

EMC TEST REPORT

TA

Applicant	Nokia Shanghai Bell Co., Ltd
FCC ID	2ADZRBEACON31
Product	NOKIA WiFi Beacon 3.1
Brand	NOKIA
Model	Beacon 3.1
Report No.	R2308A0899-E1
Issue Date	October 19, 2023

TA Technology (Shanghai) Co., Ltd. tested the above equipment in accordance with the requirements in **FCC Code CFR47 Part15B (2022)**/ **ANSI C63.4-2014**. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Liu Wei

Fan Guangchang

Prepared by: Liu Wei

Approved by: Fan Guangchang

TA Technology (Shanghai) Co., Ltd.

Building 3, No.145, Jintang Rd, Pudong Shanghai, P.R.China TEL: +86-021-50791141/2/3 FAX: +86-021-50791141/2/3-8000

Table of Contents

1	Tes	st Laboratory	. 4
1	1.1	Notes of the Test Report	. 4
1	.2	Test Facility	. 4
1	.3	Testing Location	. 4
2	Ge	neral Description of Equipment Under Test	. 5
2	2.1	Applicant and Manufacturer Information	. 5
2	2.2	General Information	. 5
2	2.3	Applied Standards	. 7
2	2.4	Test Mode	. 8
3	Tes	st Case Results	. 9
3	3.1	Radiated Emission	. 9
3	3.2	Conducted Emission	20
4	Un	certainty Measurement	25
5	Ма	in Test Instruments	26
AN	NEX	(A: The EUT Appearance	27
AN	NEX	(B: Test Setup Photos	28

_		
		ī

Summary of measurement results

Number	Test Case Clause in FCC Rules Conclus		Conclusion	
1	Radiated Emission FCC Part15.109, ANSI C63.4-2014 PASS		PASS	
2	Conducted Emission FCC Part15.107, ANSI C63.4-2014 PASS			
Date of Testing: August 7, 2023 ~ August 9, 2023				
Date of Sample Received: August 7, 2023				
Note: All indications of Pass/Fail in this report are opinions expressed by TA Technology				
(Shanghai) Co., Ltd. based on interpretations and/or observations of test results. Measurement				
Uncertainties were not taken into account and are published for informational purposes only.				

1 Test Laboratory

1.1 Notes of the Test Report

This report shall not be reproduced in full or partial, without the written approval of **TA Technology (Shanghai) Co., Ltd.** The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. Measurement Uncertainties were not taken into account and are published for informational purposes only. This report is written to support regulatory compliance of the applicable standards stated above.

1.2 Test Facility

FCC (Designation number: CN1179, Test Firm Registration Number: 446626)

TA Technology (Shanghai) Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform measurements.

A2LA (Certificate Number: 3857.01)

TA Technology (Shanghai) Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform measurement.

1.3 Testing Location

Company:	TA Technology (Shanghai) Co., Ltd.
Address:	Building 3, No.145, Jintang Rd, Pudong Shanghai, P.R.China
City:	Shanghai
Post code:	201201
Country:	P. R. China
Contact:	Fan Guangchang
Telephone:	+86-021-50791141/2/3
Fax:	+86-021-50791141/2/3-8000
Website:	http://www.ta-shanghai.com
E-mail:	fanguangchang@ta-shanghai.com

2 General Description of Equipment Under Test

2.1 Applicant and Manufacturer Information

Applicant	Nokia Shanghai Bell Co., Ltd.	
Applicant address	No.388, Ningqiao Rd, Pilot Free Trade Zone, Shanghai, 201206 P.R. China	
Manufacturer	Nokia of America Corporation.	
Manufacturer address	rer address 2301 Sugar Bush Road, Raleigh, North Carolina, 27612, United States America	

2.2 General Information

EUT Description				
Device Type	Movable Device			
Model	Beacon 3.1	Beacon 3.1		
Lab internal SN	R2308A0899/S01			
HW Version	PEM1			
SW Version	3TN00626			
Power Rating	DC 12V			
Connecting I/O Port(s)	Please refer to the User	's Manual.		
Antenna Type	Internal Antenna			
	Band	Tx (MHz)	Rx (MHz)	
	Wi-Fi 2.4G	2400 ~ 2483.5	2400 ~ 2483.5	
Frequency	Wi-Fi 5G (U-NII-1)	5150 ~ 5250	5150 ~ 5250	
Frequency	Wi-Fi 5G (U-NII-2A)	5250 ~ 5350	5250 ~ 5350	
	Wi-Fi 5G (U-NII-2C)	5470 ~ 5725	5470 ~ 5725	
	Wi-Fi 5G (U-NII-3)	5725 ~ 5850	5725 ~ 5850	
EUT Accessory				
Manufacturer: Ruide				
Adapter 1	Model: RD1201500-C55-198MG			
Part Number: BW120150-UC6C-LL04				
	Manufacturer: FuHua			
Adapter 2	Model: UES18LU-120150SPA			
	Part Number: UE230418DGNA1RI			
Antonno 1	Manufacturer: ANTENNA OF THINGS			
Antenna i	Model: AOT			
Antenna 2	Manufacturer: Shenzher	n be-comfortable Technolo	ogy Co. Ltd.	
Model: DZZ				

EMC Test Report

TA

Note:

1. The EUT is sent from the applicant to TA and the information of the EUT is declared by the applicant.

Hardware code information

Mnemonic	KIT Code	EMA Code	Part Description
Beacon 3.1	3TN00511****(* Can be any	3TN00512****(* Can be any	Beacon 3.1, 1G WAN,2x1G
	capital letter from A to Z)	capital letter from A to Z)	LAN, WIFI6 2+2

Information of Configuration:

Beacon 3.1 is a Wi-Fi router, has 1 WAN port, 2 LAN ports, it supports 2.4G & 5G dual band 2*2 Wi-Fi.

The test environment in normal room condition as below.

Run 2.4G Wi-Fi stream between PC1 and PC2 use iperf, the throughput should be higher than 50Mbps.

Run 5G Wi-Fi stream between PC1 and PC3 use iperf, the throughput should be higher than 100Mbps.

Bigtao run stream between port 1G_1 and 1G_2, the throughput should be wire speed.

2.3 Applied Standards

According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

Test standards FCC Code CFR47 Part15B (2022) ANSI C63.4-2014

Report No.: R2308A0899-E1

2.4 Test Mode

Test Mode	
Mode 1:	Adapter + EUT+ PC + LAN/WAN Port + Streaming

Test Type	Test Mode	Worst Mode	
Radiated Emission	Mode 1		
Conducted Emission	Mode 1		
During the test, the preliminary test was performed in all modes, the test data of the worst-case			
condition was recorded in this report.			

3 Test Case Results

3.1 Radiated Emission

Ambient Condition

Temperature	Relative humidity
15°C~35°C	30%~60%

Methods of Measurement

The EUT is placed on a non-metallic table 0.8m above the horizontal metal reference ground plane. The distance between EUT and receive antenna should be 3 meters. During the test, the EUT was operating in its typical mode. The test method is according to ANSI C63.4-2014. Sweep the whole frequency band through the range from 30MHz to the 5th harmonic of the carrier. During the test, the height of receive antenna shall be moved from 1 to 4 meters, and the antenna shall be performed under horizontal and vertical polarization. The turn table shall be rotated from 0 to 360 degrees for detecting the maximum of radiated signal level.

The data of cable loss and antenna factor has been calibrated in full testing frequency range before the testing. During the test, the EUT is worked at maximum output power.

Set the spectrum analyzer in the following:

Below 1GHz: RBW=100 kHz / VBW=300 kHz / Sweep=AUTO Above 1GHz:

- (a) PEAK Detector: RBW=1MHz / VBW=3MHz/ Sweep=AUTO
- (b) AVERAGE Detector: RBW=1MHz / VBW=3MHz / Sweep=AUTO

The radiated emission was measured in the following position: EUT stand-up position (Z axis), lie-down position (X, Y axis). The worst emission was found in lie-down position (X axis) and the worst case was recorded.

During the test, EUT is connected to a laptop via a USB cable in the case of Transfer Data mode. The EUT is used as the peripheral equipment of the PC. The data is transferred from EUT to PC; PC is connected to server via a long LAN cable.

EMC Test Report

Report No.: R2308A0899-E1

Test Setup

Below 1GHz

Above 1GHz

Note: Area side: 2.4mX3.6m

Antenna Tower meets ANSI C63.4 requirements for measurements above 1 GHz by keeping the antenna aimed at the EUT during the antenna's ascent/ descent along the antenna mast.

🔅 eurofins |

EMC Test Report

Limits

Class B

Frequency (MHz)	Field Strength (dBµV/m)	Detector
30 -88	40.0	Quasi-peak
88-216	43.5	Quasi-peak
216 – 960	46.0	Quasi-peak
960-1000	54.0	Quasi-peak
1000-5 th harmonic of the highest	54	Average
frequency or 40GHz, which is lower	74	Peak

Frequency range of radiated measurements

Highest frequency generated or used in the device or on which the device operates or tunes (MHz)	Upper frequency of measurement range (MHz)
Below 1.705	30
1.705-108	1000
108-500	2000
500-1000	5000
Above 1000	5th harmonic of the highest frequency or 40 GHz, whichever is lower.

Report No.: R2308A0899-E1

EMC Test Report

Test Results

Sweep the whole frequency band through the range from 30MHz to the 5th harmonic of the carrier.

The following graphs display the maximum values of horizontal and vertical by software. For above 1GHz, Blue trace uses the peak detection, Green trace uses the average detection. A symbol (dB V/) in the test plot below means ($^{dB}\mu$ V/m)

AOT is the worst case Adapter 1

Radiated Emission from 30MHz to 1GHz

Frequency (MHz)	Quasi-Peak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Polarization	Azimuth (deg)	Correct Factor (dB)
41.76	27.27	40.00	12.73	101.0	V	149.00	14
53.36	26.21	40.00	13.79	100.0	V	194.00	14
53.49	26.28	40.00	13.72	100.0	V	256.00	14
150.64	23.20	43.50	20.30	100.0	V	238.00	9
249.99	28.00	46.00	18.01	101.0	V	89.00	14
500.01	38.85	46.00	7.15	109.0	V	188.00	20

Remark: 1. Correction Factor = Antenna factor + Insertion loss(cable loss+amplifier gain) 2. Margin = Limit – Quasi-Peak

EMC Test Report

	Radiated Emission from 1GHz to 18GHz										
Frequency (MHz)	MaxPeak (dBµV/m)	Average (dBµV/m)	Limit (dB µ V/m)	Margin (dB)	Meas. Time (ms)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)		
1000.03		31.12	54.00	22.88	1000.00	200.0	V	314.00	-21		
1414.31	36.01		74.00	37.99	1000.00	100.0	Н	193.00	-19		
1628.47		23.09	54.00	30.91	1000.00	100.0	V	24.00	-19		
1632.60	50.20		74.00	23.80	1000.00	100.0	V	5.00	-19		
1747.12	50.52		74.00	23.48	1000.00	110.0	Н	250.00	-18		
1747.63		23.13	54.00	30.87	1000.00	100.0	Н	250.00	-18		
1964.88		24.39	54.00	29.61	1000.00	100.0	Н	324.00	-18		
2799.04		32.55	54.00	21.45	1000.00	100.0	Н	150.00	-15		
4223.79	41.46		74.00	32.54	1000.00	194.0	Н	10.00	-11		
6602.60		34.26	54.00	19.74	1000.00	199.0	V	305.00	-3		
6796.54	46.93		74.00	27.07	1000.00	110.0	Н	304.00	-3		
11003.95	54.55		74.00	19.45	1000.00	290.0	V	21.00	3		

EMC Test Report

Radiated Emission from 18GHz to 26.5GHz

Frequency (MHz)	MaxPeak (dBµV/m)	Average (dBµV/m)	Limit (dB µ V/m)	Margin (dB)	Meas. Time (ms)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
18524.875000	48.80		74.00	25.20	500.0	200.0	V	96.0	-5.8
18836.187500		36.51	54.00	17.49	500.0	200.0	V	61.0	-5.6
20397.000000	47.36		74.00	26.64	500.0	100.0	Н	59.0	-5.1
20530.875000		35.18	54.00	18.82	500.0	100.0	V	234.0	-5.1
21871.750000	47.95		74.00	26.05	05 500.0 200.0 V		V	81.0	-4.4
22009.875000		36.38	54.00	17.62	500.0	200.0	V	57.0	-4.2
23399.625000	47.94		74.00	26.06	500.0	200.0	V	86.0	-3.3
23472.937500		36.46	54.00	17.54	500.0	200.0	V	155.0	-3.1
24738.375000	49.49		74.00	24.51	500.0	200.0	V	28.0	-2.1
24907.312500		37.57	54.00	16.43	500.0	200.0	V	47.0	-2.4
25794.500000	48.05		74.00	25.95	500.0	200.0	V	106.0	-2.6
26005.937500		36.58	54.00	17.42	500.0	200.0	V	350.0	-2.5

TA

Radiated Emission from 26.5GHz to 40GHz

Frequency (MHz)	MaxPeak (dBµV/m)	Average (dBµV/m)	Limit (dB µ V/m)	Margin (dB)	Meas. Time (ms)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
28064.312500	50.06		74.00	23.94	500.0	100.0	Н	299.0	-0.4
28278.625000		38.46	54.00	15.54	500.0	100.0	Н	53.0	0.0
30232.750000		36.65	54.00	17.35	500.0	200.0	V	92.0	-0.4
30247.937500	48.92		74.00	25.08	500.0	200.0	Н	0.0	-0.4
32284.750000		38.65	54.00	15.35	500.0	100.0	Н	13.0	-1.2
32389.375000	50.19		74.00	23.81	500.0	100.0	Н	33.0	-1.1
34569.625000		40.64	54.00	13.36	500.0	100.0	Н	8.0	2.7
34578.062500	52.03		74.00	21.97	500.0	100.0	Н	132.0	2.8
35759.312500	52.11		74.00	21.89	500.0	100.0	Н	334.0	3.2
35786.312500		40.79	54.00	13.21	500.0	100.0	Н	162.0	3.2
37939.562500	52.96		74.00	21.04	500.0	200.0	Н	351.0	3.5
37961.500000		41.44	54.00	12.56	500.0	100.0	Н	73.0	3.6

Frequency (MHz)	Quasi-Peak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Polarization	Azimuth (deg)	Correct Factor (dB)
34.41	25.80	40.00	14.20	102.0	V	238.00	13
42.77	30.16	40.00	9.84	104.0	V	134.00	14
76.92	27.17	40.00	12.83	122.0	V	210.00	9
162.32	24.16	43.50	19.34	102.0	V	300.00	10
249.99	26.14	46.00	19.86	210.0	V	198.00	14
500.01	37.85	46.00	8.15	111.0	V	214.00	20

Remark: 1. Correction Factor = Antenna factor + Insertion loss(cable loss+amplifier gain) 2. Margin = Limit – Quasi-Peak

EMC Test Report

EMC Test Report

Frequency (MHz)	MaxPeak (dBµV/m)	Average (dBµV/m)	Limit (dB µ V/m)	Margin (dB)	Meas. Time (ms)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)		
1000.04		31.61	54.00	22.39	1000.00	293.0	V	10.00	-21		
1000.09	38.60		74.00	35.40	1000.00	293.0	V	10.00	-21		
1708.81	49.44		74.00	24.56	1000.00	103.0	Н	136.00	-18		
1709.78		27.24	54.00	26.76	1000.00	103.0	Н	127.00	-18		
1866.00		36.00	54.00	18.00	1000.00	103.0	Н	126.00	-18		
1866.46	41.26		74.00	32.74	1000.00	108.0	Н	126.00	-18		
2530.03		26.02	54.00	27.98	1000.00	190.0	V	353.00	-16		
4029.92	40.63		74.00	33.37	1000.00	210.0	Н	50.00	-12		
4236.75		28.65	54.00	25.35	1000.00	190.0	Н	43.00	-11		
6764.81		34.29	54.00	19.71	1000.00	110.0	Н	183.00	-3		
6813.09	46.46		74.00	27.54	1000.00	103.0	V	224.00	-3		
11083.49	54.43		74.00	19.57	1000.00	110.0	Н	325.00	3		

EMC Test Report

Radiated Emission from 18GHz to 26.5GHz

Frequency (MHz)	MaxPeak (dBµV/m)	Average (dBµV/m)	Limit (dB µ V/m)	Margin (dB)	Meas. Time (ms)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
19085.875000		37.39	54.00	16.61	500.0	200.0	Н	321.0	-5.7
19100.750000	48.80		74.00	25.20	500.0	200.0	V	119.0	-5.7
19569.312500	48.97		74.00	25.03	500.0	100.0	Н	158.0	-5.3
19571.437500		37.49	54.00	16.51	500.0	100.0	V	300.0	-5.3
20809.250000		35.86	54.00	18.14	500.0	200.0	Н	264.0	-5.1
20812.437500	47.57		74.00	26.43	500.0	100.0	V	315.0	-5.1
22086.375000		36.70	54.00	17.30	500.0	100.0	V	340.0	-4.1
22463.562500	49.18		74.00	24.82	500.0	200.0	Н	321.0	-4.0
23537.750000		36.36	54.00	17.64	500.0	200.0	Н	297.0	-2.9
24008.437500	49.18		74.00	24.82	500.0	100.0	V	227.0	-3.0
24854.187500		37.71	54.00	16.29	500.0	100.0	V	129.0	-2.3
25715.875000	49.07		74.00	24.93	500.0	200.0	Н	259.0	-2.6

EMC Test Report

Radiated Emission from 26.5GHz to 40GHz

Frequency (MHz)	MaxPeak (dBµV/m)	Average (dBµV/m)	Limit (dB µ V/m)	Margin (dB)	Meas. Time (ms)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
28101.437500	51.24		74.00	22.76	500.0	100.0	Н	72.0	-0.3
28276.937500		39.18	54.00	14.82	500.0	100.0	Н	0.0	0.0
30291.812500		37.77	54.00	16.23	500.0	200.0	V	80.0	-0.5
30355.937500	48.63		74.00	25.37	500.0	200.0	V	189.0	-0.6
32089.000000	50.88		74.00	23.12	500.0	200.0	Н	0.0	-1.3
32286.437500		39.47	54.00	14.53	500.0	100.0	Н	107.0	-1.2
34638.812500		41.15	54.00	12.85	500.0	100.0	Н	2.0	2.9
34729.937500	53.27		74.00	20.73	500.0	200.0	Н	203.0	3.0
35600.687500	52.91		74.00	21.09	500.0	100.0	Н	188.0	3.0
35761.000000		41.30	54.00	12.70	500.0	100.0	Н	203.0	3.2
37988.500000		41.76	54.00	12.24	500.0	200.0	V	219.0	3.6
38072.875000	53.41		74.00	20.59	500.0	200.0	Н	274.0	3.8

3.2 Conducted Emission

Ambient Condition

Temperature	Relative humidity
15°C~35°C	30%~60%

Methods of Measurement

The EUT is placed on a non-metallic table of 80cm height above the horizontal metal reference ground plane. During the test, the EUT was operating in its typical mode. The test method is according to ANSI C63.4-2014. Connect the AC power line of the EUT to the L.I.S.N. Use EMI receiver to detect the average and Quasi-peak value. RBW is set to 9 kHz, VBW is set to 30kHz. The measurement result should include both L line and N line.

During the test, EUT is connected to a laptop via a USB cable in the case of Transfer Data mode. The EUT is used as the peripheral equipment of the PC. The data is transferred from EUT to PC; PC is connected to server via a long LAN cable.

Test Setup

Note: Power Supply is AC Power source and it is used to change the voltage 120V/60Hz.

Limits

Frequency	Class A	(dBμV)	Class B (dBµV)			
(MHz)	Quasi-peak	Average	Quasi-peak	Average		
0.15 - 0.5	79	66	66 to 56 *	56 to 46*		
0.5 - 5	73	60	56	46		
5 - 30	73	60	60	50		
*: Decreases with the lo	ogarithm of the freq	uency.				

Note: The EUT should meet CLASS B limit.

EMC Test Report

Test Results

Following plots, Blue trace uses the peak detection; Green trace uses the average detection.

AOT is the worst case Adapter 1

Frequency (MHz)	QuasiPeak (dBµV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.16	53.28		65.40	12.12	1000.0	9.000	L1	ON	21.0
0.19		42.38	54.11	11.73	1000.0	9.000	L1	ON	21.1
0.45		40.17	46.93	6.76	1000.0	9.000	L1	ON	20.9
0.45	42.89		56.85	13.96	1000.0	9.000	L1	ON	20.9
1.22		20.69	46.00	25.31	1000.0	9.000	L1	ON	20.1
1.43	23.88		56.00	32.12	1000.0	9.000	L1	ON	19.9
4.45	30.63		56.00	25.37	1000.0	9.000	L1	ON	19.5
4.47		25.43	46.00	20.57	1000.0	9.000	L1	ON	19.5
5.13	30.39		60.00	29.61	1000.0	9.000	L1	ON	19.5
5.18		25.57	50.00	24.43	1000.0	9.000	L1	ON	19.5
13.09		22.41	50.00	27.59	1000.0	9.000	L1	ON	19.6
13.44	25.27		60.00	34.73	1000.0	9.000	L1	ON	19.6

Remark: Correct factor=cable loss + LISN factor

L line

Conducted Emission from 150 KHz to 30 MHz

Frequency (MHz)	QuasiPeak (dBµV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.16	53.75		65.28	11.53	1000.0	9.000	Ν	ON	21.0
0.19		42.06	54.11	12.05	1000.0	9.000	Ν	ON	21.1
0.45		37.51	46.93	9.42	1000.0	9.000	Ν	ON	20.9
0.45	40.67		56.93	16.26	1000.0	9.000	Ν	ON	20.9
0.89		19.70	46.00	26.30	1000.0	9.000	Ν	ON	20.3
1.98	19.28		56.00	36.72	1000.0	9.000	Ν	ON	19.7
4.66	29.63		56.00	26.37	1000.0	9.000	Ν	ON	19.5
4.91		25.40	46.00	20.60	1000.0	9.000	Ν	ON	19.5
5.16		25.38	50.00	24.62	1000.0	9.000	Ν	ON	19.5
6.18	28.91		60.00	31.09	1000.0	9.000	Ν	ON	19.5
12.65	29.51		60.00	30.49	1000.0	9.000	Ν	ON	19.6
12.85		25.92	50.00	24.08	1000.0	9.000	Ν	ON	19.6

Remark: Correct factor=cable loss + LISN factor

🛟 eurofins

TA

EMC Test Report

N line Conducted Emission from 150 KHz to 30 MHz

Frequency (MHz)	QuasiPeak (dBµV)	Average (dBμV)	Limit (dBµV)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.16	39.92		65.52	25.60	1000.0	9.000	L1	ON	21.0
0.35		22.42	49.01	26.59	1000.0	9.000	L1	ON	21.0
0.42	43.30		57.36	14.06	1000.0	9.000	L1	ON	20.9
0.42		42.64	47.36	4.72	1000.0	9.000	L1	ON	20.9
0.90		23.61	46.00	22.39	1000.0	9.000	L1	ON	20.3
1.78	20.45		56.00	35.55	1000.0	9.000	L1	ON	19.8
4.70		27.53	46.00	18.47	1000.0	9.000	L1	ON	19.5
5.00	33.72		56.00	22.28	1000.0	9.000	L1	ON	19.5
6.87		32.40	50.00	17.60	1000.0	9.000	L1	ON	19.5
6.88	38.08		60.00	21.92	1000.0	9.000	L1	ON	19.5
13.56	34.05		60.00	25.95	1000.0	9.000	L1	ON	19.6
13.88		29.35	50.00	20.65	1000.0	9.000	L1	ON	19.6

Remark: Correct factor=cable loss + LISN factor

L line Conducted Emission from 150 KHz to 30 MHz

EMC Test Report

Frequency (MHz)	QuasiPeak (dBµV)	Average (dBμV)	Limit (dBµV)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.15	40.94		65.88	24.94	1000.0	9.000	Ν	ON	21.0
0.29		22.40	50.60	28.20	1000.0	9.000	Ν	ON	21.0
0.42	43.99		57.36	13.37	1000.0	9.000	Ν	ON	20.9
0.42		42.31	47.36	5.05	1000.0	9.000	Ν	ON	20.9
0.89	28.90		56.00	27.10	1000.0	9.000	Ν	ON	20.3
0.90		24.03	46.00	21.97	1000.0	9.000	Ν	ON	20.3
4.96		25.34	46.00	20.66	1000.0	9.000	Ν	ON	19.5
4.99	33.51		56.00	22.49	1000.0	9.000	Ν	ON	19.5
7.77	39.87		60.00	20.13	1000.0	9.000	Ν	ON	19.5
8.40		34.11	50.00	15.89	1000.0	9.000	Ν	ON	19.5
14.44		27.72	50.00	22.28	1000.0	9.000	Ν	ON	19.6
14.83	32.95		60.00	27.05	1000.0	9.000	Ν	ON	19.6

Remark: Correct factor=cable loss + LISN factor

🛟 eurofins

EMC Test Report

N line Conducted Emission from 150 KHz to 30 MHz

4 Uncertainty Measurement

Case	Uncertainty	Factor k
Radiated Emission 30MHz – 200MHz	4.17 dB	1.96
Radiated Emission 200MHz – 1GHz	4.84 dB	1.96
Radiated Emission 1GHz – 18GHz	4.35 dB	1.96
Radiated Emission 18GHz – 26.5GHz	5.90 dB	1.96
Radiated Emission 26.5GHz – 40GHz	5.92 dB	1.96
Conducted Emission	2.57 dB	2

5 Main Test Instruments

Name of Equipment Manufacture		Type/Model	Serial Number	Calibration Date	Expiration Time			
Radiated Emission								
EMI Test Receiver	R&S	ESCI3	100948	2023-05-12	2024-05-11			
Signal Analyzer	R&S	FSV40	101298	2023-05-12	2024-05-11			
TRILOG Broadband Antenna	SCHWARZBECK	VULB 9163	01111	2022-10-25	2025-10-24			
Horn Antenna	Schwarzbeck	BBHA 9120D	430	2021-07-26	2024-07-25			
Horn Antenna	ETS-Lindgren	3160-09	00102643	2021-10-10	2024-10-09			
Horn Antenna	STEATITE	QSH-SL-26-40- K-15	16779	2023-01-17	2026-01-16			
Software	R&S	EMC32	9.26.01	/	/			
Conducted Emission								
Artificial main network	R&S	ENV216	102191	2022-12-13	2024-12-09			
EMI Test Receiver	R&S	ESR	101667	2023-05-12	2024-05-11			
Software	R&S	EMC32	10.35.10	/	/			

ANNEX A: The EUT Appearance

The EUT Appearance are submitted separately.

Report No.: R2308A0899-E1

ANNEX B: Test Setup Photos

The Test Setup Photos are submitted separately.

****** END OF REPORT ******