Radio Test Report

Report No.:CTA231205004W02

Issued for

Innovative Concepts and Design LLC

458 Florida Grove Road, Perth Amboy, New Jersey, 08861

USA

Product Name: Speaker

Brand Name: gemini

Model Name: GD-L215 PRO

Series Model(s): GD-215 PRO

FCC ID: 2AE6G-GD215PRO

Test Standards: FCC Part15.247

The test results presented in this report relate only to the object tested. This report shall not be reproduced, except in full, without the written approval of the ShenZhen CTA Test Services Co., Ltd.

Report No.: CTA231205004W02 Page 2 of 80

	TEST REPORT
Applicant's Name	Innovative Concepts and Design LLC
Address:	458 Florida Grove Road, Perth Amboy, New Jersey, 08861 USA
Manufacturer's Name	Innovative Concepts and Design LLC
Address:	458 Florida Grove Road, Perth Amboy, New Jersey, 08861 USA
Product Description	
Product Name	Speaker
Brand Name:	gemini GD-L215 PRO GD-215 PRO
Model Name:	GD-L215 PRO
Series Model(s):	GD-L215 PRO GD-215 PRO FCC Part15.247
Test Standards:	FCC Part15.247
Test Procedure:	ANSI C63.10-2013
under test (EUT) is in compliance sample identified in the report. The test results presented in the	s been tested by CTA, the test results show that the equipment be with the FCC requirements. And it is applicable only to the tested his report relate only to the object tested. This report shall not but the written approval of the ShenZhen CTA Test Services Co., Ltd
Date of Test	CACTA
Date of receipt of test item	: 10 Oct. 2023
Date (s) of performance of tests	: 10 Oct. 2023 ~ 01 Dec. 2023
Date of Issue	: 01 Dec. 2023
Test Result	: Pass
Testing Engin	TATESTIN
	(Zoey Cao)
Technical Mar	
	(Amy Wen)

(Eric Wang)

Authorized Signatory :

	Page 3 of 80	Report No.: CTA231205004W	/02
CTATESTING	Table of Contents		Page
1. SUMMARY OF TEST	RESULTS		6
1.1 TEST FACTORY			7
1.2 MEASUREMENT	UNCERTAINTY		7 CTAT
2. GENERAL INFORMAT	TON		8.4
2.1 GENERAL DESCI	RIPTION OF THE EUT		8
2.2 DESCRIPTION O	F THE TEST MODES		10
2.3 FREQUENCY HO	PPING SYSTEM REQUIRE	MENTS	10
2.4 TABLE OF PARAM	METERS OF TEST SOFTW	ARE SETTING	11
2.5 BLOCK DIAGRAM	SHOWING THE CONFIGU	JRATION OF SYSTEM TESTE	D 12
2.6 DESCRIPTION O	F NECESSARY ACCESSO	RIES AND SUPPORT UNITS	13
2.7 EQUIPMENTS LIS	ST		14
3. EMC EMISSION TEST			16
3.1 CONDUCTED EM	ISSION MEASUREMENT		16
3.2 RADIATED EMISS	SION MEASUREMENT		20
4. CONDUCTED SPURIO	OUS & BAND EDGE EMISS	SION	31
4.1 LIMIT	CTATES	CTA TESTING	31
4.2 TEST PROCEDUI	RE		31
4.3 TEST SETUP		CK CTA.	32
4.4 EUT OPERATION	CONDITIONS		32
4.5 TEST RESULTS			32
5. NUMBER OF HOPPIN	G CHANNEL		33
5.1 LIMIT	TING		33
5.2 TEST PROCEDUI	RE		33
5.3 TEST SETUP		TESTING	33
5.4 EUT OPERATION	CONDITIONS		33
5.5 TEST RESULTS		GACTA	33
6. AVERAGE TIME OF O	CCUPANCY	(END CI.	34
6.1 LIMIT			34
6.2 TEST PROCEDUI	RE		34
6.3 TEST SETUP			34
6.4 EUT OPERATION	CONDITIONS		34
6.5 TEST RESULTS	CTATE		34
7. HOPPING CHANNEL	SEPARATION MEASUREN	IEN TEST	35
		IEN CTA TESTING	

	Page 4 of 80	Report No.: CTA231205004W02	
CTATESTING	Table of Contents	Page	
7.1 LIMIT	CTATL	35 35 35 35	
7.1 LIWIT 7.2 TEST PROCEDURE		35	
7.3 TEST SETUP		35	
7.4 EUT OPERATION C	ONDITIONS	35	KCTA
7.5 TEST RESULTS		35	
8. BANDWIDTH TEST		36	
8.1 LIMIT	Ma	36	
8.2 TEST PROCEDURE		36	
8.3 TEST SETUP		36 36 36 36	
8.4 EUT OPERATION C	ONDITIONS	36	
8.5 TEST RESULTS		36 36	
9. OUTPUT POWER TEST		37	
9.1 LIMIT		37	
9.2 TEST PROCEDURE		37	
9.3 TEST SETUP	ESTING	38	
9.4 EUT OPERATION C	ONDITIONS	38	
9.5 TEST RESULTS		38 38 38 38	
10. ANTENNA REQUIREM		38	
10.1 STANDARD REQU	IREMENT		
10.2 EUT ANTENNA		38	
APPENDIX 1-TEST DATA		39	
1. DWELL TIME		39	
2. MAXIMUM AVERAGE CO	ONDUCTED OUTPUT P	OWER 46	
3. MAXIMUM PEAK COND	UCTED OUTPUT POWE	ER 50	
420DB BANDWIDTH		54	
5. CARRIER FREQUENCIE	S SEPARATION	58	
6. NUMBER OF HOPPING	CHANNEL	62	
7. BAND EDGE		64	
8. BAND EDGE(HOPPING)	.siG	68	
9. CONDUCTED RF SPUR	IOUS EMISSION	73	
APPENDIX 2-PHOTOS OF	TEST SETUP	ESTING 80	
111 1 211311 2 1 110 100 01	3.0.0.0.		

Revision History

		Page 5 of 80	Report No	.: CTA231205004W02
		<u>Revision Hi</u>	<u>story</u>	
Rev.	Issue Date	Report No.	Effect Page	Contents
00	01 Dec. 2023	CTA231205004W02	ALL	Initial Issue

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards: KDB 558074 D01 15.247 Meas Guidance v05r02.

Standard Section	Test Item	Judgment	Remark
15.207	Conducted Emission	PASS	(50)
15.247(a)(1)	Hopping Channel Separation	PASS	
15.247(a)(1)&(b)(1)	Output Power	PASS	
15.209	Radiated Spurious Emission	PASS	
15.247(d)	Conducted Spurious & Band Edge Emission	PASS	CTATESTIN
15.247(a)(1)(iii)	Number of Hopping Frequency	PASS	
15.247(a)(1)(iii)	Dwell Time	PASS	
15.247(a)(1)	Bandwidth	PASS	
15.205	Restricted bands of operation	PASS	
Part 15.247(d)/part 15.209(a)	Band Edge Emission	PASS	
15.203	Antenna Requirement	PASS	
	st is not applicable in this Test Report. ording to ANSI C63.10-2013.		

- CTA TESTING

Page 7 of 80 Report No.: CTA231205004W02

1.1 TEST FACTORY

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an CTATES

District, Shenzhen, China

FCC test Firm Registration Number: 517856 IC test Firm Registration Number: 27890

A2LA Certificate No.: 6534.01

IC CAB ID: CN0127

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement y ±U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test	Range	Measurement Uncertainty	ESTING
Radiated Emission	30~1000MHz	4.06 dB	1
Radiated Emission	1~18GHz	5.14 dB	
Radiated Emission	18-40GHz	5.38 dB	
Conducted Disturbance	0.15~30MHz	2.14 dB	
Output Peak power	30MHz~18GHz	0.55 dB	
Power spectral density	/	0.57 dB	
Spectrum bandwidth	and I	1.1%	
Radiated spurious emission (30MHz-1GHz)	30~1000MHz	4.10 dB	
Radiated spurious emission (1GHz-18GHz)	1~18GHz	4.32 dB	
Radiated spurious emission (18GHz-40GHz)	18-40GHz	5.54 dB	

Report No.: CTA231205004W02 Page 8 of 80

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF THE EUT

Product Name	Speaker		
Brand Name	gemini		
Model Name	GD-L215 PRO		
Series Model(s)	GD-215 PRO		
Model Difference	GD-L215 PRO have light effect, GD-215 PRO don't have light effect		
Channel List	Please refer to the Note 3.		
Bluetooth	Frequency:2402 – 2480 MHz Modulation: GFSK(1Mbps), π/4-DQPSK(2Mbps)		
Bluetooth Configuration	BR+EDR		
Antenna Type	FPC		
Antenna Gain	3.3dBi		
Rating	Input: AC110V, 3.15A Output: +15V,-15V, 0.5A		
Hardware version number	GD-L215-PRE-20230908.PCB		
Software version number	GD-115BT[GEMINI GD SERIES][2009041106]		
Connecting I/O Port(s)	Please refer to the Note 1.		

Note:

- 1. For a more detailed features description, please refer to the manufacturer's specifications or the User Manual.
- 2. The antenna information refer the manufacturer provide report, applicable only to the tested sample identified in the report. Due to the incorrect antenna information, a series of problems such as the accuracy of the test results will be borne by the customer. CTA TESTING

	TESTING	Page	9 of 80	Report N	lo.: CTA231205	004W02
3.	TES		CTING			
			Chanr	nel List		c
	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
	00	2402	27	2429	54	2456
	01	2403	28	2430	55	2457
	02	2404	29	2431	56	2458
	03	2405	30	2432	57	2459
	04	2406	31	2433	58	2460
	05	2407	32	2434	59	2461
	06	2408	33	2435	60	2462
	07	2409	34	2436	61	2463
	08	2410	35	2437	62	2464
	09	2411	36	2438	63	2465
	10	2412	37	2439	64	2466
	11	2413	38	2440	65	2467
	12	2414	39	2441	66	2468
	13	2415	40	2442	67	2469
	14	2416	41	2443	68	2470
	15	2417	42	2444	69	2471
	16	2418	43	2445	70	2472
	-6/17	2419	44	2446	71	2473
	18	2420	45	2447	72	2474
	19	2421	46	2448	73	2475
	20	2422	47	2449	74	2476
	21	2423	48	2450	75	2477
	22	2424	49	2451	76	2478
	23	2425	50	2452	77	2479
	24	2426	51	2453	78	2480
	25	2427	52	2454		
	26	2428	53	2455		

Page 10 of 80 Report No.: CTA231205004W02

2.2 DESCRIPTION OF THE TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Worst	Mode	Description	Data Rate/Modulation
Mod	e 1	TX CH00	1Mbps/GFSK
Mod	e 2	TX CH39	1Mbps/GFSK
Mod	e 3	TX CH78	1Mbps/GFSK
Mod	e 4	TX CH00	2 Mbps/π/4-DQPSK
Mod	e 5	TX CH39	2 Mbps/π/4-DQPSK
Mod	e 6	TX CH78	2 Mbps/π/4-DQPSK
Mod	e 7	Hopping	GFSK
Mod	e 8	Hopping	π/4-DQPSK

Note:

- (1) The measurements are performed at all Bit Rate of Transmitter, the worst data was reported.
- (2) We tested for all available U.S. voltage and frequencies (For 120V, 50/60Hz and 240V, 50/60Hz) for which the device is capable of operation, and the worst case of 120V/ 60Hz is shown in the report.
- (3) The battery is fully-charged during the radiated and RF conducted test.

For AC Conducted Emission

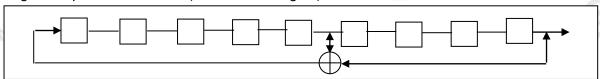
10	er / to corradoted Erricolori		4.5
	Cal	Test Case	STING
Ī	AC Conducted Emission	Mode 9 : Keeping BT TX	TATES

2.3 FREQUENCY HOPPING SYSTEM REQUIREMENTS

(1)Standard and Limit

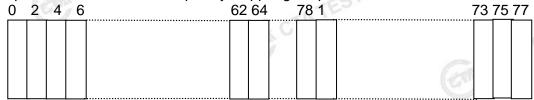
According to FCC Part 15.247(a)(1), The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.


The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hop sets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

Page 11 of 80 Report No.: CTA231205004W02

(2)The Pseudorandom sequence may be generated in a nin-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first one of 9 consecutive ones: i.e. the shift register is initialized with nine ones.


Numver of shift register stages:9

Length of pseudo-random sequence:29-1=511bits Longest sequence of zeros: 8(non-inverted signal)

Liner Feedback Shift Register for Generator of the PRBS sequence

An example of Pseudorandom Frequency Hoppong Sequence as follow:

Each frequency used equally on th average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies ini synchronization with the transmitted signals.

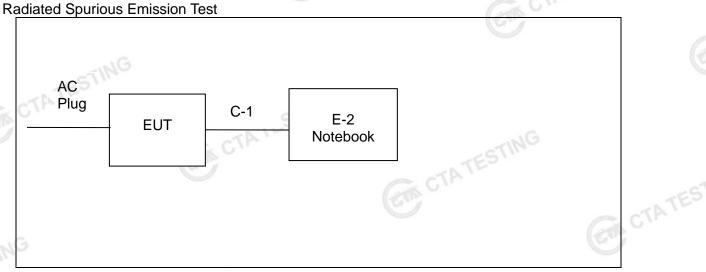
(3)Frequency Hopping System

This transmitter device is frequency hopping device, and complies with FCC part 15.247 rule.

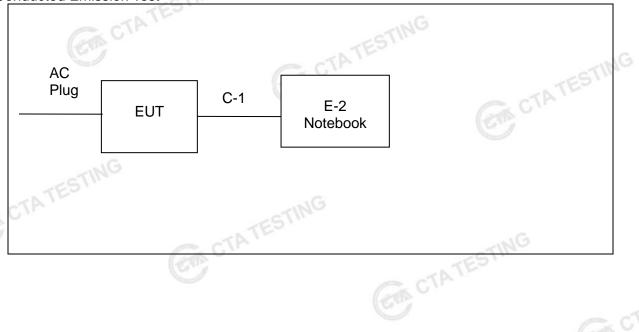
This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each; centred from 2402 to 2480 MHz) in the range 2,400-2,483.5MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock.

Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH-enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

This device was tested with a bluetooth system receiver to check that the device maintained hopping synchronization, and the device complied with these requirements FCC Part 15.247 rule.


2.4 TABLE OF PARAMETERS OF TEST SOFTWARE SETTING

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of FHSS.


Page 12 of 80	Report No.	: CTA231205004W02
TESTIN	Test program: Blueto	poth
Packet type: DH1:4:27 2DH1:20:54	Packet type: DH3:11:183 2DH3:26:367	Packet type: DH5:15:339 2DH5:30:679
	Packet type: DH1:4:27	Test program: Blueto Packet type: DH1:4:27 Packet type: DH3:11:183

		2D	H1:20:54 2DH3:26:367 2DH5:30:67			5:30:679	:679	
	RF Function	Туре	Mode Or Modulation type	ANT Gain(dBi)	Power Class	Software For Testing	CTAT	
	NG		GFSK	3.3	5			
TATES	ВТ	BR+EDR	π/4-DQPSK	3.3	5	FCCAssist		
	(0)		Cas	TATESTIN		STIN	3	

2.5 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Conducted Emission Test

Report No.: CTA231205004W02 Page 13 of 80

2.6 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Necessary accessories

		11. 7 1 22	<i>3</i>		
Item	Equipment	Mfr/Brand	Model/Type No.	Length	Note
	AC Cable	N/A	N/A	150cm	NO

Support units

		AC Cable	11/7	IN/A	1300111	NO
TEST	ING			Support units		C.
CTATES	Item	Equipment	Mfr/Brand	Model/Type No.	Length	Note
		Notebook	LENOVO	Think Pad E470	N/A	N/A
		USB Cable	N/A	N/A	150cm	NO
				Carry .		CTATES
G	Note:					

Note:

(1) For detachable type I/O cable should be specified the length in cm in FLength a column.

(2) "YES" is means "with core"; "NO" is means "without core". CTATES

Report No.: CTA231205004W02

2.7 EQUIPMENTS LIST

Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date
LISN	R&S	ENV216	CTA-308	2023/08/02	2024/08/01
LISN	R&S	ENV216	CTA-314	2023/08/02	2024/08/01
EMI Test Receiver	R&S	ESPI	CTA-307	2023/08/02	2024/08/01
EMI Test Receiver	R&S	ESCI	CTA-306	2023/08/02	2024/08/01
Spectrum Analyzer	Agilent	N9020A	CTA-301	2023/08/02	2024/08/01
Spectrum Analyzer	R&S	FSP	CTA-337	2023/08/02	2024/08/01
Vector Signal generator	Agilent	N5182A	CTA-305	2023/08/02	2024/08/01
Analog Signal Generator	R&S	SML03	CTA-304	2023/08/02	2024/08/01
WIDEBAND RADIO COMMUNICATIO N TESTER	CMW500	R&S	CTA-302	2023/08/02	2024/08/01
Temperature and humidity meter	Chigo	ZG-7020	CTA-326	2023/08/02	2024/08/01
Ultra-Broadband Antenna	Schwarzbeck	VULB9163	CTA-310	2023/10/17	2024/10/16
Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2023/10/13	2024/10/12
Loop Antenna	Zhinan	ZN30900C	CTA-311	2023/10/17	2024/10/16
Horn Antenna	Beijing Hangwei Dayang	OBH100400	CTA-336	2021/08/07	2024/08/06
Amplifier	Schwarzbeck	BBV 9745	CTA-312	2023/08/02	2024/08/01
Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2023/08/02	2024/08/01
Directional coupler	NARDA	4226-10	CTA-303	2023/08/02	2024/08/01
High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	2023/08/02	2024/08/01
High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2023/08/02	2024/08/01
Automated filter bank	Tonscend	JS0806-F	CTA-404	2023/08/02	2024/08/01
Power Sensor	Agilent	U2021XA	CTA-405	2023/08/02	2024/08/01
Amplifier	Schwarzbeck	BBV9719	CTA-406	2023/08/02	2024/08/01

Report No.: CTA231205004W02 Page 15 of 80

		Pag	je 15 of 80	Report No.:	CTA231205004W02			
	Test Equipment	Manufacturer	Model No.	Version number	Calibration Date	Calibration Due Date		
	EMI Test Software	Tonscend	TS®JS32-RE	5.0.0.2	N/A	N/A		
	EMI Test Software	Tonscend	TS®JS32-CE	5.0.0.1	N/A	N/A	ATES	
	RF Test Software	Tonscend	TS®JS1120-3	3.1.65	N/A	N/A		
CTATE	RF Test Software	Tonscend	TS®JS1120	3.1.46	N/A	N/A	-	
	GA.	CTATE		ESTING	•		_	
			CTA					

CTATESTING

Page 16 of 80 Report No.: CTA231205004W02

3. EMC EMISSION TEST

3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 POWER LINE CONDUCTED EMISSION LIMITS

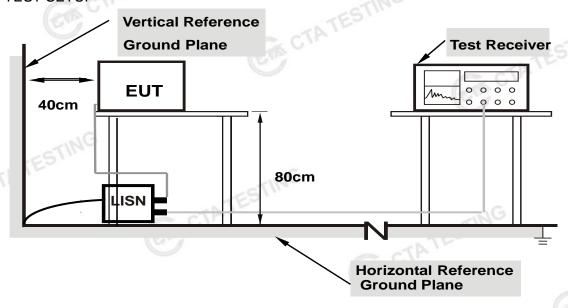
The radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table.

		0.04.7		
	FREQUENCY (MHz)	Conducted Emiss	sionlimit (dBuV)	
-10	FREQUENCT (MITZ)	Quasi-peak	Average	
CTATESTIN	0.15 -0.5	66 - 56 *	56 - 46 *	
	0.50 -5.0	56.00	46.00	
	5.0 -30.0	60.00	50.00	

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver


The following table is the setting of the receiver		
Receiver Parameters	Setting	(
Attenuation	10 dB	
Start Frequency	0.15 MHz	
Stop Frequency	30 MHz	
IF Bandwidth	9 kHz	
	(20)	CTATES

Page 17 of 80 Report No.: CTA231205004W02

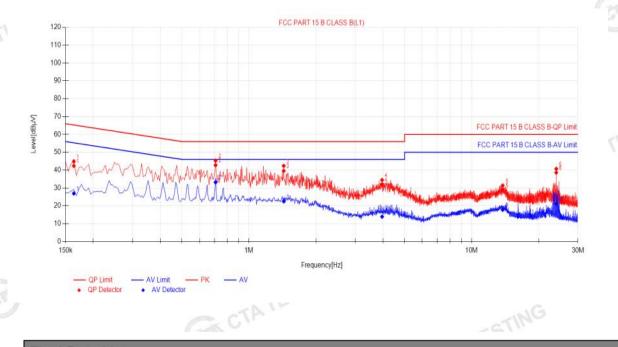
3.1.2 TEST PROCEDURE

- a. The EUT is 0.8 m from the horizontal ground plane and 0.4 m from the vertical ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments are powered from additional LISN(s). The LISN provides 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN is at least 80 cm from the nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

3.1.3 TEST SETUP

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes support units. CTA TESTING

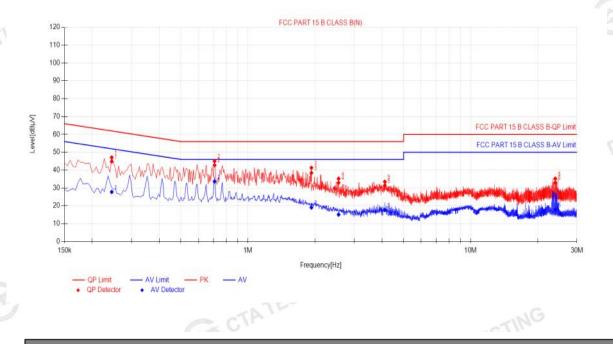

3.1.4 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data. CTA TESTING

Report No.: CTA231205004W02 Page 18 of 80

3.1.5 TEST RESULT

Test Voltage: AC 120V/60Hz Phase: L Test Mode: Mode 9		48%RH	Relative Humidity	26.2(C)	Temperature:
Test Mode: Mode 9		LESTING	Phase:	AC 120V/60Hz	Test Voltage:
			Can	Mode 9	Test Mode:
FCC PART 15 B CLASS B(L1)	CTATI				



Final	Data Lis	t										
NO.	Freq. [MHz]	Factor (dB)	QP Reading(dB,	QP Value IdBuVJ	QP Limit IdBuVJ	QP Margin [dB]	AV Reading IdBu\Q	AV Value IdBaVJ	AV Limit IdBUSQ	AV Margin [dB]	Verdict	CTATES
1	0.1635	9.93	32.45	42.38	65.28	22.90	17.00	26.93	55.28	28.35	PASS	į.
2	0.708	9.91	32.87	42.78	56.00	13.22	23.29	33.20	46.00	12.80	PASS	
3	1.4325	9.90	29.67	39.57	56.00	16.43	12.65	22.55	46.00	23.45	PASS	
4	3.9615	9.92	22.14	32.06	56.00	23.94	4.01	13.93	46.00	32.07	PASS	
5	13.785	10.30	18.56	28.86	60.00	31.14	7.50	17.80	50.00	32.20	PASS	
6	24	10.49	28.11	38.60	60.00	21.40	10.65	21.14	50.00	28.86	PASS]

Note:1).QP Value (dBμV)= QP Reading (dBμV)+ Factor (dB)

- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
- 4). $AVMargin(dB) = AV Limit (dB\mu V) AV Value (dB\mu V)$

	_N G Pa	age 19 of 80	Report No.:	CTA231205004W02
CTATES!		ESTING		
Temperature:	26.2(C)	Relat	ive Humidity:	54%RH
Test Voltage:	AC 120V/60Hz	Phase	e:	N
Test Mode:	Mode 9		CAN.	

Final Data List												
NO.	Freq. [MHz]	Factor (dB)	QP ReadingldB UV	QP Value IdBUM	QP Limit IdBUVJ	QP Margin [dB]	AV Reading IdBu\Q	AV Value IdBuVJ	AV Limit IdBUVQ	AV Margin (dB)	Verdict	CTATES
1	0.2445	10.01	34.83	44.84	61.94	17.10	17.77	27.78	51.94	24.16	PASS	7
2	0.708	10.06	32.69	42.75	56.00	13.25	23.57	33.63	46.00	12.37	PASS	<i>y</i>
3	1.9275	10.18	28.27	38.45	56.00	17.55	8.90	19.08	46.00	26.92	PASS	
4	2.553	10.13	22.81	32.94	56.00	23.06	4.98	15.11	46.00	30.89	PASS	
5	4.119	10.11	21.23	31.34	56.00	24.66	7.56	17.67	46.00	28.33	PASS	
6	23.9955	10.67	22.41	33.08	60.00	26.92	7.19	17.86	50.00	32.14	PA88	

Note:1).QP Value (dBμV)= QP Reading (dBμV)+ Factor (dB)

- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
- 4). $AVMargin(dB) = AV Limit (dB\mu V) AV Value (dB\mu V)$

Page 20 of 80 Report No.: CTA231205004W02

3.2 RADIATED EMISSION MEASUREMENT

3.2.1 RADIATED EMISSION LIMITS

In any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the Restricted band specified on Part15.205 (a)&209(a) limit in the table and according to ANSI C63.10-2013 below has to be followed.

LIMITS OF RADIATED EMISSION MEASUREMENT (0.009MHz - 1000MHz)

Frequencies	Field Strength	Measurement Distance	
(MHz)	(micorvolts/meter)	(meters)	
0.009~0.490	2400/F(KHz)	300	
0.490~1.705	24000/F(KHz)	30	
1.705~30.0	30	30	
30~88	100	3	
88~216	150	3	
216~960	200	3	
Above 960	500	3	

LIMITS OF RADIATED EMISSION MEASUREMENT (1GHz-25 GHz)

EDEOLIENCY (MUz)	(dBuV/r	m) (at 3M)
FREQUENCY (MHz)	PEAK	AVERAGE
Above 1000	74	54

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

LIMITS OF RESTRICTED FREQUENCY BANDS

FREQUENCY (MHz) FREQUENCY (MHz)		FREQUENCY (MHz)	FREQUENCY (GHz)
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	31175-6.31225 123-138		14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36-13.41		(Ca)	

CTING

For Radiated Emission

Fo	or Radiated Emission	- MG	
(0)	Spectrum Parameter	Setting	
	Attenuation	Auto	
	Detector	Peak/QP/AV	
	Start Frequency	9 KHz/150KHz(Peak/QP/AV)	TES
	Stop Frequency	150KHz/30MHz(Peak/QP/AV)	K CTP
	NG	200Hz (From 9kHz to 0.15MHz)/	1
TESI	RB / VB (emission in restricted	9KHz (From 0.15MHz to 30MHz);	
CIL	band)	200Hz (From 9kHz to 0.15MHz)/	
	CTATES	9KHz (From 0.15MHz to 30MHz)	

Spectrum Parameter	Setting		
Attenuation	Auto		
Detector	Peak/QP		
Start Frequency	30 MHz(Peak/QP)		
Stop Frequency	1000 MHz (Peak/QP)		
RB / VB (emission in restricted band)	120 KHz / 300 KHz		
7 -	ATES		

	Spectrum Parameter	Setting				
	Attenuation	Auto				
	Detector	Peak/AV				
	Start Frequency	1000 MHz(Peak/AV)				
-CT	Stop Frequency	10th carrier hamonic(Peak/AV)				
CTATES	RB / VB (emission in restricted	1 MHz / 3 MHz(Peak)				
Ch	band)	1 MHz/1/T MHz(AVG)				

For Restricted band

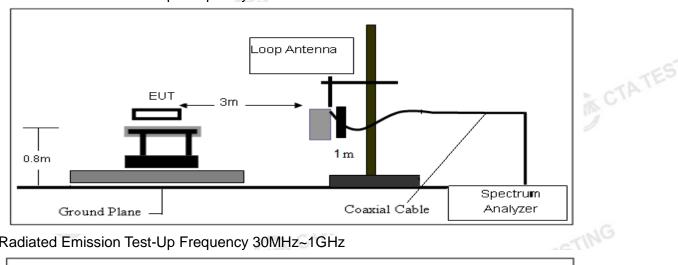
	201100 -				
Spectrum Parameter	Setting				
Detector	Peak/AV				
Ctout/Cton Fraguency	Lower Band Edge: 2310 to 2410 MHz				
Start/Stop Frequency	Upper Band Edge: 2476 to 2500 MHz				
DD / V/D	1 MHz / 3 MHz(Peak)				
RB / VB	1 MHz/1/T MHz(AVG)				
CTATES!	ATESTING				

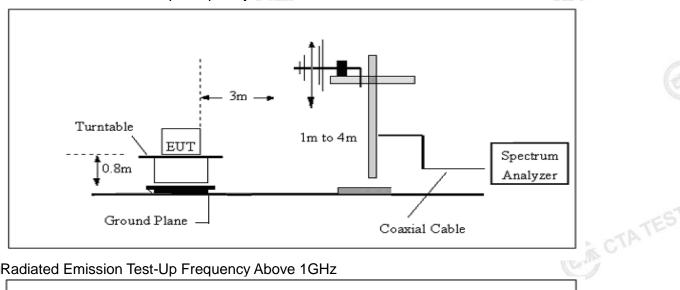
	Page 22 of 80	Report No.: CTA231205004W02	
Receiver Parameter		Setting	
Attenuation	TEST	Auto	
Start ~ Stop Frequency	CTA	9kHz~90kHz / RB 200Hz for PK & AV	
Start ~ Stop Frequency	1	90kHz~110kHz / RB 200Hz for QP	
Start ~ Stop Frequency	1	10kHz~490kHz / RB 200Hz for PK & AV	
Start ~ Stop Frequency		490kHz~30MHz / RB 9kHz for QP	CK (
Start ~ Stop Frequency		30MHz~1000MHz / RB 120kHz for QP	9

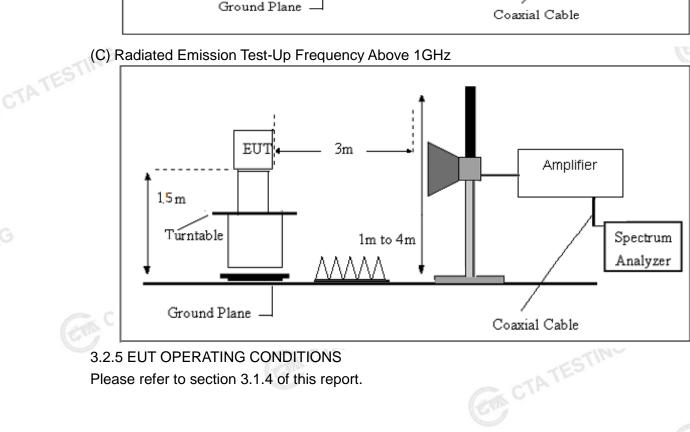
3.2.2 TEST PROCEDURE

- a. The measuring distance at 3 m shall be used for measurements at frequency 0.009MHz up to 1GHz, and above 1GHz.
- b. The EUT was placed on the top of a rotating table 0.8 m (above 1GHz is 1.5 m) above the ground at a 3 m anechoic chamber test site. The table was rotated 360 degree to determine the position of the highest radiation.
- c. The height of the equipment shall be 0.8 m (above 1GHz is 1.5 m); the height of the test antenna shall vary between 1 m to 4 m. Horizontal and vertical polarization of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and QuasiPeak detector mode will be re-measured.
- e. If the Peak Mode measured value is compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and no additional QP Mode measurement was performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos.

CTATES Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.


DEVIAT ی.ے.ع No deviation. 3.2.3 DEVIATION FROM TEST STANDARD


Report No.: CTA231205004W02 Page 23 of 80


3.2.4 TESTSETUP

(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

3.2.5 EUT OPERATING CONDITIONS

Please refer to section 3.1.4 of this report.

Page 24 of 80 Report No.: CTA231205004W02

3.2.6 FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic CTA TES equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where

FS = Field Strength

CL = Cable Attenuation Factor (Cable Loss)

RA = Reading Amplitude

AG = Amplifier Gain

AF = Antenna Factor

For example

Frequency	FS	RA	AF	CL	AG	Factor
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)	(dB)
300	40	58.1	12.2	1.6	31.9	-18.1
Factor=AF+CL-AG		6			CON CT	ATL

Page 25 of 80 Report No.: CTA231205004W02

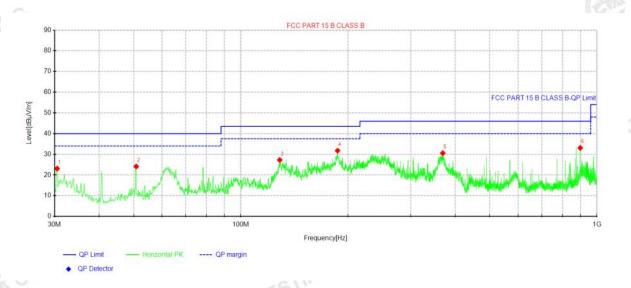
3.2.7 TEST RESULTS

(9KHz-30MHz)

Temperature:	23.1(C)	Relative Humidity:	60%RH
Test Voltage:	AC120V/60Hz	Test Mode:	TX Mode

Freq.	Reading	Limit	Margin	State	Toot Dooult
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F	Test Result
	ETING				PASS
	TATE	-	-iNG		PASS

Note:

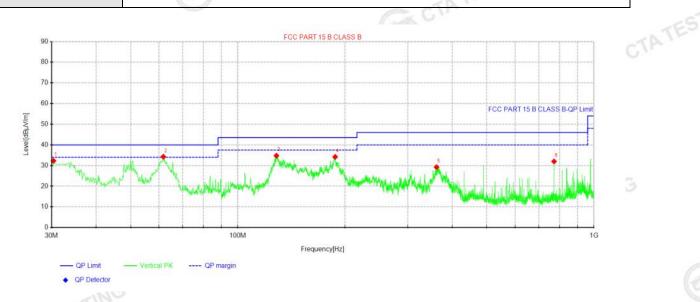

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB);

Limit line = specific limits (dBuv) + distance extrapolation factor.

(30MHz-1000MHz)

(30MHz-1000MH	z)				
Temperature:	23.1(C)	Relative Humidity:	60%RH		
Test Voltage:	AC120V/60HZ	Phase:	Horizontal		
Test Mode:	Mode 1/2/3/4/5/6 (Mode 6 worst mode)				


	Suspe	Suspected Data List								
	NO.	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Polarity
NO.	[MHz]	[dBµ∨]	[dBµ√/m]	[dB/m]	[dBµ∀/m]	[dB]	[cm]	[°]	Polarity	
	1	30.485	41.80	23.12	-18.68	40.00	16.88	100	191	Horizontal
	2	50.855	40.37	24.12	-16.25	40.00	15.88	100	232	Horizontal
	3	128.576	48.43	27.26	-21.17	43.50	16.24	100	232	Horizontal
-1G	4	186.897	51.85	31.75	-20.10	43.50	11.75	100	216	Horizontal
CTING	5	369.015	46.46	30.57	-15.89	46.00	15.43	100	81	Horizontal
TES	6	897.665	42.30	33.11	-9.19	46.00	12.89	100	56	Horizontal
5 369.015 46.46 30.57 -15.89 46.00 15.43 100 81 Horizontal 6 897.665 42.30 33.11 -9.19 46.00 12.89 100 56 Horizontal										
Note 11 Level (dDv)//m) Deading (dDv)// Factor (dD/m)										

Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB) CTA TESTING
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)
- 4). All modes have been tested, only show the worst case.

Page 27 of 80

	Page 27 of 80	Report No.:	CTA231205004W02
Temperature:	23.1(C)	Relative Humidity:	60%RH
Test Voltage:	AC120V/60HZ	Phase:	Vertical
Test Mode:	Mode 1/2/3/4/5/6 (Mode 6 wo	rst mode)	TESTIT

. Reading [dBµV] 38 51.00	Level [dBµ√/m]	Factor [dB/m]	Limit [dBµV/m]	Margin	Height	Angle		
		[dB/m]	[dBu\//m]				Polarity	i
38 51.00			[GDP VIII]	[dB]	[cm]	[°]	Polarity	
31.00	32.30	-18.70	40.00	7.70	100	10	Vertical	
75 52.95	34.26	-18.69	40.00	5.74	100	10	Vertical	
33 55.93	34.78	-21.15	43.50	8.72	100	111	Vertical	
25 54.26	34.20	-20.06	43.50	9.30	100	179	Vertical	CTATES
76 45.15	29.22	-15.93	46.00	16.78	100	255	Vertical	TATE
35 42.59	32.00	-10.59	46.00	14.00	100	95	Vertical	* C
	33 55.93 25 54.26 76 45.15 35 42.59	33 55.93 34.78 25 54.26 34.20 76 45.15 29.22 35 42.59 32.00	33 55.93 34.78 -21.15 25 54.26 34.20 -20.06 76 45.15 29.22 -15.93 35 42.59 32.00 -10.59	33 55.93 34.78 -21.15 43.50 25 54.26 34.20 -20.06 43.50 76 45.15 29.22 -15.93 46.00	33 55.93 34.78 -21.15 43.50 8.72 25 54.26 34.20 -20.06 43.50 9.30 76 45.15 29.22 -15.93 46.00 16.78 35 42.59 32.00 -10.59 46.00 14.00	33 55.93 34.78 -21.15 43.50 8.72 100 25 54.26 34.20 -20.06 43.50 9.30 100 76 45.15 29.22 -15.93 46.00 16.78 100 35 42.59 32.00 -10.59 46.00 14.00 100	33 55.93 34.78 -21.15 43.50 8.72 100 111 25 54.26 34.20 -20.06 43.50 9.30 100 179 76 45.15 29.22 -15.93 46.00 16.78 100 255 35 42.59 32.00 -10.59 46.00 14.00 100 95	33 55.93 34.78 -21.15 43.50 8.72 100 111 Vertical 25 54.26 34.20 -20.06 43.50 9.30 100 179 Vertical 25 45.15 29.22 -15.93 46.00 16.78 100 255 Vertical 35 42.59 32.00 -10.59 46.00 14.00 100 95 Vertical

Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)
- 4). All modes have been tested, only show the worst case.

Page 28 of 80 Report No.: CTA231205004W02

(1GHz~25GHz) Spurious emission Requirements

				45 134						
Frequenc	/ Meter Reading	Amplifier	Loss	Antenna Factor	Corrected Factor	Emission Level	Limits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	(dB)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
, ,	• • • • •			Low CI	nannel (QPSK/	2402 MHz)	K G 1.		•	•
3264.90	61.53	44.70	6.70	28.20	-9.80	51.73	74.00	-22.27	PK	Vertical
3264.90	50.15	44.70	6.70	28.20	-9.80	40.35	54.00	-13.65	AV	Vertical
3264.60	61.42	44.70	6.70	28.20	-9.80	51.62	74.00	-22.38	PK	Horizonta
3264.60	51.22	44.70	6.70	28.20	-9.80	41.42	54.00	-12.58	AV	Horizonta
4804.42	59.44	44.20	9.04	31.60	-3.56	55.88	74.00	-18.12	PK	Vertical
4804.42	50.16	44.20	9.04	31.60	-3.56	46.60	54.00	-7.40	AV	Vertical
4804.54	58.36	44.20	9.04	31.60	-3.56	54.80	74.00	-19.20	PK	Horizonta
4804.54	49.95	44.20	9.04	31.60	-3.56	46.39	54.00	-7.61	AV	Horizonta
5359.60	48.79	44.20	9.86	32.00	-2.34	46.45	74.00	-27.55	PK	Vertical
5359.60	40.03	44.20	9.86	32.00	-2.34	37.69	54.00	-16.31	AV	Vertical
5359.81	47.68	44.20	9.86	32.00	-2.34	45.34	74.00	-28.66	PK	Horizonta
5359.81	39.37	44.20	9.86	32.00	-2.34	37.03	54.00	-16.97	AV	Horizonta
7205.82	54.07	43.50	11.40	35.50	3.40	57.47	74.00	-16.53	PK	Vertical
7205.82	43.85	43.50	11.40	35.50	3.40	47.25	54.00	-6.75	AV	Vertica
7205.91	54.03	43.50	11.40	35.50	3.40	57.43	74.00	-16.57	PK	Horizont
7205.91	44.27	43.50	11.40	35.50	3.40	47.67	54.00	-6.33	AV	Horizont
		-		Middle (Channel (QPSK	(/2441 MHz)				
3264.80	61.77	44.70	6.70	28.20	-9.80	51.97	74.00	-22.03	PK	Vertica
3264.80	49.99	44.70	6.70	28.20	-9.80	40.19	54.00	-13.81	AV	Vertica
3264.86	61.50	44.70	6.70	28.20	-9.80	51.70	74.00	-22.30	PK	Horizont
3264.86	50.63	44.70	6.70	28.20	-9.80	40.83	54.00	-13.17	AV	Horizont
4882.53	58.71	44.20	9.04	31.60	-3.56	55.15	74.00	-18.85	PK	Vertica
4882.53	50.17	44.20	9.04	31.60	-3.56	46.61	54.00	-7.39	AV	Vertica
4882.33	59.27	44.20	9.04	31.60	-3.56	55.71	74.00	-18.29	PK	Horizont
4882.33	50.57	44.20	9.04	31.60	-3.56	47.01	54.00	-6.99	AV	Horizont
5359.87	49.45	44.20	9.86	32.00	-2.34	47.11	74.00	-26.89	PK	Vertica
5359.87	39.73	44.20	9.86	32.00	-2.34	37.39	54.00	-16.61	AV	Vertica
5359.82	48.19	44.20	9.86	32.00	-2.34	45.85	74.00	-28.15	PK	Horizont
5359.82	39.30	44.20	9.86	32.00	-2.34	36.96	54.00	-17.04	AV	Horizont
7323.92	54.80	43.50	11.40	35.50	3.40	58.20	74.00	-15.80	PK	Vertica
7323.92	43.51	43.50	11.40	35.50	3.40	46.91	54.00	-7.09	AV	Vertica
7323.75	53.70	43.50	11.40	35.50	3.40	57.10	74.00	-16.90	PK	Horizont
7323.75	44.15	43.50	11.40	35.50	3.40	47.55	54.00	-6.45	AV	Horizont

				Page 29 of	80	Re	port No.:	CTA23120	5004W0	2
	TEST			High Char	nnel (QPSK/	2480 MHz)				
3264.66	61.37	44.70	6.70	28.20	-9.80	51.57	74.00	-22.43	PK	Vertical
3264.66	51.02	44.70	6.70	28.20	-9.80	41.22	54.00	-12.78	AV	Vertical
3264.67	62.19	44.70	6.70	28.20	-9.80	52.39	74.00	-21.61	PK	Horizonta
3264.67	50.58	44.70	6.70	28.20	-9.80	40.78	54.00	-13.22	AV	Horizonta
4960.44	58.75	44.20	9.04	31.60	-3.56	55.19	74.00	-18.81	PK	Vertical
4960.44	49.57	44.20	9.04	31.60	-3.56	46.01	54.00	-7.99	AV	Vertical
4960.45	58.21	44.20	9.04	31.60	-3.56	54.65	74.00	-19.35	PK	Horizonta
4960.45	49.45	44.20	9.04	31.60	-3.56	45.89	54.00	-8.11	AV	Horizonta
5359.82	49.45	44.20	9.86	32.00	-2.34	47.11	74.00	-26.89	PK	Vertical
5359.82	39.22	44.20	9.86	32.00	-2.34	36.88	54.00	-17.12	AV	Vertical
5359.66	48.51	44.20	9.86	32.00	-2.34	46.17	74.00	-27.83	PK	Horizonta
5359.66	39.01	44.20	9.86	32.00	-2.34	36.67	54.00	-17.33	AV	Horizonta
7439.91	54.11	43.50	11.40	35.50	3.40	57.51	74.00	-16.49	PK	Vertical
7439.91	44.33	43.50	11.40	35.50	3.40	47.73	54.00	-6.27	AV	Vertical
7439.68	54.62	43.50	11.40	35.50	3.40	58.02	74.00	-15.98	PK	Horizonta
7439.68	44.79	43.50	11.40	35.50	3.40	48.19	54.00	-5.81	AV	Horizonta
Note:	E.		D0D0:1		CT CT	ATE				Honzonia
1) Sc	an with G	FSK, π/4	-DQPSK,	the wors	t case is	GFSK Mo	de.			
2) Fa	ctor = Ant	tenna Fac	tor + Cal	ole Loss –	Pre-amp	olifier.				
, _	ninninn I n				•					

Note:

- 1) Scan with GFSK, $\pi/4$ -DQPSK, the worst case is GFSK Mode.
- 2) Factor = Antenna Factor + Cable Loss Pre-amplifier. Emission Level = Reading + Factor
- 3) The frequency emission of peak points that did not show above the forms are at least 20dB below the limit, the frequency emission is mainly from the environment noise.

Page 30 of 80 Report No.: CTA231205004W02

Restricted band Requirements

GFSK

		Meter			Antenna	Orrected	Emission					
	Frequency	Reading	Amplifier	Loss	Factor	Factor	Level	Limits	Margin	Detector	Comment	
	(MHz)	(dBµV)	(dB)	(dB)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре		CTATES
1	2390.00	68.66	43.80	4.91	25.90	-12.99	55.67	74.00	-18.33	PK	Vertical	CIA.
	2390.00	54.05	43.80	4.91	25.90	-12.99	41.06	54.00	-12.94	AV	Vertical	
CTATESTI	2390.00	68.37	43.80	4.91	25.90	-12.99	55.38	74.00	-18.62	PK	Horizontal	
CIL	2390.00	53.17	43.80	4.91	25.90	-12.99	40.18	54.00	-13.82	AV	Horizontal	
	2483.50	69.80	43.80	5.12	25.90	-12.78	57.02	74.00	-16.98	PK	Vertical	
	2483.50	52.91	43.80	5.12	25.90	-12.78	40.13	54.00	-13.87	AV	Vertical	c.
	2483.50	69.79	43.80	5.12	25.90	-12.78	57.01	74.00	-16.99	PK	Horizontal	0
	2483.50	53.28	43.80	5.12	25.90	-12.78	40.50	54.00	-13.50	AV	Horizontal	
!									17	-00		_

Note: GFSK, $\pi/4$ -DQPSK of the nohopping and hopping mode all have been test, the worst case is GFSK of the nohopping mode, this report only show the worst case.

Page 31 of 80 Report No.: CTA231205004W02

4. CONDUCTED SPURIOUS & BAND EDGE EMISSION

4.1 LIMIT

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in CTATES the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

4.2 TEST PROCEDURE

Spectrum Parameter	Setting
Detector	Peak
Start/Stop Frequency	30 MHz to 10th carrier harmonic
RB / VB (emission in restricted band)	100 KHz/300 KHz
Trace-Mode:	Max hold

Spectrum Parameter	Setting
Detector	Peak
Start/Stan Fraguency	Lower Band Edge: 2300 – 2407 MHz
Start/Stop Frequency	Upper Band Edge: 2475 – 2500 MHz
RB / VB (emission in restricted band)	100 KHz/300 KHz
Trace-Mode:	Max hold
	I Wax Hold
r Hopping Band edge	(Car
Chaotrum Daramatar	Cotting

Spectrum Parameter	Setting
Detector	Peak
Stort/Stop Fraguesov	Lower Band Edge: 2300– 2403 MHz
Start/Stop Frequency	Upper Band Edge: 2479 – 2500 MHz
RB / VB (emission in restricted band)	100 KHz/300 KHz
Trace-Mode:	Max hold
	CIA CIA
	CTAIL

Page 32 of 80 Report No.: CTA231205004W02

4.3 TEST SETUP

The EUT is connected to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. Tune the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. In order to make an accurate measurement, the span is set to be greater than RBW.

4.4 EUT OPERATION CONDITIONS

Please refer to section 3.1.4 of this report.

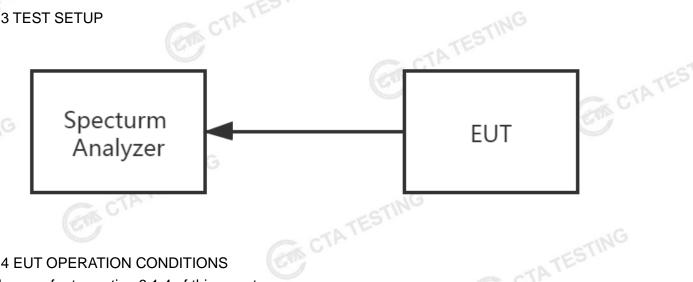
4.5 TEST RESULTS

Note: The test data please refer to APPENDIX 1.

Report No.: CTA231205004W02

5. NUMBER OF HOPPING CHANNEL

5.1 LIMIT


5. NUMBER OF HO	PPING CHANNEL			
5.1 LIMIT	CTAT	ESTIN	TING	
	FCC Pa	art 15.247,Subpa	rrt C	
Section	Test Item	Limit	FrequencyRange (MHz)	Result
15.247 (a)(1)(iii)	Number of Hopping Channel	≥15	2400-2483.5	PASS

Spectrum Parameters	Setting
Attenuation	Auto
Span Frequency	> Operating FrequencyRange
RB	100KHz
VB	300KHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

5.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. Spectrum Setting: RBW= 100KHz, VBW=300KHz, Sweep time = Auto.

5.3 TEST SETUP

5.4 EUT OPERATION CONDITIONS

Please refer to section 3.1.4 of this report.

5.5 TEST RESULTS

Note: The test data please refer to APPENDIX 1. CTA TESTING

AVERAGE TIME OF OCCUPANCY

6.1 LIMIT

					_				
FCC Part 15.247,Subpart C									
Section	Test Item	Limit	FrequencyRange (MHz)	Result	CTATES				
15.247 (a)(1)(iii)	Average Time of Occupancy	0.4sec	2400-2483.5	PASS					

6.2 TEST PROCEDURE

- a. The transmitter output (antenna port) was connected to the spectrum analyzer.
- b. Set RBW =1MHz/VBW =3MHz.
- c. Use a video trigger with the trigger level set to enable triggering only on full pulses.
- d. Sweep Time is more than once pulse time.
- Set the center frequency on any frequency would be measure and set the frequency span to e. zero span.
- f Measure the maximum time duration of one single pulse.
- g. Set the EUT for DH5, DH3 and DH1 packet transmitting.
- h. Measure the maximum time duration of one single pulse.
- i DH5 Packet permit maximum 1600/79 / 6 = 3.37 hops per second in each channel (5 time slots RX, 1 time slot TX). So the number of pulses in the observation period of 31.6 seconds is $3.37 \times 31.6 = 106.6$.
- j. DH3 Packet permit maximum 1600 / 79 / 4 = 5.06 hops per second in each channel (3 time slots RX, 1 time slot TX). So the number of pulses in the observation period of 31.6 seconds is $5.06 \times 31.6 = 160$.
- k DH1 Packet permit maximum 1600 / 79 / 2 = 10.12 hops per second in each channel (1 time slot RX, 1 time slot TX). So the number of pulses in the observation period of 31.6 seconds CTATES is $10.12 \times 31.6 = 320$.

6.3 TEST SETUP

6.4 EUT OPERATION CONDITIONS

Please refer to section 3.1.4 of this report.

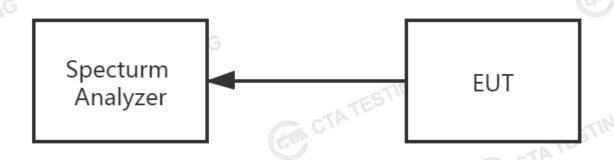
6.5 TEST RESULTS

Note: The test data please refer to APPENDIX 1.

Page 35 of 80 Report No.: CTA231205004W02

7. HOPPING CHANNEL SEPARATION MEASUREMEN

7 1 I IMIT


Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

71.04		
-EST	Spectrum Parameter	Setting
CTATES	Attenuation	Auto
	Span Frequency	> 20 dB Bandwidth or Channel Separation
	RB	30 kHz (20dB Bandwidth) / 30 kHz (Channel Separation)
	VB	100 kHz (20dB Bandwidth) / 100 kHz (Channel Separation)
	Detector	Peak
	Trace	Max Hold
G	Sweep Time	Auto
G	Detector Trace	Peak Max Hold

7.2 TEST PROCEDURE

- a. The transmitter output (antenna port) was connected to the spectrum analyser in peak hold mode.
- b. The resolution bandwidth of 30 kHz and the video bandwidth of 100 kHz were utilised for 20 dB bandwidth measurement.
- c. The resolution bandwidth of 30 kHz and the video bandwidth of 100 kHz were utilised for channel separation measurement.

7.3 TEST SETUP

7.4 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

7.5 TEST RESULTS

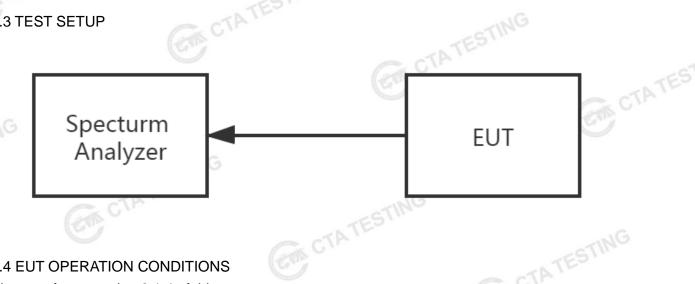
Note: The test data please refer to APPENDIX 1.

TATESTIN

Page 36 of 80 Report No.: CTA231205004W02

8. BANDWIDTH TEST

8.1 LIMIT


8. BANDWIDTH TE	ST				
8.1 LIMIT		TATESTIN			
	FC	C Part15 15.247,St	ubpart C		
Section	Test Item	Limit	FrequencyRange (MHz)	Result	CTATES
15.247 (a)(1)	Bandwidth	N/A	2400-2483.5	PASS	/

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	> Measurement Bandwidth or Channel Separation
RB	30 kHz (20dB Bandwidth) / 30 kHz (Channel Separation)
VB	100 kHz (20dB Bandwidth) / 100 kHz (Channel Separation)
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

8.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. Spectrum Setting: RBW= 30KHz, VBW=100KHz, Sweep time = Auto.

8.3 TEST SETUP

8.4 EUT OPERATION CONDITIONS

Please refer to section 3.1.4 of this report.

8.5 TEST RESULTS

Note: The test data please refer to APPENDIX 1. CTA TESTING

Report No.: CTA231205004W02 Page 37 of 80

9. OUTPUT POWER TEST

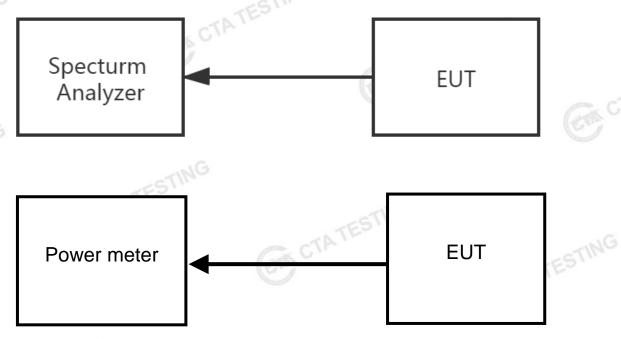
9.1 LIMIT

9. OUTPUT PO	WER TEST				
9.1 LIMIT		CTATESTING			
		FCC Part 15.247,Subpart	: C		
Section	Test Item	Limit	Frequency Range (MHz)	Result	-55
		1 W or 0.125W	9		TATES
15.247 (a)(1)&(b)(1)	Output Power	if channel separation > 2/3 bandwidthprovided thesystems operatewith an output power no greater than125 mW(20.97dBm)	2400-2483.5	PASS	

9.2 TEST PROCEDURE

This is an RF-conducted test to evaluate maximum peak output power. Use a direct connection between the antenna port of the unlicensed wireless device and the spectrum analyzer, through suitable attenuation. The hopping shall be disabled for this test:

- a) Use the following spectrum analyzer settings:
- 1) Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel.
- 2) RBW > 20 dB bandwidth of the emission being measured.
- 3) VBW ≥ RBW.
- 4) Sweep: Auto.
- 5) Detector function: Peak.
- 6) Trace: Max hold.
- b) Allow trace to stabilize.
- c) Use the marker-to-peak function to set the marker to the peak of the emission.
- d) The indicated level is the peak output power, after any corrections for external attenuators and
- e) A plot of the test results and setup description shall be included in the test report.
- NOTE—A peak responding power meter may be used, where the power meter and sensor system video bandwidth is greater than the occupied bandwidth of the unlicensed wireless device, rather than a spectrum analyzer.


PKPM1 Peak power meter method:

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DSS bandwidth and shall use a fast-responding diode detector. CTA TESTING

Page 38 of 80 Report No.: CTA231205004W02

9.3 TEST SETUP

9.4 EUT OPERATION CONDITIONS

Please refer to section 3.1.4 of this report.

9.5 TEST RESULTS

Note: The test data please refer to APPENDIX 1.

10. ANTENNA REQUIREMENT

10.1 STANDARD REQUIREMENT

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

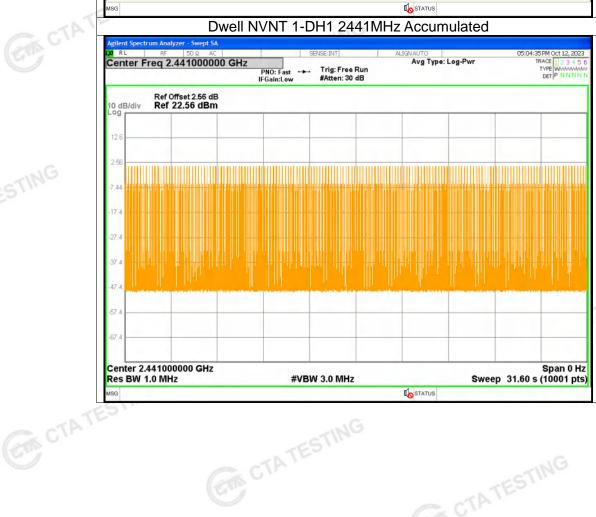
10.2 EUT ANTENNA

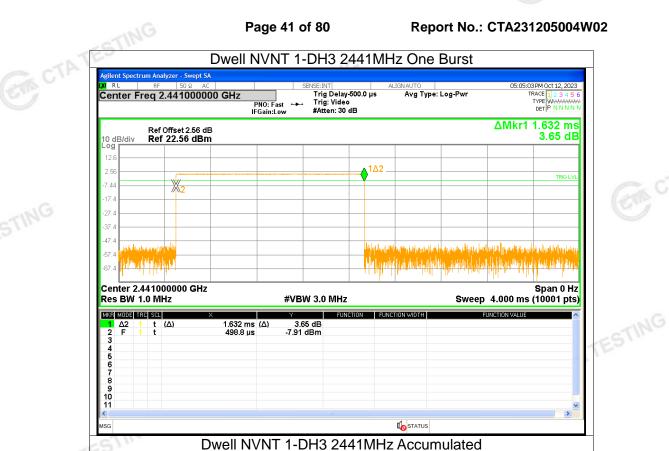
The EUT antenna is FPC Antenna. It comply with the standard requirement.

TING

Report No.: CTA231205004W02 Page 39 of 80

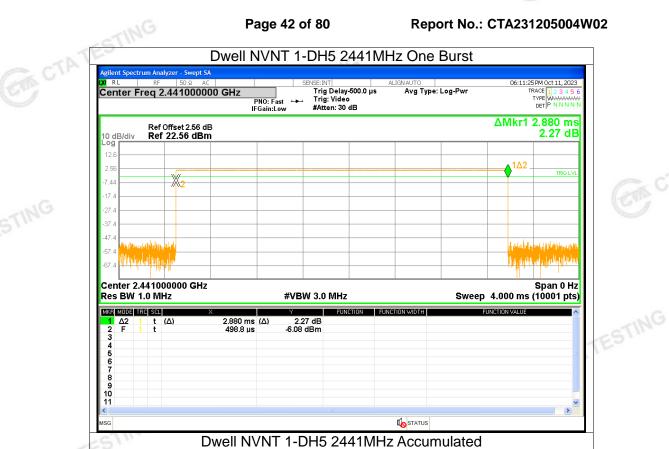
APPENDIX 1-TEST DATA

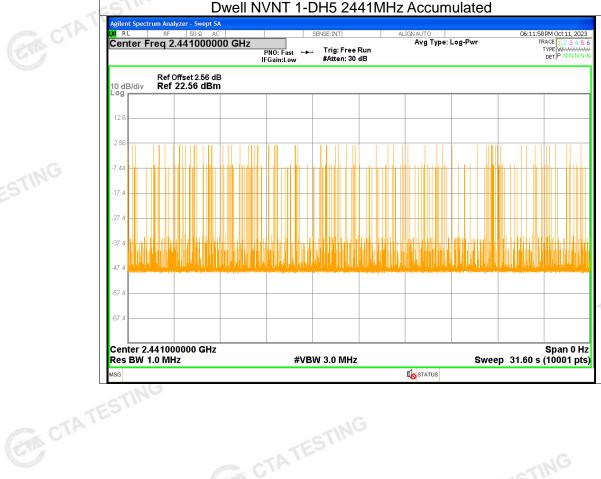

1. Dwell Time

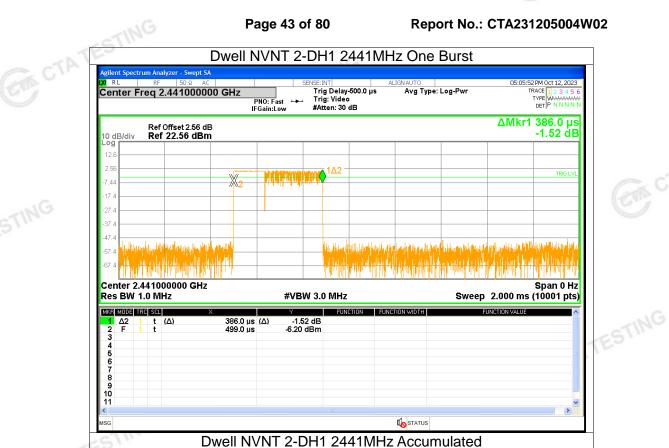

	APPENDI 1. Dwel			CTATE	STING				
	Condition	Mode	Frequency (MHz)	Pulse Time (ms)	Total Dwell Time (ms)	Burst Count	Period Time (ms)	Limit (ms)	Verdict
	NVNT	1-DH1	2441	0.376	118.816	316	31600	<=400	Pass
	NVNT	1-DH3	2441	1.632	169.728	104	31600	<=400	Pass
	NVNT	1-DH5	2441	2.88	190.08	66	31600	<=400	Pass
CTATE	NVNT	2-DH1	2441	0.386	123.52	320	31600	<=400	Pass
	NVNT	2-DH3	2441	1.638	319.41	195	31600	<=400	Pass
	NVNT	2-DH5	2441	2.886	161.616	56	31600	<=400	Pass
					101.010				

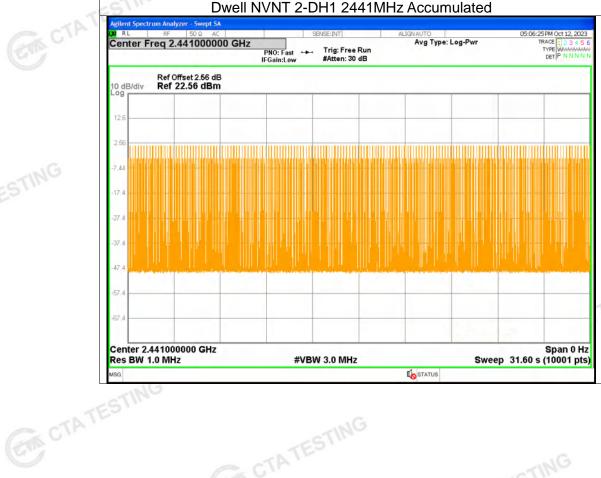
CTA TESTING

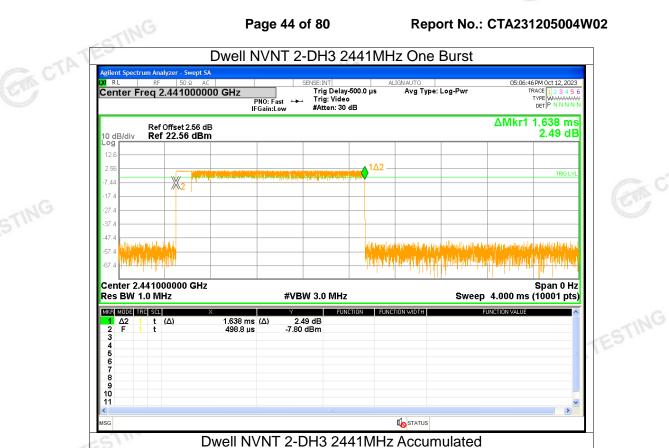
Page 40 of 80 Report No.: CTA231205004W02

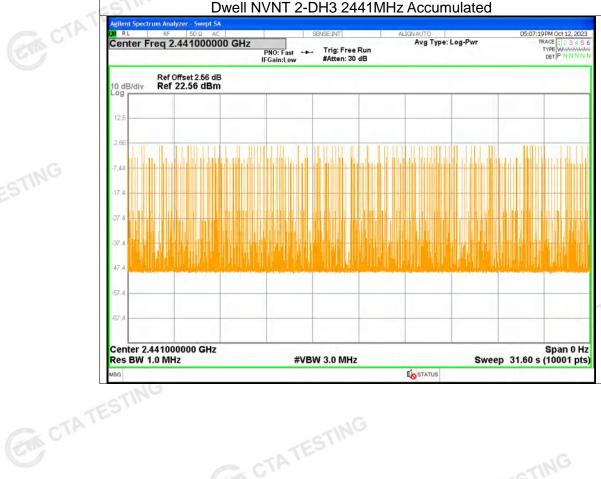


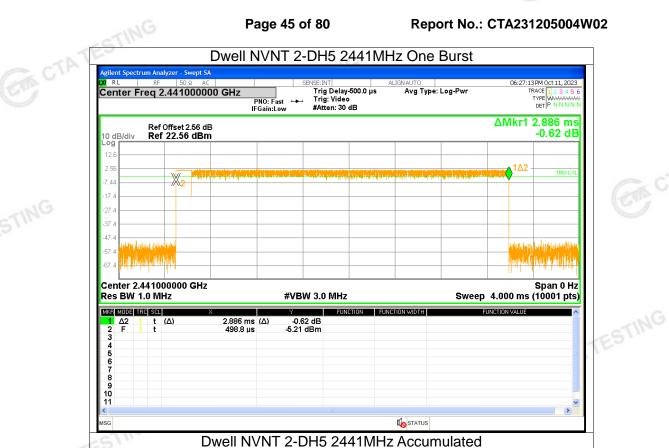





Page 42 of 80 Report No.: CTA231205004W02

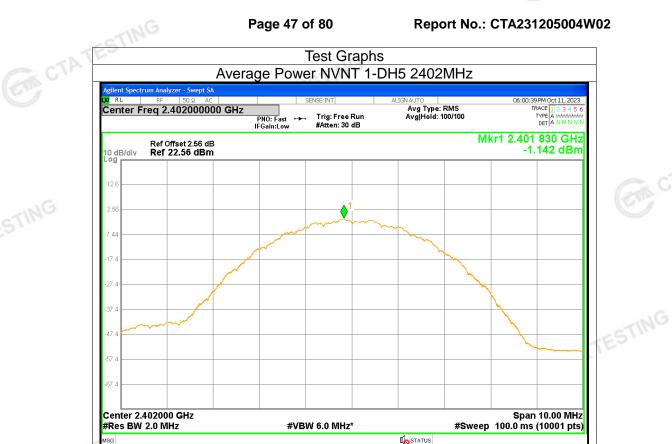



Page 43 of 80 Report No.: CTA231205004W02



Page 44 of 80 Report No.: CTA231205004W02

Page 45 of 80 Report No.: CTA231205004W02


CTAT Center Freq 2.441000000 GHz Avg Type: Log-Pwr PNO: Fast Trig: Free Run Ref Offset 2.56 dB Ref 22.56 dBm 10 dB/div ESTING Center 2.441000000 GHz Span 0 Hz Res BW 1.0 MHz **#VBW 3.0 MHz** Sweep 31.60 s (10001 pts) CTA TESTING STATUS

Page 46 of 80 Report No.: CTA231205004W02

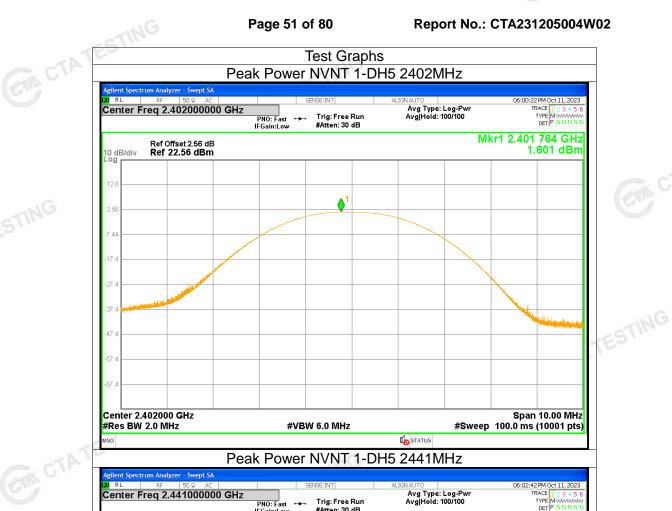
2. Maximum Average Conducted Output Power

=								
Condition	Mode	Frequency (MHz)	Conducted Power (dBm)	Duty Factor (dB)	Total Power (dBm)	Limit (dBm)	Verdict	
NVNT	1-DH5	2402	-1.14	0	-1.14	<=30	Pass	
NVNT	1-DH5	2441	-1.19	0	-1.19	<=30	Pass	
NVNT	1-DH5	2480	-0.5	0	-0.5	<=30	Pass	
NVNT	2-DH5	2402	-2.49	0	-2.49	<=30	Pass	
NVNT	2-DH5	2441	-2.42	0	-2.42	<=30	Pass	
NVNT	2-DH5	2480	-2.13	0	-2.13	<=30	Pass	

CTATESTING

Page 48 of 80 Report No.: CTA231205004W02

Page 49 of 80 Report No.: CTA231205004W02


Page 50 of 80 Report No.: CTA231205004W02

3. Maximum Peak Conducted Output Power

0								
Condition	Mode	Frequency (MHz)	Conducted Power (dBm)	Limit (dBm)	Verdict			
NVNT	1-DH5	2402	1.6	<=21	Pass			
NVNT	1-DH5	2441	1.77	<=21	Pass			
NVNT	1-DH5	2480	2.27	<=21	Pass			
NVNT	2-DH5	2402	2.37	<=21	Pass			
NVNT	2-DH5	2441	2.5	<=21	Pass			
NVNT	2-DH5	2480	2.92	<=21	Pass			

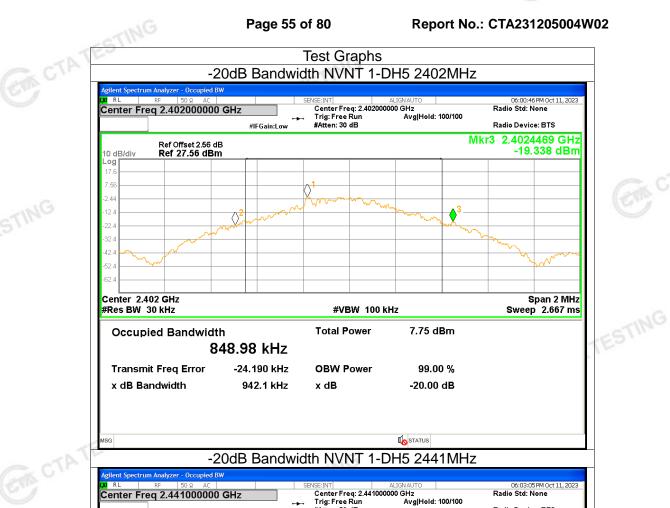
CTATESTING C


Page 51 of 80 Report No.: CTA231205004W02

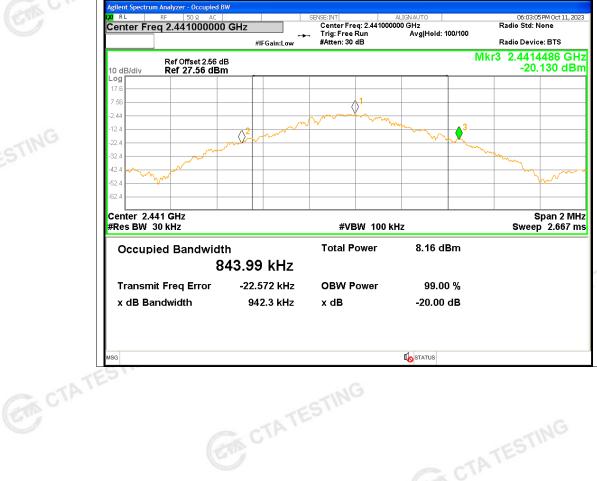


Page 52 of 80 Report No.: CTA231205004W02

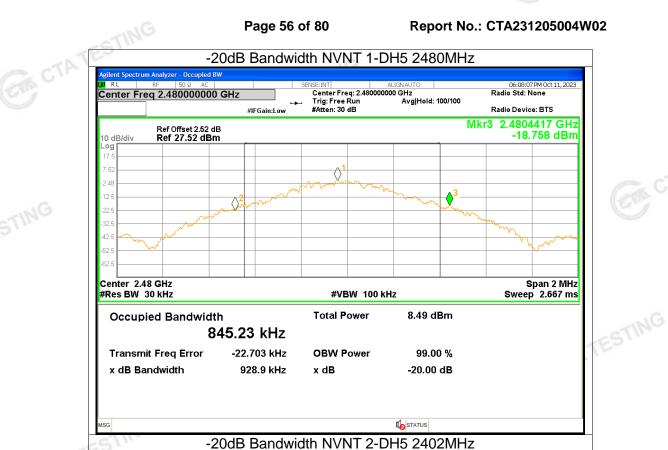
Page 53 of 80 Report No.: CTA231205004W02


Page 54 of 80 Report No.: CTA231205004W02

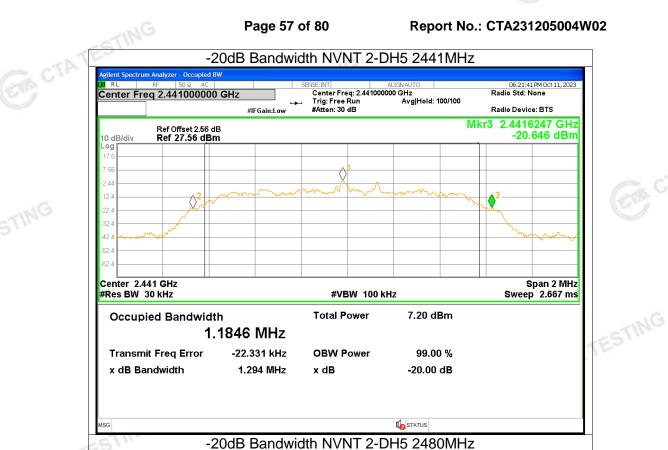
4. -20dB Bandwidth

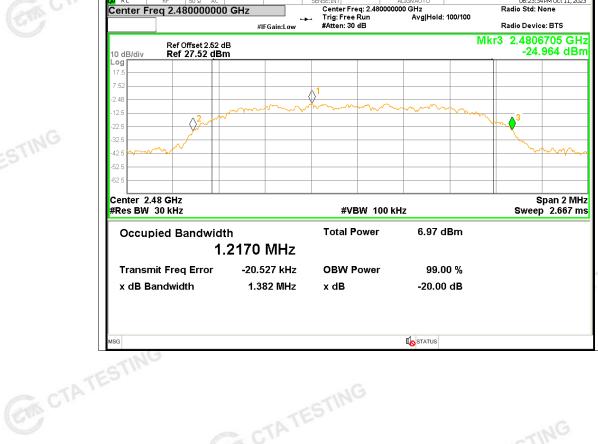

Condition	Mode	Frequency (MHz)	-20 dB Bandwidth (MHz)	Verdict
NVNT	1-DH5	2402	0.9421	Pass
NVNT	1-DH5	2441	0.9423	Pass
NVNT	1-DH5	2480	0.9289	Pass
NVNT	2-DH5	2402	1.305	Pass
NVNT	2-DH5	2441	1.294	Pass
NVNT	2-DH5	2480	1.382	Pass

CTATESTING CIP


Page 55 of 80 Report No.: CTA231205004W02

-20dB Bandwidth NVNT 1-DH5 2441MHz




Report No.: CTA231205004W02 Page 56 of 80

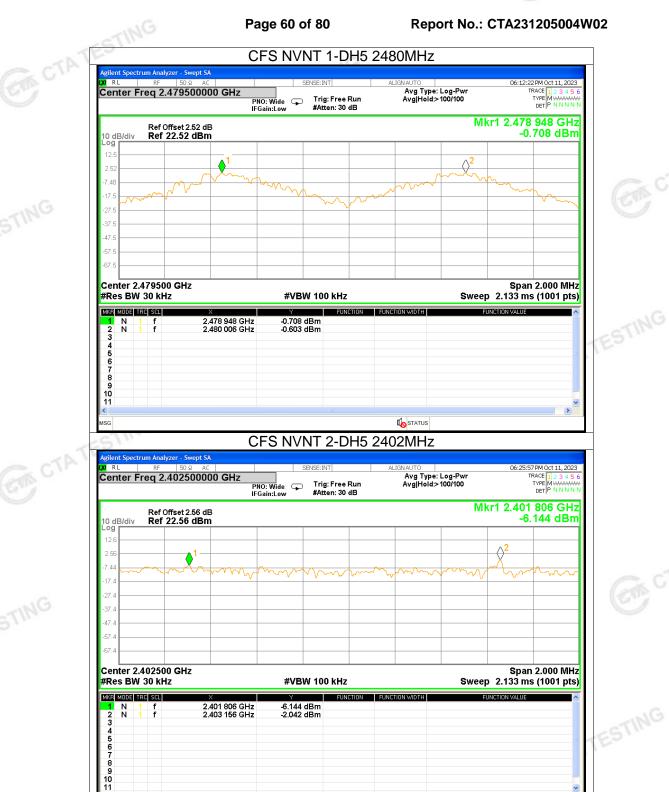
Center Freq: 2.402000000 GHz Trig: Free Run Avg #Atten: 30 dB Center Freg 2.402000000 GHz Radio Std: None Avg|Hold: 100/100 Radio Device: BTS #IEGain:Low 2.4026294 GHz Mkr3 Ref Offset 2.56 dB Ref 27.56 dBm -20.715 dBm I0 dB/div og Center 2.402 GHz Span 2 MHz #Res BW 30 kHz **#VBW 100 kHz** Sweep 2.667 ms Total Power 6.79 dBm Occupied Bandwidth 1.2001 MHz Transmit Freq Error -23.055 kHz **OBW Power** 99.00 % x dB Bandwidth 1.305 MHz x dB -20.00 dB CTA TESTING STATUS

Report No.: CTA231205004W02 Page 57 of 80

Page 58 of 80 Report No.: CTA231205004W02

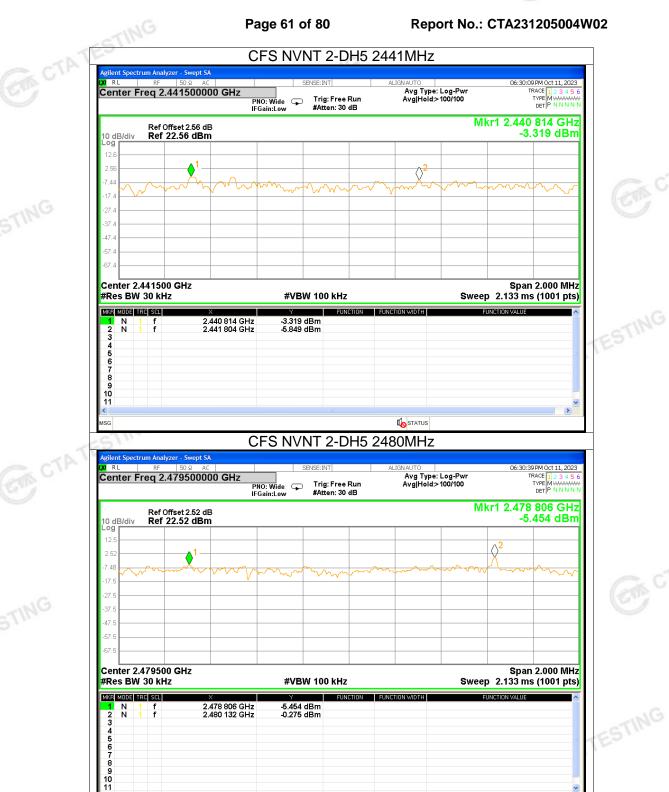
5. Carrier Frequencies Separation

and the second						
Condition	Mode	Hopping Freq1 (MHz)	Hopping Freq2 (MHz)	HFS (MHz)	Limit (MHz)	Verdict
NVNT	1-DH5	2401.978	2402.928	0.95	>=0.628	Pass
NVNT	1-DH5	2440.968	2441.87	0.902	>=0.628	Pass
NVNT	1-DH5	2478.948	2480.006	1.058	>=0.619	Pass
NVNT	2-DH5	2401.806	2403.156	1.35	>=0.87	Pass
NVNT	2-DH5	2440.814	2441.804	0.99	>=0.863	Pass
NVNT	2-DH5	2478.806	2480.132	1.326	>=0.921	Pass


CTATESTING 0

Page 59 of 80 Report No.: CTA231205004W02

CTATESTING


Page 60 of 80 Report No.: CTA231205004W02

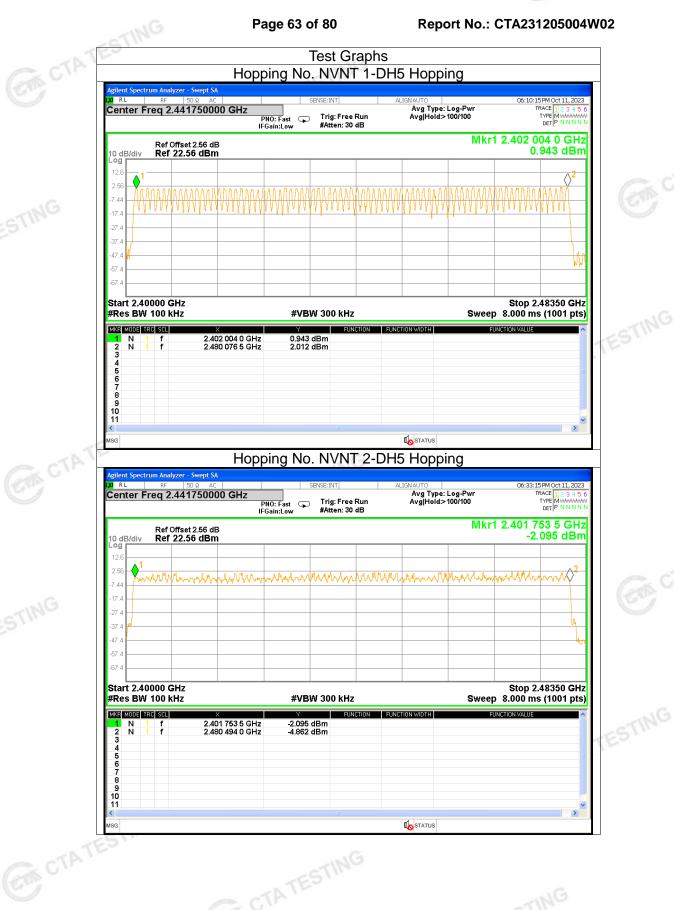
€ STATUS

CTA TESTING

Page 61 of 80 Report No.: CTA231205004W02

€ STATUS

CTA TESTING


Page 62 of 80

Report No.: CTA231205004W02

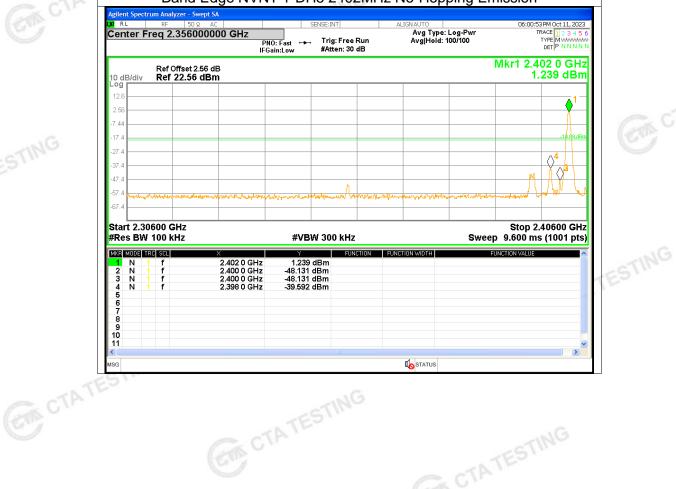
6. Number of Hopping Channel

Condition	Mode	Hopping Number	Limit	Verdict
NVNT	1-DH5	79	>=15	Pass
NVNT	2-DH5	79	>=15	Pass

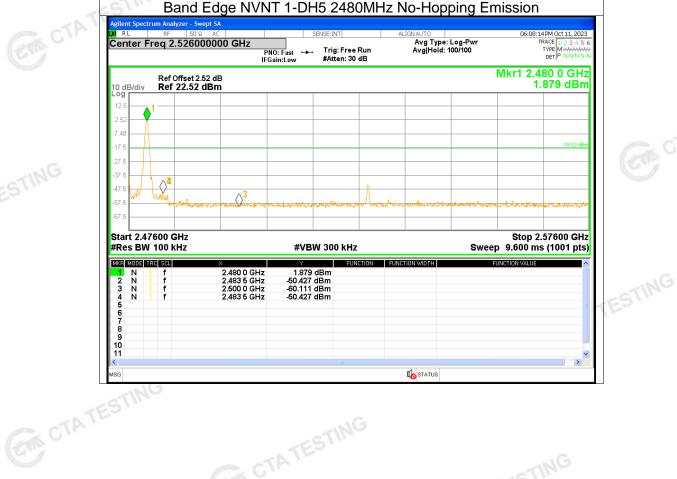
Page 63 of 80 Report No.: CTA231205004W02

CTA TESTING

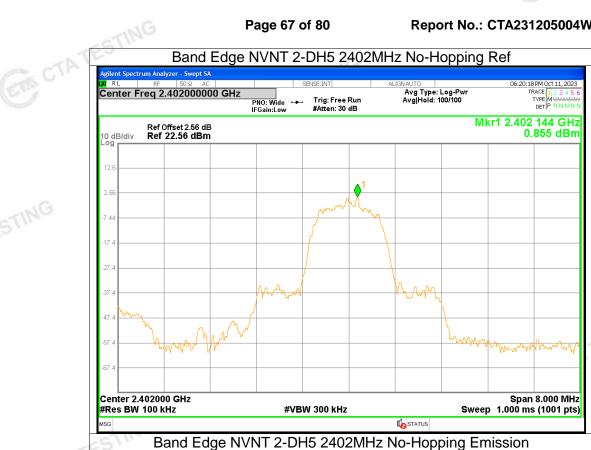
Page 64 of 80 Report No.: CTA231205004W02


7. Band Edge

		J -				
Condition	Mode	Frequency (MHz)	Hopping Mode	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH5	2402	No-Hopping	-40.7	<=-20	Pass
NVNT	1-DH5	2480	No-Hopping	-52.39	<=-20	Pass
NVNT	2-DH5	2402	No-Hopping	-43.71	<=-20	Pass

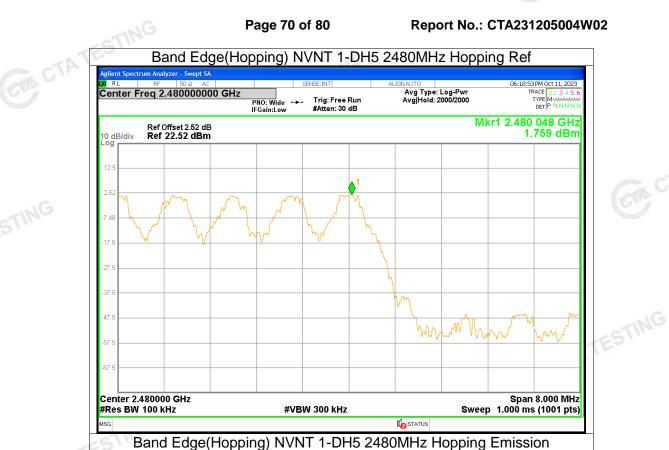

-43.7 CTA TES

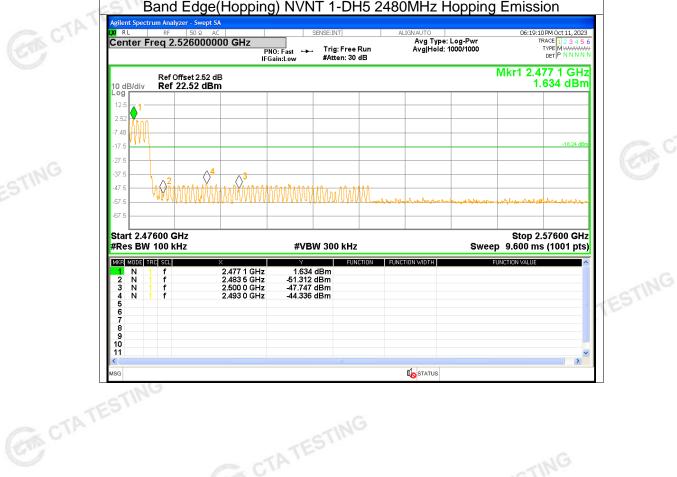
Page 65 of 80 Report No.: CTA231205004W02



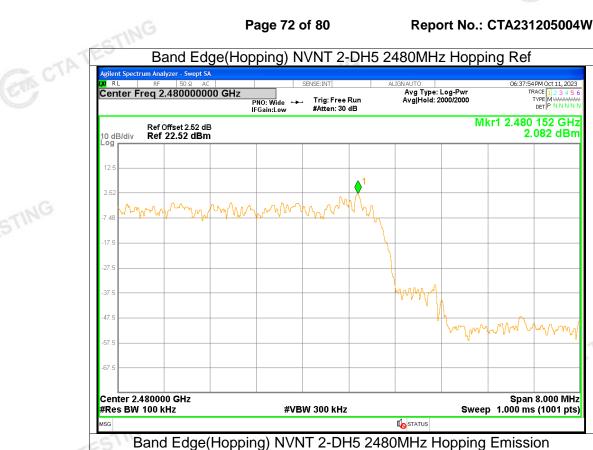
Page 67 of 80 Report No.: CTA231205004W02

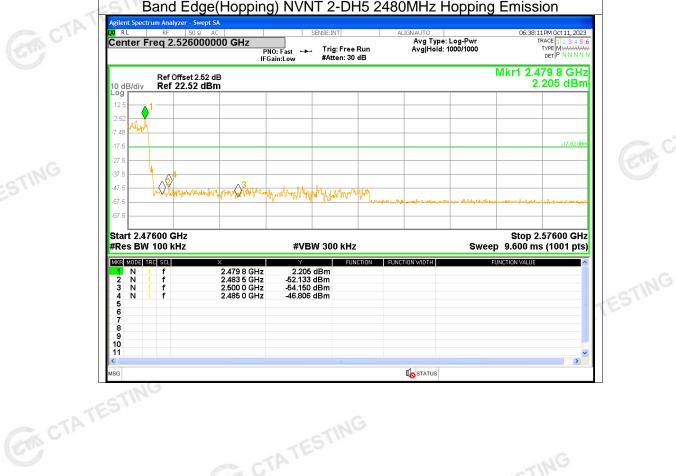
Page 68 of 80 Report No.: CTA231205004W02

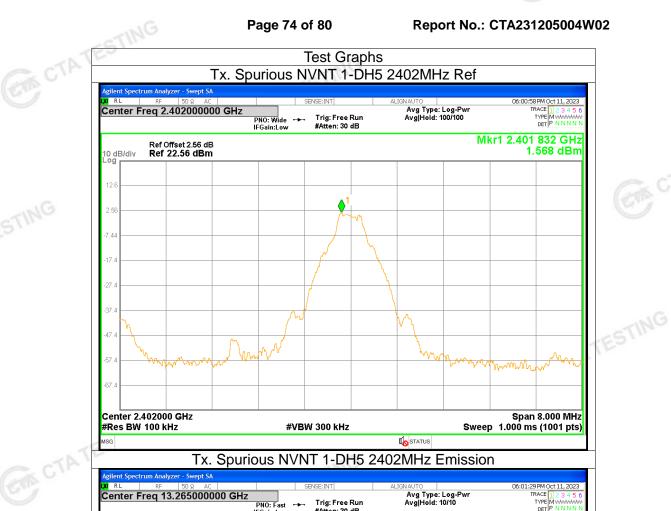

8. Band Edge(Hopping)


<u> </u>		3 - (1 · · · · 1 1 · · · · 3)				
Condition	Mode	Frequency (MHz)	Hopping Mode	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH5	2402	Hopping	-50.55	<=-20	Pass
NVNT	1-DH5	2480	Hopping	-46.09	<=-20	Pass
NVNT	2-DH5	2402	Hopping	-53.22	<=-20	Pass
NVNT	2-DH5	2480	Hopping	-48.88	<=-20	Pass

Page 69 of 80 Report No.: CTA231205004W02

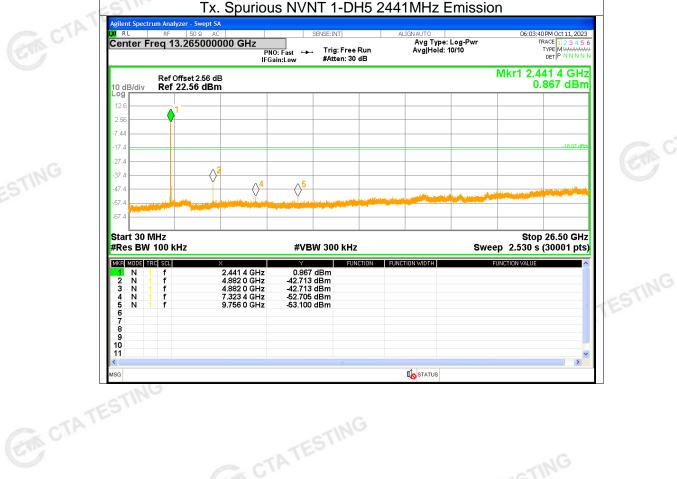

06:11:05PM Oct 11, 2023 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N Center Freq 2.356000000 GHz Avg Type: Log-Pwr Avg|Hold: 2000/2000 Trig: Free Run #Atten: 30 dB PNO: Fast +>+ Mkr1 2.403 0 GHz Ref Offset 2.56 dB Ref 22.56 dBm 1.234 dBm ብለያው ለብለ ለመደብደበት ሲያለ ለመልለ ብክር የለያለፈ ላሊ Start 2.30600 GHz Stop 2.40600 GHz #Res BW 100 kHz Sweep 9.600 ms (1001 pts) **#VBW** 300 kHz 1.234 dBm -40.691 dBm -50.388 dBm -49.528 dBm 2.403 0 GHz 2.400 0 GHz 2.390 0 GHz 2.387 0 GHz NNN 2 3 4 5 6 7 8 9 10 **€** STATUS CTATE! CTA TESTING

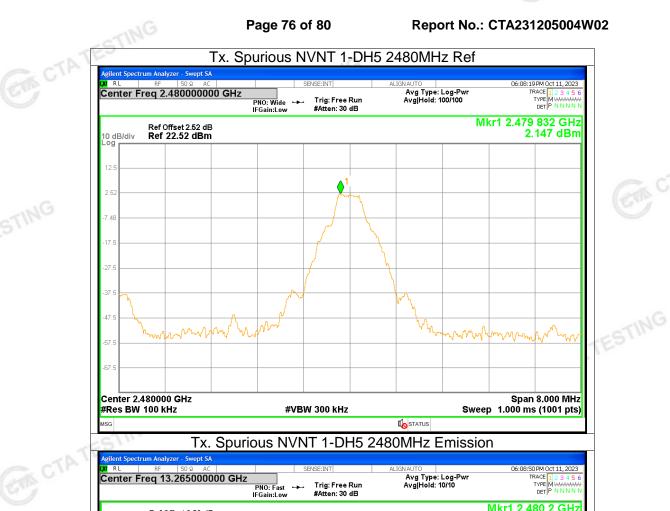




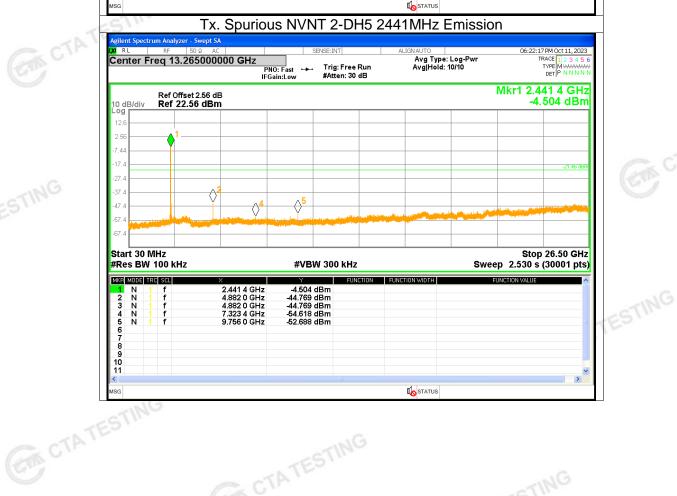
Page 73 of 80 Report No.: CTA231205004W02

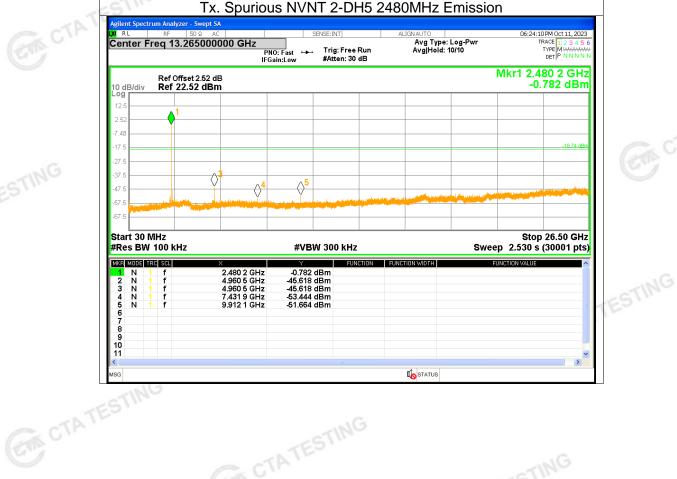
9. Conducted RF Spurious Emission


Condition	Mode	Frequency (MHz)	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH5	2402	-45.11	<=-20	Pass
NVNT	1-DH5	2441	-43.74	<=-20	Pass
NVNT	1-DH5	2480	-44.52	<=-20	Pass
NVNT	2-DH5	2402	-46.13	<=-20	Pass
NVNT	2-DH5	2441	-43.3	<=-20	Pass
NVNT	2-DH5	2480	-46.87	<=-20	Pass


CTATESTING CI Page 74 of 80 Report No.: CTA231205004W02







Page 80 of 80 Report No.: CTA231205004W02

APPENDIX 2-PHOTOS OF TEST SETUP

Note: See test photos in setup photo document for the actual connections between Product and support equipment.

* * * * * END OF THE REPORT * * * * *