

FCC ID: 2AE6G-GVD2800

FCC RF Exposure Evaluation

1. Product Information

FCC ID	2AE6G-GVD2800			
Product name	MINI HI-FI SYSTEM			
Model number	GVD-2800			
Power supply	Input: 110-240V~, 50/60Hz, 160W			
Modulation Type	GFSK, π/4-DQPSK, 8-DPSK for Bluetooth V5.0(DSS)			
Modulation Type	GFSK for Bluetooth V5.0(DTS)			
Antenna Type	PCB Antenna			
Antenna Gain	3.38(Max.)			
FM function	Support and only RX			
Hardware version	H7-AMP-TPA3221-01-FR4			
Software version	H7-01			
FCC Operation frequency	2402MHz ~ 2480MHz			
Exposure category	General population/uncontrolled environment			
EUT Type	Production Unit			
Device Type	Mobile Devices			

2. Evaluation Method

Systems operating under the provisions of FCC 47 CFR section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as mobile device whereby a distance of 0.2m normally can be maintained between the user and the device, and below RF Permissible Exposure limit shall comply with.

In accordance with KDB447498D01 for Simultaneous transmission MPE test exclusion applies when the sum of the MPE ratios for all simultaneous transmitting antennas incorporated in a host device, based on the calculated/estimated, numerically modelled or measured field strengths or power density, is ≤ 1.0. The MPE ratio of each antenna is determined at the minimum test separation distance required by the operating configurations and exposure conditions of the host device, according to the ratio of field strengths or power density to MPE limit, at the test frequency. Either the maximum peak or spatially averaged results from measurements or numerical simulations may be used to determine the MPE ratios. Spatial averaging does not apply when MPE is estimated using simple calculations based on far-field plane-wave equivalent conditions. The antenna installation and operating requirements for the host device must meet the minimum test separation distances required by all antennas, in both standalone and simultaneous transmission operations, to satisfy compliance.

上ST 正洲位测版Lab

FCC ID: 2AE6G-GVD2800

3. Limit

3. 1 Refer Evaluation Method

ANSI C95.1–1999: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.

FCC KDB publication 447498 D01 General 1 RF Exposure Guidance v06: Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies.

FCC CFR 47 part1 1.1310: Radiofrequency radiation exposure limits.
FCC CFR 47 part2 2.1091: Radiofrequency radiation exposure evaluation: mobile devices

3. 2 Limit

Limits for Maximum Permissible Exposure (MPE)/Controlled Exposure

	Frequency Electric Field		Magnetic Field	Power Density	Averaging Time				
ľ	Range(MHz)	Strength(V/m)	Strength(A/m)	(mW/cm²)	(minute)				
		Limits for Oc	cupational/Control	led Exposure					
	0.3 – 3.0 614		1.63	(100)_*	6				
	3.0 - 30	3.0 – 30 1842/f		(900/f ²)*	6				
	30 – 300 61.4		0.163	1.0	6				
	300 – 1500 /		/	f/300	6				
	1500 – 100,000			5	6				

Limits for Maximum Permissible Exposure (MPE)/Uncontrolled Exposure

Frequency	Frequency Electric Field Range(MHz) Strength(V/m)		Power Density	Averaging Time
Range(MHz)			(mW/cm²)	(minute)
	Limits for Oc	cupational/Controll	led Exposure	
0.3 - 3.0	614	1.63	(100) *	30
3.0 - 30	824/f	2.19/f	$(180/f^2)^*$	30
30 – 300 300 – 1500 / 27.5		0.073	0.2	30
		/	f/1500	30
1500 – 100,000	/	/	1.0	30

F=frequency in MHz

4. MPE Calculation Method

Predication of MPE limit at a given distance Equation from page 18 of OET Bulletin 65, Edition 97-01

S=PG/4πR²

Where: S=power density

P=power input to antenna

G=power gain of the antenna in the direction of interest relative to an isotropic radiator

R=distance to the center of radiation of the antenna

5. Antenna Information

PCB Antenna can only use antennas certificated as follows provided by manufacturer;

Internal Identification	Antenna type and antenna number	Operate frequency band	Maximum antenna gain	Note
Antenna	PCB Antenna	2402MHz ~ 2480MHz	3.38dBi	BT Antenna

^{*=}Plane-wave equivalent power density

6. Conducted Power

ted Power			
	< BT	Max Conducted Powe	r > Lab
Mode	Channel	Frequency(MHz)	Max Conducted Power (dBm)
	0	2402	0.45
GFSK	39	2441	-1.09
	78	2480	-3.18
	0	2402	0.56
π/4-DQPSK	39	2441	-1.08
	78	2480	-3.21
	0	2402	0.48
8-DPSK	39	2441	-1.41
古话拉河 De Lab	78	2480	-3.30

< BT LE Max Conducted Power >

Mode	Channel	Frequency(MHz)	Max Conducted Power (dBm)
	0	2402	0.44
GFSK	19	2440	-1.25
	39	2480	-3.37

7. Manufacturing Tolerance

The section of the se							
GFSK (Peak)							
Channel	Channel 0	Channel 39	Channel 78				
Target (dBm)	0	-1.0	-3.0				
Tolerance ±(dB)	1.0	1.0	1.0				
	π/4-DQPS	SK (Peak)					
Channel	Channel 0	Channel 39	Channel 78				
Target (dBm)	0	-1.0	-3.0				
Tolerance ±(dB)	1.0	1.0	1.0				
8-DPSK (Peak)							
Channel	Channel 0	Channel 39	Channel 78				
Target (dBm)	0 11	-1.0	-3.0				
Tolerance ±(dB)	1.0	1.0	1.0				

<BT LE>

10 112						
GFSK (Peak)						
Channel	Channel 0	Channel 19	Channel 39			
Target (dBm)	0	-1.0	-3.0			
Tolerance ±(dB)	1.0	1.0	1.0			

Shenzhen LCS Compliance Testing Laboratory Ltd.

Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity

8. Measurement Results

As declared by the Applicant, the EUT is a wireless device used in a fix application, at least 20 cm from any body part of the user or nearby persons; from the maximum EUT RF output power, the minimum separation distance, r =20cm, as well as the gain of the used antenna refer to antenna information, the RF power density can be obtained.

[Antenna]

<BT>

	RF out	put power	Antenna	Antenna	ina MPE	MPE
Band/Mode	dBm	Bm mW Gain Gain (Inear)		(mW/cm2)	Limits (mW/cm2)	
GFSK	1.0	1.2589	3.38	2.1777	0.0005	1.0000
π/4-DQPSK	1.0	1.2589	3.38	2.1777	0.0005	1.0000
8-DPSK	1.0	1.2589	3.38	2.1777	0.0005	1.0000

<BT LE>

	RF ou	tput power	Antenna	Antenna	MPE	MPE Limits (mW/cm2)
Band/Mode	dBm	mW	Gain (dBi)	Gain (linear)	(mW/cm2)	
GFSK	1.0	1.2589	3.38	1.0000	0.0005	1.0000

Remark:

- 1. Output power including tune-up tolerance;
- 2. MPE evaluate distance is 20cm from user manual provide by manufacturer;

9. Conclusion

The measurement results comply with the FCC Limit per 47 CFR 2.1091 for the uncontrolled RF Exposure of mobile device.

.....THE END OF REPORT.....

Shenzhen LCS Compliance Testing Laboratory Ltd.

Add: 101, 201 Bldg Å & 301 Bldg Č, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China