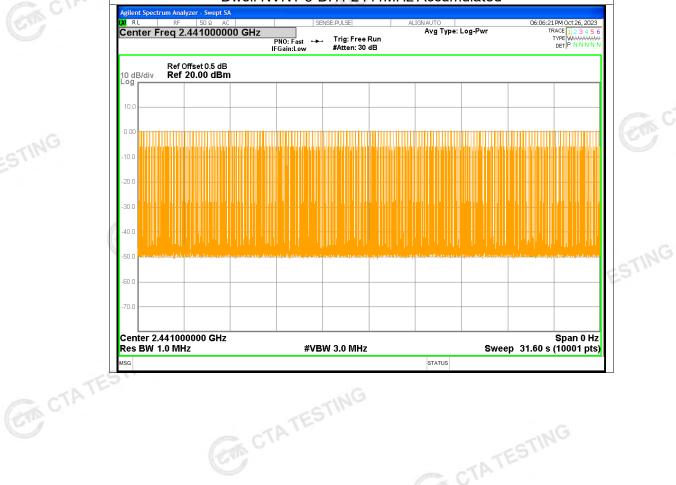


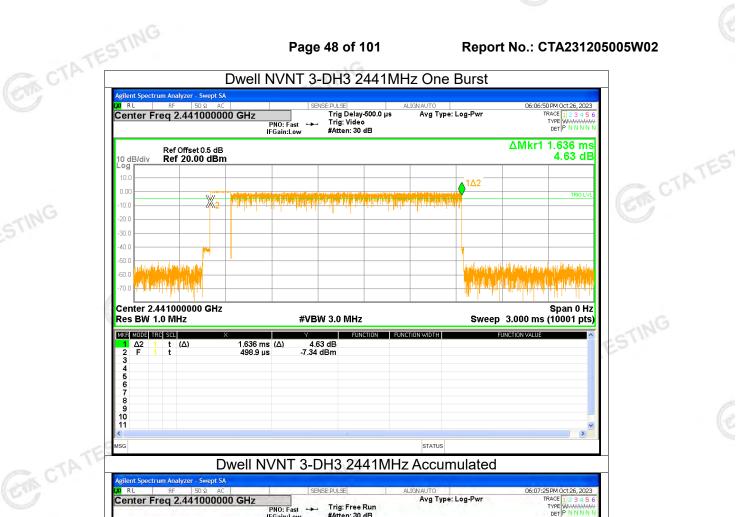
Page 44 of 101 Report No.: CTA231205005W02

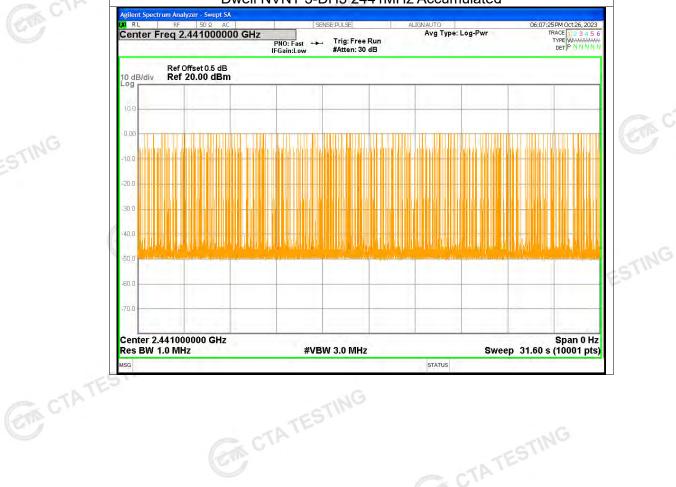


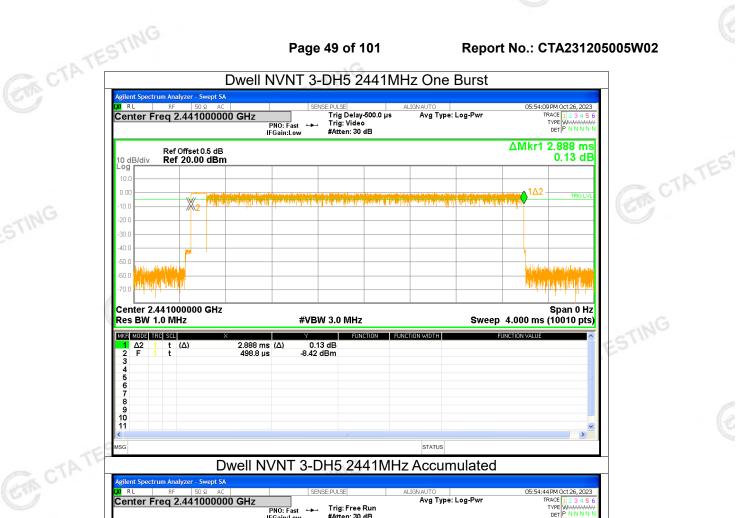

Page 45 of 101 Report No.: CTA231205005W02


Center Freg 2.441000000 GHz Avg Type: Log-Pwr TRACE 1 2 3 4 5 (TYPE WWWWWW PNO: Fast --- Trig: Free Run CTATEST Ref Offset 0.5 dB Ref 20.00 dBm 10 dB/div 40.0 STING Center 2.441000000 GHz Res BW 1.0 MHz Span 0 Hz #VBW 3.0 MHz Sweep 31.60 s (10001 pts) CTATE! STATUS CTA TESTING


Page 46 of 101 Report No.: CTA231205005W02




Page 47 of 101 Report No.: CTA231205005W02



Page 48 of 101 Report No.: CTA231205005W02

Page 49 of 101 Report No.: CTA231205005W02

Page 50 of 101

Report No.: CTA231205005W02

ATESTING 2. Maximum Average Conducted Output Power

CTA TESTING

	Condition	Mode	Frequency (MHz)	Conducted Power (dBm)	Duty Factor (dB)	Total Power (dBm)	Limit (dBm)	Verdict
	NVNT	1-DH5	2402	2.07	0 0	2.07	<=20.97	Pass
	NVNT	1-DH5	2441	2.22	0	2.22	<=20.97	Pass
	NVNT	1-DH5	2480	1.14	0	1.14	<=20.97	Pass
	NVNT	2-DH5	2402	-0.28	0	-0.28	<=20.97	Pass
75	NVNT	2-DH5	2441	-0.12	0	-0.12	<=20.97	Pass
VIL	NVNT	2-DH5	2480	-1.4	0	-1.4	<=20.97	Pass
	NVNT	3-DH5	2402	-0.1	0	-0.1	<=20.97	Pass
	NVNT	3-DH5	2441	-0.2	0.6	-0.2	<=20.97	Pass
	NVNT	3-DH5	2480	-1.47	5 0	-1.47	<=20.97	Pass
				GTA CTA		Con C	TATESTI	NG

CTA TESTING CTATEST CTA TESTING CTA TESTING CTA TESTING CTA TESTING

Page 51 of 101 Report No.: CTA231205005W02

Page 52 of 101 Report No.: CTA231205005W02

Page 53 of 101 Report No.: CTA231205005W02

Page 54 of 101 Report No.: CTA231205005W02

Page 55 of 101 Report No.: CTA231205005W02

CTATEST

CTATESTING

CTA TESTING

CTA TESTING

CTA TESTING

Page 56 of 101

Report No.: CTA231205005W02

3. Maximum Peak Conducted Output Power

-	Condition	Mode	Frequency (MHz)	Conducted Power (dBm)	Limit (dBm)	Verdict
	NVNT	1-DH5	2402	3.5	<=20.97	Pass
	NVNT	1-DH5	2441	3.59	<=20.97	Pass
	NVNT	1-DH5	2480	2.45	<=20.97	Pass
	NVNT	2-DH5	2402	3.44	<=20.97	Pass
	NVNT	2-DH5	2441	3.67	<=20.97	Pass
-0	NVNT	2-DH5	2480	2.46	<=20.97	Pass
TE	NVNT	3-DH5	2402	3.72	<=20.97	Pass
	NVNT	3-DH5	2441	3.83	<=20.97	Pass
	NVNT	3-DH5	2480	2.65	<=20.97	Pass
		En C.		CTATESTING	CTATES	TING

CTA TESTING CTA TESTING CTA TESTING CTATEST CTA TESTING CTA TESTING CTA TESTING CTA TESTING

Page 57 of 101 Report No.: CTA231205005W02

Center Freq 2.4410000000 GHz TRACE 1 2 3 4 5 TYPE MWWWWW DET P N N N N Avg Type: Log-Pwr Avg|Hold: 100/100 Trig: Free Run #Atten: 30 dB PNO: Fast +>+ CTATEST Mkr1 2.440 800 GHz 3.589 dBm Ref Offset 0.5 dB Ref 20.00 dBm 0.00 STING Center 2.441000 GHz #Res BW 2.0 MHz Span 10.00 MHz Sweep 1.333 ms (10001 pts) CTATE! #VBW 6.0 MHz CTA TESTING

Page 58 of 101 Report No.: CTA231205005W02

Page 59 of 101 Report No.: CTA231205005W02

Page 60 of 101 Report No.: CTA231205005W02

Page 61 of 101 Report No.: CTA231205005W02

CTA TEST

CTA TESTING

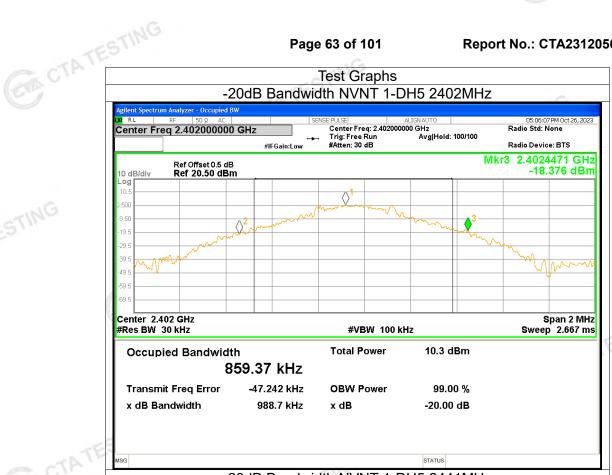
CTA TESTING

CTA TESTING

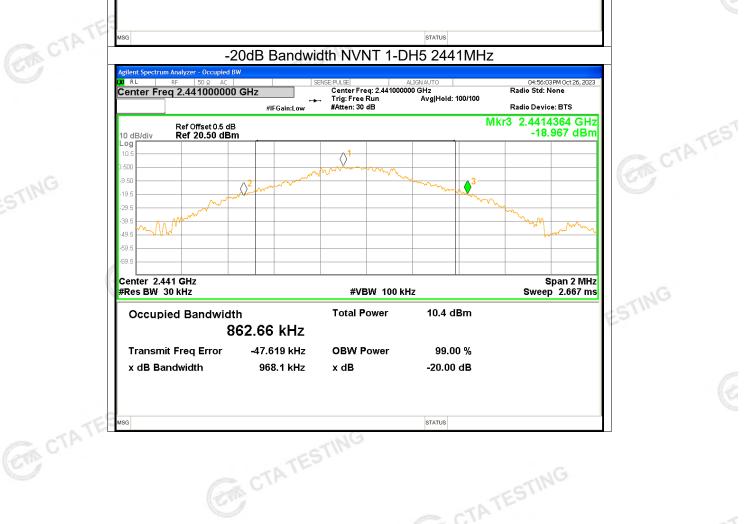
CTA TESTING

Page 62 of 101

Report No.: CTA231205005W02

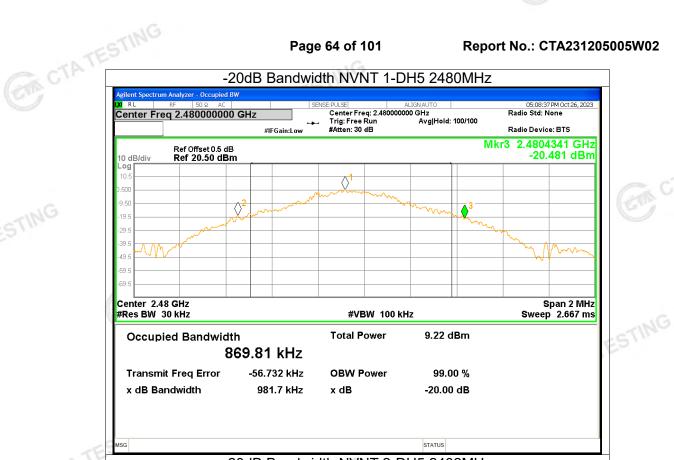

4. -20dB Bandwidth

		go 0= 0				
420dB	Bandwidth	ESTING				
Condition	Mode	Frequency (MHz)	-20 dB Bandwidth (MHz)	Verdict		
NVNT	1-DH5	2402	0.9887	Pass		
NVNT	1-DH5	2441	0.9681	Pass		
NVNT	1-DH5	2480	0.9817	Pass		
NVNT	2-DH5	2402	1.306	Pass		
NVNT	2-DH5	2441	1.2878	Pass		
NVNT	2-DH5	2480	1.2712	Pass		
NVNT	3-DH5	2402	1.3066	Pass		
NVNT	3-DH5	2441	1.2765	Pass		
NVNT	3-DH5	2480	1.2866	Pass		
		2480	EST. CTATE	STING		


CTA TESTING CTA TESTING CTATEST CTA TESTING CTA TESTING CTATESTING CTA TESTING

Page 63 of 101 Report No.: CTA231205005W02

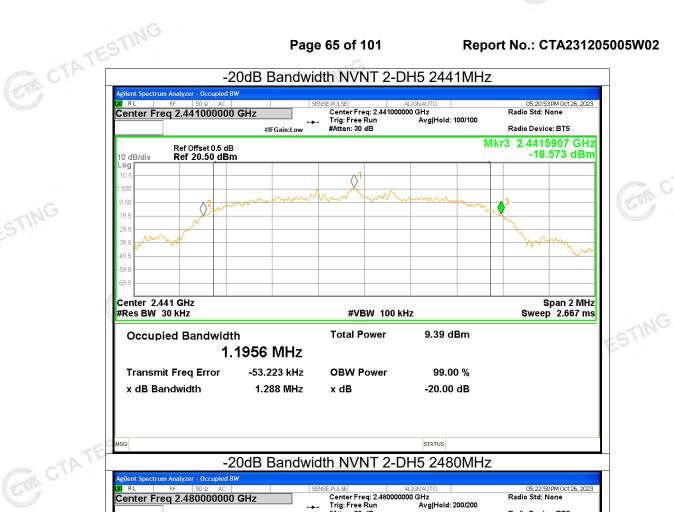
CTATES'


-20dB Bandwidth NVNT 1-DH5 2441MHz

Report No.: CTA231205005W02 Page 64 of 101

CTATES

CTATEST

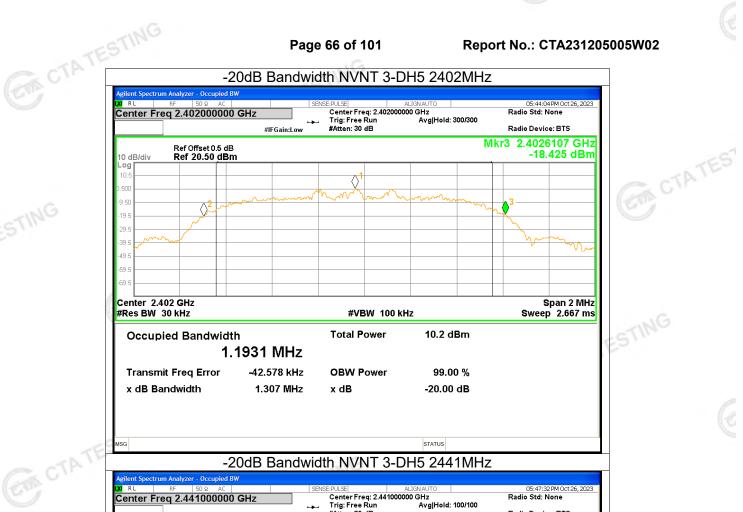


MSG -20dB Bandwidth NVNT 2-DH5 2402MHz Center Freq: 2.402000000 GHz Trig: Free Run Avg #Atten: 30 dB Center Freg 2.402000000 GHz Radio Std: None Avg|Hold: 200/200 Radio Device: BTS #IEGain:Low 2.4026075 GHz Mkr3 Ref Offset 0.5 dB Ref 20.50 dBm -19.933 dBm I0 dB/div og Center 2.402 GHz Span 2 MHz #Res BW 30 kHz **#VBW 100 kHz** Sweep 2.667 ms **Total Power** 9.64 dBm Occupied Bandwidth 1.1930 MHz -45.545 kHz **OBW Power** 99.00 % Transmit Freg Error x dB Bandwidth 1.306 MHz x dB -20.00 dB CTATE! STATUS CTA TESTING

Report No.: CTA231205005W02 Page 65 of 101

CTATES"

CTATEST


Center Freq: 2.480000000 GHz Trig: Free Run Avg #Atten: 30 dB Center Freg 2.480000000 GHz Radio Std: None Avg|Hold: 200/200 Radio Device: BTS #IEGain:Low 2.4805816 GHz Mkr3 Ref Offset 0.5 dB Ref 20.50 dBm -19.765 dBm I0 dB/div og Center 2.48 GHz Span 2 MHz #Res BW 30 kHz **#VBW 100 kHz** Sweep 2.667 ms **Total Power** 8.75 dBm Occupied Bandwidth 1.1840 MHz -53.999 kHz **OBW Power** 99.00 % Transmit Freg Error x dB Bandwidth 1.271 MHz x dB -20.00 dB CTATE!

CTA TESTING

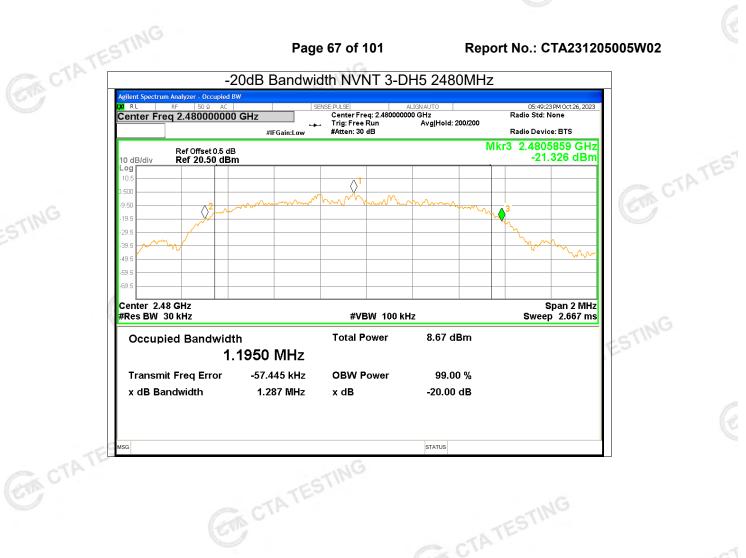
STATUS

Report No.: CTA231205005W02 Page 66 of 101

CTATEST

Center Freq: 2.441000000 GHz Trig: Free Run Avg #Atten: 30 dB Center Freq 2.441000000 GHz Radio Std: None Avg|Hold: 100/100 Radio Device: BTS #IEGain:Low 2.4415907 GHz Mkr3 Ref Offset 0.5 dB Ref 20.50 dBm -19.084 dBm I0 dB/div og Center 2.441 GHz Span 2 MHz #Res BW 30 kHz **#VBW 100 kHz** Sweep 2.667 ms **Total Power** 8.95 dBm Occupied Bandwidth 1.2016 MHz -47.599 kHz **OBW Power** 99.00 % Transmit Freg Error x dB Bandwidth 1.277 MHz x dB -20.00 dB

CTA TESTING


STATUS

CTATE!

Page 67 of 101 Report No.: CTA231205005W02

CTATEST

CTATESTING

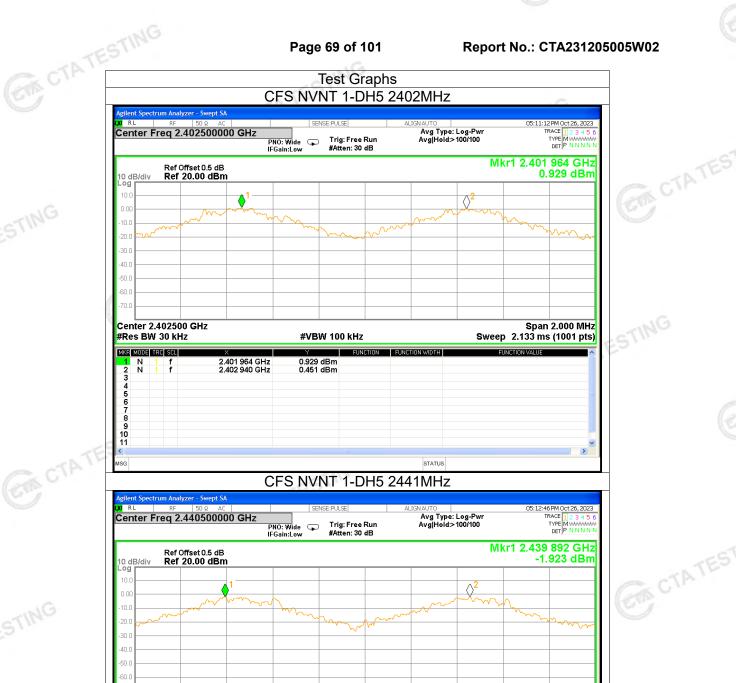
CTA TESTING

CTA TESTING

CTA TESTING

Page 68 of 101

Report No.: CTA231205005W02


Page 68 of 10
5. Carrier Frequencies Separation

	Condition	Mode	Hopping Freq1 (MHz)	Hopping Freq2 (MHz)	HFS (MHz)	Limit (MHz)	Verdict
	NVNT	1-DH5	2401.964	2402.94	0.976	>=0.659	Pass
	NVNT	1-DH5	2439.892	2440.954	1.062	>=0.645	Pass
	NVNT	1-DH5	2478.94	2479.95	1.01	>=0.654	Pass
	NVNT	2-DH5	2401.958	2402.97	1.012	>=0.871	Pass
	NVNT	2-DH5	2440.97	2442.116	1.146	>=0.859	Pass
-E.	NVNT	2-DH5	2478.792	2480.112	1.32	>=0.847	Pass
TE	NVNT	3-DH5	2401.968	2402.968	1	>=0.871	Pass
	NVNT	3-DH5	2440.954	2441.954	1	>=0.851	Pass
	NVNT	3-DH5	2478.96	2479.95	0.99	>=0.858	Pass
				2479.93		CTATEST	

CTA TESTING CTA TESTING CTA TESTING CTATEST CTA TESTING CTA TESTING CTA TESTING CTA TESTING

Report No.: CTA231205005W02

Span 2.000 MHz Sweep 2.133 ms (1001 pts)

#VBW 100 kHz

-1.923 dBm -2.036 dBm

CTA TESTING

2.439 892 GHz 2.440 954 GHz

Center 2.440500 GHz #Res BW 30 kHz

MKR MODE TRC SCL

CTATE!

Page 70 of 101 Report No.: CTA231205005W02

Page 71 of 101 Report No.: CTA231205005W02

Center Freg 2.479500000 GHz Avg Type: Log-Pw Avg|Hold:>100/100 TYPE MWWWWW DET P NNNN Trig: Free Run #Atten: 30 dB PNO: Wide 😱 Mkr1 2.478 792 GHz CTATEST Ref Offset 0.5 dB -6.409 dBm Ref 20.00 dBm n n 40.0 Center 2.479500 GHz Span 2.000 MHz #Res BW 30 kHz **#VBW** 100 kHz Sweep 2.133 ms (1001 pts) STING FUNCTION FUNCTION WIDTH 6.409 dBm -7.957 dBm 2.478 792 GHz 2.480 112 GHz N 1 2 3 4 5 6 7 8 9 10 CTATE! STATUS CTA TESTING

Page 72 of 101 Report No.: CTA231205005W02

CTATEST

STING



Page 73 of 101 Report No.: CTA231205005W02

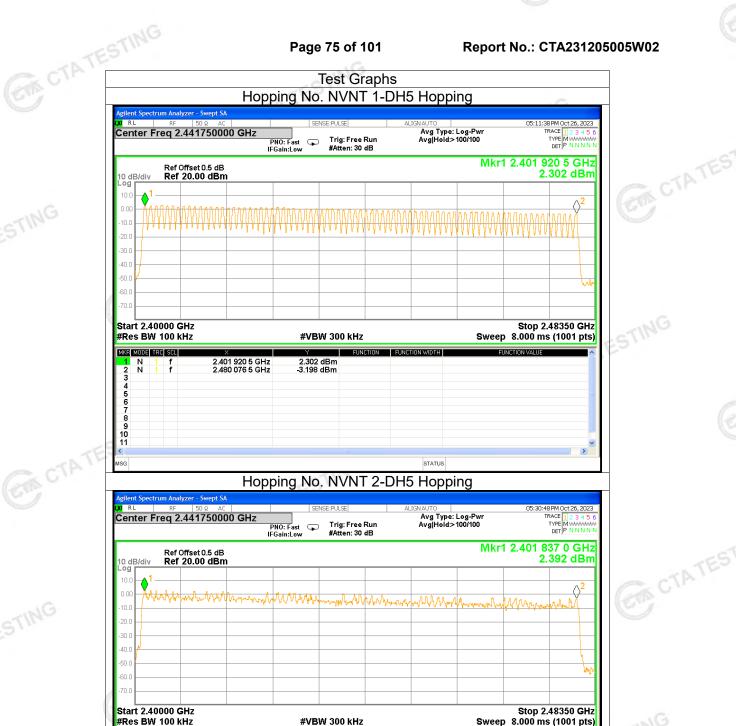
CTA TEST

CTATESTING

CTA TESTING

CTA TESTING

CTATESTING


CTA TESTING

CTATESTING

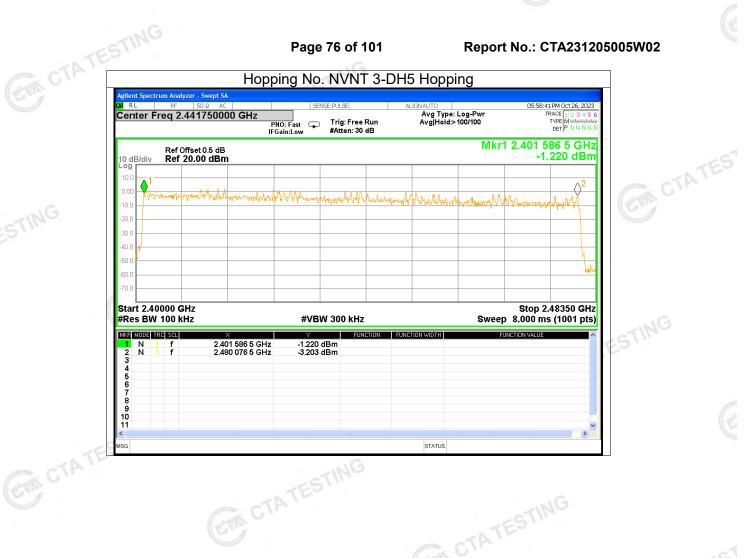
6. Number of	Hopping C	Page 74 of 101	Report No.: CTA231205005W02		
Condition	Mode	Hopping Number	Limit	Verdict	
NVNT	1-DH5	79	>=15	Pass	
NVNT	2-DH5	79	>=15	Pass	
NVNT	3-DH5	79	>=15	Pass	

CTA TESTING CTA TESTING CTA TESTING CTATEST CTA TESTING CTA TESTING CTA TESTING

Report No.: CTA231205005W02

2.392 dBm 3.236 dBm

CTA TESTING


MKR MODE TRC SCL

CTATE!

Page 76 of 101 Report No.: CTA231205005W02

CTATEST

CTATESTING

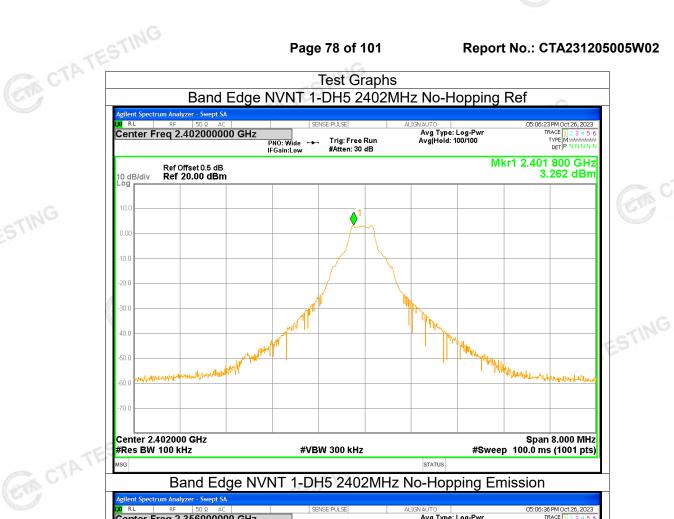
CTA TESTING

CTA TESTING

CTATESTING

Page 77 of 101

Report No.: CTA231205005W02

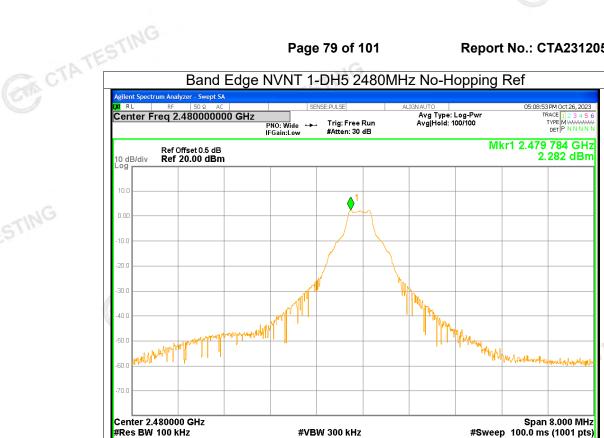

7. Band Edge

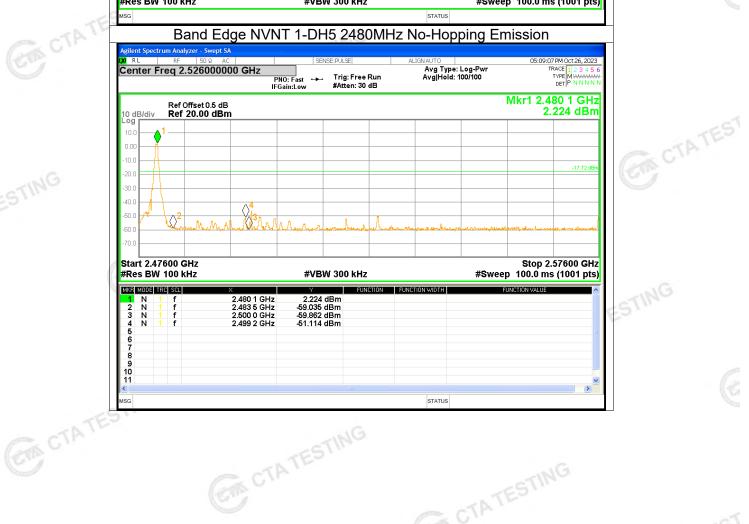
G	7. Band			ESTING	Max Value (dDa)	Limit (dDa)	Verdict
		Mode	Frequency (MHz)	Hopping Mode	Max Value (dBc)	Limit (dBc)	
	NVNT	1-DH5	2402	No-Hopping	-43.28	<=-20	Pass
	NVNT	1-DH5	2480	No-Hopping	-53.39	<=-20	Pass
	NVNT	2-DH5	2402	No-Hopping	-43.49	<=-20	Pass
	NVNT	2-DH5	2480	No-Hopping	-54.47	<=-20	Pass
5	NVNT	3-DH5	2402	No-Hopping	-43.36	<=-20	Pass
	NVNT	3-DH5	2480	No-Hopping	-53.3	<=-20	Pass
			TR.	CON CTATE	STING	CTATEST	

CTA TESTING CTA TESTING CTA TESTING CTATEST CTA TESTING CTA TESTING CTATESTING CTA TESTING

Page 78 of 101 Report No.: CTA231205005W02

CTATES!

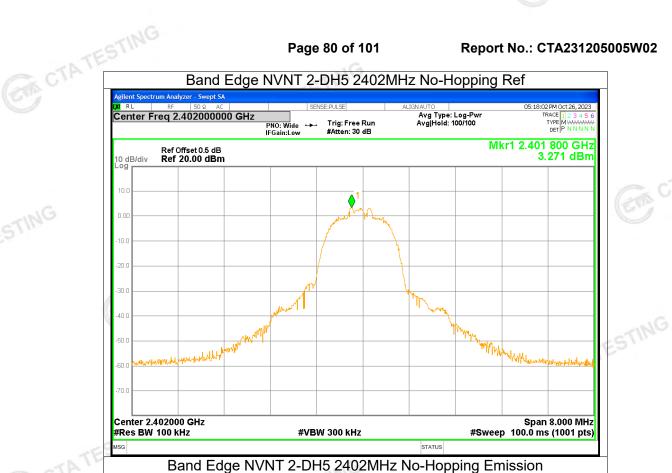


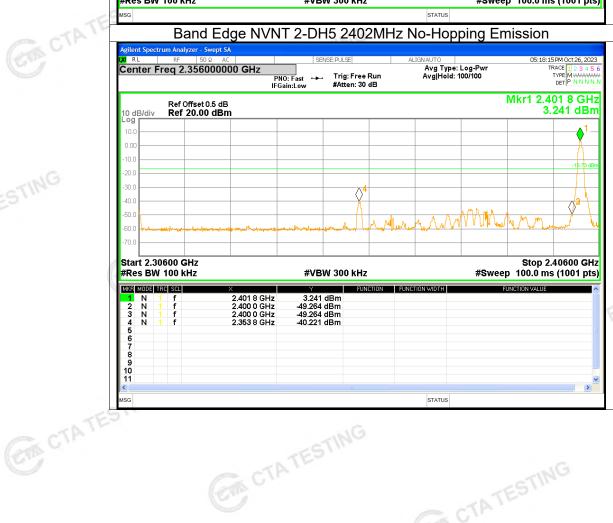

Page 79 of 101

Report No.: CTA231205005W02

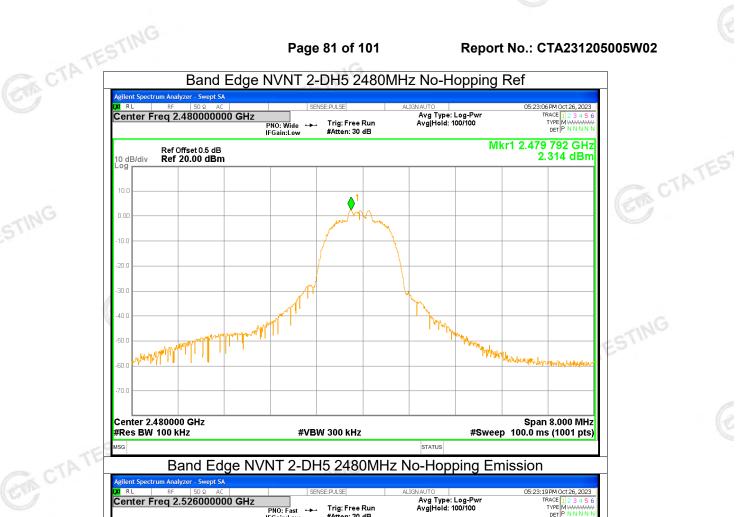
CTATES

STING





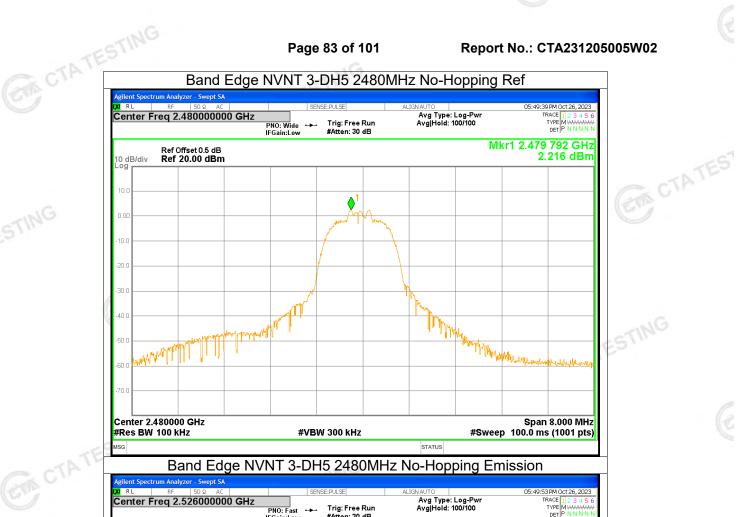
Page 80 of 101

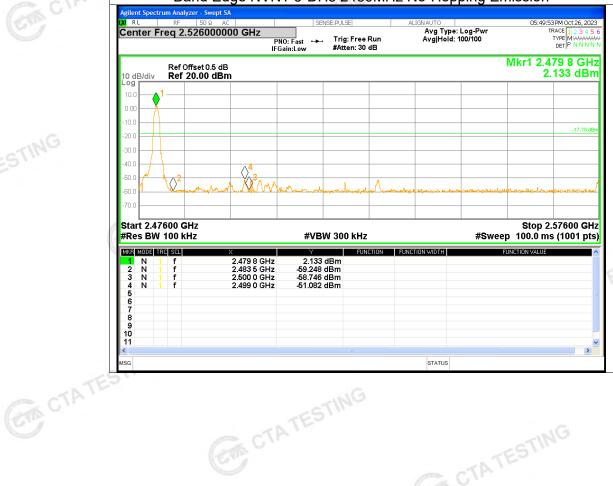


CTATES

Page 81 of 101 Report No.: CTA231205005W02

Page 82 of 101 Report No.: CTA231205005W02





Page 83 of 101

Report No.: CTA231205005W02

Page 84 of 101

Report No.: CTA231205005W02

8. Band Edge(Hopping)

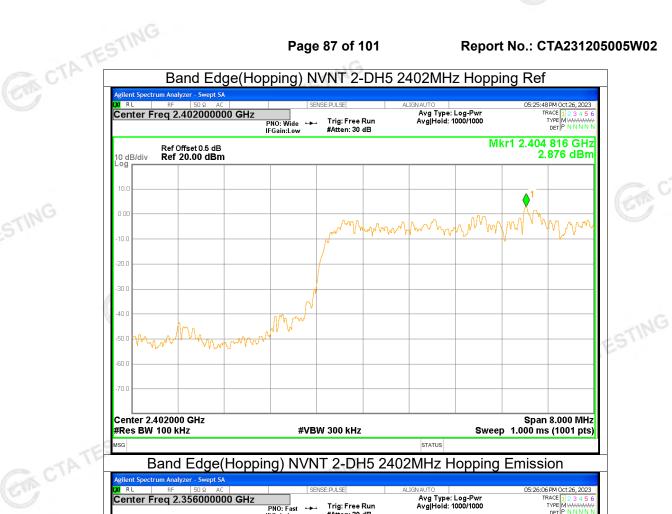
Condition	Mode	Frequency (MHz)	Hopping Mode	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH5	2402	Hopping	-42.68	<=-20	Pass
NVNT	1-DH5	2480	Hopping	-45.79	<=-20	Pass
NVNT	2-DH5	2402	Hopping	-44.11	<=-20	Pass
NVNT	2-DH5	2480	Hopping	-45.17	<=-20	Pass
NVNT	3-DH5	2402	Hopping	-53.25	<=-20	Pass
NVNT	3-DH5	2480	Hopping	-48.66	<=-20	Pass
	CTATI		CTATE	STING	CTA	TESTING

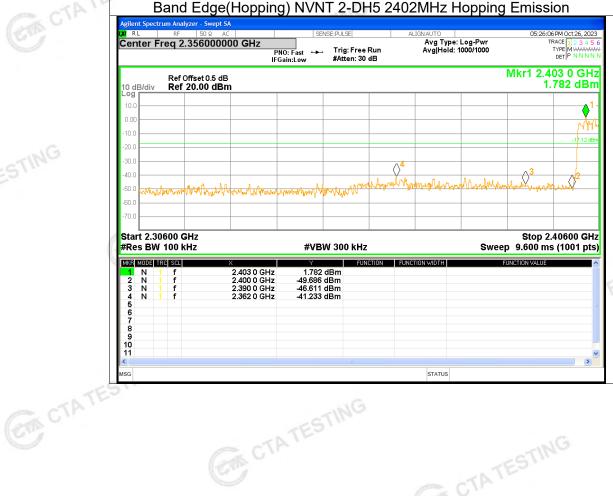
CTA TESTING CTA TESTING CTA TESTING CTATEST CTA TESTING CTA TESTING CTA TESTING CTA TESTING

Page 85 of 101 Report No.: CTA231205005W02

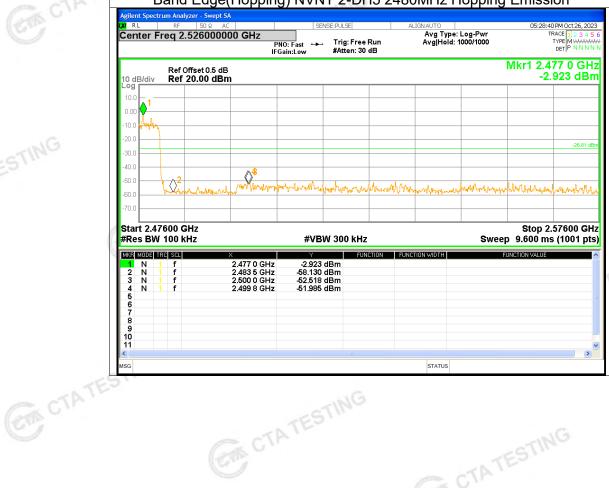
CTATEST

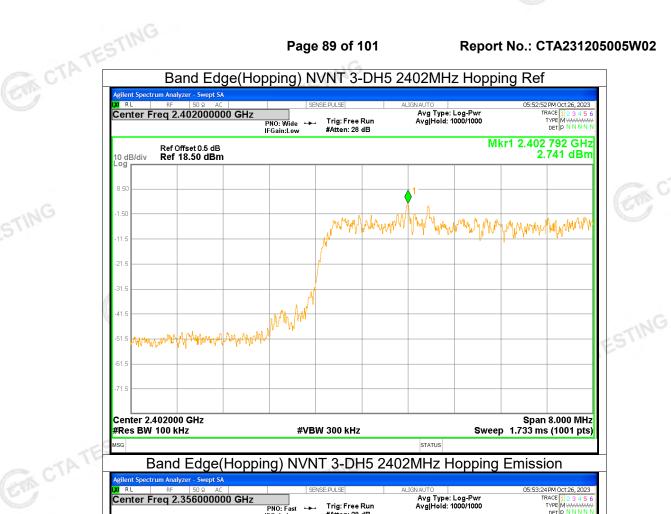
TRACE 1 2 3 4 5
TYPE MWAAAAAA
DET P N N N N Center Freq 2.356000000 GHz Avg Type: Log-Pwr Avg|Hold: 1000/1000 Trig: Free Run #Atten: 30 dB PNO: Fast +>+ Mkr1 2.404 1 GHz Ref Offset 0.5 dB Ref 20.00 dBm 3.139 dBm 30.0 Stop 2.40600 GHz Start 2.30600 GHz #Res BW 100 kHz Sweep 9.600 ms (1001 pts) **#VBW** 300 kHz 3.139 dBm -44.995 dBm -43.261 dBm -39.641 dBm 2.404 1 GHz 2.400 0 GHz 2.390 0 GHz 2.361 9 GHz NNN 2 3 4 5 6 7 8 9 10 CTATE! CTA TESTING

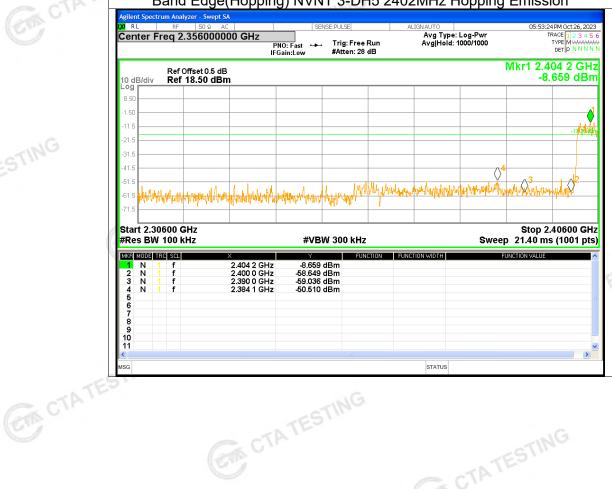

Page 86 of 101 Report No.: CTA231205005W02



Page 87 of 101 Report No.: CTA231205005W02


CTATES


Page 88 of 101 Report No.: CTA231205005W02



Page 89 of 101 Report No.: CTA231205005W02

CTATES

Page 90 of 101 Report No.: CTA231205005W02

Page 91 of 101

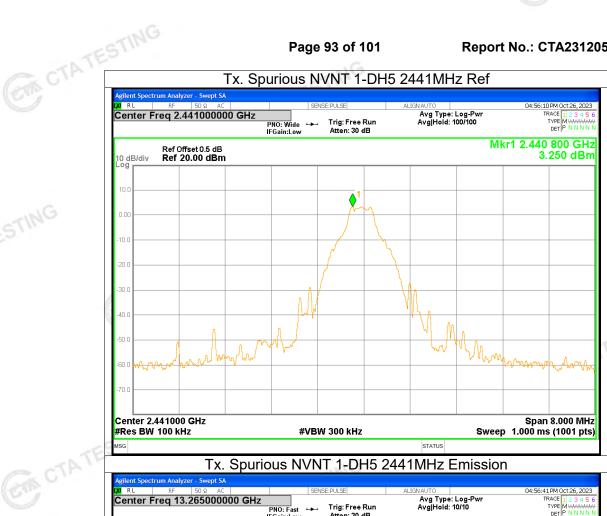
Report No.: CTA231205005W02

9. Conducted RF Spurious Emission

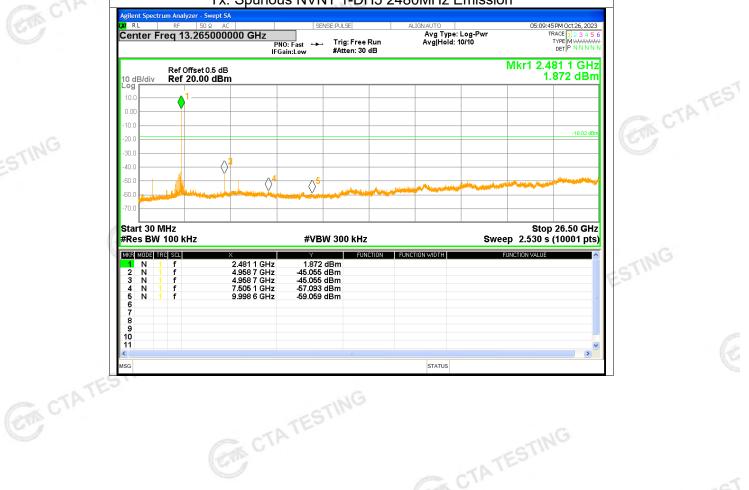
Condition	Mode	Frequency (MHz)	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH5	2402	-49.25	<=-20	Pass
NVNT	1-DH5	2441	-50.14	<=-20	Pass
NVNT	1-DH5	2480	-47.03	<=-20	Pass
NVNT	2-DH5	2402	-48.44	<=-20	Pass
NVNT	2-DH5	2441	-50.04	<=-20	Pass
NVNT	2-DH5	2480	-44.23	<=-20	Pass
NVNT	3-DH5	2402	-50.12	<=-20	Pass
NVNT	3-DH5	2441	-49.41	<=-20	Pass
NVNT	3-DH5	2480	-49.29	<=-20	Pass
			CTATE	CTA CTA	TESTING

CTA TESTING CTA TESTING CTATEST CTA TESTING CTA TESTING CTA TESTING CTA TESTING

Page 92 of 101 Report No.: CTA231205005W02



CTATES


CTATEST

STING

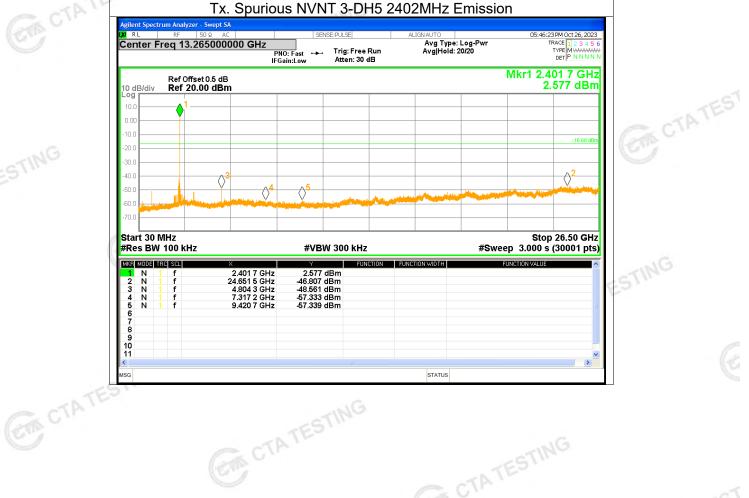
CTATES

STING



Tx. Spurious NVNT 2-DH5 2402MHz Emission

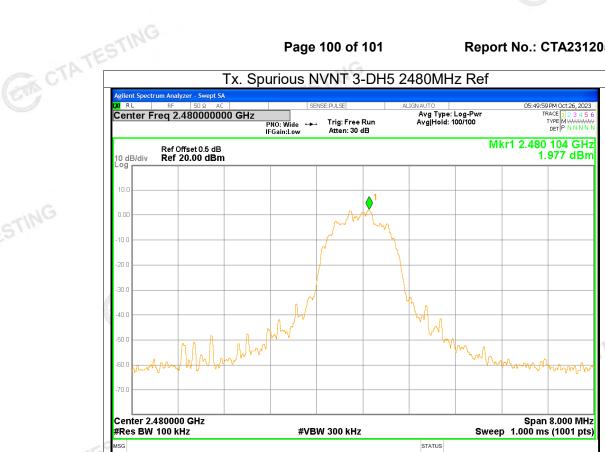
Page 96 of 101 Report No.: CTA231205005W02



Page 97 of 101 Report No.: CTA231205005W02



Page 99 of 101 Report No.: CTA231205005W02



Page 100 of 101

Report No.: CTA231205005W02 Tx. Spurious NVNT 3-DH5 2480MHz Ref

CTATES

STING

Tx. Spurious NVNT 3-DH5 2480MHz Emission

Page 101 of 101 Report No.: CTA231205005W02

CTATES

CTATEST

CTA TESTING

CTATESTING

APPENDIX 2-PHOTOS OF TEST SETUP

CTA TESTING

Note: See test photos in setup photo document for the actual connections between Product and support equipment.

****END OF THE REPORT***

CTA TESTING

CTATESTING

CTATESTING

CTATESTING

CTATESTING

CTATESTING

CTA TESTING