

EMC TEST REPORT

Applicant Alcatel-Lucent Shanghai Bell CO. Ltd.

FCC ID 2ADZRHA030WB

Product 7368 Intelligent Services Access Manager CPE

Brand NOKIA

Model HA-030W-B

Report No. RBA1712-0148EMC02R1

Issue Date January 25, 2018

TA Technology (Shanghai) Co., Ltd. tested the above equipment in accordance with the requirements in FCC Code CFR47 Part15B (2017)/ ANSI C63.4 (2014). The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Performed by: Wei Liu/ Manager

Wei Liu

Approved by: Guangchang Fan/ Director

Guangchang Fan

TA Technology (Shanghai) Co., Ltd.

No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China TEL: +86-021-50791141/2/3 FAX: +86-021-50791141/2/3-8000

Table of Contents

1 Te	est Laboratory	4
1.1	Notes of the Test Report	4
1.2	Test facility	4
1.3	Testing Location	5
2 G	Seneral Description of Equipment under Test	6
2.1	Client Information	6
2.2	General information	6
2.3	Applied Standards	7
2.4		
3 Te	est Case Results	10
3.1	Radiated Emission	10
3.2	Conducted Emission	16
4 M	Main Test Instrument	19
ANNE	EX A: The EUT Appearance and Test Configuration	20
	EUT Appearance	
	Test Setup	
	Auxiliary test equipment	24

Summary of measurement results

Number	Test Case	Clause in FCC Rules	Conclusion			
1	Radiated Emission	15.109, ANSI C63.4-2014	PASS			
2	Conducted Emission	15.107, ANSI C63.4-2014	PASS			
Test Date: December 18, 2017 ~ January 16, 2018						

EMC Test Report No: RBA1712-0148EMC02R1

1 Test Laboratory

1.1 Notes of the Test Report

This report shall not be reproduced in full or partial, without the written approval of **TA technology** (shanghai) co., Ltd. The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein .Measurement Uncertainties were not taken into account and are published for informational purposes only. This report is written to support regulatory compliance of the applicable standards stated above.

1.2 Test facility

CNAS (accreditation number: L2264)

TA Technology (Shanghai) Co., Ltd. has obtained the accreditation of China National Accreditation Service for Conformity Assessment (CNAS).

FCC (Designation number: CN1179, Test Firm Registration Number: 446626)

TA Technology (Shanghai) Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

IC (recognition number is 8510A)

TA Technology (Shanghai) Co., Ltd. has been listed by industry Canada to perform electromagnetic emission measurement.

VCCI (recognition number is C-4595, T-2154, R-4113, G-10766)

TA Technology (Shanghai) Co., Ltd. has been listed by industry Japan to perform electromagnetic emission measurement.

A2LA (Certificate Number: 3857.01)

TA Technology (Shanghai) Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

Report No: RBA1712-0148EMC02R1

1.3 Testing Location

Company: TA Technology (Shanghai) Co., Ltd.

Address: No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China

City: Shanghai

Post code: 201201

Country: P. R. China

Contact: Xu Kai

Telephone: +86-021-50791141/2/3

Fax: +86-021-50791141/2/3-8000

Website: http://www.ta-shanghai.com

E-mail: xukai@ta-shanghai.com

2 General Description of Equipment under Test

2.1 Client Information

Applicant Alcatel-Lucent Shanghai Bell CO. Ltd.			
Applicant address 388-389#, Ningqiao Road, Pudong Jinqiao, Shanghai, P.R. C			
Manufacturer	TAICANG T&W ELECTRONICS CO.,LTD		
Manufacturer address	89# Jiang Nan RD, Lu Du, Taicang, Jiangsu, China		

2.2 General information

	EUT Description					
Device Type	Portable Device					
Product Name	7368 Intelligent Services Access Manager CPE					
Model Number	HA-030W-B					
SN	/					
HW Version	PEM2					
SW Version	Null					
Antenna Type Internal Antenna						
Test Mode Transfer Data Mode						
	EUT Accessory					
Adapter 1	Manufacturer: Dongguan Shilong Fuhua Electronic Co., Ltd Model: UES36WA-120300SPAU					
Adapter 2	Manufacturer:RUIDE Model: RD1202000-C55-80MG					
	Auxiliary test equipment					
PC Manufacturer: Dell Model: E5450 (SN : P48G001)						
Remark: The informati	on of the EUT is declared by the manufacturer.					

EUT Configuration

No.	Name	Model/Code No.	Edition	Serial No. or Quantity
1	EMA-HA-030W-B 3FE47429AA		PEM2	PEM 1
2	Power adapter UES36WA-120300SPAU		A/0	PEM 1
3	Power adapter	RD1202000-C55-80MG	A/0	PEM 1

Report No: RBA1712-0148EMC02R1

ONT Mnemonic	Kit Code	EMA Code	Part Description		
HA-030W-B	3FE47357AA	3FE47429AA	Wi-Fi Access Point and range extender, 3xGE UNI, 3x3 11n+4x4 11ac, US plug		

Auxiliary Equipment

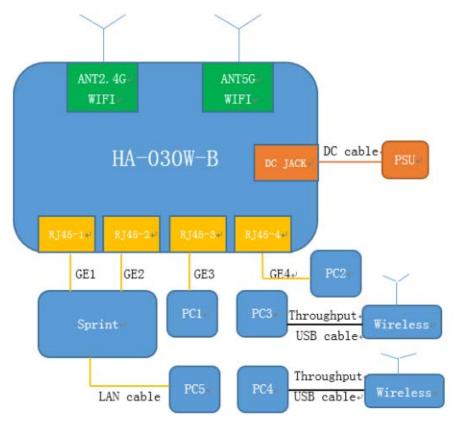
No.	Name	Brand name	Model	ASB code	Valid Until	
1	SmartBits 600B	Sprient	DE7853	-	No Cal. Required	
2	PC	HP	N.A	-	No Cal. Required	
3	PC	DELL N.A		-	No Cal. Required	
4	PC	Thinkpad	N.A	-	No Cal. Required	

Ports

No.	Port name	Number	Shielded or unshielded	Cable type (optic, twisted pair, etc.)	Max. Cable length
1	Power	1	unshielded	-	-
2	GE	4	unshielded	-	-

C EMC Test Report No: RBA1712-0148EMC02R1

2.3 Applied Standards


According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

Test standards FCC Code CFR47 Part15B (2017) ANSI C63.4 (2014)

2.4 Test configuration

The HA-030W-B is a AP which has 3 GE LAN ports, and 1 GE WAN port.

The basic functional test in normal room conditions consists of the traffic test and WIFI throughput test. HA-030W-B runs 2traffics on each line with SMB600B, the each upstream of 2 GE is 1Gbps, and downstream is 1Gbps. Frame loss ratio less than 10e-7. The WIFI keep connecting.

Test configuration

Report No: RBA1712-0148EMC02R1

3 Test Case Results

3.1 Radiated Emission

Ambient condition

Temperature	Relative humidity	Pressure
24°C~26°C	45%~50%	102.5kPa

Methods of Measurement

The EUT is placed on a non-metallic table 0.8m above the horizontal metal reference ground plane. The distance between EUT and receive antenna should be 3 meters. During the test, the EUT was operating in its typical mode. The test method is according to ANSI C63.4-2014. Sweep the whole frequency band through the range from 30MHz to the 5th harmonic of the carrier. During the test, the height of receive antenna shall be moved from 1 to 4 meters, and the antenna shall be performed under horizontal and vertical polarization. The turn table shall be rotated from 0 to 360 degrees for detecting the maximum of radiated signal level.

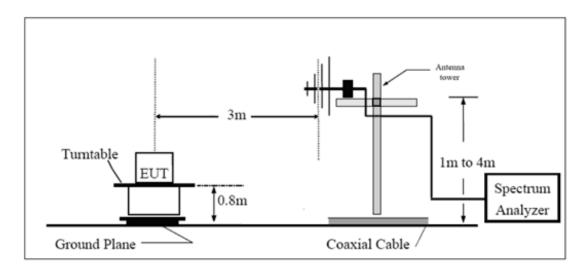
The data of cable loss and antenna factor has been calibrated in full testing frequency range before the testing. During the test, the EUT is worked at maximum output power.

Set the spectrum analyzer in the following:

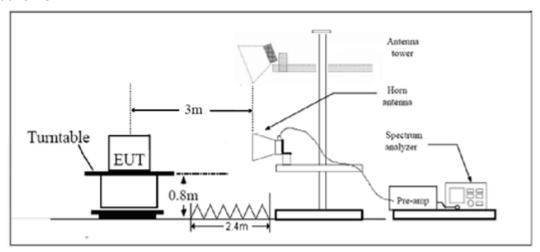
Below 1GHz:

RBW=100 kHz / VBW=300 kHz / Sweep=AUTO

Above 1GHz:


- (a) PEAK: RBW=1MHz / VBW=3MHz/ Sweep=AUTO
- (b) AVERAGE: RBW=1MHz / VBW=3MHz / Sweep=AUTO

The radiated emission was measured in the following position: EUT stand-up position (Z axis), lie-down position (X, Y axis). The worst emission was found in stand-up position (Z axis) and the worst case was recorded.


During the test, reference test configuration, EUT is connected tolaptop via a cable in the case of Transfer Data mode.

Test Setup

Below 1GHz

Above 1GHz

Note: Area side:2.4mX3.6m

Antenna Tower meets ANSI C63.4 requirements for measurements above 1 GHz by keeping the antenna aimed at the EUT during the antenna's ascent/ descent along the antenna mast.

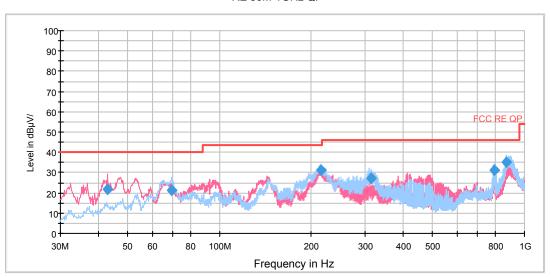
Report No: RBA1712-0148EMC02R1

Limits

Frequency (MHz)	Field Strength (dBµV/m)	Detector		
30 -88	40.0	Quasi-peak		
88-216	43.5	Quasi-peak		
216 – 960	46.0	Quasi-peak		
960-1000	54.0	Quasi-peak		
1000-5 th harmonic of the highest	54	Average		
frequency or 40GHz, which is lower	74	Peak		

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96. U= 3.704 dB.


CC EMC Test Report No: RBA1712-0148EMC02R1

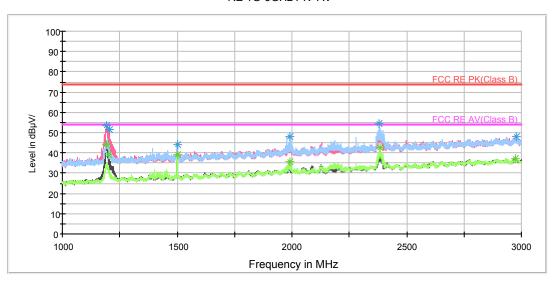
Test Results

The following graphs display the maximum values of horizontal and vertical by software. For above 1GHz, Blue trace uses the peak detection, Green trace uses the average detection. There is more than one Adapter, each one should be applied throughout the compliance test respectively, and however, only the worst case (Adapter 1) will be recorded in this report.

Adapter 1

RE 30M-1GHz QP

Radiated Emission from 30MHz to 1GHz

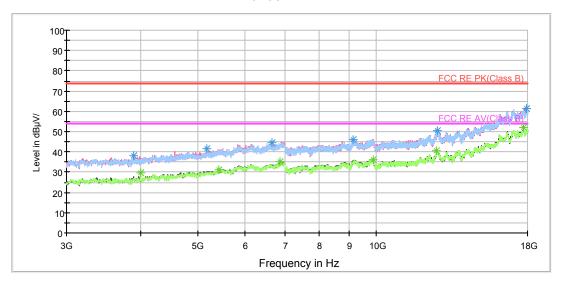

Frequency (MHz)	Quasi-Peak (dBuV/m)	Reading value (dBuV/m)	Height (cm)	Polarizat ion	Azimuth (deg)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
42.959631	21.7	39.4	100.0	V	109.0	-17.7	18.3	40.0
69.593681	21.3	47.7	125.0	Н	195.0	-26.4	18.7	40.0
214.368000	31.0	56.7	125.0	Н	56.0	-25.7	12.5	43.5
313.543750	27.2	49.5	100.0	Н	127.0	-22.3	18.8	46.0
797.770000	31.1	47.7	100.0	Н	324.0	-16.6	14.9	46.0
875.009250	35.2	49.3	100.0	Н	260.0	-14.1	10.8	46.0

Remark: 1. Quasi-Peak = Reading value + Correction factor

- 2. Correction Factor = Antenna factor+ Insertion loss(cable loss+amplifier gain)
- 3. Margin = Limit Quasi-Peak

RE 1G-3GHz PK+AV

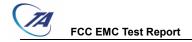
Report No: RBA1712-0148EMC02R1



Radiated Emission from 1GHz to 3GHz

Frequency (MHz)	Peak (dBuV/m)	Reading value (dBuV/m)	Height (cm)	Polarizat ion	Azimuth (deg)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
1194.250000	53.6	61.8	100.0	V	0.0	-8.2	20.4	74
1203.250000	51.4	59.6	100.0	V	0.0	-8.2	22.6	74
1500.250000	44.2	50.9	100.0	Н	81.0	-6.7	29.8	74
1993.250000	47.9	51.2	100.0	Н	0.0	-3.3	26.1	74
2381.750000	54.5	56.0	100.0	Н	280.0	-1.5	19.5	74
2980.250000	48.0	45.8	100.0	Н	0.0	2.2	26.0	74

Frequency (MHz)	Average (dBuV/m)	Reading value (dBuV/m)	Height (cm)	Polarizat ion	Azimuth (deg)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
1192.250000	44.2	52.4	100.0	V	0.0	-8.2	9.8	54
1201.500000	39.0	47.2	100.0	V	0.0	-8.2	15.0	54
1500.000000	38.9	45.6	100.0	Н	90.0	-6.7	15.1	54
1993.250000	35.6	38.9	100.0	Н	0.0	-3.3	18.4	54
2383.500000	42.4	43.9	100.0	Н	280.0	-1.5	11.6	54
2972.000000	37.2	35.0	100.0	V	237.0	2.2	16.8	54



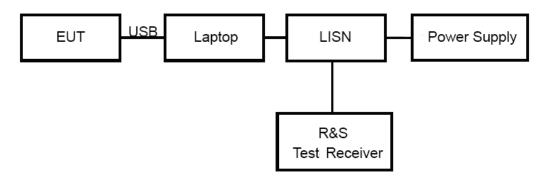
Radiated Emission from 3GHz to 18GHz

Frequency (MHz)	Peak (dBuV/m)	Reading value (dBuV/m)	Height (cm)	Polarizat ion	Azimuth (deg)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
3890.625000	38.1	39.4	100.0	V	354.0	-1.3	35.9	74
5165.625000	41.4	39.4	100.0	Н	4.0	2.0	32.6	74
6663.750000	44.8	39.3	100.0	V	0.0	5.5	29.2	74
9151.875000	46.3	36.1	100.0	V	354.0	10.2	27.7	74
12658.125000	50.7	36.8	100.0	Н	134.0	13.9	23.3	74
17911.875000	61.6	36.1	100.0	V	290.0	25.5	12.4	74

Frequency (MHz)	Average (dBuV/m)	Reading value (dBuV/m)	Height (cm)	Polarizat ion	Azimuth (deg)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
3999.375000	29.9	31.0	100.0	Н	358.0	-1.1	24.1	54
5424.375000	31.2	28.5	100.0	Н	69.0	2.7	22.8	54
6890.625000	35.2	29.1	100.0	Н	4.0	6.1	18.8	54
9862.500000	36.1	25.7	100.0	Н	166.0	10.4	17.9	54
12641.250000	40.5	26.0	100.0	V	322.0	14.5	13.5	54
17700.000000	51.7	27.0	100.0	V	0.0	24.7	2.3	54

3.2 Conducted Emission

Ambient condition


Temperature	Relative humidity	Pressure
24°C ~26°C	50%~55%	102.5kPa

Methods of Measurement

The EUT is placed on a non-metallic table of 80cm height above the horizontal metal reference ground plane. During the test, the EUT was operating in its typical mode. The test method is according to ANSI C63.4-2014. Connect the AC power line of the EUT to the L.I.S.N. Use EMI receiver to detect the average and Quasi-peak value. RBW is set to 9 kHz, VBW is set to 30kHz. The measurement result should include both L line and N line.

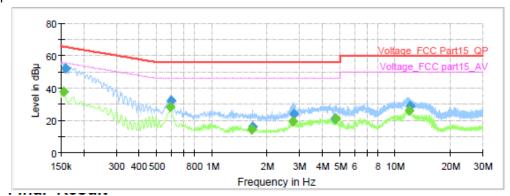
During the test, reference test configuration, EUT is connected tolaptop via a cable in the case of Transfer Data mode.

Test Setup

Note: Power Supply is AC Power source and it is used to change the voltage 120V/60Hz.

Limits

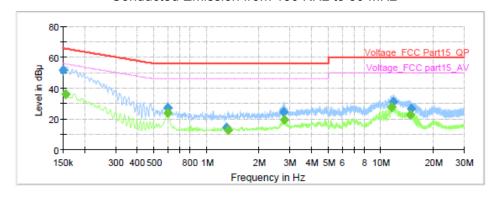
Frequency	Conducted Limits(dBμV)						
(MHz)	Quasi-peak	Average					
0.15 - 0.5	66 to 56 *	56 to 46 [*]					
0.5 - 5	56	46					
5 - 30 60 50							
* Decreases with the logarithm of the frequency.							


Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96. U= 2.57 dB.

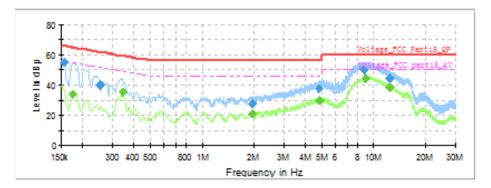
Test Results

Following plots, Blue trace uses the peak detection; Green trace uses the average detection.

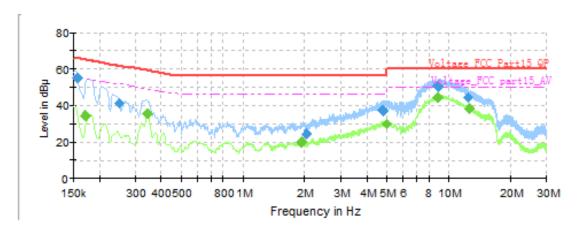

Adapter 1

(dB μ V)	(dB µ V)	(dB μ V)	(dB)	Time	(kHz)			(dB)
		V)			· · · · · · · · · · · · · · · · · · ·			(ub)
		- /		(ms)				
	37.94	55.75	17.82	1000.0	9.000	L1	ON	19.6
52.16		65.52	13.36	1000.0	9.000	L1	ON	19.6
	28.32	46.00	17.68	1000.0	9.000	L1	ON	19.6
32.41		56.00	23.59	1000.0	9.000	L1	ON	19.6
	14.70	46.00	31.30	1000.0	9.000	L1	ON	19.6
15.93		56.00	40.07	1000.0	9.000	L1	ON	19.6
	19.53	46.00	26.47	1000.0	9.000	L1	ON	19.6
23.85		56.00	32.15	1000.0	9.000	L1	ON	19.6
21.17		56.00	34.83	1000.0	9.000	L1	ON	19.7
	21.16	46.00	24.84	1000.0	9.000	L1	ON	19.7
	26.15	50.00	23.85	1000.0	9.000	L1	ON	19.9
28.79		60.00	31.21	1000.0	9.000	L1	ON	19.9
	32.41 15.93 23.85 21.17	28.32 32.41 14.70 15.93 19.53 23.85 21.17 21.16 26.15	28.32 46.00 32.41 56.00 14.70 46.00 15.93 56.00 19.53 46.00 23.85 56.00 21.17 56.00 21.16 46.00 26.15 50.00	28.32 46.00 17.68 32.41 56.00 23.59 14.70 46.00 31.30 15.93 56.00 40.07 19.53 46.00 26.47 23.85 56.00 32.15 21.17 56.00 34.83 21.16 46.00 24.84 26.15 50.00 23.85	28.32 46.00 17.68 1000.0 32.41 56.00 23.59 1000.0 14.70 46.00 31.30 1000.0 15.93 56.00 40.07 1000.0 19.53 46.00 26.47 1000.0 23.85 56.00 32.15 1000.0 21.17 56.00 34.83 1000.0 21.16 46.00 24.84 1000.0 26.15 50.00 23.85 1000.0	28.32 46.00 17.68 1000.0 9.000 32.41 56.00 23.59 1000.0 9.000 14.70 46.00 31.30 1000.0 9.000 15.93 56.00 40.07 1000.0 9.000 19.53 46.00 26.47 1000.0 9.000 23.85 56.00 32.15 1000.0 9.000 21.17 56.00 34.83 1000.0 9.000 21.16 46.00 24.84 1000.0 9.000 26.15 50.00 23.85 1000.0 9.000	28.32 46.00 17.68 1000.0 9.000 L1 32.41 56.00 23.59 1000.0 9.000 L1 14.70 46.00 31.30 1000.0 9.000 L1 15.93 56.00 40.07 1000.0 9.000 L1 19.53 46.00 26.47 1000.0 9.000 L1 23.85 56.00 32.15 1000.0 9.000 L1 21.17 56.00 34.83 1000.0 9.000 L1 21.16 46.00 24.84 1000.0 9.000 L1 26.15 50.00 23.85 1000.0 9.000 L1	28.32 46.00 17.68 1000.0 9.000 L1 ON 32.41 56.00 23.59 1000.0 9.000 L1 ON 14.70 46.00 31.30 1000.0 9.000 L1 ON 15.93 56.00 40.07 1000.0 9.000 L1 ON 19.53 46.00 26.47 1000.0 9.000 L1 ON 23.85 56.00 32.15 1000.0 9.000 L1 ON 21.17 56.00 34.83 1000.0 9.000 L1 ON 21.16 46.00 24.84 1000.0 9.000 L1 ON 26.15 50.00 23.85 1000.0 9.000 L1 ON

L line


Conducted Emission from 150 KHz to 30 MHz

Frequency (MHz)	QuasiPeak (dB µ V)	Average (dB µ V)	Limit (dB µ	Margin (dB)	Meas. Time	Bandwidth (kHz)	Line	Filter	Corr. (dB)
			V)		(ms)				
0.150000	51.92		66.00	14.08	1000.0	9.000	N	ON	19.7
0.154500		36.13	55.75	19.62	1000.0	9.000	N	ON	19.7
0.595500		23.79	46.00	22.21	1000.0	9.000	N	ON	19.6
0.600000	27.10		56.00	28.90	1000.0	9.000	N	ON	19.6
1.306500	14.24		56.00	41.76	1000.0	9.000	N	ON	19.6
1.329000		12.99	46.00	33.01	1000.0	9.000	N	ON	19.6
2.769000	24.52		56.00	31.48	1000.0	9.000	N	ON	19.6
2.798250		19.48	46.00	26.52	1000.0	9.000	N	ON	19.6
11.539500		27.95	50.00	22.05	1000.0	9.000	N	ON	19.9
11.807250	30.86		60.00	29.14	1000.0	9.000	N	ON	19.9
14.851500	-	22.77	50.00	27.23	1000.0	9.000	N	ON	19.9
14.885250	26.58		60.00	33.42	1000.0	9.000	N	ON	19.9


N line Conducted Emission from 150 KHz to 30 MHz

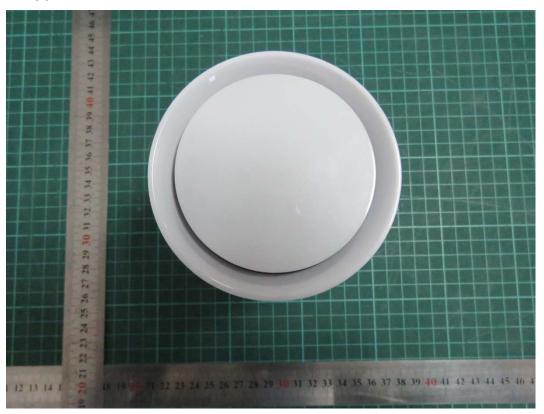
Adapter 2

<u> </u>									
Frequency (MHz)	QuasiPeak (dB u V)	(dB u V)	Limit (dB u V)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.156750	54.96		65.63	10.68	1000.0	9.000	L1	ON	19.6
0.174750		33.68	54.73	21.05	1000.0	9.000	L1	ON	19.6
0.253500	40.25		61.64	21.39	1000.0	9.000	L1	ON	19.7
0.345750		35.76	49.06	13.31	1000.0	9.000	L1	ON	19.6
1.963500		21.23	46.00	24.77	1000.0	9.000	L1	ON	19.6
1.965750	27.63		56.00	28.37	1000.0	9.000	L1	ON	19.6
4.807500	37.51		56.00	18.49	1000.0	9.000	L1	ON	19.7
4.870500	1	30.27	46.00	15.73	1000.0	9.000	L1	ON	19.7
8.828250	50.07		60.00	9.93	1000.0	9.000	L1	ON	19.9
8.974500		44.58	50.00	5.42	1000.0	9.000	L1	ON	19.9
12.421500	44.55		60.00	15.45	1000.0	9.000	L1	ON	19.9
12.527250		38.50	50.00	11.50	1000.0	9.000	L1	ON	19.9

L line
Conducted Emission from 150 KHz to 30 MHz

Frequency (MHz)	QuasiPeak (dB x V)	Average (dB # V)	Limit (dB 14	Margin (dB)	Meas. Time	Bandwidth (kHz)	Line	Filter	Corr. (dB)
			V)		(ms)				
0.156750	55.04		65.63	10.60	1000.0	9.000	N	ON	19.7
0.172500		34.40	54.84	20.44	1000.0	9.000	N	ON	19.7
0.251250	40.85	-	61.72	20.87	1000.0	9.000	N	ON	19.7
0.345750	-	35.33	49.06	13.73	1000.0	9.000	N	ON	19.6
1.934250	-	19.89	46.00	26.11	1000.0	9.000	N	ON	19.6
2.049000	24.32	-	56.00	31.68	1000.0	9.000	N	ON	19.6
4.800750	37.04	-	56.00	18.96	1000.0	9.000	N	ON	19.7
5.032500	-	30.24	50.00	19.76	1000.0	9.000	N	ON	19.7
8.871000	50.45	-	60.00	9.55	1000.0	9.000	N	ON	19.9
8.922750	-	44.68	50.00	5.32	1000.0	9.000	N	ON	19.9
12.477750	44.49	-	60.00	15.51	1000.0	9.000	N	ON	19.9
12.592500		38.41	50.00	11.59	1000.0	9.000	N	ON	19.9

N line Conducted Emission from 150 KHz to 30 MHz



4 Main Test Instrument

Name	Manufacturer	Туре	Serial Number	Last Cal.	Cal. Due Date	
Signal Analyzer	R&S	FSV30	100815	2017-12-17	2018-12-16	
EMI Test Receiver	R&S	ESCI	100948	2017-05-20	2018-05-19	
Loop Antenna	SCHWARZBECK	FMZB1519	1519-047	2017-02-18	2019-02-17	
Trilog Antenna	SCHWARZBECK	VULB 9163	9163-201	2017-11-18	2020-11-17	
Horn Antenna	R&S	HF907	100126	2014-12-06	2019-12-05	
Horn Antenna	ETS-Lindgren	3160-09	00102643	2015-01-30	2018-01-29	
EMI Test Receiver	R&S	ESR	101667	2017-09-06	2018-09-05	
LISN	R&S	ENV216	101171	2016-12-16	2019-12-15	
Bore Sight Antenna mast	ETS	2171B	00058752	NA	NA	
Test software	EMC32	R&S	V9.26.0	NA	NA	

ANNEX A: The EUT Appearance and Test Configuration

A.1 EUT Appearance

Front Side

Back Side

a: EUT

Report No: RBA1712-0148EMC02R1



Adapter 1

Adapter 2 b: Adapter Picture 1 EUT

A.2 Test Setup


a: Below 1GHz

b: Above 1GHz
Picture 2 Radiated Emission Test Setup

Picture 3 Conducted Emission Test Setup

A.3 Auxiliary test equipment

