

AUNA MUNA

FCC TEST REPORT

Report No.: HK1910282698-1E

Test report
On Behalf of
ZippyYum LLC
For
Thermal Printer
Model No.: GL2120TH

FCC ID: 2AE6A-GL2120TH

Prepared for: ZippyYum LLC

1073 N. Batavia St., Unit A, Orange, CA 92867, USA

Prepared By: Shenzhen HUAK Testing Technology Co., Ltd.

1F, B2 Building, Junfeng Zhongcheng Zhizao Innovation Park, Fuhai Street,

Bao'an District, Shenzhen City, China

TEST REPORT

Applicant's name..... ZippyYum LLC

Manufacture's Name CME Electronics Technology Co., LTD

Suite B, 18th Floor, Jingwangem No. 303, Qingly Road South, Address:

Gongbei, Zhuhai 519020, Guangdong Province, China

Report No.: HK1910282698-1E

Product description

Trade Mark: GoLabel

Product name Thermal Printer

Model and/or type reference .: GL2120TH

FCC Rules and Regulations Part 15 Subpart C Section 15.247

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen HUAK Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen HUAK Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Date of Test.....

Date of Issue Oct. 28, 2019

Test Result: **Pass**

Testing Engineer

Gary Olan)

Technical Manager

Authorized Signatory:

(Jason Zhou)

Contents

	IARY	
Product	Description	5
	ent Under Test	5
	scription of the Equipment under Test (EUT)	5
	ration mode	6
	agram of Test Setup	7
Related	Submittal(s) / Grant (s)	7
Modifica	tions	7
TEST	ENVIRONMENT	
TEST FA	CII ITY	8
	nental conditions	8
_	y of measurement results	8
	nt of the measurement uncertainty	9
	ents Used during the Test	9
<u>IESI</u>	CONDITIONS AND RESULTS	
4.1.	AC Power Conducted Emission	1
4.2.	Radiated Emission	
4.3.	Maximum Peak Output Power	
4.4.	20dB Bandwidth	
4 -	Frequency Separation	
-	Band Edge Compliance of RF Emission	2
4.6.		
4.6. 4.7.	Spurious RF Conducted Emission	3
4.6. 4.7. 4.8.	Spurious RF Conducted Emission Number of hopping frequency	3 3
4.6. 4.7. 4.8. 4.9.	Spurious RF Conducted Emission Number of hopping frequency Time Of Occupancy(Dwell Time)	3 3 4
4.6. 4.7. 4.8. 4.9. 4.10.	Spurious RF Conducted Emission Number of hopping frequency Time Of Occupancy(Dwell Time) Pseudorandom Frequency Hopping Sequence	3 4 4
4.5. 4.6. 4.7. 4.8. 4.9. 4.10. 4.11.	Spurious RF Conducted Emission Number of hopping frequency Time Of Occupancy(Dwell Time)	3 4

1. TEST STANDARDS

The tests were performed according to following standards:

<u>FCC Rules Part 15.247</u>: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz.

<u>ANSI C63.10-2013</u>: American National Standard for Testing Unlicensed Wireless Devices

<u>DA 00-705</u>: Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems

2.1. Product Description

Name of EUT	Thermal Printer
Trade Mark:	GoLabel
Model Number	GL2120TH
List Model:	1
Power Rating	DC 12V From Adapter
Adapter information	Mode:SW-1960 Input:AC100-240V-50/60Hz, 2.0A Output:DC 12V,4A
FCC ID	2AE6A-GL2120TH
Bluetooth FCC Operation frequency	2402MHz-2480MHz
Bluetooth Modulation	GFSK,8DPSK,π/4DQPSK
Antenna Type	PCB antenna
Antenna gain	2.0dBi

2.2. Equipment Under Test

Power supply system utilised

Power supply voltage	:	0	230V / 50 Hz	0	120V / 60Hz
		•	12 V DC	0	24 V DC
		0	Other (specified in blank bel	ow	

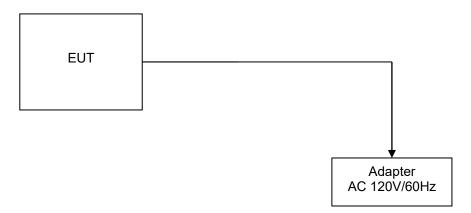
DC 12V From Adapter

2.3. Short description of the Equipment under Test (EUT)

This is a Thermal Printer.

For more details, refer to the user's manual of the EUT.

2.4. EUT operation mode


The Applicant provides test software (AT directive) to control the EUT for staying in continuous transmitting and receiving mode for testing .There are 79 channels provided to the EUT. Channel 00/39/78 was selected to test.

Channel	Frequency(MHz)	Channel	Frequency(MHz)
00	2402	40	2442
01	2403	41	2443
02	2404	42	2444
03	2405	43	2445
04	2406	44	2446
05	2407	45	2447
06	2408	46	2448
07	2409	47	2449
08	2410	48	2450
09	2411	49	2451
10	2412	50	2452
11	2413	51	2453
12	2414	52	2454
13	2415	53	2455
14	2416	54	2456
15	2417	55	2457
16	2418	56	2458
17	2419	57	2459
18	2420	58	2460
19	2421	59	2461
20	2422	60	2462
21	2423	61	2463
22	2424	62	2464
23	2425	63	2465
24	2426	64	2466
25	2427	65	2467
26	2428	66	2468
27	2429	67	2469
28	2430	68	2470
29	2431	69	2470
30	2432	70	2471
30 31	2433		2472
32	2434	72	2473
33	2435	73	2474
33 34	2435		2475
34 35	2437		2476
35 36	2437		2477
37	2439	77	2479
38	2440	78	2480
39	2441		

Page 7 of 46

2.5. Block Diagram of Test Setup

Report No.: HK1910282698-1E

2.6. Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for FCC ID: 2AE6A-GL2120TH filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.7. Modifications

No modifications were implemented to meet testing criteria.

3. TEST ENVIRONMENT

3.1. TEST FACILITY

Test Firm : Shenzhen HUAK Testing Technology Co., Ltd.

Address 1F, B2 Building, Junfeng Zhongcheng Zhizao Innovation Park, Fuhai

Street, Bao'an District, Shenzhen City, China

3.2. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15-35 ° C
Humidity:	30-60 %
Atmospheric pressure:	950-1050mbar

3.3. Summary of measurement results

Test Specification clause	Test case	Test Mode	Test Channel	Reco In Re		Pass	Fail	NA	NP	Remark
§15.247(a)(1)	Carrier Frequency separation	GFSK П/4DQPSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK П/4DQPSK 8DPSK	⊠ Middle	\boxtimes				complies
§15.247(a)(1)	Number of Hopping channels	GFSK П/4DQPSK 8DPSK	⊠ Full	GFSK 8DPSK	⊠ Full	\boxtimes				complies
§15.247(a)(1)	Time of Occupancy (dwell time)	GFSK П/4DQPSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK П/4DQPSK 8DPSK	⊠ Middle	\boxtimes				complies
§15.247(a)(1)	Spectrum bandwidth of a FHSS system 20dB bandwidth	GFSK П/4DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest	GFSK П/4DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest	\boxtimes				complies
§15.247(b)(1)	Maximum output power	GFSK П/4DQPSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK П/4DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest	\boxtimes				complies
§15.247(d)	Band edge compliance conducted	GFSK П/4DQPSK 8DPSK		GFSK П/4DQPSK 8DPSK		\boxtimes				complies
§15.205	Band edge compliance radiated	GFSK П/4DQPSK 8DPSK		GFSK		\boxtimes				complies
§15.247(d)	TX spurious emissions conducted	GFSK П/4DQPSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK П/4DQPSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	\boxtimes				complies
§15.247(d)	TX spurious emissions radiated	GFSK П/4DQPSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK	⊠ Lowest ⊠ Middle ⊠ Highest	\boxtimes				complies
§15.209(a)	TX spurious Emissions radiated Below 1GHz	GFSK П/4DQPSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK	⊠ Middle					complies
§15.107(a) §15.207	Conducted Emissions 9KHz-30 MHz	GFSK П/4DQPSK 8DPSK	Lowest Middle Highest	GFSK	⊠ Middle	\boxtimes				complies

Remark:

- 1. The measurement uncertainty is not included in the test result.
- 2. NA = Not Applicable; NP = Not Performed
- 3. We tested all test mode and recorded worst case in report

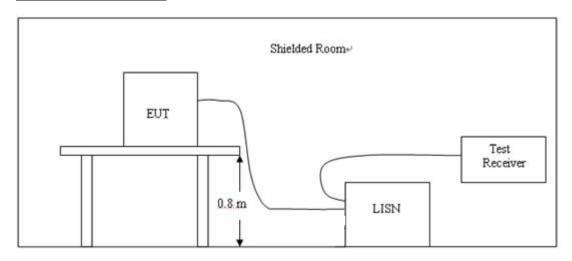
3.4. Statement of the measurement uncertainty

Measurement Uncertainty

Conducted Emission Expanded Uncertainty = 2.23dB, k=2
Radiated emission expanded uncertainty(9kHz-30MHz) = 3.08dB, k=2
Radiated emission expanded uncertainty(30MHz-1000MHz) = 4.42dB, k=2
Radiated emission expanded uncertainty(Above 1GHz) = 4.06dB, k=2

3.5. Equipments Used during the Test

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	L.I.S.N. Artificial Mains Network	R&S	ENV216	HKE-002	Dec. 28, 2018	1 Year
2.	Receiver	R&S	ESCI 7	HKE-010	Dec. 28, 2018	1 Year
3.	RF automatic control unit	Tonscend	JS0806-2	HKE-060	Dec. 28, 2018	1 Year
4.	Spectrum analyzer	R&S	FSP40	HKE-025	Dec. 28, 2018	1 Year
5.	Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 28, 2018	1 Year
6.	Preamplifier	Schwarzbeck	BBV 9743	HKE-006	Dec. 28, 2018	1 Year
7.	EMI Test Receiver	Rohde & Schwarz	ESCI 7	HKE-010	Dec. 28, 2018	1 Year
8.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	HKE-012	Dec. 28, 2018	1 Year
9.	Loop Antenna	Schwarzbeck	FMZB 1519 B	HKE-014	Dec. 28, 2018	1 Year
10.	Horn Antenna	Schewarzbeck	9120D	HKE-013	Dec. 28, 2018	1 Year
11.	Broadband Horn Antenna	SCHWARZBECK	BBHA 9170	HKE-017	Dec. 28, 2018	1 Year
12.	Pre-amplifier	EMCI	EMC051845 SE	HKE-015	Dec. 28, 2018	1 Year
13.	Pre-amplifier	Agilent	83051A	HKE-016	Dec. 28, 2018	1 Year
14.	EMI Test Software EZ-EMC	Tonscend	JS1120-B Version	HKE-083	Dec. 28, 2018	N/A
15.	Power Sensor	Agilent	E9300A	HKE-086	Dec. 28, 2018	1 Year
16.	Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 28, 2018	1 Year
17.	Signal generator	Agilent	N5182A	HKE-029	Dec. 28, 2018	1 Year
18.	Signal Generator	Agilent	83630A	HKE-028	Dec. 28, 2018	1 Year
19.	Shielded room	Shiel Hong	4*3*3	HKE-039	Dec. 28, 2018	3 Year
20.	RF Cable(below 1GHz)	HUBER+SUHNER	RG214	HKE-055	Dec. 28, 2018	1 Year
21.	RF Cable(above 1GHz)	HUBER+SUHNER	RG214	HKE-056	Dec. 28, 2018	1 Year


Note: 1. The Cal.Interval was one year.

4. TEST CONDITIONS AND RESULTS

4.1. AC Power Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

- 1, The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10.
- 2, Support equipment, if needed, was placed as per ANSI C63.10.
- 3, All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4, If a EUT received DC power from the USB Port of Notebook PC, the PC's adapter received power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5, All support equipments received AC power from a second LISN, if any.
- 6, The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7, Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

Frequency range (MHz)	Limit (dBuV)			
Frequency range (MHz)	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		
* Decreases with the logarithm of the freque	ncy.			

TEST RESULTS

Remark:

- 1. All modes of GFSK, Pi/4 DQPSK, and 8DPSK were test at Low, Middle, and High channel; only the worst result of GFSK Middle Channel was reported as below:
- Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result of 120 VAC, 60 Hz was reported as below:.

5

6

2.9558

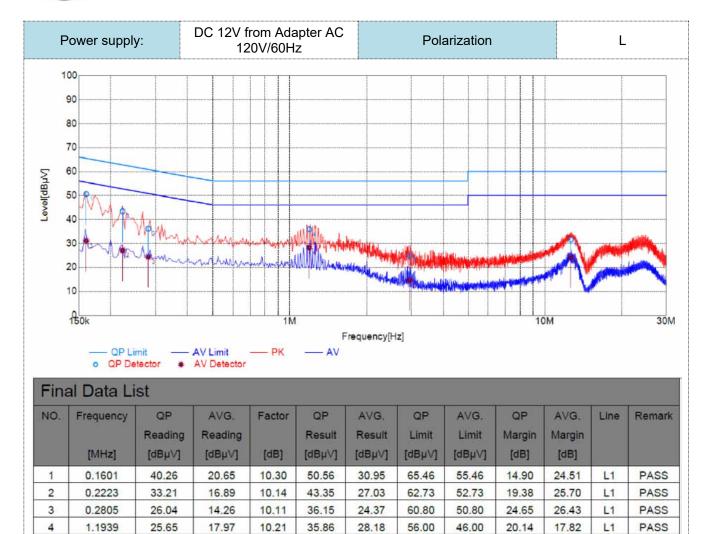
12.6697

14.52

20.71

4.22

13.38


10.34

10.87

24.86

31.58

Page 11 of 46 Report No.: HK1910282698-1E

14.56

24.25

56.00

60.00

46.00

50.00

31.14

28.42

31.44

25.75

L1

L1

PASS

PASS

2

3

4

5

6

0.2677

0.4921

1.1656

1.7454

3.9051

14.44

18.63

13.30

11.58

5.29

10.11

10.26

10.21

10.25

10.37

36.66

34.29

29.98

30.84

25.86

24.55

28.89

23.51

21.83

15.66

61.19

56.13

56.00

56.00

56.00

51.19

46.13

46.00

46.00

46.00

24.53

21.84

26.02

25.16

30.14

26.64

17.24

22.49

24.17

30.34

N

N

N

N

26.55

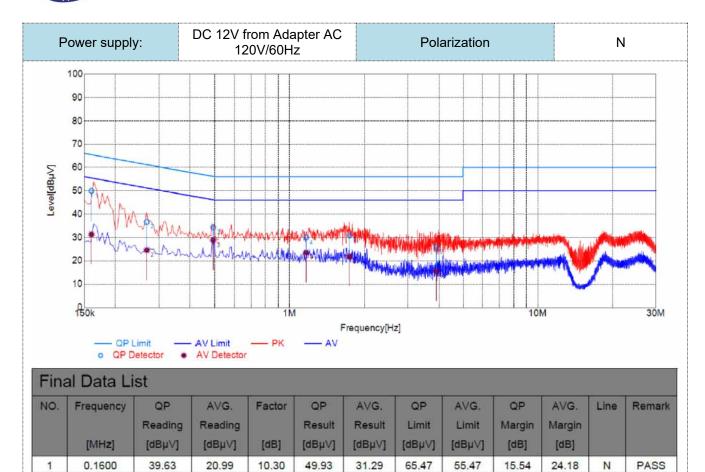
24.03

19.77

20.59

15.49

Page 12 of 46 Report No.: HK1910282698-1E

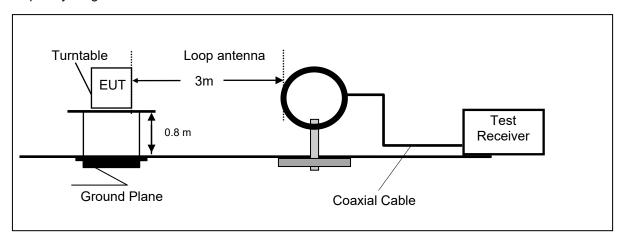

PASS

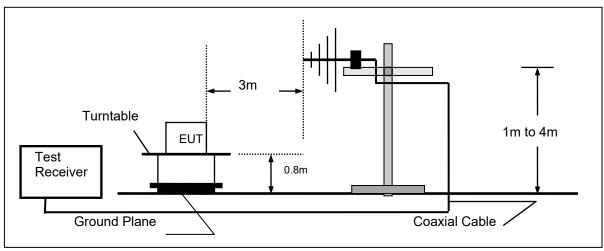
PASS

PASS

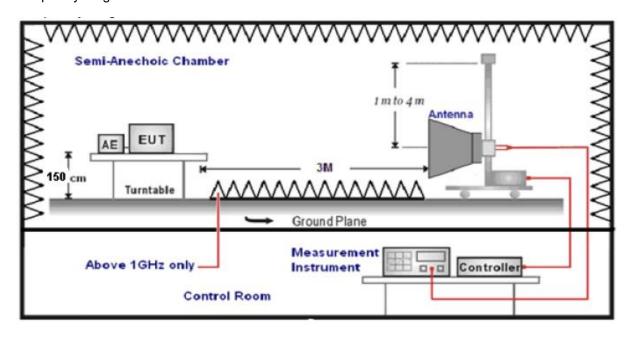
PASS

PASS




4.2. Radiated Emission

TEST CONFIGURATION


Frequency range 9 KHz - 30MHz

Frequency range 30MHz - 1000MHz

Frequency range above 1GHz-25GHz

1. The EUT was placed on a turn table which is 12mm above ground plane when testing frequency range 9 KHz –25GHz.

Report No.: HK1910282698-1E

- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° C to 360°C to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. The EUT minimum operation frequency was 32.768KHz and maximum operation frequency was 2480MHz.so radiated emission test frequency band from 9KHz to 25GHz.

6. The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Ultra-Broadband Antenna	3
1GHz-18GHz	Double Ridged Horn Antenna	3
18GHz-25GHz	Horn Anternna	1

7. Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP
4011 40011	Peak Value: RBW=1MHz/VBW=3MHz, Sweep time=Auto	Б.
1GHz-40GHz	Average Value: RBW=1MHz/VBW=10Hz,	Peak
	Sweep time=Auto	

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

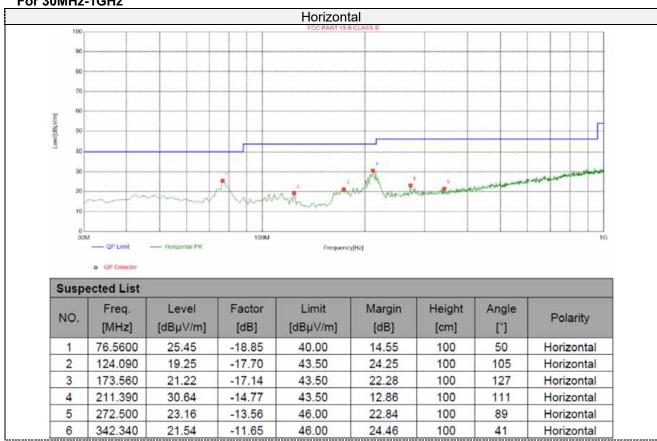
Transd=AF +CL-AG

RADIATION LIMIT

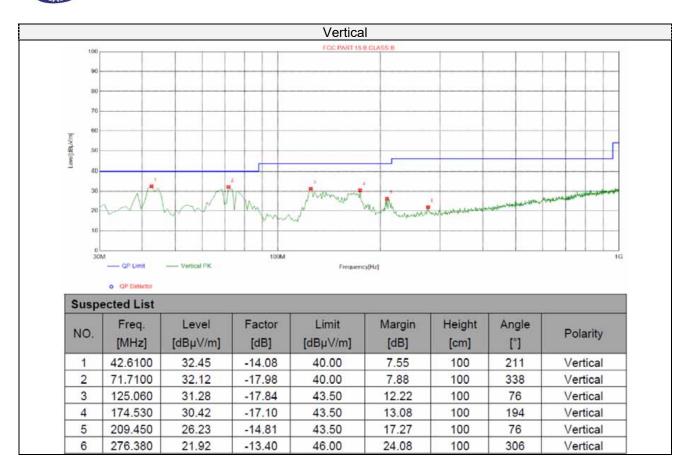
For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500



Page 15 of 46 Report No.: HK1910282698-1E


Remark: 1. Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.

2.For test below 1GHz all modes of GFSK, Pi/4 DQPSK, and 8DPSK were test at Low, Middle, and High channel; only the worst result of GFSK Middle Channel was reported as below:

For 30MHz-1GHz

Page 16 of 46 Report No.: HK1910282698-1E

Page 17 of 46 Report No.: HK1910282698-1E

Remark: For test above 1GHz GFSK, Pi/4 DQPSK, and 8DPSK were test at Low, Middle, and High channel; only the worst result of GFSK was reported as below:

CH Low (2402MHz)

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4804	60.29	-3.64	56.65	74	-17.35	peak
4804	46.78	-3.64	43.14	54	-10.86	AVG
7206	56.63	-0.95	55.68	74	-18.32	peak
7206	42.49	-0.95	41.54	54	-12.46	AVG
Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.						

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4804	62.17	-3.64	58.53	74	-15.47	peak
4804	45.12	-3.64	41.48	54	-12.52	AVG
7206	56.09	-0.95	55.14	74	-18.86	peak
7206	43.06	-0.95	42.11	54	-11.89	AVG
						_

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

CH Middle (2441MHz)

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	5	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type	
4882	60.19	-3.51	56.68	74	-17.32	peak	
4882	46.18	-3.51	42.67	54	-11.33	AVG	
7326	56.05	-0.82	55.23	74	-18.77	peak	
7326	41.62	-0.82	40.8	54	-13.2	AVG	
Remark: Facto	temark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.						

Vertical:

vertical.					-		
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin		
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type	
4882	61.43	-3.51	57.92	74	-16.08	peak	
4882	46.65	-3.51	43.14	54	-10.86	AVG	
7326	56.17	-0.82	55.35	74	-18.65	peak	
7326	42.81	-0.82	41.99	54	-12.01	AVG	
		-					
Pomark: Facto	Pomark: Factor - Antonna Factor + Cable Loss - Pro amplifier						

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Page 19 of 46 Report No.: HK1910282698-1E

CH High (2480MHz)

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	5.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4960	60.01	-3.43	56.58	74	-17.42	peak
4960	45.63	-3.43	42.2	54	-11.8	AVG
7440	55.31	-0.75	54.56	74	-19.44	peak
7440	41.87	-0.75	41.12	54	-12.88	AVG
			- ""			

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Vertical:						
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4960	61.29	-3.43	57.86	74	-16.14	peak
4960	46.31	-3.43	42.88	54	-11.12	AVG
7440	56.72	-0.75	55.97	74	-18.03	peak
7440	42.76	-0.75	42.01	54	-11.99	AVG
	-		-	•		

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark:

- (1) Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (2) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed.

4.3. Maximum Peak Output Power

TEST CONFIGURATION

EUT	Power Sensor

TEST PROCEDURE

According to ANSI C63.10:2013 Maximum peak conducted output power for HFSS devices: The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the HFSS bandwidth and shall utilize a fast-responding diode detector.

<u>LIMIT</u>

For frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725–5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.

TEST RESULTS

Туре	Channel	Peak Output power (dBm)	Limit (dBm)	Result	
	00	6.177			
GFSK	39	6.970	21	Pass	
	78	5.943			
	00	7.069			
π/4DQPSK	39	7.752	21	Pass	
	78	6.812		İ	
	00	7.273			
8DPSK	39	7.915	21	Pass	
	78	7.148			

Note: 1.The test results including the cable lose.

TEST CONFIGURATION

TEST PROCEDURE

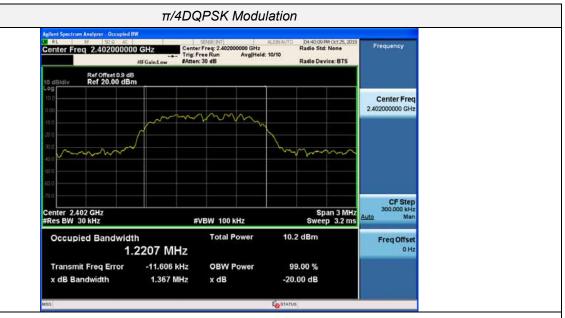
The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with RBW=30 KHz and VBW=100KHz. The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.


LIMIT

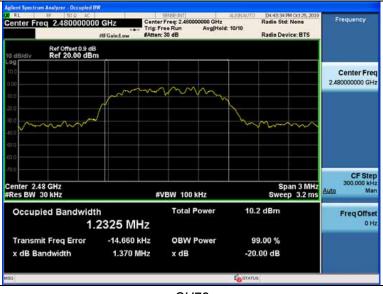
For frequency hopping systems operating in the 2400MHz-2483.5MHz no limit for 20dB bandwith.

TEST RESULTS

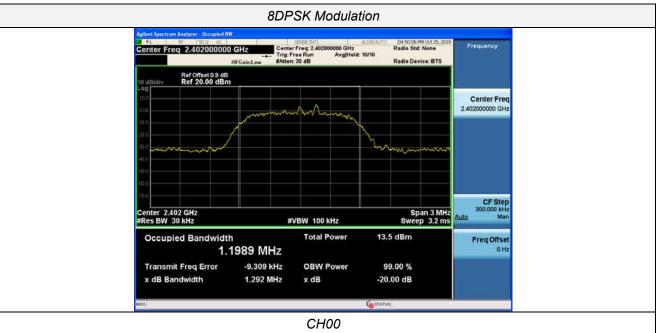
Modulation	Channel	20dB bandwidth (MHz)	99% OBW (MHz)	Result
	CH00	1.037	0.9168	
GFSK	CH39	1.039	0.9193	
	CH78	1.040	0.9238	
	CH00	1.367	1.2207	
π/4DQPSK	CH39	1.372	1.2380	Pass
	CH78	1.370	1.2325	
	CH00	1.292	1.1989	
8DPSK	CH39	1.291	1.2054	
	CH78	1.282	1.1998	


CH00

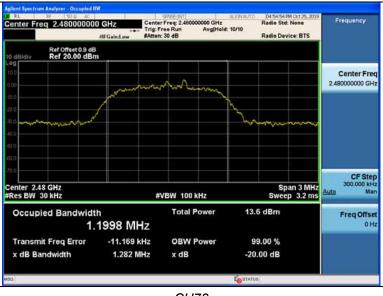

CH39



CH00


CH39

CH78



of 46 Report No.: HK1910282698-1E

CH39

CH78

4.5. Frequency Separation

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with RBW=30 KHz and VBW=100KHz.

LIMIT

According to 15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by minimum of 25KHz or the 2/3*20dB bandwidth of the hopping channel, whichever is greater.

TEST RESULTS

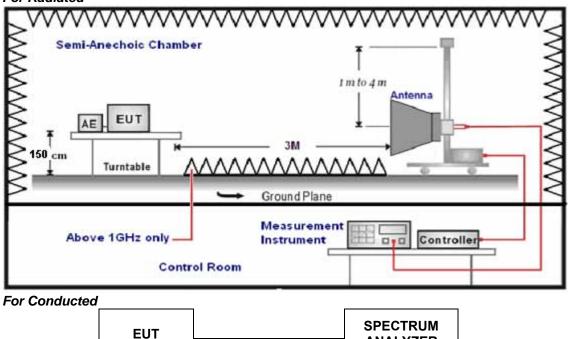
4.5.1 GFSK Test Mode

Modulation	Channel	Channel Separation (MHz)	Limit(MHz)	Result
	CH38		25KHz or	
GFSK	CH39	0.999	2/3*20dB bandwidth	Pass
	CH38		25KHz or	
π/4DQPSK	CH39	0.976	2/3*20dB bandwidth	Pass
	CH38		25KHz or	
8DPSK	CH39	1.025	2/3*20dB bandwidth	Pass

Remark: We have tested all mode at high, middle and low channel, and recorded worst case at middle

π/4DQPSK Modulation

8DPSK Modulation


4.6. Band Edge Compliance of RF Emission

TEST REQUIREMENT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c)).

TEST CONFIGURATION

For Radiated

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 1.5m above ground plane.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° C to 360°C to acquire the highest emissions from EUT.

ANALYZER

- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed..
- 5. The distance between test antenna and EUT was 3 meter:

6. Setting test receiver/spectrum as following table states:

Test Frequency range	Frequency range Test Receiver/Spectrum Setting	
	Peak Value: RBW=1MHz/VBW=3MHz,	
1GHz-40GHz	Sweep time=Auto	Peak
	Average Value: RBW=1MHz/VBW=10Hz,	
	Sweep time=Auto	

LIMIT

Below -20dB of the highest emission level in operating band.

Radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)

Page 28 of 46 Report No.: HK1910282698-1E

4.6.1 For Radiated Bandedge Measurement

Remark: GFSK, Pi/4 DQPSK and 8DPSK all have been tested, only worse case GFSK is reported.

Operation Mode: GFSK TX Low channel(2402MHz)

Horizontal (Worst case)

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector		
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре		
2390	58.12	-5.81	52.31	74	-21.69	peak		
2390	40.22	-5.81	34.41	54	-19.59	AVG		
Remark: Facto	Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.							

Vertical:

Frequency	Meter Reading	Factor Emission Level Limits (dB) (dBµV/m) (dBµV/m)		Limits	Margin	Detector
(MHz)	(dBµV)			(dBµV/m)	(dB) Type	
2390	60.37	-5.81	54.56	74	-19.44	peak
2390 42.16 -5.81		-5.81	36.35 54		-17.65	AVG
Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.						

Operation Mode: GFSK TX High channel (2480MHz)

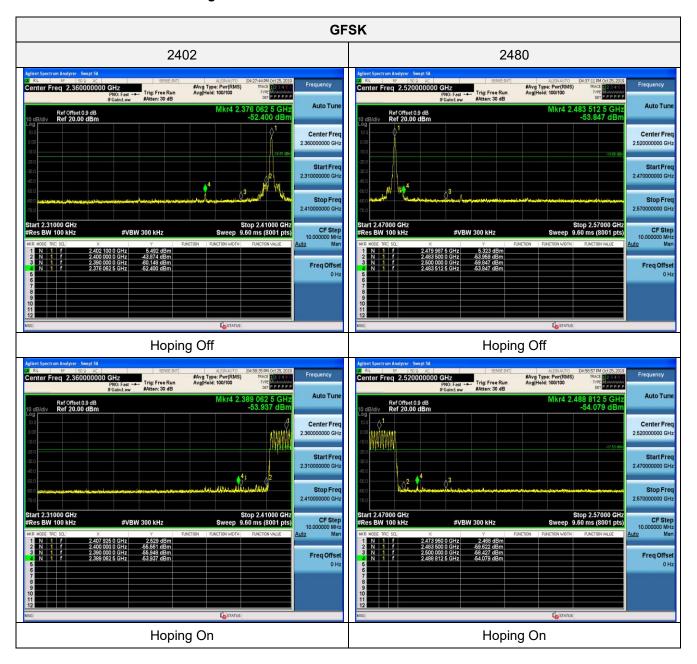
Horizontal (Worst case)

Tionzontal (Word add)						
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2483.5	56.17	-5.65	50.52	74	-23.48	peak
2483.5	40.89	-5.65	35.24	54	-18.76	AVG
Pemark: Factor - Antanna Factor + Cable Laga Pro amplifier						

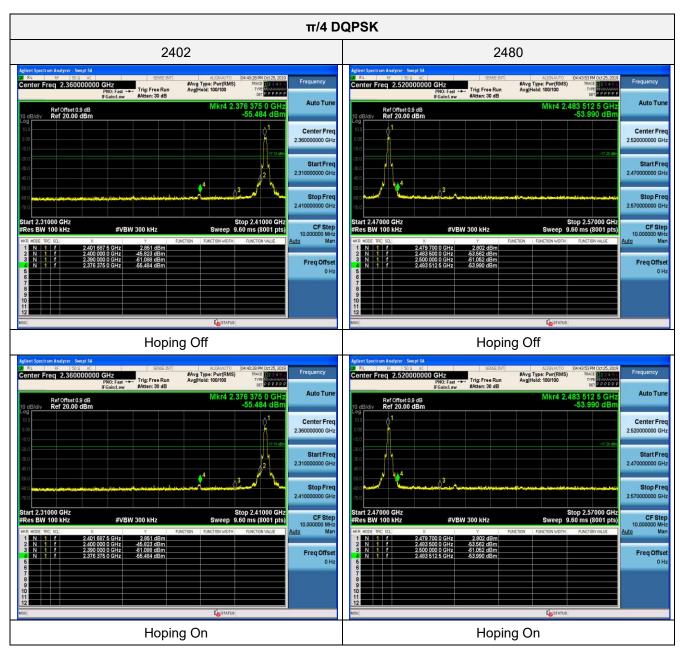
Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

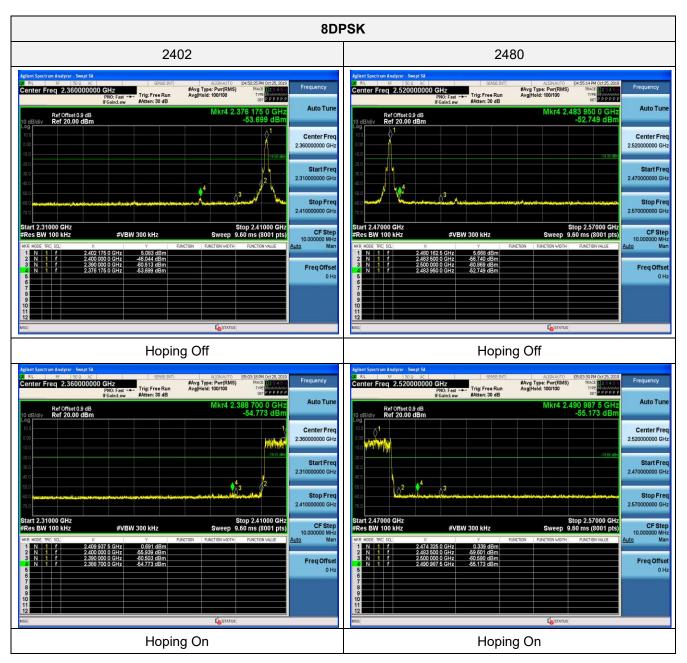
Frequency	Meter Reading	Factor Emission Level Limits		Limits	Margin	Detector	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
2483.5	60.52	-5.65	54.87	74	-19.13	peak	
2483.5	43.01	-5.65	37.36	54	-16.64	AVG	


Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.



Page 29 of 46 Report No.: HK1910282698-1E


4.6.2 For Conducted Bandedge Measurement

Same of the same o

Report No.: HK1910282698-1E

4.7. Spurious RF Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=100kHz and VBW= 300KHz to measure the peak field strength, and mwasure frequeny range from 9KHz to 25GHz.

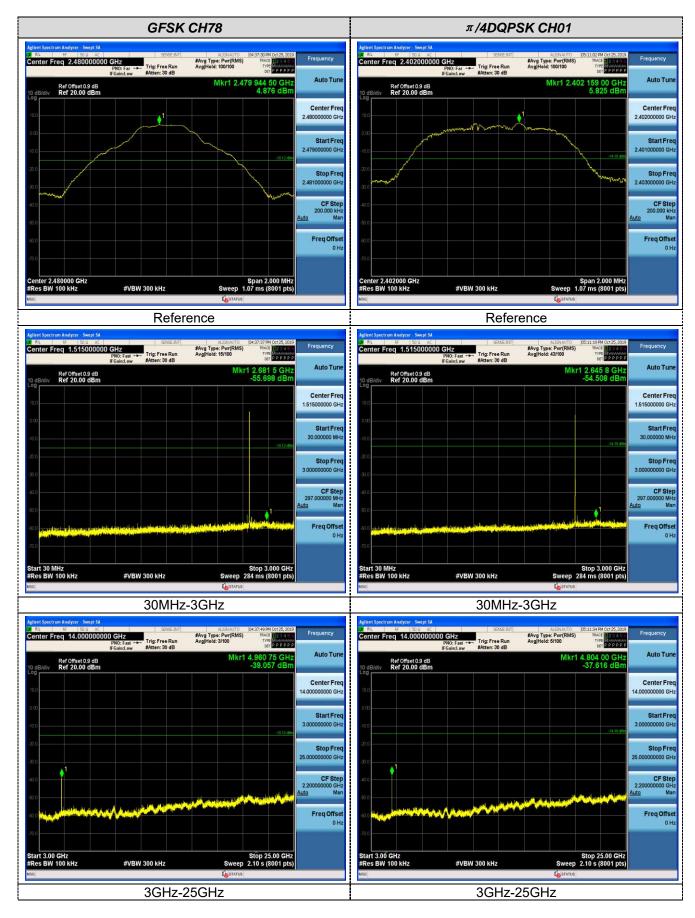
LIMIT

- 1. Below -20dB of the highest emission level in operating band.
- 2. Fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed in section 15.209.

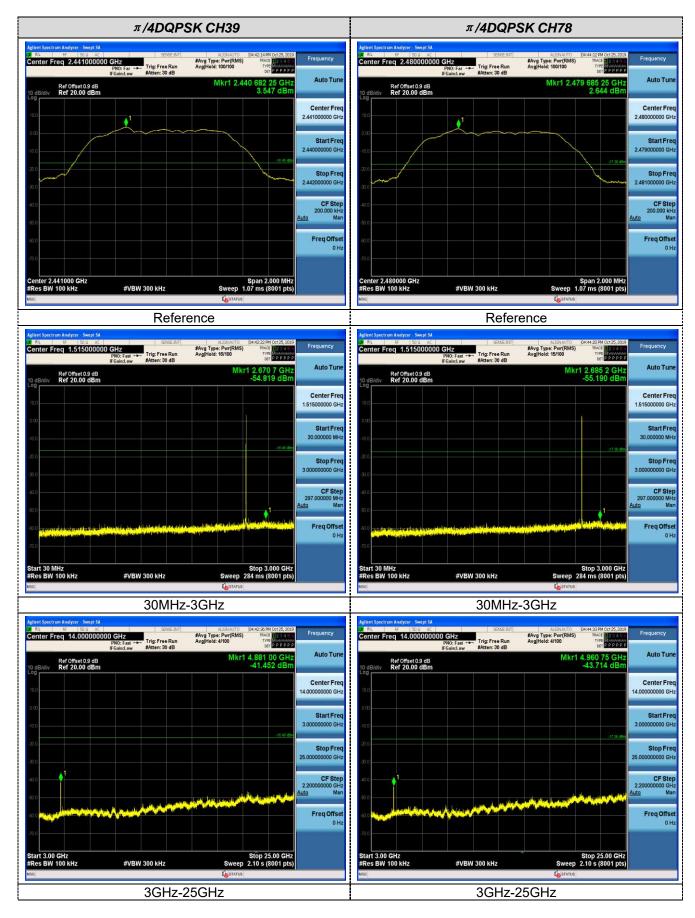
TEST RESULTS

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

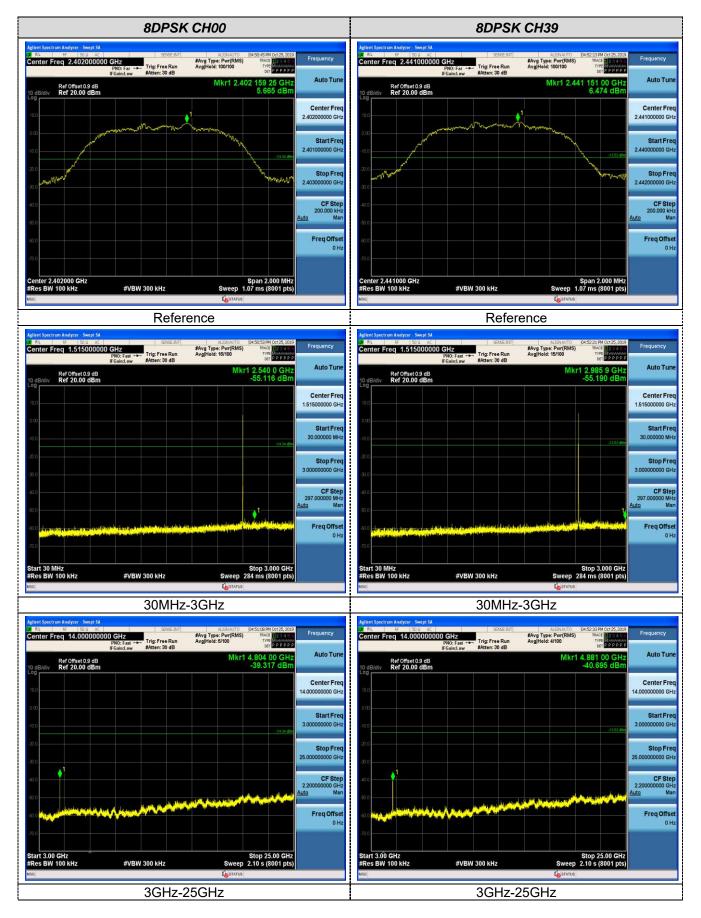
3GHz-25GHz

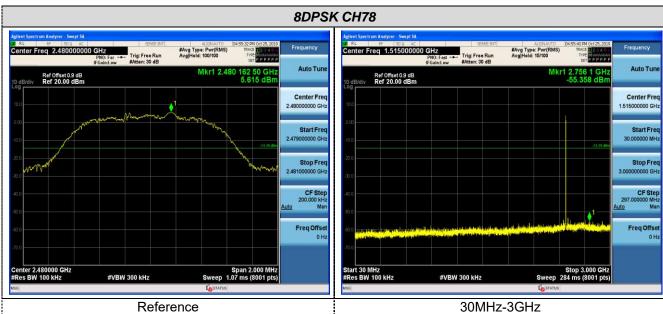

GFSK CH00 GFSK CH39 Center Freq 2.402000000 GHz Center Freq 2.441000000 GHz #Avg Type: Pwr(RMS) Avg|Hold: 100/100 #Avg Type: Pwr(RM Avg|Hold: 100/100 Trig: Free Run Trig: Free Run Ref Offset 0.9 dB Ref 20.00 dBm Center Fred 2.402000000 GHz Center Free 2.441000000 GH: Stop Freq 2.442000000 GHz CF Step 200,000 kHz Freq Offse Freq Offset 0 Hz #VBW 300 kHz #VBW 300 kHz Reference Reference ter Freq 1.515000000 GHz
PNO: Fast
IFGain:Low q 1.515000000 GHz #Avg Type: Pwr(RMS) Avg[Hold: 16/100 #Avg Type: Pwr(RMS) Avg|Hold: 15/100 Trig: Free Run Trig: Free Run Auto Tur 1 2.654 4 GI -54.782 dB 1 2.650 7 GH -54.927 dB Ref Offset 0.9 dB Ref 20.00 dBm Ref Offset 0.9 dB Ref 20.00 dBm Center Free Center Free CF Step 297.000000 MHz Auto Freq Offset Freq Offse Stop 3.000 GHz Sweep 284 ms (8001 pts) Stop 3.000 GHz Sweep 284 ms (8001 pts) #VBW 300 kHz #VBW 300 kHz 30MHz-3GHz 30MHz-3GHz O RL RF SO Q AC SCHOOL

Center Freq 14.000000000 GHz
PNO: Fast Factor 30 dB Center Freq 14.000000000 GHz Frequency Trig: Free Run #Avg Type: Pwr(RMS) Avg|Hold: 4/100 Auto Tune Auto Tun Ref Offset 0.9 dB Ref 20.00 dBm Ref Offset 0.9 dB Ref 20.00 dBm Center Fred Center Free Stop Fre Stop Fred 25.0000000000 GH: Freq Offset Freq Offse Stop 25.00 GHz Sweep 2.10 s (8001 pts) Stop 25.00 GHz Sweep 2.10 s (8001 pts) Start 3.00 GHz #Res BW 100 kHz Start 3.00 GHz #Res BW 100 kHz #VBW 300 kHz #VBW 300 kHz


Report No.: HK1910282698-1E

3GHz-25GHz



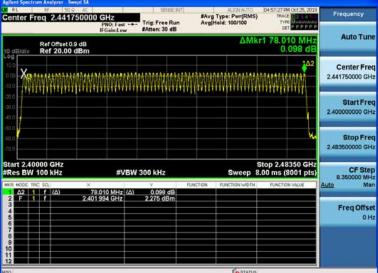


4.8. Number of hopping frequency

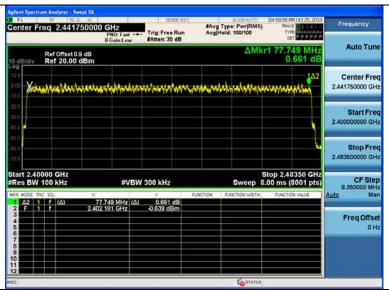
TEST CONFIGURATION

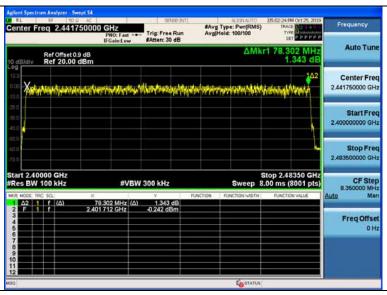
TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. Set spectrum analyzer start 2400MHz to 2483.5MHz with RBW=1MHz and VBW=3MHz.


LIMIT

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels.


Modulation	Number of Hopping Channel	Limit	Result
GFSK	79		
π/4 DQPSK	79	≥15	Pass
8DPSK	79		



π/4DQPSK Modulation

8DPSK Modulation

4.9. Time Of Occupancy(Dwell Time)

TEST CONFIGURATION

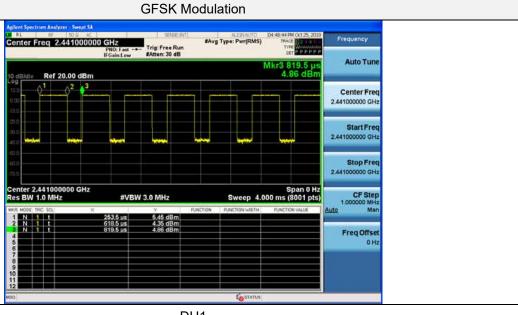
EUT	SPECTRUM ANALYZER
-----	----------------------

TEST PROCEDURE

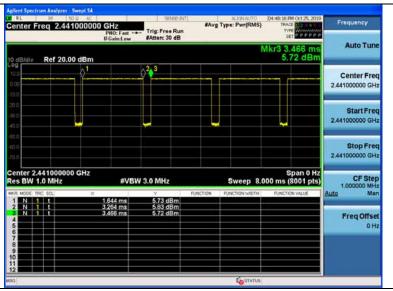
The transmitter output was connected to the spectrum analyzer through an attenuator. Set center frequency of spectrum analyzer=operating frequency with RBW=1MHz and VBW=3MHz,Span=0Hz.

LIMIT

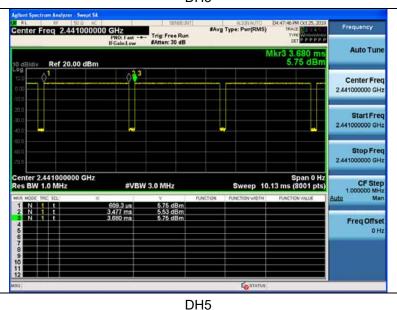
The average time of occupancy on any channel shall not be greater than 0.4 seconds within a pe-riod of 0.4 seconds multiplied by the number of hopping channels employed.

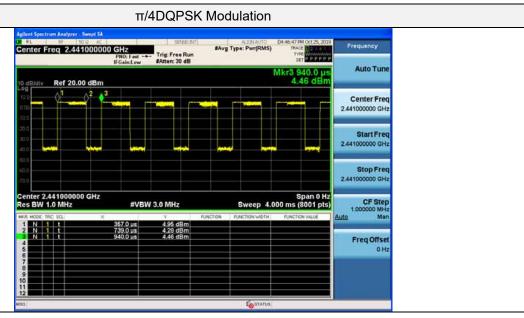

TEST RESULTS

Modulation	Packet	Pulse time (ms)	Dwell time (second)	Limit (second)	Result
	DH1	0.365	0.117		
GFSK	DH3	1.620	0.259	0.40	Pass
	DH5	2.868	0.306		
	DH1	0.382	0.122		
π/4 DQPSK	DH3	1.633	0.261	0.40	Pass
	DH5	2.881	0.307		
8DSPSK	3-DH1	0.385	0.123		
	3-DH3	1.635	0.262	0.40	Pass
	3-DH5	2.884	0.308		


Note:

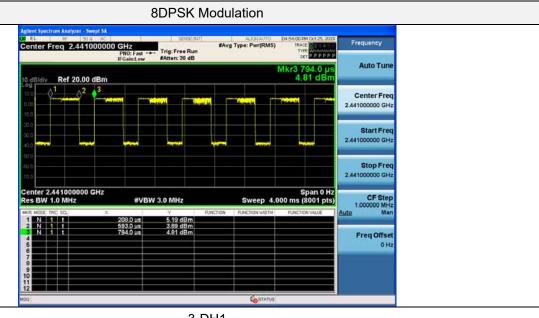
- We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.
- Dwell time=Pulse time (ms) × (1600 ÷ 2 ÷ 79) ×31.6 Second for DH1, 2-DH1, 3-DH1 Dwell time=Pulse time (ms) × $(1600 \div 4 \div 79) \times 31.6$ Second for DH3, 2-DH3, 3-DH3
 - Dwell time=Pulse time (ms) × $(1600 \div 6 \div 79)$ ×31.6 Second for DH5, 2-DH5, 3-DH5


Page 41 of 46 Report No.: HK1910282698-1E


DH1

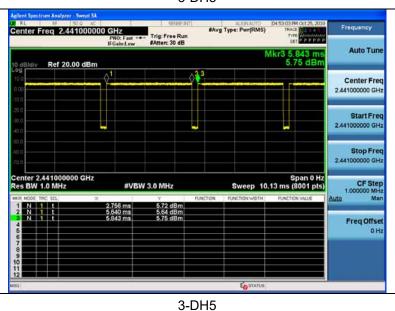
DH3

2-DH1



2-DH3

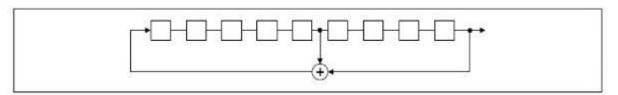
2-DH5



3-DH3

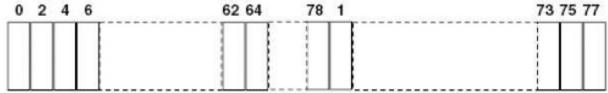
4.10. Pseudorandom Frequency Hopping Sequence

TEST APPLICABLE

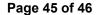

For 47 CFR Part 15C section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier fre-quencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hop-ping channel, whichever is greater. Al-ternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier fre-quencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo ran-domly ordered list of hopping fre-quencies. Each frequency must be used equally on the average by each trans-mitter. The system receivers shall have input bandwidths that match the hop-ping channel bandwidths of their cor-responding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence Requirement


The pseudorandom frequency hopping sequence may be generated in a nice-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the frist stage. The sequence begins with the frist one of 9 consecutive ones, for example: the shift register is initialized with nine ones.

- Number of shift register stages:9
- Length of pseudo-random sequence:29-1=511 bits
- Longest sequence of zeros:8(non-inverted signal)


Linear Feedback Shift Register for Generation of the PRBS sequence

An explame of pseudorandom frequency hopping sequence as follows:

Each frequency used equally one the average by each transmitter.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitter and shift frequencies in synchronization with the transmitted signals.

4.11. Antenna Requirement

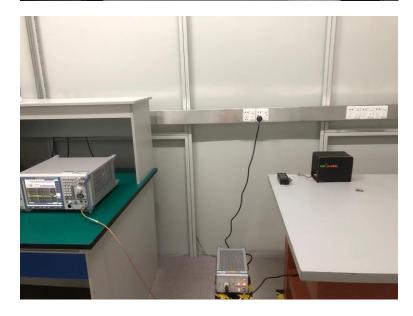
Standard Applicable

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.247 (c), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

Antenna Information


The antenna is Ceramic antenna, the directional gains of antenna used for transmitting is 2.0 dBi.

5. Test Setup Photos of the EUT

.....End of Report.....