

Shenzhen Huatongwei International Inspection Co., Ltd.

Keji Nan No.12 Road, Hi-tech Park, Shenzhen, China Phone:86-755-26748019 Fax:86-755-26748089 http://www.szhtw.com.cn

TEST REPORT

Report Reference No::	TRE1503009904	R/C 30143
-----------------------	---------------	-----------

FCC ID.....: 2AE6CEP8100U1

Applicant's name.....: Shenzhen Excera Technology Co., Ltd.

Address...... Block K of 4F, Tower A of Junxiangda building, Zhongshanyuan

WestRoad, Tongle Village, Nanshan, Shenzhen, China

Manufacturer...... Shenzhen Excera Technology Co., Ltd.

Address...... Block K of 4F, Tower A of Junxiangda building, Zhongshanyuan

WestRoad, Tongle Village, Nanshan, Shenzhen, China

Test item description: Digital Portable Radio

Trade Mark: EXCERA

Model/Type reference..... EP8100 U1

Listed Model(s) /

Standard: FCC Part 90/FCC Part 2/ FCC Part 15B

Date of receipt of test sample............ Mar 23, 2015

Date of testing...... Mar 24, 2015- Apr 8, 2015

Date of issue...... Apr 9, 2015

Result...... PASS

Compiled by

(position+printed name+signature)..: File administrators Shayne Zhu

File administrators Shayne Zhu

Supervised by

(position+printed name+signature)..: Project Engineer Cary Luo

Cary luo

Approved by

(position+printed name+signature)..: RF Manager Hans Hu

/

Testing Laboratory Name: Shenzhen Huatongwei International Inspection Co., Ltd.

China

Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Report No : TRE1503009904 Page 2 of 81

Contents

<u>1.</u>	TEST STANDARDS AND TEST DESCRIPTION	3
	Took Stondards	2
1.1.	Test Standards	3
1.2.	Test Description	3
<u>2.</u>	SUMMARY	4
		_
2.1.	Client Information	4
2.2.	Product Description	4
2.3.	Test frequency list	5
2.4.	EUT operation mode	5
2.5.	EUT configuration	6
2.6.	Related Submittal(s) / Grant (s)	6
2.7.	Modifications	6
<u>3.</u>	TEST ENVIRONMENT	7
3.1.	Address of the test laboratory	7
3.1. 3.2.	Test Facility	7
3.2. 3.3.	Environmental conditions	8
3.4.	Statement of the measurement uncertainty	8
3. 4 . 3.5.	Equipments Used during the Test	9
J.J.	Equipments used during the rest	9
<u>4 .</u>	TEST CONDITIONS AND RESULTS	11
4.1.	Conducted Emissions Test	11
4.2.	Maximum Transmitter Power	18
4.3.	Occupied Bandwidth	26
4.4.	Emission Mask	32
4.5.	Modulation Charcateristics	37
4.6.	Frequency Stability Test	41
4.7.	Transmitter Frequency Behavior	44
4.8.	Spurious Emssion on Antenna Port	47
4.9.	Transmitter Radiated Spurious Emssion	56
4.10.	Receiver Radiated Spurious Emssion	67
<u>5.</u>	TEST SETUP PHOTOS OF THE EUT	75
<u>6.</u>	EXTERNAL AND INTERNAL PHOTOS OF THE EUT	77

Report No: TRE1503009904 Page 3 of 81

1. TEST STANDARDS AND TEST DESCRIPTION

1.1. Test Standards

The tests were performed according to following standards:

FCC Rules Part 90:2014 Private land mobile radio services.

TIA/EIA 603 D:June 2010 Land Mobile FM or PM Communications Equipment Measurement and Performance Standards.

FCC Part 15 Subpart B:2014 Unintentional Radiators
FCC Part 2: 2014 Frequency allocations and radio treaty matters, general rules and regulations.

KDB579009 D01 v03r01: Questions and Answers on Re-farming Part 90 frequencies

KDB 579009 D02 v01r02 :Transition Summary Table

1.2. Test Description

Test specification clause	Test case	Verdict
FCC Part 15.207	Conducted Emission	PASS
FCC Part 90.205	Maximum Transmitter Power	PASS
FCC Part 90.207	Modulation Characteristic	PASS
FCC Part 90.209	Occupied Bandwidth	PASS
FCC Part 90.210	Emission Mask	PASS
FCC Part 90.213	Frequency Stability	PASS
FCC Part 90.214	Transmitter Frequency Behavior	PASS
FCC Part 90.210	Transmitter Radiated Spurious Emssion	PASS
FCC Part 90.210	Spurious Emssion On Antenna Port	PASS
FCC Part 15.109	Receiver Radiated Spurious Emssion	PASS

Remark: 1.The measurement uncertainty is not included in the test result.

Report No : TRE1503009904 Page 4 of 81

2. **SUMMARY**

2.1. Client Information

Applicant:	Shenzhen Excera Technology Co., Ltd.
Address:	Block K of 4F, Tower A of Junxiangda building,Zhongshanyuan WestRoad,Tongle Village,Nanshan,Shenzhen,China
Manufacturer:	Shenzhen Excera Technology Co., Ltd.
Address:	Block K of 4F, Tower A of Junxiangda building,Zhongshanyuan WestRoad,Tongle Village,Nanshan,Shenzhen,China

2.2. Product Description

Name of EUT	Digital Portable Radio				
Trade Mark:	EXCERA				
Model/Type reference:	EP8100 U1				
Listed Model(s):	1				
Power supply:	DC 7.20V				
Charger information:	Model:ESC102L				
	Input:12Vd.c.,1000m	nA			
	Output:8.4Vd.c., 100	0mA			
Battery information:	Model:EB242L				
	7.2Vd.c., 2400mAh				
Adapter information:	Model: HKA0121201	0-2F			
	Input: 100-240Va.c.,	50/60Hz, 500mA			
	Output:12.0Vd.c., 10	00mA			
Operation Frequency:	From 400MHz to 470	DMHz			
Rated Output Power:	High Power:4.2Watts(36.23dBm)/Low Power:1.2Watts(30.79dBm)				
Support data rate:	9.6kbps				
Modilation Type:	FM for Analog Voice				
Modilation Type:	4FSK for Digital Void	ce / Digital Data			
	Analog Voice	12.5kHz			
Channel Separation:	Digital Voice/Data	12.5kHz			
	Digital Data	12.5kHz			
Emission Designator:	Analog Voice:	9K91F3E for 12.5KHz Channel Separation			
	Digital Voice:	6K77FXW			
	Digital Data: 6K77FXD				
Maximum Transmitter Power	er Analog 4.27W for 12.5 KHz Channel Separation				
	Digital 4.33W for 12.5 KHz Channel Separation				
Antenna Type:	External				
Hard version:	E				
Soft version:	0.9.05.009				

Note: The product has the same digital working characters when operating in both two digitized voice/data mode. So only one set of test results for digital modulation modes are provided in this test report.

Report No : TRE1503009904 Page 5 of 81

2.3. Test frequency list

Modulation Type	Channel Separation	Test Frequency (MHz)	
Analog/FM		406.5	
	12.5kHz	421.5	
	12.58112	450.5	
		469.5	
Digital/4FSK		406.5	
	12.5kHz	421.5	
	12.5KHZ 450.5		
		469.5	

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, please see the above listed frequency for testing.

2.4. EUT operation mode

The EUT has been tested under typical operating condition and The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

EUT operation mode no.	Description of operation mode	Additional information
Op 1	FM+BW12.5kHz+TX	The equipment is set with FM modulation and 12.5kHz bandwidth at maximum rated power for transmitter,powered by DC 7.20V
Op 2	FM+BW12.5kHz+TX	The equipment is set with FM modulation and 12.5kHz bandwidth at minimum rated power for transmitter,powered by DC 7.20V
Op 3	4FSK+BW12.5kHz+TX	The equipment is set with 4FSK modulation and 12.5kHz bandwidth at maximum rated power for transmitter,powered by DC 7.20V
Op 4	4FSK+BW12.5kHz+TX	The equipment is set with 4FSK modulation and 12.5kHz bandwidth at minimum rated power for transmitter,powered by DC 7.20V
Op 5	FM+BW12.5kHz+RX	The equipment is set with FM modulation and 12.5kHz bandwidth at receiver or standby,powered by AC 120V/60Hz from adapter
Op 6	4FSK+BW12.5kHz+RX	The equipment is set with 4FSK modulation and 12.5kHz bandwidth receiver or standby,powered by AC 120V/60Hz from adapter
Op 7	GPS	Gps Receiver Mode

Report No : TRE1503009904 Page 6 of 81

2.5. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- supplied by the manufacturer

0	Power Cable	Length (m):	3.00
		Shield:	Unshielded
		Detachable :	Undetachable
0	Multimeter	Manufacturer:	1
		Model No.:	1

2.6. Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for FCC ID: 2AEFJEP8100U1 filing to comply with FCC Part 90 rules.

2.7. Modifications

No modifications were implemented to meet testing criteria.

Report No: TRE1503009904 Page 7 of 81

3. TEST ENVIRONMENT

3.1. Address of the test laboratory

Laboratory: Shenzhen Huatongwei International Inspection Co., Ltd. Address: Keji Nan No.12 Road, Hi-tech Park, Shenzhen, China

Phone: 86-755-26748019 Fax: 86-755-26748089

3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1225

Shenzhen Huatongwei International Inspection Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories, Date of Registration: Feb. 28, 2015. Valid time is until February 27, 2018.

A2LA-Lab Cert. No. 2243.01

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing. Valid time is until Sept 30, 2015.

FCC-Registration No.: 662850

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 662850, Renewal date Jul. 01, 2012, valid time is until Jun. 01, 2015.

FCC-Registration No.: 317478

Shenzhen Huatongwei International Inspection Co., Ltd. (Gongming EMC Laboratory) has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 317478, Renewal date July 18, 2014, valid time is until July. 18, 2017.

IC-Registration No.: 5377A

The 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 5377A on Dec. 31, 2013, valid time is until Dec. 31, 2016.

IC-Registration No.: 5377B

The 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. (Gongming EMC Laboratory) has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 5377B on September 3, 2014, valid time is until September 3, 2017.

ΔCΔ

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory can also perform testing for the Australian C-Tick mark as a result of our A2LA accreditation.

vcci

The 3m Semi-anechoic chamber (12.2m×7.95m×6.7m) of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.:R-2484. Date of Registration: Dec. 20, 2012. Valid time is until Dec. 29, 2015.

Radiated disturbance above 1GHz measurement of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-292. Date of Registration: Dec. 24, 2013. Valid time is until Dec. 23, 2016.

Main Ports Conducted Interference Measurement of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-2726. Date of Registration: Dec. 20, 2012. Valid time is until Dec. 19, 2015.

Telecommunication Ports Conducted Interference Measurement of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-1837. Date of Registration: May 07, 2013. Valid time is until May 06, 2016.

DNV

Shenzhen Huatongwei International Inspection Co., Ltd. has been found to comply with the requirements of DNV towards subcontractor of EMC and safety testing services in conjunction with the EMC and Low voltage Directives and in the voluntary field. The acceptance is based on a formal quality Audit and follow-ups according to relevant parts of ISO/IEC Guide 17025 (2005), in accordance with the requirements of the DNV Laboratory Quality Manual towards subcontractors. Valid time is until Aug. 24, 2016.

Report No : TRE1503009904 Page 8 of 81

3.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15~35°C
lative Humidity:	30~60 %
Air Pressure:	950~1050mba

3.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen Huatongwei International Inspection Co., Ltd quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen Huatongwei laboratory is reported:

Test Items	Measurement Uncertainty	Notes
Frequency stability	25 Hz	(1)
Transmitter power conducted	0.57 dB	(1)
Transmitter power Radiated	2.20 dB	(1)
Conducted spurious emission 9KHz-40 GHz	1.60 dB	(1)
Conducted Emission 9KHz-30MHz	3.39 dB	(1)
Radiated Emission 30~1000MHz	4.65 dB	(1)
Radiated Emissio 1~18GHz	5.16 dB	(1)
Radiated Emissio 18-40GHz	5.54 dB	(1)
Occupied Bandwidth		(1)
Emission Mask		(1)
Modulation Characteristic		(1)
Transmitter Frequency Behavior		(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

Report No : TRE1503009904 Page 9 of 81

3.5. Equipments Used during the Test

AC&DC Power Conducted Emission					
Name of Equipment	Manufacturer	Model	Serial Number	Last Cal.	
Artificial Mains	Rohde&Schwarz	ESH2-Z5	100028	2014/11/1	
EMI Test Receiver	Rohde&Schwarz	ESCS 30	100038	2014/11/1	
Pulse Limiter	Rohde&Schwarz	ESHSZ2	100044	2014/11/1	
EMI Test Software	Rohde&Schwarz	ES-K1 V1.71	N/A	N/A	
RF COMMUNICATION TEST SET	HP	8920A	3813A10206	2014/11/1	

Modulation Characteristic				
Name of Equipment Manufacturer Model Serial Number Last Cal.				
RF COMMUNICATION TEST SET	HP	8920A	3813A10206	2014/11/1

Frequency Stability										
Name of Equipment	Manufacturer	Model	Serial Number	Last Cal.						
RF COMMUNICATION TEST SET	HP	8920A	3813A10206	2014/11/1						
Signal Generator	Rohde&Schwarz	SMT03	100059	2014/11/1						
Climate Chamber	ESPEC	EL-10KA	05107008	2014/11/1						

Fransmitter Radiated Spurious Emssion									
Name of Equipment	Manufacturer	Model	Serial Number	Last Cal.					
Ultra-Broadband Antenna	Rohde&Schwarz	HL562	100015	2014/11/1					
EMI Test Receiver	Rohde&Schwarz	ESI 26	100009	2014/11/1					
RF Test Panel	Rohde&Schwarz	TS / RSP	335015/ 0017	N/A					
HORN ANTENNA	Rohde&Schwarz	HF906	100039	2014/11/1					
Turntable	ETS	2088	2149	N/A					
Antenna Mast	ETS	2075 2346		N/A					
EMI Test Software	Rohde&Schwarz	ES-K1 V1.71	N/A	N/A					
RF COMMUNICATION TEST SET	HP	8920A	3813A10206	2014/11/1					
Ultra-Broadband Antenna	ShwarzBeck	VULB9163	538	2014/11/1					
Ultra-Broadband Antenna	ShwarzBeck	VULB9163	539	2014/11/1					
HORN ANTENNA	ShwarzBeck	9120D	1012	2014/11/1					
HORN ANTENNA	ShwarzBeck	9120D	1011	2014/11/1					
TURNTABLE	MATURO	TT2.0		N/A					
ANTENNA MAST	MATURO	TAM-4.0-P		N/A					

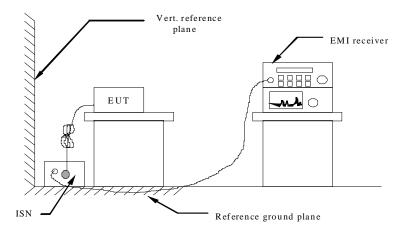
Report No : TRE1503009904 Page 10 of 81

Maximum Transmitter Power & Spurious Emssion On Antenna Port & Occupied Bandwidth & Emission Mask									
Name of Equipment	Manufacturer	Model	Serial Number	Last Cal.					
Receiver	Rohde&Schwarz	ESI 26	100009	2014/11/1					
Attenuator	R&S	ESH3-22	100449	2014/11/1					
RF COMMUNICATION TEST SET	HP	8920A	3813A10206	2014/11/1					
High-Pass Filter	Anritsu	MP526B	6220875256	2014/11/1					
High-Pass Filter	Anritsu	MP526D	6220878392	2014/11/1					
Spectrum Analzyer	Aglient	E4407B	MY44210775	2014/11/1					
Spectrum Analzyer	Rohde&Schwarz	FSP40	1164.4391.40	2014/11/1					
SPECTRUM ANALYZER	Agilent	E4407B	MY44210775	2014/11/1					

Transient Frequency Behavior									
Name of Equipment			Serial Number	Last Cal.					
Signal Generator	Rohde&Schwarz	SMT03	100059	2014/11/1					
Storage Oscilloscope	Tektronix	TDS3054B	B033027	2014/11/1					
RF COMMUNICATION TEST SET	HP	8920A	3813A10206	2014/11/1					

The calibration interval was one year.

Report No: TRE1503009904 Page 11 of 81


4. TEST CONDITIONS AND RESULTS

4.1. Conducted Emissions Test

TEST APPLICABLE

The EUT was tested according to ANSI C63.4 - 2009. The frequency spectrum from 0.15 MHz to 30 MHz was investigated. The LISN used was 50 ohm / 50 u Henry as specified by section 5.1 of ANSI C63.4 - 2009. Cables and peripherals were moved to find the maximum emission levels for each frequency.

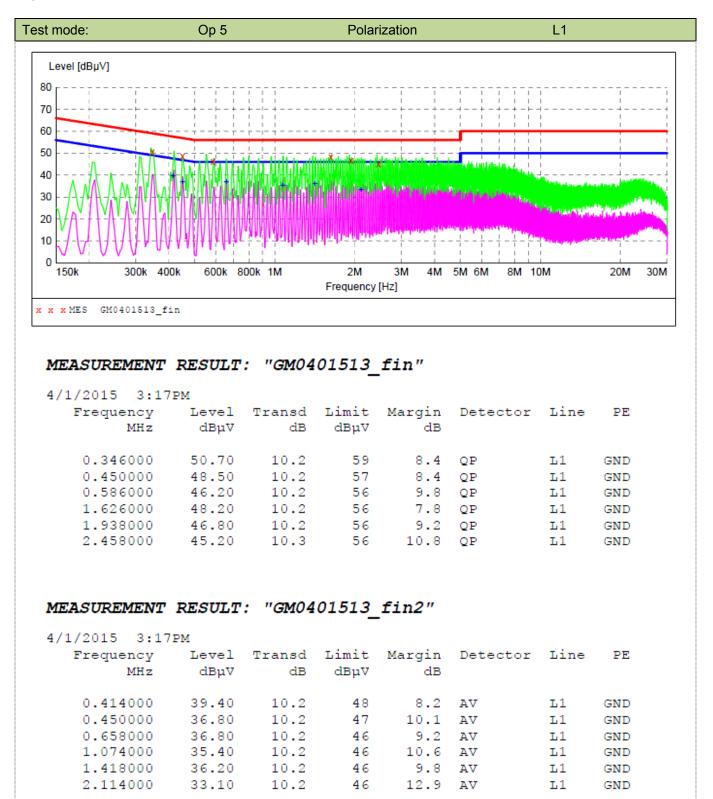
TEST CONFIGURATION

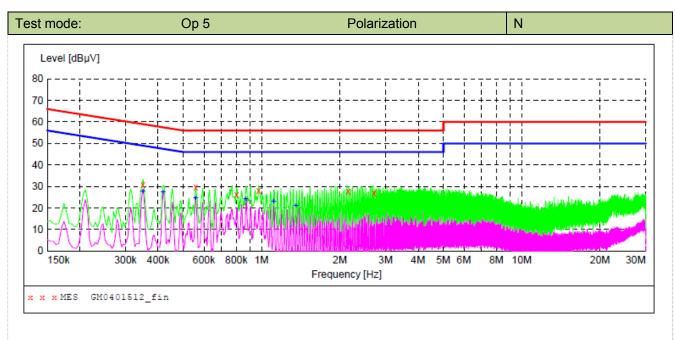
TEST PROCEDURE

- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system; a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.4-2009.
- 2 Support equipment, if needed, was placed as per ANSI C63.4-2009.
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.4-2009.
- 4 If a EUT received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 If a EUT received DC 7.20V power through a Impedance Stabilization Network (ISN) which supplied power source and was grounded to the ground plane.
- 6 All support equipments received AC power from a second LISN, if any.
- The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 8 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 9 During the above scans, the emissions were maximized by cable manipulation.

Conducted Power Line Emission Limit

For intentional device, according to § 15.207(a) and RSS-Gen for Conducted Emission Limits is as following:

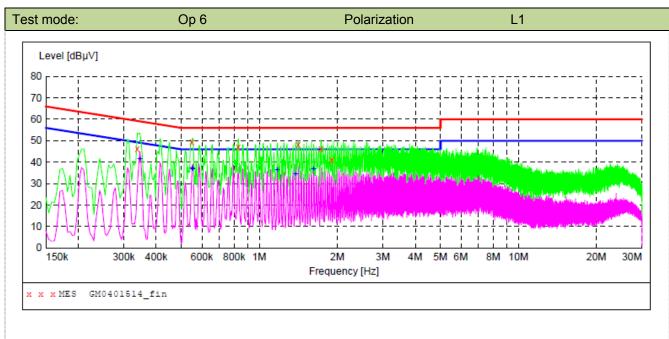

Frequency of Emission (MHz)	Conducted Limit (dBµV)				
	Quasi-peak	Average			
0.15-0.5	66 to 56 *	56 to 46 *			
0.5-5	56	46			
5-30	60	50			


^{*} Decreasing linearly with the logarithm of the frequency

For intentional device, according to §15.207(a) and RSS-Gen Line Conducted Emission Limit is same as above table.

TEST RESULTS

Remark: we tested all Op 5 to Op 7, recorded worst case at Op 5 to Op 6(test Frequency: 450.5MHz) and Op 10.



MEASUREMENT RESULT: "GM0401512 fin"

4/1/2015 3:13	PM						
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.350000	30.80	10.2	59	28.2	QP	N	GND
0.558000	29.70	10.2	56	26.3	QP	N	GND
0.802000	26.20	10.2	56	29.8	QP	N	GND
0.974000	28.00	10.2	56	28.0	QP	N	GND
2.158000	27.90	10.2	56	28.1	QP	N	GND
2.714000	26.90	10.3	5.6	29.1	OP	N	GND

MEASUREMENT RESULT: "GM0401512 fin2"

4/1/2015	3:13PM						
Frequer N	ncy Leve MHz dB			Margin dB	Detector	Line	PE
0.3500	000 27.	30 10.2	49	21.2	AV	N	GND
0.4180	000 27.	50 10.2	48	20.0	AV	N	GND
0.5580	000 24.	60 10.2	46	21.4	AV	N	GND
0.8700	000 24.	30 10.2	46	21.7	AV	N	GND
1.1140	000 23.	00 10.2	46	23.0	AV	N	GND
1.3580	000 21.	20 10.2	46	24.8	AV	N	GND

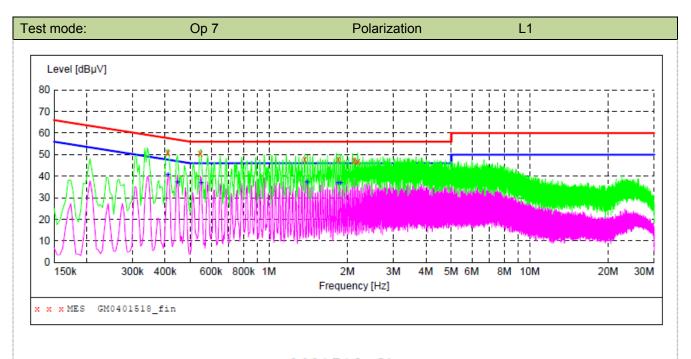
MEASUREMENT RESULT: "GM0401514 fin"

4	/1/2015 3:20)PM						
	Frequency MHz	Level dBµV		Limit dBµV	Margin dB	Detector	Line	PE
	0.338000	46.40	10.2	59	12.9	QP	L1	GND
	0.550000	49.50	10.2	56	6.5	QP	L1	GND
	0.830000	47.10	10.2	56	8.9	QP	L1	GND
	1.414000	48.10	10.2	56	7.9	QP	L1	GND
	1.726000	46.10	10.2	56	9.9	QP	L1	GND
	1 902000	41 20	10.2	5.6	14 8	OP	T.1	GND

MEASUREMENT RESULT: "GM0401514 fin2"

4/1/2015	3:20E	PM						
Freque	ncy MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.346	000	41.60	10.2	49	7.5	AV	L1	GND
0.550	000	37.30	10.2	46	8.7	AV	L1	GND
0.554	000	36.60	10.2	46	9.4	AV	L1	GND
1.174	000	36.40	10.2	46	9.6	AV	L1	GND
1.382	000	34.60	10.2	46	11.4	AV	L1	GND
1.622	000	37.00	10.2	46	9.0	AV	L1	GND

MEASUREMENT RESULT: "GM0401515_fin"

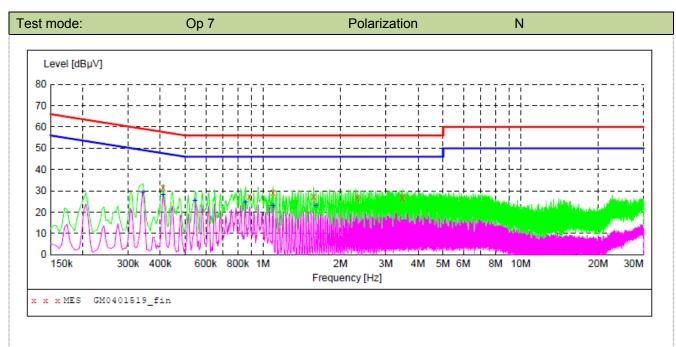

4/1/2015	3	:	2	4	P	M	
----------	---	---	---	---	---	---	--

Frequency				_	Detector	Line	PE
MHz	dΒμV	dB	dBµ∇	dB			
0.414000	30.90	10.2	58	26.7	QP	N	GND
0.550000	30.60	10.2	56	25.4	QP	N	GND
0.762000	24.90	10.2	56	31.1	QP	N	GND
1.342000	27.60	10.2	56	28.4	QP	N	GND
2.030000	27.20	10.2	56	28.8	QP	N	GND
2.958000	26.70	10.3	56	29.3	QP	N	GND

MEASUREMENT RESULT: "GM0401515_fin2"

4/1/2015 3:24PM

Frequency	Level			_	Detector	Line	PE
MHz	dΒμV	dB	dΒμV	dB			
0.346000	27.70	10.2	49	21.4	AV	N	GND
0.414000	27.40	10.2	48	20.2	AV	N	GND
0.550000	25.10	10.2	46	20.9	AV	N	GND
0.586000	22.80	10.2	46	23.2	AV	N	GND
0.862000	23.10	10.2	46	22.9	AV	N	GND
1.374000	22.60	10.2	46	23.4	AV	N	GND



MEASUREMENT RESULT: "GM0401518_fin"

4	4/1/2015 3:34PM							
	Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
	0.410000	51.10	10.2	58	6.5	QP	L1	GND
	0.546000	50.70	10.2	56	5.3	QP	L1	GND
	1.370000	47.90	10.2	56	8.1	QP	L1	GND
	1.846000	47.90	10.2	56	8.1	QP	L1	GND
	2.122000	47.50	10.2	56	8.5	QP	L1	GND
	2.190000	46.70	10.2	56	9.3	QP	L1	GND

MEASUREMENT RESULT: "GM0401518_fin2"

4/1/2015	3:34PM						
Freque	_		sd Limit dB dBµV	Margin dB	Detector	Line	PE
0.410	000 4	0.70 10	.2 48	6.9	AV	L1	GND
0.446	000 3	7.30 10	.2 47	9.6	AV	L1	GND
0.550	000 3	6.80 10	.2 46	9.2	AV	L1	GND
1.402	000 3	7.20 10	.2 46	8.8	AV	L1	GND
1.846	000 3	6.60 10	.2 46	9.4	AV	L1	GND
1.882	000 3	7.00 10	.2 46	9.0	AV	L1	GND

MEASUREMENT RESULT: "GM0401519 fin"

4/1/2015 3:37							
Frequency MHz		Transd dB		_	Detector	Line	
0.410000	31.80	10.2	58	25.8	QP	N	G
0.886000	27.40	10.2	56	28.6	QP	N	G

1.094000 29.40 10.2 56 26.6 QP N GND 1.574000 27.20 10.2 56 28.8 QP N GND 2.326000 26.90 10.3 56 29.1 QP N GND 3.486000 26.90 10.3 56 29.1 QP N GND

PΕ

GND GND

MEASUREMENT RESULT: "GM0401519 fin2"

4/1/2015 3:37PM Level Transd Limit Margin Detector Line Frequency dΒμV dB dΒμV dΒ MHz29.20 10.2 28.20 10.2 25.20 10.2 49 0.342000 20.0 AV Ν GND 0.410000 48 19.4 AV Ν GND 0.546000 20.8 AV 46 N GND 0.854000 21.3 AV 46 Ν GND 1.094000 23.20 10.2 46 22.8 AV Ν GND 23.20 10.2 46 22.8 AV 1.606000 N GND Report No : TRE1503009904 Page 18 of 81

4.2. Maximum Transmitter Power

TEST APPLICABLE

Per FCC Part 2.1046 and Part 90.205: Maximum ERP is dependent upon the station's antenna HAAT and required service area.

Per RSS-119 Section 5.4 and 5.4.1: The output power shall be within ±1.0 dB of the manufacturer's rated power. Typical transmitter output powers are 110 watts for base and/or fixed stations (paging transmitters excepted), and 30 watts for mobile stations. Higher powers may be certified, but it should be noted that mobile stations are normally only licensed up to 30 watts. See the SRSP relevant to the operating frequency for equipment power limits.

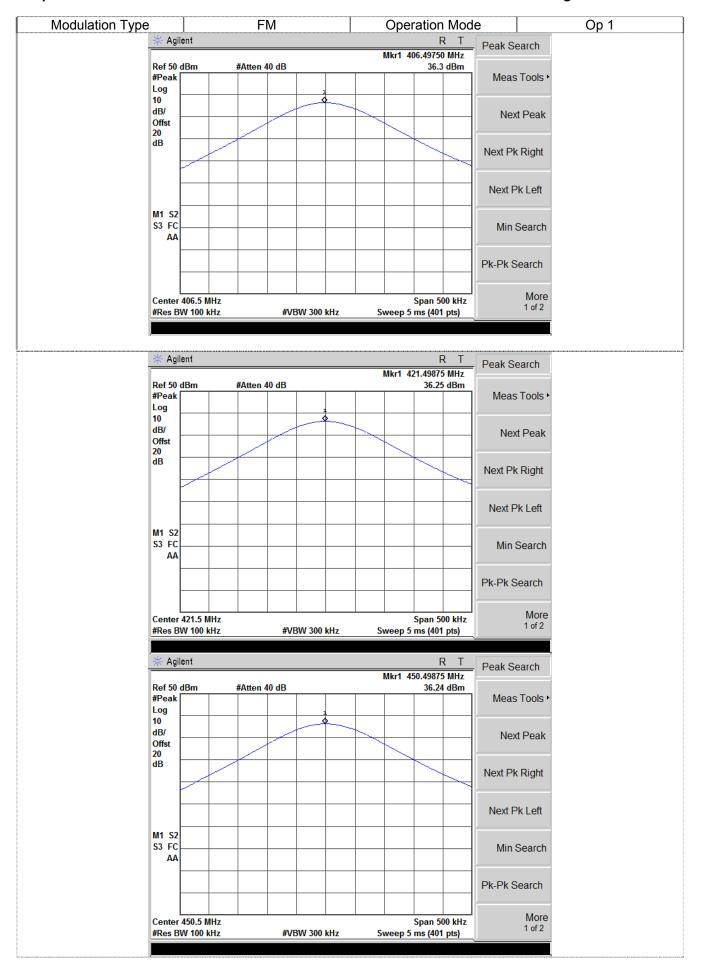
TEST PROCEDURE

Measurements shall be made to establish the radio frequency power delivered by the transmitter the standard output termination. The power output shall be monitored and recorded and no adjustment shall be made to the transmitter after the test has begun, except as noted bellow:

If the power output is adjustable, measurements shall be made for the highest and lowest power levels. The EUT connect to the Receiver through 20 dB attenuator.

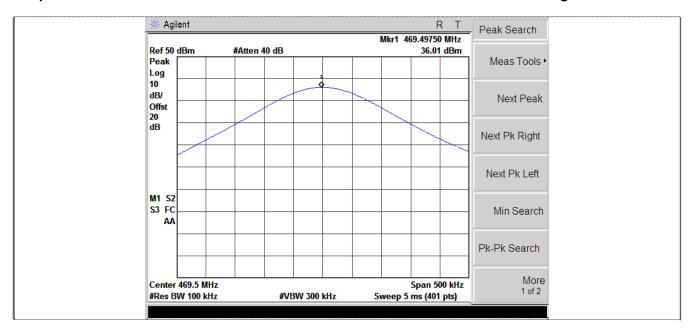
Measurement with Spectrum Analyzer E4407B conducted, external power supply with 7.20 V stabilized supply voltage.

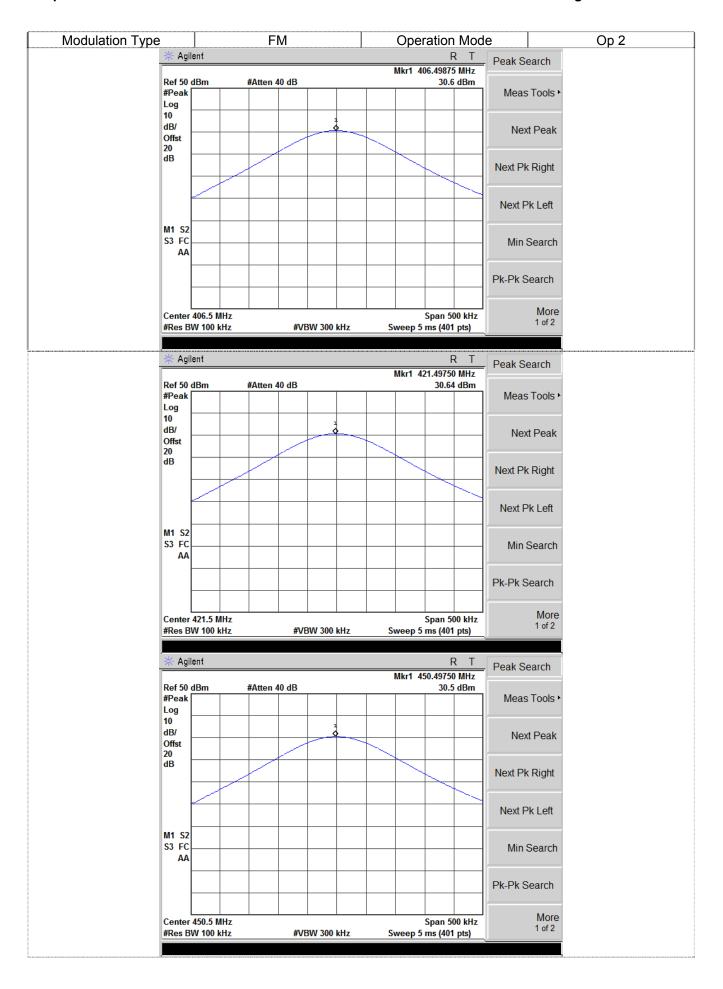
TEST CONFIGURATION

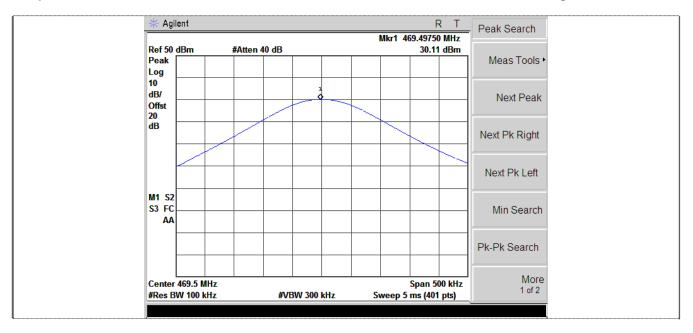

		Spectrum
EUI	Attenuator	Analyzer/Receiver

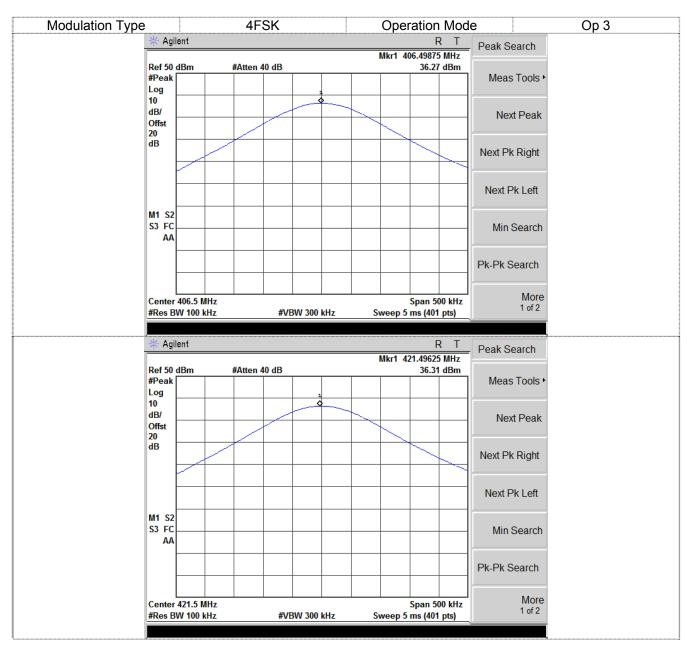
The EUT was directly connected to a RF Communication Test set by a 20 dB attenuator

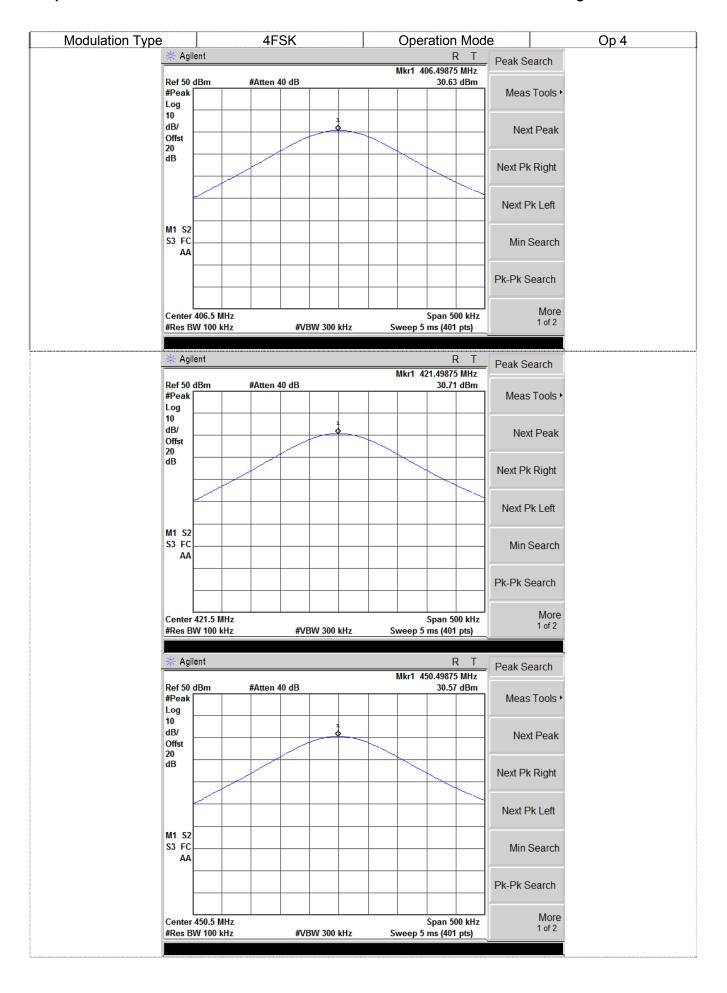
TEST RESULTS


Operation Mode	Test Frequency (MHz)	Measured power (dBm)	Difference (dB)	Limit (dB)	Result
	406.5	36.30	0.07		
On 1	421.5	36.25	0.02	-1 ~ +1	Pass
Op 1	450.5	(dBm) (dB) 36.30 0.07	-1~+1	FdSS	
	469.5	36.01	-0.22		
	406.5	30.60	-0.19		
On 2	421.5	30.64	-0.15	-1 ~ +1	Pass
Op 2	450.5	30.50	-0.29	-1~+1	
	469.5	30.11	-0.68		
	406.5	36.27	0.04		Door
On 2	421.5	36.31	0.08	-1 ~ +1	
Op 3	450.5	36.36	0.13	-1~+1	Pass
	469.5	36.15	-0.08		
	406.5	30.63	-0.16		
On 4	421.5	30.71	-0.08	-1 ~ +1	Door
Op 4	450.5	30.57	-0.22	-1~+1	Pass
	469.5	30.15	-0.64		

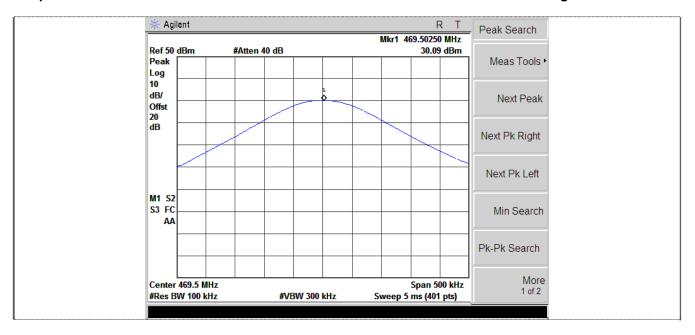

Test plot as follows:


Report No: TRE1503009904


Page 20 of 81

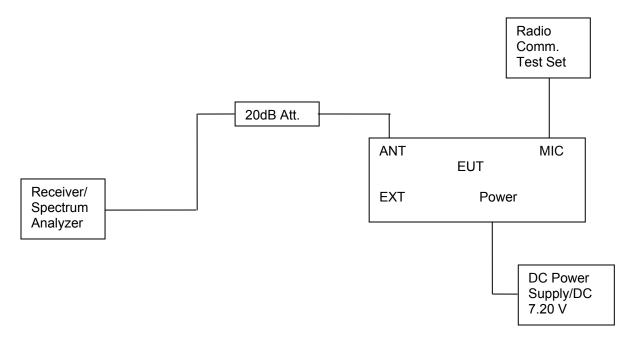


Report No : TRE1503009904 Page 22 of 81



Report No: TRE1503009904

Page 25 of 81


Report No : TRE1503009904 Page 26 of 81

4.3. Occupied Bandwidth

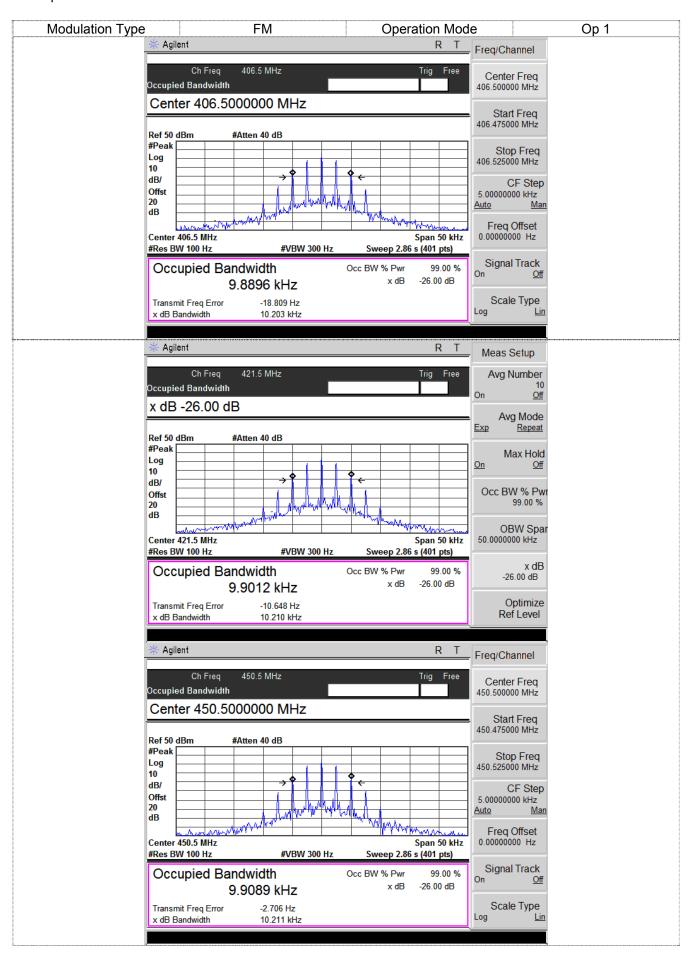
TEST APPLICABLE

Occupied Bandwidth: The EUT was connected to the audio signal generator and the spectrum analyzer via the main RF connector, and through an appropriate attenuator. The EUT was controlled to transmit its maximum power. Then the bandwidth of 99% power can be measured by the spectrum analyzer.

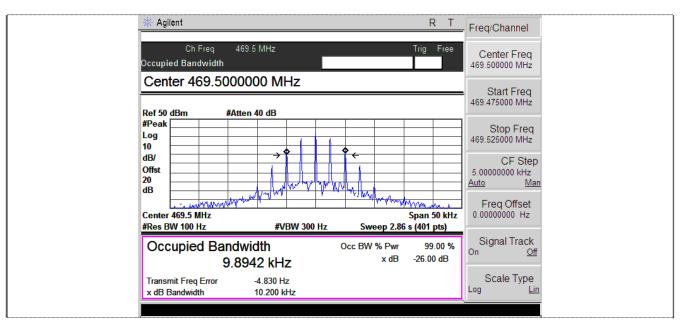
TEST CONFIGURATION

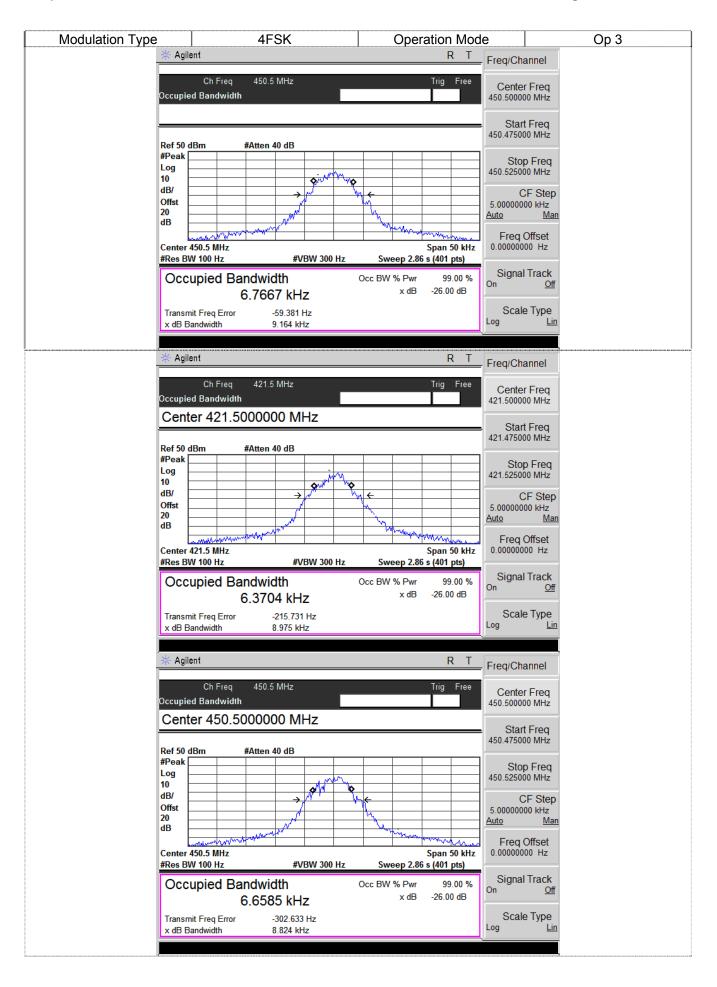
TEST PROCEDURE

- 1 The EUT was modulated by 2.5kHz Sine wave audio signal; the level of the audio signal employed is 16 dB greater than that necessary to produce 50% of rated system deviation. Rated system deviation is 2.5 kHz (12.5kHz channel spacing).
- 2 Set EUT as normal operation.
 - 1)Set SPA Center Frequency = fundamental frequency, RBW=100Hz, VBW=300Hz,span=50kHz for 12.5KHz channel spacing.
- 3 Set SPA Max hold. Mark peak, Set 99% Occupied Bandwidth and 26dB Occupied Bandwidth.
- 4 Set SPA Center Frequency=fundamental frequency, set =100Hz, VBW=300Hz, span=50kHz for 12.5KHz channel spacing.

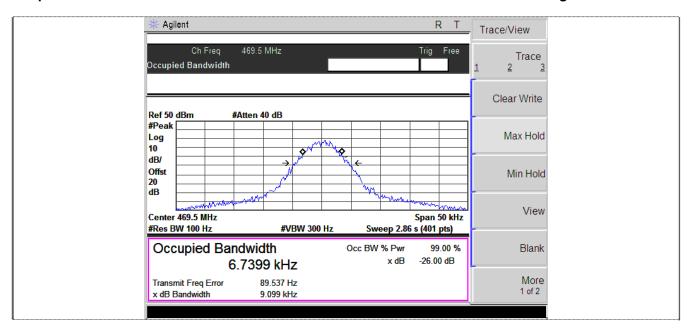

TEST RESULTS

Remark: We tested Op 1 to Op 4, reocrded worst case at Op 1, Op 3.


Operation	Test Frequency	Occupied Ba	andwidth (kHz)	Limit	Result
Mode	(MHz)	99%	26dB	(kHz)	
	406.5	9.89	10.20	≤11.25	Pass
On 1	421.5	9.90	10.21		
Op 1	450.5	9.91	10.21		
	469.5	9.89	10.20		
	406.5	6.77	9.16		
Op 3	421.5	6.37	8.98	≤11.25	Pass
Op 3	450.5	6.66	8.82		F d 5 5
	469.5	6.74	9.10		


Report No: TRE1503009904 Page 28 of 81

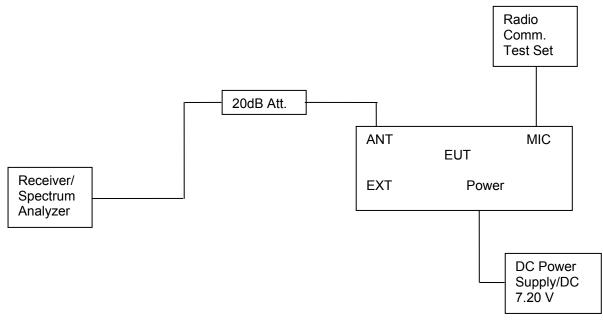
Test plot as follows:


Report No : TRE1503009904 Page 29 of 81

Report No: TRE1503009904

Page 31 of 81

Report No : TRE1503009904 Page 32 of 81


4.4. Emission Mask

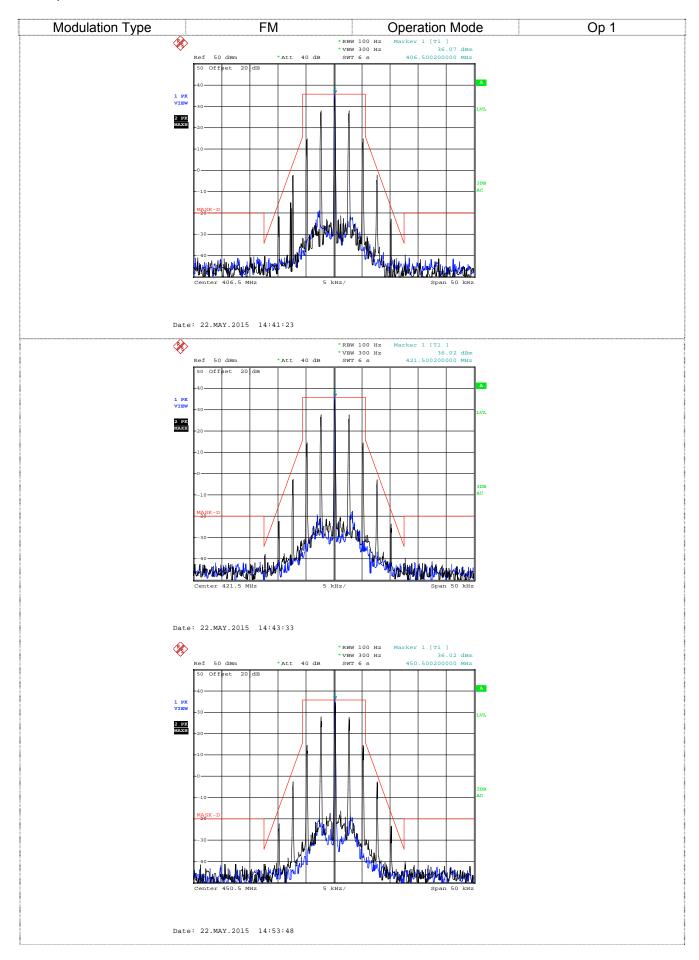
TEST APPLICABLE

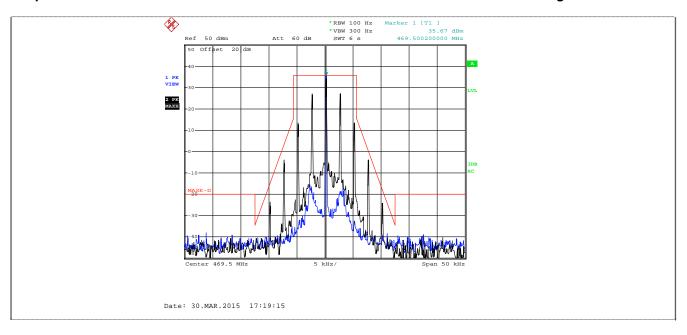
According to §90.210

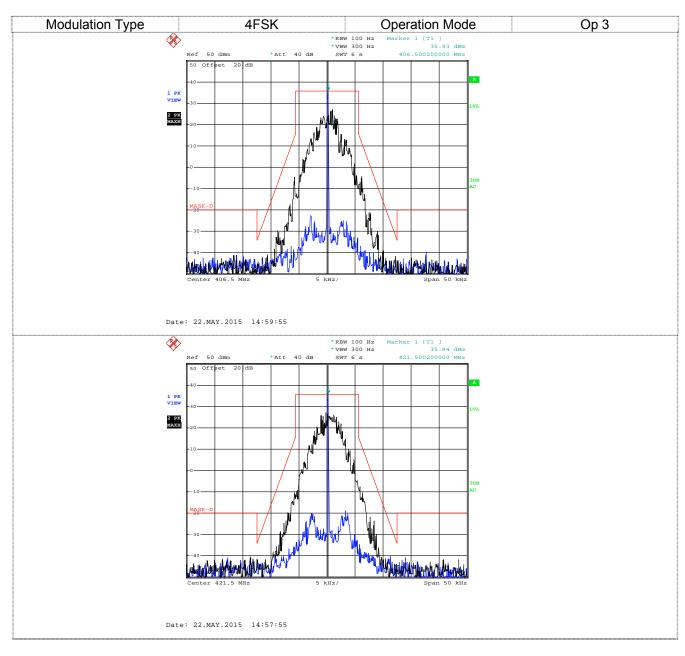
- (b). Emission Mask D:12.5 kHz channel bandwidth equipment: For transmitters designed to operate with a 12.5 kHz channel bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:
 - (1) On any frequency from the center of the authorized bandwidth f₀ to 5.625 kHz removed from f₀: Zero dB.
 - (2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency $(f_d \text{ in kHz})$ of more than 5.625 kHz but no more than 12.5 kHz: At least 7.27(f_d -2.88 kHz) dB.
 - (3) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 12.5 kHz: At least 50 + 10 log (P) dB or 70 dB, whichever is the lesser attenuation.

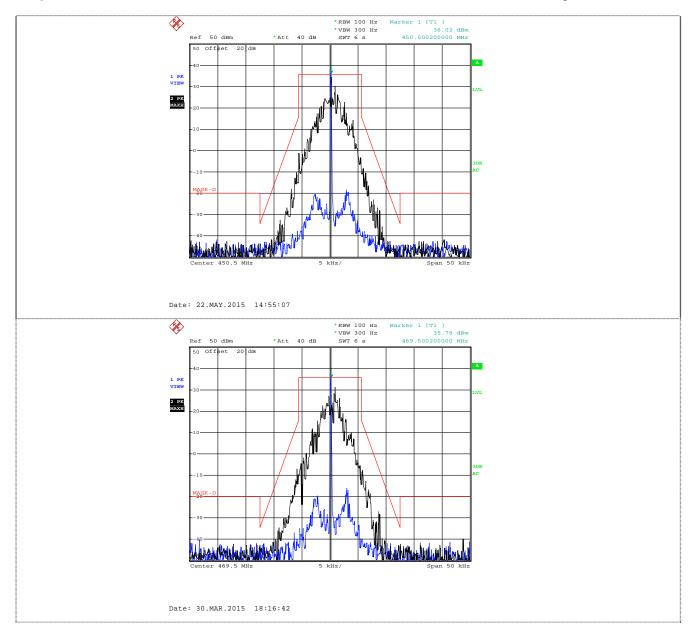
TEST CONFIGURATION

TEST PROCEDURE


- 1.The EUT was modulated by 2.5kHz Sine wave audio signal; the level of the audio signal employed is 16 dB greater than that necessary to produce 50% of rated system deviation. Rated system deviation is 2.5 kHz (12.5kHz channel spacing).
- 2.Set EUT as normal operation.
 - 1)Set SPA Center Frequency = fundamental frequency, RBW=100Hz, VBW=300Hz, span=50kHz for 12.5KHz channel spacing.


TEST RESULTS


Remark: We tested Op 1 to Op 4, reocrded worst case at Op 1, Op 3.


Operation Mode	Test Frequency (MHz)	RBW (Hz)	Applicable Mask	Result	
	406.5				
On 1	421.5	100.00	D	Pass	
Op 1	450.5			rass	
	469.5				
	406.5		D	Pass	
Op 3	421.5	100.00			
Ο μ 3	450.5			F d55	
	469.5				

Test plot as follows:

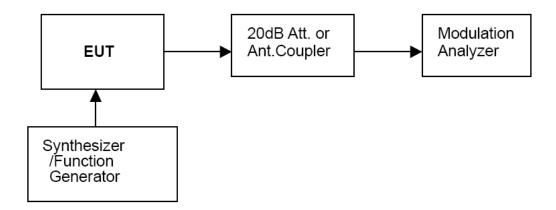
Report No: TRE1503009904 Page 37 of 81

4.5. Modulation Charcateristics

TEST APPLICABLE

According to CFR47 section 2.1047(a), for Voice Modulation Communication Equipment, the frequency response of the audio modulation circuit over a range of 100 to 5000Hz shall be measured.

TEST PROCEDURE

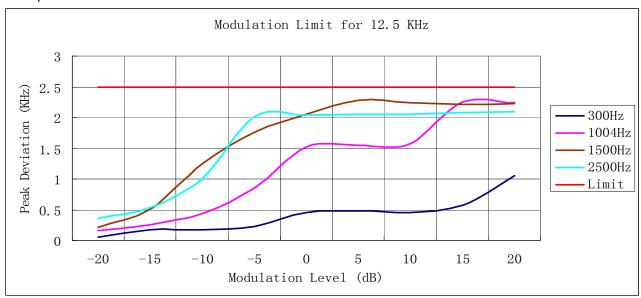

Modulation Limit

- 1 Configure the EUT as shown in figure 1, adjust the audio input for 60% of rated system deviation at 1kHz using this level as a reference (0dB) and vary the input level from –20 to +20dB. Record the frequency deviation obtained as a function of the input level.
- 2 Repeat step 1 with input frequency changing to 300, 1004, 1500 and 2500Hz in sequence.

Audio Frequency Response

- 1 Configure the EUT as shown in figure 1.
- 2 Adjust the audio input for 20% of rated system deviation at 1kHz using this level as a reference (0dB).
- 3 Vary the Audio frequency from 100 Hz to 3 KHz and record the frequency deviation.
- 4 Audio Frequency Response =20log10 (Deviation of test frequency/Deviation of 1kHz reference).

TEST CONFIGURATION


TEST RESULTS

Remark: We tested and recorded Op 1 for 450.5MHz.

a).Modulation Limit:

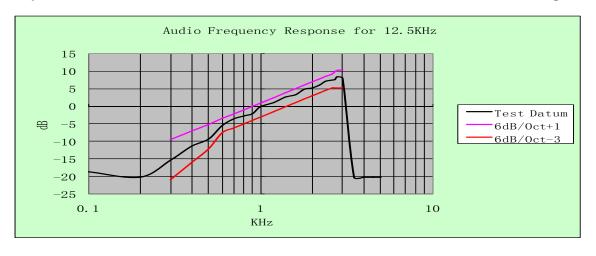
Op 1: 450.5MHz						
Modulation Level (dB)	Peak Freq. Deviation At 300Hz (kHz)	Peak Freq. Deviation At 1004Hz (kHz)	Peak Freq. Deviation At 1500Hz (kHz)	Peak Freq. Deviation At 2500 Hz (kHz)	Limit (kHz)	Result
-20	0.04	0.15	0.23	0.34		
-15	0.19	0.23	0.52	0.51		
-10	0.17	0.45	1.23	1.01		
-5	0.22	0.84	1.75	2.03		
0	0.44	1.53	2.07	2.03	2.5	Pass
5	0.48	1.55	2.28	2.05		
10	0.47	1.55	2.22	2.04		
15	0.54	2.23	2.23	2.07		
20	1.04	2.23	2.21	2.07		

Test plot as follows:

Report No : TRE1503009904 Page 39 of 81

b). Audio Frequency Response:

Method of Measurement:


The audio frequency response was measured in accordance with TIA/EIA Specification 603 with no exception. A curve or equivalent data showing the frequency response of the audio modulating circuit over a range of 300-3000Hz shall be submitted and Audio Post Limiter Low Pass Filter Response from 3.0kHz to 50kHz.However, the audio frequency response should test from 100Hz to 5.0 KHz according to FCC Part 2.1047(a).

Note:

1. The Audio Frequency Response is identical for 12.5 kHz channel separation

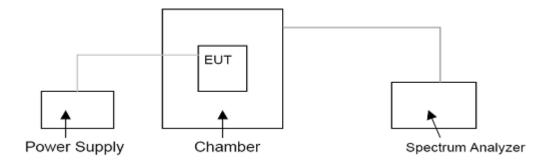
Op 1: 450.5MHz						
Frequency (kHz)	Frequency Deviation (kHz)	1kHz Refenerce Deviation (kHz)	Audio Frequency Response (dB)			
0.1	0.05	0.48	-19.65			
0.2	0.04	0.48	-21.58			
0.3	0.08	0.48	-15.56			
0.4	0.13	0.48	-11.35			
0.5	0.19	0.48	-8.05			
0.6	0.26	0.48	-5.33			
0.7	0.35	0.48	-2.74			
0.8	0.38	0.48	-2.03			
0.9	0.42	0.48	-1.16			
1	0.48	0.48	0.00			
1.2	0.58	0.48	1.64			
1.4	0.7	0.48	3.28			
1.6	0.75	0.48	3.88			
1.8	0.92	0.48	5.65			
2	0.94	0.48	5.84			
2.2	1.02	0.48	6.55			
2.4	1.17	0.48	7.74			
2.6	1.22	0.48	8.10			
2.7	1.24	0.48	8.24			
2.8	1.37	0.48	9.11			
3	1.28	0.48	8.52			
3.5	0.06	0.48	-18.06			
4	0.04	0.48	-21.58			
4.5	0.04	0.48	-21.58			
5	0.04	0.48	-21.58			

Test plot as follows:

Report No: TRE1503009904 Page 41 of 81

4.6. Frequency Stability Test

TEST APPLICABLE


1 According to FCC Part 2 Section 2.1055 (a)(1), the frequency stability shall be measured with variation of ambient temperature from -30℃ to +50℃ centigrade.

- 2 According to FCC Part 2 Section 2.1055 (d) (2), for battery powered equipment, the frequency stability shall be measured with reducing primary supply voltage to the battery operating end point, which is specified by the manufacture.
- 3 Vary primary supply voltage from 85 to 115 percent of the nominal value.
- 4 According to §90.213, the frequency stability limit is 2.5 ppm for 12.5kHz channel separation.
- According to Section 5.3 of RSS-119, the frequency stability limit is 2.5 ppm for 12.5KHz channel separation.

TEST PROCEDURE

The EUT was set in the climate chamber and connected to an external DC power supply. The RF output was directly connected to Spectrum Analyzer ESI 26. The coupling loss of the additional cables was recorded and taken in account for all the measurements. After temperature stabilization (approx. 20 min for each stage), the frequency for the lower, the middle and the highest frequency range was recorded. For Frequency stability Vs. Voltage the EUT was connected to a DC power supply and the voltage was adjusted in the required ranges. The result was recorded.

TEST CONFIGURATION

TEST LIMITS

According to 90.213, Transmitters used must have minimum frequency stability as specified in the following table.

		Mobile s	stations
Frequency range (MHz)	Fixed and base stations	Over 2 watts output power	2 watts or less output power
Below 25 25–50 72–76 150–174 216–220 220–222 12 421–512 806–809 809–824 851–854 854–869 896–901 902–928 902–928 13 929–930 935–940 1427–1435	1.2.3 100 20 5 5.11 5 1.0 0.1 7.11.14 2.5 14 1.0 14 1.5 1.0 1.5 14 0.1 2.5 2.5 1.5 0.1	100 20 65 1.5 85 1.5 2.5 1.5 2.5 2.5 2.5 2.5	200 50 50 4.6 50 1.5 8 5 1.5 2.5 1.5 2.5 2.5 2.5 300
Above 2450 10			

According to section 5.3, Transmitters used must have minimum frequency stability as specified in the following table.

	Channel			Frequency Stability (ppm)		
Frequency Band (MHz)	Spacing (kHz)	Base/Fixed	Mobile Station			
			>2 watts	≤2 watts		
27.41-28 and 29.7-50	20	20	20	50		
72-76	20	5	20	50		
	30	5	5			
138-174	15	2.5	5			
	7.5	1	2	:		
217-218 and 219-220	12.5	1	5	:		
220-222 (Note 1)	5	0.1	1.5	1.5		
	25 (Note 2)	0.5	1			
406.1.420 1.450.470.00 60	25	2.5	5			
406.1-430 and 450-470 (Note 6)	12.5	1.5	2.5	2.		
	6.25	0.5	1			
764-776 and 794-806 (Note 3)	6.25 12.5 25	0.1	0.4 (Note 4)	0.4 (Note 4		
	50	1	1.25 (Note 5)	1.25 (Note 5		
	25 (Note2)	0.1	0.1	0.:		
806-821/851-866 and 821-824/866-869 (Note 6)	25	1.5	2.5	2.:		
,	12.5	1	1.5	1.:		
896-901/935-940 (Note 6)	12.5	0.1	1.5	1.:		
929-930/931-932	25	1.5	N/A	N/A		
928-929/952-953 and	25	1.5	N/A	N/A		
932-932.5/941-941.5	12.5	1	(for remote station)	N/A		
932.5-935/941.5-944	25	2.5	N/A	N/2		
×34.J-×3.J/¥41.J-¥44	12.5	2.5	N/A	N/2		

TEST RESULTS

Remark:We tested Op 1 to Op 4,recorded worst case at Op 1,Op 3.

Op 1							
Test conditions		Frequency error (ppm)				Limit	Desuit
Voltage(V)	Temp(°C)	406.5MHz	421.5MHz	450.5MHz	469.5MHz	(ppm) Result	
	-30	0.38	0.85	0.35	0.59		
	-20	0.42	0.74	0.41	0.76		
	-10	0.57	0.67	0.39	0.77		Pass
	0	0.26	0.59	0.44	0.74	2.5	
7.2	10	0.75	0.55	0.51	0.71		
	20	0.52	0.47	0.47	0.63		
	30	0.47	0.68	0.39	0.57		
	40	0.66	0.55	0.29	0.44		
	50	0.58	0.79	0.42	0.66		
6.12 (85% Rated)	20	0.39	0.59	0.39	0.54		
8.25(115% Rated)	20	0.71	0.68	0.46	0.28		

Op 3							
Test conditions		Frequency error (ppm)				Limit	Result
Voltage(V)	Temp(℃)	406.5MHz	421.5MHz	450.5MHz	469.5MHz	(ppm)	Result
	-30	0.61	0.68	0.63	0.95		
	-20	0.55	0.55	0.57	0.57		
	-10	0.59	0.54	0.42	0.54	2.5	Pass
	0	0.63	0.63	0.38	0.52		
7.2	10	0.52	0.57	0.44	0.36		
	20	0.57	0.55	0.38	0.21		
	30	0.83	0.63	0.71	0.84		
	40	0.74	0.51	0.52	0.46		
	50	0.68	0.74	0.39	0.28		
6.12 (85% Rated)	20	0.92	0.69	0.66	0.87		
8.25(115% Rated)	20	0.57	0.75	0.55	0.62		

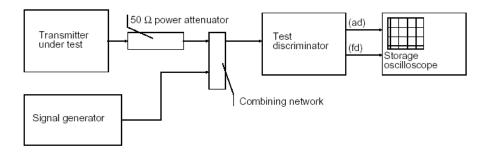
Report No: TRE1503009904 Page 44 of 81

4.7. Transmitter Frequency Behavior

TEST APPLICABLE

Section 90.214

Transient frequencies must be within the maximum frequency difference limits during the time intervals indicated:


Time intervals 1, 2	Maximum frequency	All equipment				
Time intervals	difference ³	150 to 174 MHz	421 to 512MHz			
Transient Frequen	cy Behavior for Equipment D	esigned to Operate on 25	KHz Channels			
t ₁ ⁴	± 25.0 KHz	5.0 ms	10.0 ms			
t ₂	± 12.5 KHz	20.0 ms	25.0 ms			
t ₃ ⁴	± 25.0 KHz	5.0 ms	10.0 ms			
Transient Frequenc	y Behavior for Equipment De	signed to Operate on 12.	5 KHz Channels			
t ₁ ⁴	± 12.5 KHz	5.0 ms	10.0 ms			
t ₂	± 6.25 KHz	20.0 ms	25.0 ms			
t ₃ ⁴	± 12.5 KHz	5.0 ms	10.0 ms			
Transient Frequency Behavior for Equipment Designed to Operate on 6.25 KHz Channels						
t ₁ ⁴	±6.25 KHz	5.0 ms	10.0 ms			
t ₂	±3.125 KHz	20.0 ms	25.0 ms			
t ₃ ⁴	±6.25 KHz	5.0 ms	10.0 ms			

- 1. ton is the instant when a 1 KHz test signal is completely suppressed, including any capture time due to phasing
 - t₁ is the time period immediately following t_{on} t₂ is the time period immediately following t₁.

 - t₃ is the time period from the instant when the transmitter is turned off until t_{off}.
 - t_{off} is the instant when the 1 KHz test signal starts to rise.
- 2. During the time from the end of to the beginning of to the frequency difference must not exceed the limits specified in § 90.213.

 3. Difference between the actual transmitter frequency and the assigned transmitter frequency.
- 4. If the transmitter carrier output power rating is 6 watts or less, the frequency difference during this time period may exceed the maximum frequency difference for this time period.

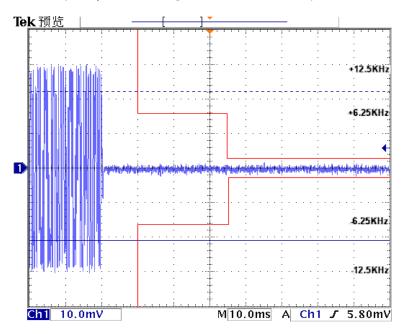
TEST CONFIGURATION

TEST PROCEDURE

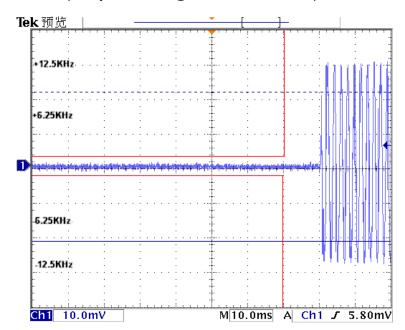
According to TIA/EIA-603 2.2.19 requirement. As for the product different from PTT, we use test steps as follows:

- Connect DUT into Test discriminator and Storage Oscilloscope and keep DUT stats ON;
- Input 1kHz signal into DUT; 2
- 3. Set the modulation domain analyzer to trigger on the rising edge of the waveform in order to capture a single-shot turn-on of the transmitter signals;
- 4. Keep DUT in OFF state and Key the PTT;
- 5. Observe the stored oscilloscope of modulation domain analyzer. The signal trace shall be maintained within the allowable limits during the periods t₁ and t₂, and shall also remain within limits following t₂;
- 6. Adjust the modulation domain analyzer to trigger on the falling edge of the transmitter waveform in order to capture a single-shot turn-off transmitter of the transmitter signal.
- 7. Keep the digital portable radio in ON state and Unkey the PTT;
- Observe the stored oscilloscope of modulation domain analyzer. The signal trace shall be maintained within the allowable limits during the period t₃.

Report No : TRE1503009904 Page 45 of 81

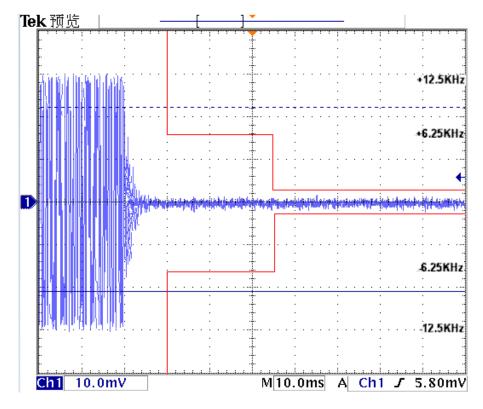

TEST RESULTS

Remark: We tested Op 1 to Op 4, recorded worst case at Op 1, Op 3 for 450.5 MHz.

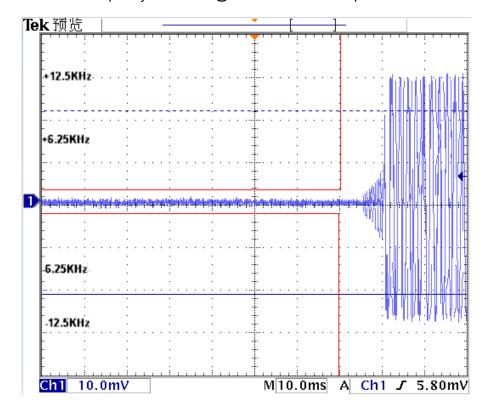

Please refer to the following plots.

Modulation Type: FM

Transmitter Frequency Behaviour @ 12.5kHz Channel Separation-----Off – On



Transmitter Frequency Behaviour @ 12.5kHz Channel Separation-----On - Off



Modulation Type: 4FSK

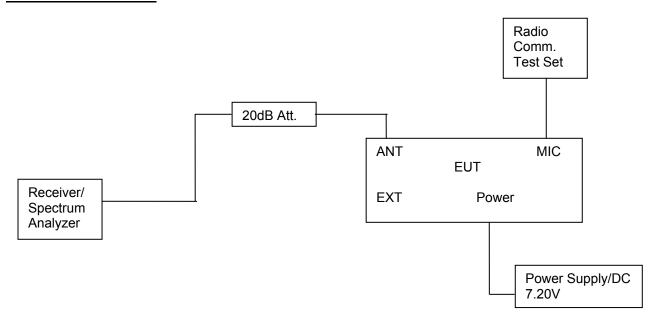
Transmitter Frequency Behaviour @ 12.5kHz Channel Separation-----Off – On

Transmitter Frequency Behaviour @ 12.5kHz Channel Separation-----On – Off

Report No: TRE1503009904 Page 47 of 81

4.8. Spurious Emssion on Antenna Port

TEST APPLICABLE


The same as Section 4.4

TEST PROCEDURE

The RF output of the EUT was connected to a spectrum analyzer through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set to 100 kHz. Sufficient scans were taken to show any out of band emission up to 10th. Harmonic for the lower and the highest frequency range. Set RBW 100 kHz, VBW 300 kHz in the frequency band 30MHz to 1GHz, while set RBW=1MHz.VBW=3MHz from the 1GHz to 10th Harmonic.

The audio input was set to 0 to get the unmodulated carrier, the resulting picture is print out for each channel separation.

TEST CONFIGURATION

LIMIT

Modulation Type: FM

FCC Part 22.359, 74.462, 80.211 and 90.210 and RSS Gen, RSS 119 Issue 11 (12.5 kHz bandwidth only): On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 12.5 kHz at least:

Low: $50 + 10 \log (Pwatts) = 50 + 10 \log (4.27) = 56.30 dB$ High: $50 + 10 \log (Pwatts) = 50 + 10 \log (3.99) = 56.00 dB$

Note: In general, the worse case attenuation requirement shown above was applied.

Calculation: Limit (dBm) =EL-50-10log10 (TP)

Notes: EL is the emission level of the Output Power expressed in dBm,

In this application, the EL is 36.23dBm. Limit (dBm) = $36.23-50-10\log_{10}(4.33) = -20$ dBm

Modulation Type: 4FSK

FCC Part 22.359, 74.462, 80.211 and 90.210 and RSS Gen, RSS 119 Issue 11 (12.5 kHz Bandwidth only): On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 12.5 kHz at least:

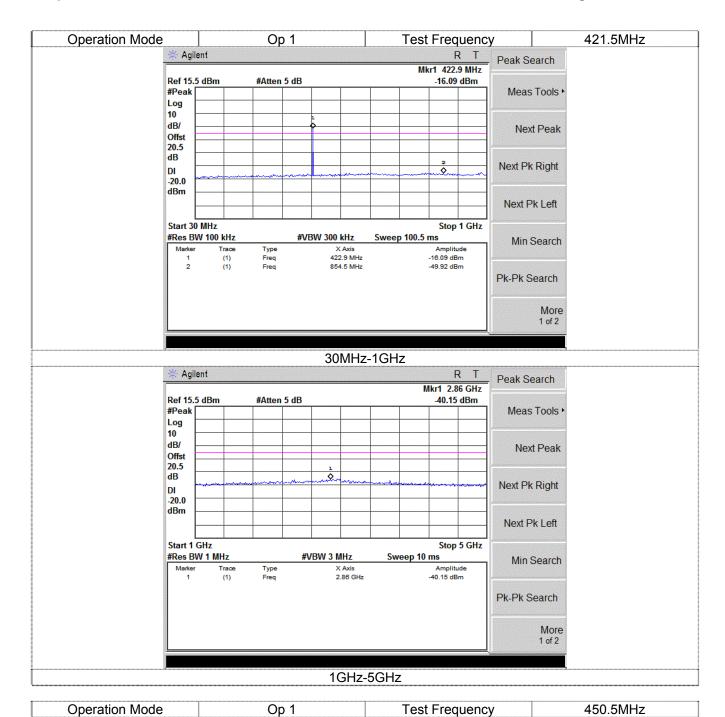
Low: $50 + 10 \log (Pwatts) = 50 + 10 \log (4.33) = 56.36 dB$ High: $50 + 10 \log (Pwatts) = 50 + 10 \log (4.12) = 56.15 dB$

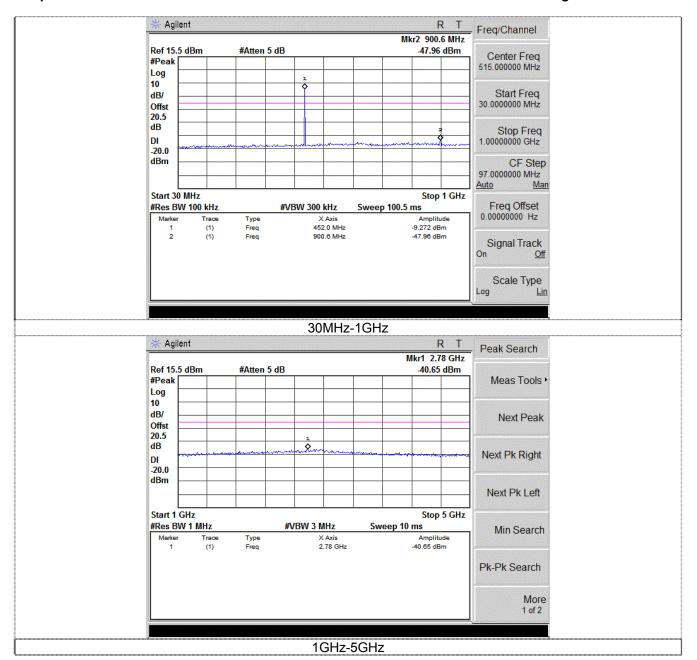
Note: In general, the worse case attenuation requirement shown above was applied. Calculation: Limit (dBm) =EL-50-10log10 (TP)

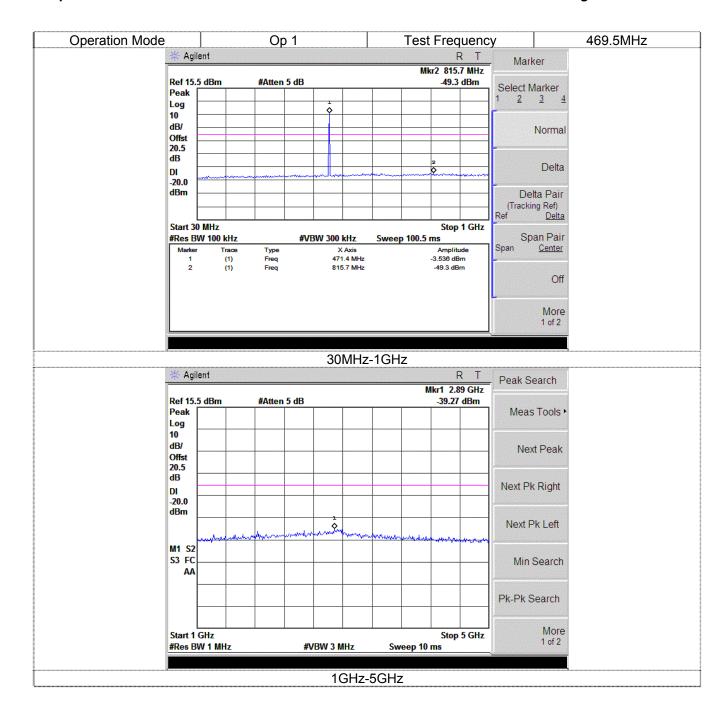
Notes: EL is the emission level of the Output Power expressed in dBm,

In this application, the EL is 36.23 dBm. Limit (dBm) = $36.23-50-10\log_{10}(4.33) = -20 \text{ dBm}$

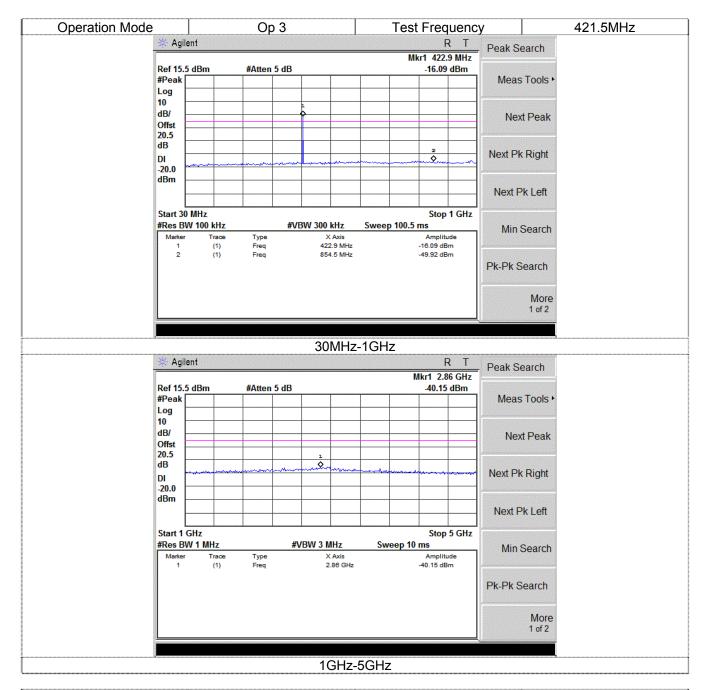

TEST RESULTS

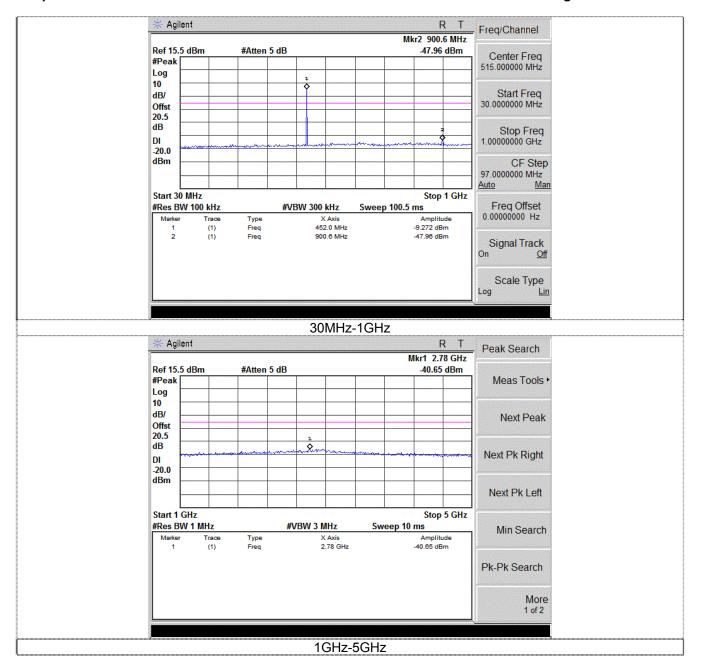

Remark: We tested Op 1 to Op 4, recorded worst case at Op 1, Op 3.

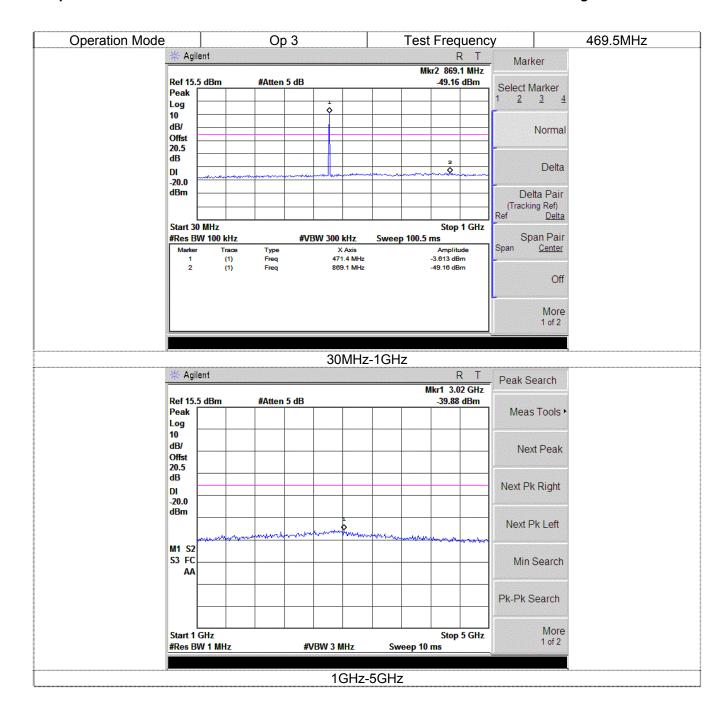

Note:


- 1. In general, the worse case attenuation requirement shown above was applied.
- 2. The measurement frequency range from 30 MHz to 5GHz.

Test plot as follows:



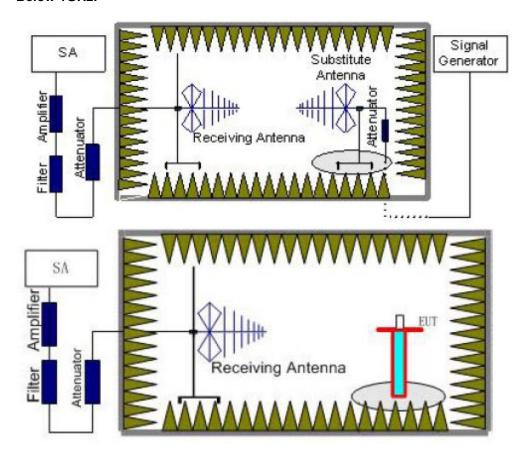




Operation Mode	Op 3	Test Frequency	450.5MHz

Report No: TRE1503009904 Page 56 of 81

4.9. Transmitter Radiated Spurious Emssion


TEST APPLICABLE

According to the TIA/EIA 603 test method, and according to Section 90.210, the power of each unwanted emission shall be less than Transmitted Power as specified below for transmitters designed to operate with 12.5 kHz channel bandwidth:

- 1 On any frequency removed from the center of the authorized bandwidth fo to 5.625kHz removed from fo: Zero dB
- 2 On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) fo of more than 5.625kHz but no more than 12.5 kHz: At least 7.27dB
- 3 On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) fo of more than 12.5 kHz: At least 50+10 log (P) dB or 70 dB, which ever is lesser attenuation. For transmitters designed to transmit with 25kHz channel separation and equipped with an audio low-pass filter, the power of any emission must be attenuated below the unmodulated carrier power (P) as following:
- 1 On any frequency removed from the assigned frequency by more than 50 percent, but no more than 100 percent of the authorized bandwidth: At least 25 dB.
- 2 On any frequency removed from the assigned frequency by more than 100 percent, but no more than 250 percent of the authorized bandwidth: At least 35 dB.
- On any frequency removed from the assigned frequency by more than 250 percent of the authorized bandwidth: At least 43+10Log (P) dB.

TEST CONFIGURATION

Below 1GHz:

