# Philips Oral Healthcare, Inc.

#### **TEST REPORT FOR**

Rechargeable Power Toothbrush with BLE Model: HX9120

**Tested To The Following Standards:** 

FCC Part 15 Subpart C Section(s)

15.207 & 15.247 (DTS 2400-2483.5 MHz)

Report No.: 98106-15

Date of issue: February 16, 2016



This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of EMC testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

This report contains a total of 54 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.



### **TABLE OF CONTENTS**

| Administrative Information                    | 3  |
|-----------------------------------------------|----|
| Test Report Information                       | 3  |
| Report Authorization                          | 3  |
| Test Facility Information                     | 4  |
| Software Versions                             | 4  |
| Site Registration & Accreditation Information | 4  |
| Summary of Results                            | 5  |
| Modifications During Testing                  | 5  |
| Conditions During Testing                     | 5  |
| Equipment Under Test                          | 6  |
| General Product Information                   | 7  |
| FCC Part 15 Subpart C                         | 8  |
| 15.247(a)(2) 6dB Bandwidth                    | 8  |
| 15.247(b)(3) Output Power                     | 12 |
| 15.247(e) Power Spectral Density              | 19 |
| 15.247(d) RF Conducted Emissions & Band Edge  | 22 |
| 15.247(d) Radiated Emissions & Band Edge      | 30 |
| 15.207 AC Conducted Emissions                 | 46 |
| Supplemental Information                      | 53 |
| Measurement Uncertainty                       | 53 |
| Emissions Test Details                        |    |



## **ADMINISTRATIVE INFORMATION**

## **Test Report Information**

REPORT PREPARED FOR: REPORT PREPARED BY:

Philips Oral Healthcare, Inc.

Terri Rayle

22100 Bothell-Everett Hwy

CKC Laboratories, Inc.

Bothell, WA 98021 5046 Sierra Pines Drive Mariposa, CA 95338

REPRESENTATIVE: Timothy Rand Project Number: 98106

Customer Reference Number: 2191827

**DATE OF EQUIPMENT RECEIPT:** February 4, 2016 **DATE(S) OF TESTING:** February 4-8, 2016

### **Report Authorization**

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the sample equipment tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm

Director of Quality Assurance & Engineering Services CKC Laboratories, Inc.

Stew 7 Be

Page 3 of 54 Report No.: 98106-15



# **Test Facility Information**



Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. 22116 23rd Drive S.E., Suite A Bothell, WA 98021-4413

### **Software Versions**

| CKC Laboratories Proprietary Software | Version |  |
|---------------------------------------|---------|--|
| EMITest Emissions                     | 5.03.00 |  |

# **Site Registration & Accreditation Information**

| Location | CB#    | TAIWAN         | CANADA  | FCC    | JAPAN  |
|----------|--------|----------------|---------|--------|--------|
| Bothell  | US0081 | SL2-IN-E-1145R | 3082C-1 | 318736 | A-0148 |

Page 4 of 54 Report No.: 98106-15



### **SUMMARY OF RESULTS**

### Standard / Specification: FCC Part 15 Subpart C - 15.247 (DTS)

| Test Procedure | Description                        | Modifications | Results |
|----------------|------------------------------------|---------------|---------|
| 15.247(a)(2)   | 6dB Bandwidth                      | NA            | Pass    |
| 15.247(b)(3)   | Output Power                       | NA            | Pass    |
| 15.247(e)      | Power Spectral Density             | NA            | Pass    |
| 15.247(d)      | RF Conducted Emissions & Band Edge | NA            | Pass    |
| 15.247(d)      | Radiated Emissions & Band Edge     | NA            | Pass    |
| 15.207         | AC Conducted Emissions             | NA            | Pass    |

NA = Not Applicable

### **Modifications During Testing**

This list is a summary of the modifications made to the equipment during testing.

### **Summary of Conditions**

No modifications were made during testing.

Modifications listed above must be incorporated into all production units.

### **Conditions During Testing**

This list is a summary of the conditions noted to the equipment during testing.

#### **Summary of Conditions**

Please Note: The dates referenced on the photos are of an incorrect format, please refer to the datasheets or table headers for the correct testing date when the photos were taken.

Page 5 of 54 Report No.: 98106-15



# **EQUIPMENT UNDER TEST (EUT)**

During testing numerous configurations may have been utilized. The configurations listed below support compliance to the standard(s) listed in the Summary of Results section.

### **Configuration 1**

| $E_{\ell}$ | nnin | ment | Tested  | • |
|------------|------|------|---------|---|
| Ly         | μuιμ | mem  | 1 esteu | • |

| Device              | Manufacturer                  | Model # | S/N   |
|---------------------|-------------------------------|---------|-------|
| Rechargeable Power  | Philips Oral Healthcare, Inc. | HX9120  | P-270 |
| Toothbrush with BLE |                               |         |       |

#### Support Equipment:

| Device | Manufacturer | Model # | S/N |  |
|--------|--------------|---------|-----|--|
| None   |              |         |     |  |

### **Configuration 2**

#### **Equipment Tested:**

| Device              | Manufacturer                  | Model # | S/N   |
|---------------------|-------------------------------|---------|-------|
| Rechargeable Power  | Philips Oral Healthcare, Inc. | HX9120  | P-328 |
| Toothbrush with BLE |                               |         |       |

#### Support Equipment:

| Device | Manufacturer | Model # | S/N |  |
|--------|--------------|---------|-----|--|
| None   |              |         |     |  |

### **Configuration 3**

#### **Equipment Tested:**

| Device              | Manufacturer                  | Model # | S/N   |
|---------------------|-------------------------------|---------|-------|
| Rechargeable Power  | Philips Oral Healthcare, Inc. | HX9120  | P-270 |
| Toothbrush with BLE |                               |         |       |
| Inductive Charger   | Philips Oral Healthcare, Inc. | HX6100  | NA    |

#### Support Equipment:

| Device | Manufacturer | Model # | S/N |
|--------|--------------|---------|-----|
| None   |              |         |     |

### **Configuration 4**

#### **Equipment Tested:**

| Device              | Manufacturer                  | Model # | S/N   |
|---------------------|-------------------------------|---------|-------|
| Inductive Charger   | Philips Oral Healthcare, Inc. | HX6100  | NA    |
| Rechargeable Power  | Philips Oral Healthcare, Inc. | HX9120  | P-328 |
| Toothbrush with BLE |                               |         |       |

#### Support Equipment:

| Device | Manufacturer | Model # | S/N |  |
|--------|--------------|---------|-----|--|
| None   |              |         |     |  |

Page 6 of 54 Report No.: 98106-15



# **General Product Information:**

| Product Information                | Manufacturer-Provided Details |
|------------------------------------|-------------------------------|
| Equipment Type:                    | Stand-Alone Equipment         |
| Type of Wideband System:           | 802.15.1                      |
| Operating Frequency Range:         | 2402-2480MHz                  |
| Modulation Type(s):                | GFSK 305kb/s                  |
| Maximum Duty Cycle:                | 63%                           |
| Number of TX Chains:               | 1                             |
| Antenna Type(s) and Gain:          | Inverted F antenna OdBi gain  |
| Beamforming Type:                  | NA                            |
| Antenna Connection Type:           | Integral                      |
| Nominal Input Voltage:             | Battery Li-Ion or 115V/60Hz   |
| Firmware / Software used for Test: | RealTerm 2.0.0.70             |

Page 7 of 54 Report No.: 98106-15

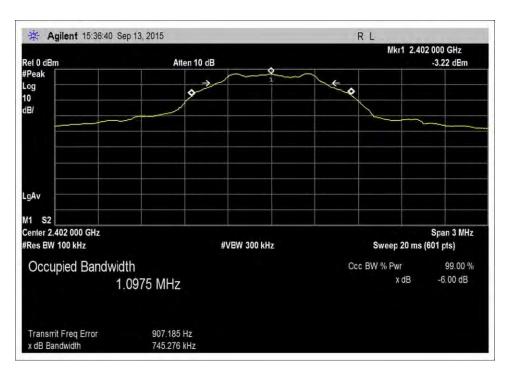


# FCC Part 15 Subpart C

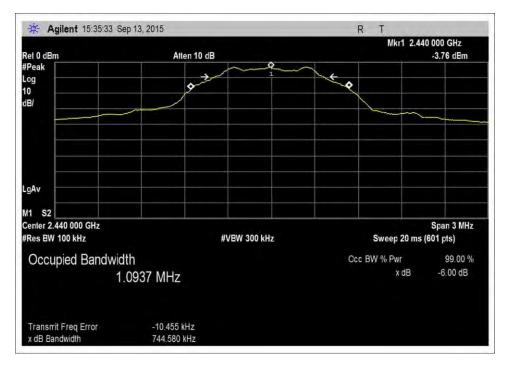
# 15.247(a)(2) 6dB Bandwidth

|                | Test Setup/Conditions                                               |                        |                                |  |  |  |
|----------------|---------------------------------------------------------------------|------------------------|--------------------------------|--|--|--|
| Test Location: | Bothell Lab C3                                                      | Test Engineer:         | S. Pittsford                   |  |  |  |
| Test Method:   | ANSI C63.10 (2013), KDB 558074                                      | Test Date(s):          | 2/4/2016                       |  |  |  |
|                | D01 DTS Meas Guidance v03r04,                                       |                        |                                |  |  |  |
|                | January 7, 2016                                                     |                        |                                |  |  |  |
| Configuration: | 1                                                                   |                        |                                |  |  |  |
| Test Setup:    | Frequency Range: 2402-2480MHz                                       |                        |                                |  |  |  |
|                | Frequency tested: 2402MHz, 2440                                     | MHz and 2480MHz        |                                |  |  |  |
|                | Firmware power setting: Max                                         |                        |                                |  |  |  |
|                | Software: RealTerm 2.0.0.70                                         |                        |                                |  |  |  |
|                | Protocol /MCS/Modulation: BLE                                       |                        |                                |  |  |  |
|                | Antenna type: Integral Inverted F antenna<br>Antenna Gain: 0.0 dBi. |                        |                                |  |  |  |
|                | Duty Cycle: 63%                                                     |                        |                                |  |  |  |
|                | Test Mode: Continuously transmit                                    | ting on low, mid and h | nigh channels                  |  |  |  |
|                | Test Setup: EUT is transmitting thr                                 | ough a temporary ant   | enna connector and is attached |  |  |  |
|                | directly to the spectrum analyzer.                                  | EUT is tested at nomin | nal voltage and +/-15% nominal |  |  |  |
|                | voltage.                                                            |                        |                                |  |  |  |

| Environmental Conditions |                                               |  |  |  |  |  |  |
|--------------------------|-----------------------------------------------|--|--|--|--|--|--|
| Temperature (ºC)         | Temperature (°C) 21 Relative Humidity (%): 32 |  |  |  |  |  |  |

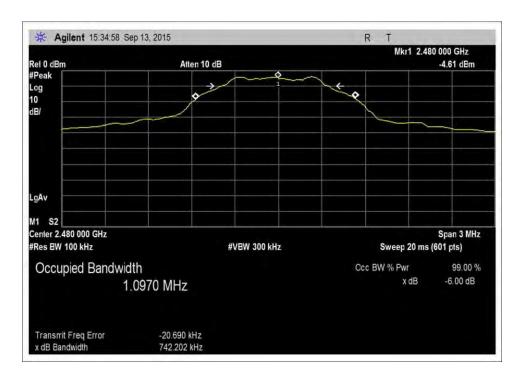

| Test Equipment |                   |              |        |            |            |  |
|----------------|-------------------|--------------|--------|------------|------------|--|
| Asset#         | Description       | Manufacturer | Model  | Cal Date   | Cal Due    |  |
| 02872          | Spectrum Analyzer | Agilent      | E4440A | 11/18/2015 | 11/18/2017 |  |
|                |                   |              |        |            |            |  |

|                    | Test Data Summary |            |                   |                |         |  |  |
|--------------------|-------------------|------------|-------------------|----------------|---------|--|--|
| Frequency<br>(MHz) | Antenna<br>Port   | Modulation | Measured<br>(kHz) | Limit<br>(kHz) | Results |  |  |
| 2402               | 1                 | GSFK       | 745.3             | ≥500           | Pass    |  |  |
| 2440               | 1                 | GSFK       | 744.6             | ≥500           | Pass    |  |  |
| 2480               | 1                 | GSFK       | 742.2             | ≥500           | Pass    |  |  |


Page 8 of 54 Report No.: 98106-15



#### **Plots**




#### Low Channel



Middle Channel





High Channel



# **Test Setup Photo**



Page 11 of 54 Report No.: 98106-15



# 15.247(b)(3) Output Power

| Test Setup/Conditions |                                                                                                                                                                                           |                 |              |  |  |  |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|--|--|--|
| Test Location:        | Bothell Lab C3                                                                                                                                                                            | Test Engineer:  | S. Pittsford |  |  |  |
| Test Method:          | ANSI C63.10 (2013), KDB 558074                                                                                                                                                            | Test Date(s):   | 2/4/2016     |  |  |  |
|                       | D01 DTS Meas Guidance v03r04,                                                                                                                                                             |                 |              |  |  |  |
|                       | January 7, 2016                                                                                                                                                                           |                 |              |  |  |  |
| Configuration:        | 4                                                                                                                                                                                         |                 |              |  |  |  |
| Test Setup:           | Frequency Range: 2402-2480MHz                                                                                                                                                             |                 |              |  |  |  |
|                       | Frequency tested: 2402MHz, 2440                                                                                                                                                           | MHz and 2480MHz |              |  |  |  |
|                       | Firmware power setting: Max                                                                                                                                                               |                 |              |  |  |  |
|                       | Software: RealTerm 2.0.0.70                                                                                                                                                               |                 |              |  |  |  |
|                       | Protocol /MCS/Modulation: BLE                                                                                                                                                             |                 |              |  |  |  |
|                       | Antenna type: Integral Inverted F antenna<br>Antenna Gain: 0.0 dBi.                                                                                                                       |                 |              |  |  |  |
|                       | Duty Cycle: 63%                                                                                                                                                                           |                 |              |  |  |  |
|                       | Test Mode: Continuously transmitting on low, mid and high channels                                                                                                                        |                 |              |  |  |  |
|                       | Test Setup: The EUT is transmitting through a temporary antenna connector and is attached directly to the spectrum analyzer. EUT is tested at nominal voltage and +/-15% nominal voltage. |                 |              |  |  |  |

| Environmental Conditions |    |                        |    |  |  |
|--------------------------|----|------------------------|----|--|--|
| Temperature (ºC)         | 21 | Relative Humidity (%): | 32 |  |  |

| Test Equipment   |                   |              |        |            |            |  |
|------------------|-------------------|--------------|--------|------------|------------|--|
| Asset# / Serial# | Description       | Manufacturer | Model  | Cal Date   | Cal Due    |  |
| 02872            | Spectrum Analyzer | Agilent      | E4440A | 11/18/2015 | 11/18/2017 |  |
|                  |                   |              |        |            |            |  |

| Test Data Summary - Voltage Variations |                                              |       |       |       |      |  |
|----------------------------------------|----------------------------------------------|-------|-------|-------|------|--|
| Frequency<br>(MHz)                     | Max Deviation from V <sub>Nominal</sub> (dB) |       |       |       |      |  |
| 2402                                   | GSFK                                         | -2.27 | -2.24 | -2.26 | 0.03 |  |
| 2440                                   | GSFK                                         | -2.76 | -2.73 | -2.74 | 0.03 |  |
| 2480                                   | GSFK                                         | -3.26 | -3.27 | -3.26 | 0.01 |  |

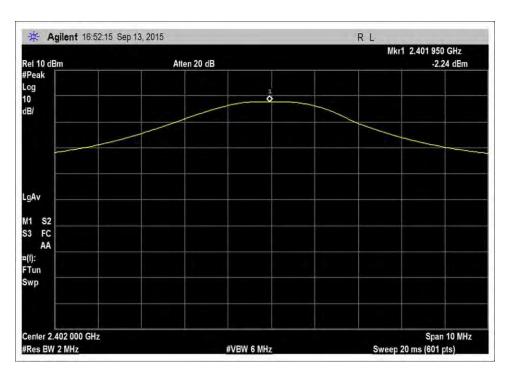
Test performed using operational mode with the highest output power, representing worst case.

## **Parameter Definitions:**

Measurements performed at input voltage Vnominal ± 15%.

| Parameter              | Value     |
|------------------------|-----------|
| V <sub>Nominal</sub> : | 115V/60Hz |
| V <sub>Minimum</sub> : | 97V/60Hz  |
| V <sub>Maximum</sub> : | 133V/60Hz |

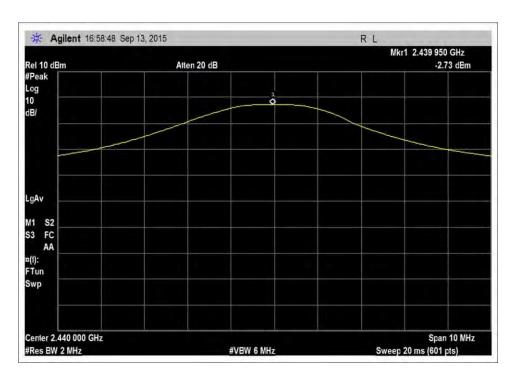
Page 12 of 54 Report No.: 98106-15



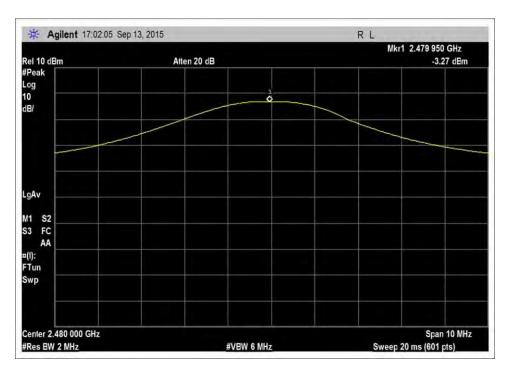

|                    | Test Data Summary - RF Conducted Measurement |         |       |     |      |  |  |
|--------------------|----------------------------------------------|---------|-------|-----|------|--|--|
| Measuremen         | t Option: RBW > DTS Ba                       | ndwidth |       |     |      |  |  |
| Frequency<br>(MHz) |                                              |         |       |     |      |  |  |
| 2402               | GSFK                                         | 0       | -2.24 | ≤30 | Pass |  |  |
| 2440               | GSFK                                         | 0       | -2.73 | ≤30 | Pass |  |  |
| 2480               | GSFK                                         | 0       | -3.26 | ≤30 | Pass |  |  |

For fixed point-to-point antennas, the limit is calculated in accordance with 15.247(c)(1):  $Limit = 30 - Roundup\left(\frac{G-6}{3}\right)$ 

For directional beamforming antennas, the limit is calculated in accordance with 15.247(c)(2) and KDB 662911.

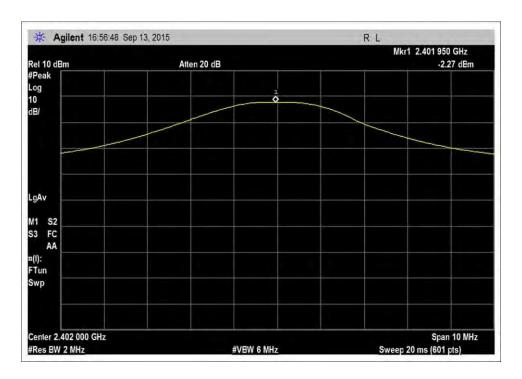

### **Plots**



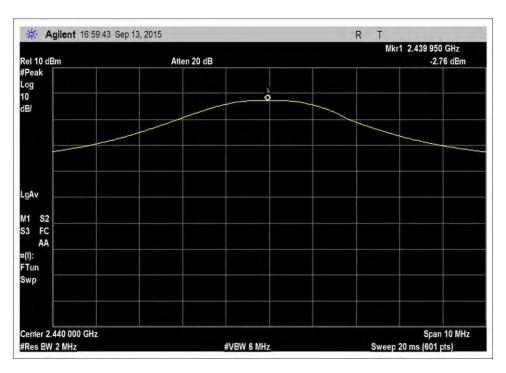

Max Power Low Vnom

Page 13 of 54 Report No.: 98106-15



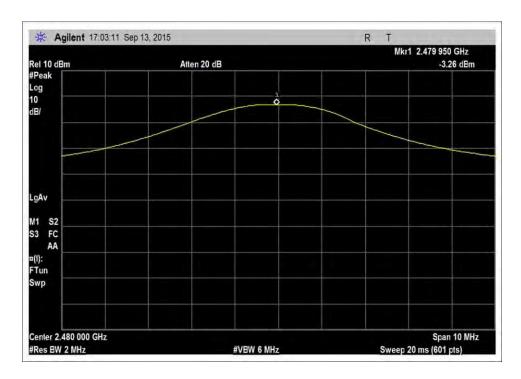



Max Power Mid Vnom

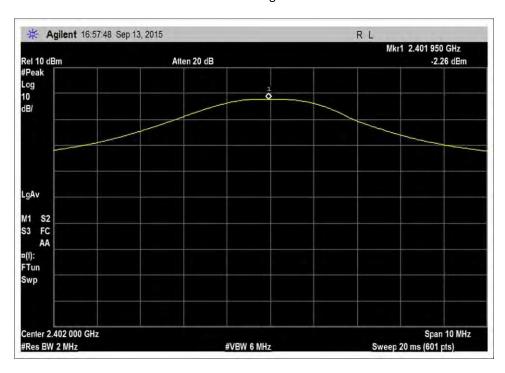



Max Power High Vnom



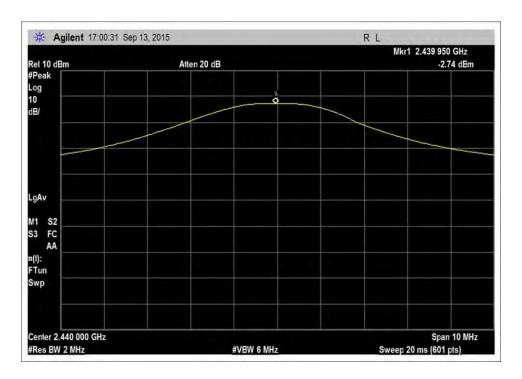



Max Power Low Vmin

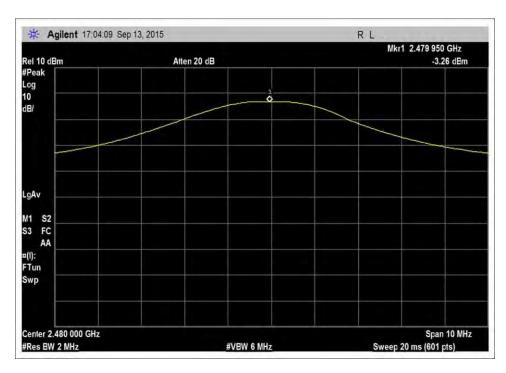



Max Power Mid Vmin






Max Power High Vmin




Max Power Low Vmax





Max Power Mid Vmax



Max Power High Vmax



## **Test Setup Photo**



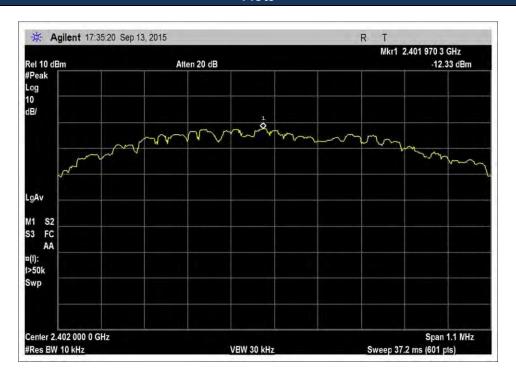
Page 18 of 54 Report No.: 98106-15



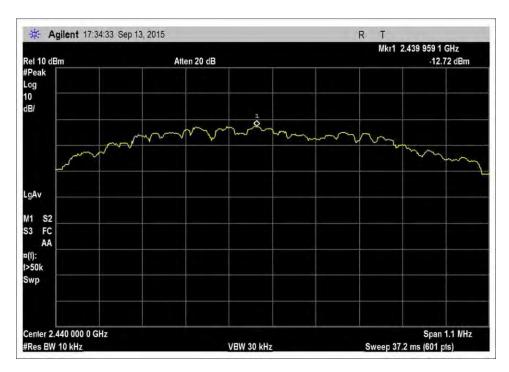
# 15.247(e) Power Spectral Density

|                | Test Setup/Conditions                                                                                                                                                                     |                        |               |  |  |  |  |  |  |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------|--|--|--|--|--|--|
| Test Location: | Bothell Lab C3                                                                                                                                                                            | Test Engineer:         | S. Pittsford  |  |  |  |  |  |  |
| Test Method:   | ANSI C63.10 (2013), KDB 558074                                                                                                                                                            | Test Date(s):          | 2/4/2016      |  |  |  |  |  |  |
|                | D01 DTS Meas Guidance v03r04,                                                                                                                                                             |                        |               |  |  |  |  |  |  |
|                | January 7, 2016                                                                                                                                                                           |                        |               |  |  |  |  |  |  |
| Configuration: | 1                                                                                                                                                                                         |                        |               |  |  |  |  |  |  |
| Test Setup:    | Frequency Range: 2402-2480MHz                                                                                                                                                             |                        |               |  |  |  |  |  |  |
|                | Frequency tested: 2402MHz, 2440MHz and 2480MHz                                                                                                                                            |                        |               |  |  |  |  |  |  |
|                | Firmware power setting: Max                                                                                                                                                               |                        |               |  |  |  |  |  |  |
|                | Software: RealTerm 2.0.0.70                                                                                                                                                               |                        |               |  |  |  |  |  |  |
|                | Protocol /MCS/Modulation: BLE                                                                                                                                                             |                        |               |  |  |  |  |  |  |
|                | Antenna type: Integral Inverted F antenna Antenna Gain: 0.0 dBi.                                                                                                                          |                        |               |  |  |  |  |  |  |
|                | Duty Cycle: 63%                                                                                                                                                                           |                        |               |  |  |  |  |  |  |
|                | Test Mode: Continuously transmit                                                                                                                                                          | ting on low, mid and h | nigh channels |  |  |  |  |  |  |
|                | Test Setup: The EUT is transmitting through a temporary antenna connector and is attached directly to the spectrum analyzer. EUT is tested at nominal voltage and +/-15% nominal voltage. |                        |               |  |  |  |  |  |  |

|                  | Environm | ental Conditions       |    |
|------------------|----------|------------------------|----|
| Temperature (ºC) | 22       | Relative Humidity (%): | 32 |

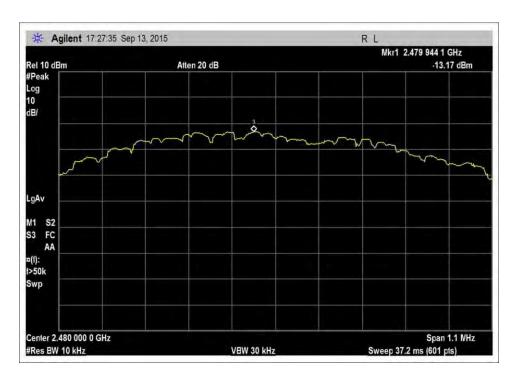

| Test Equipment |                   |              |        |            |            |  |  |  |  |
|----------------|-------------------|--------------|--------|------------|------------|--|--|--|--|
| Asset#         | Description       | Manufacturer | Model  | Cal Date   | Cal Due    |  |  |  |  |
| 02872          | Spectrum Analyzer | Agilent      | E4440A | 11/18/2015 | 11/18/2017 |  |  |  |  |
|                |                   |              |        |            |            |  |  |  |  |

|                    | Test Data Summary - RF Conducted Measurement |                         |                     |         |  |  |  |  |  |  |
|--------------------|----------------------------------------------|-------------------------|---------------------|---------|--|--|--|--|--|--|
| Measurement M      | Measurement Method: PKPSD                    |                         |                     |         |  |  |  |  |  |  |
| Frequency<br>(MHz) | Modulation                                   | Measured<br>(dBm/10kHz) | Limit<br>(dBm/3kHz) | Results |  |  |  |  |  |  |
| 2402               | GSFK                                         | -12.33                  | ≤8                  | Pass    |  |  |  |  |  |  |
| 2440               | GSFK                                         | -12.72                  | ≤8                  | Pass    |  |  |  |  |  |  |
| 2480               | GSFK                                         | -13.17                  | ≤8                  | Pass    |  |  |  |  |  |  |


Page 19 of 54 Report No.: 98106-15



#### **Plots**




#### Low Channel



Middle Channel





High Channel

# **Test Setup Photo**





## 15.247(d) RF Conducted Emissions & Band Edge

#### **Test Setup / Conditions / Data**

Test Location: CKC Laboratories, Inc. • 22116 23rd Dr. SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: Philips Oral Healthcare, Inc.

Specification: 15.247(d) Conducted Spurious Emissions

Work Order #: 98106 Date: 2/4/2016
Test Type: Conducted Emissions Time: 13:54:33
Tested By: Steven Pittsford Sequence#: 2

Software: EMITest 5.03.00 120V 60Hz

**Equipment Tested:** 

Device Manufacturer Model # S/N
Configuration 1

Support Equipment:

Device Manufacturer Model # S/N
Configuration 1

#### Test Conditions / Notes:

Frequency Range: 9k-25GHz

Frequency tested: 2402MHz, 2440MHz and 2480MHz

Firmware power setting: Max Software: RealTerm 2.0.0.70 Protocol /MCS/Modulation: BLE

ANSI C63.10 (2013) KDB 558074 D01 DTS Meas Guidance v03r04, January 7, 2016

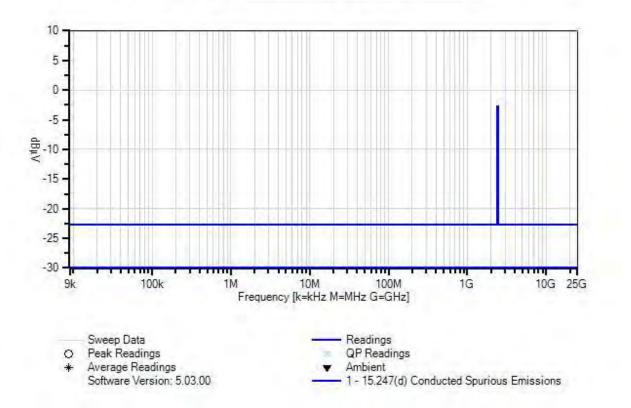
Antenna type: Integral Inverted F antenna

Antenna Gain: 0.0 dBi.

Duty Cycle: 63%

Test Mode: Continuously transmitting on low, mid and high channels

Test Setup: the EUT is transmitting through a temporary antenna connector and is attached directly to the spectrum


analyzer. Emissions for EUT off the charger represents emissions for both on and off charger.

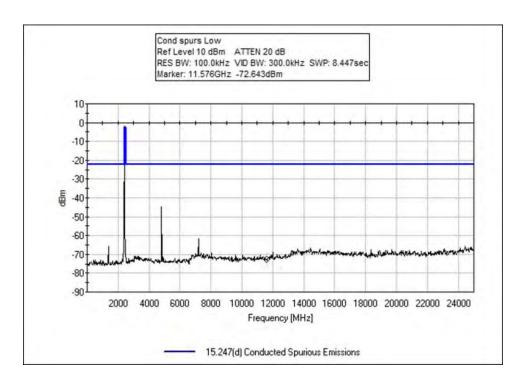
The EUTs battery is fully charged.

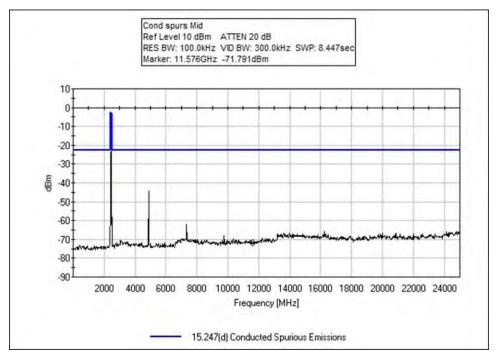
Page 22 of 54 Report No.: 98106-15



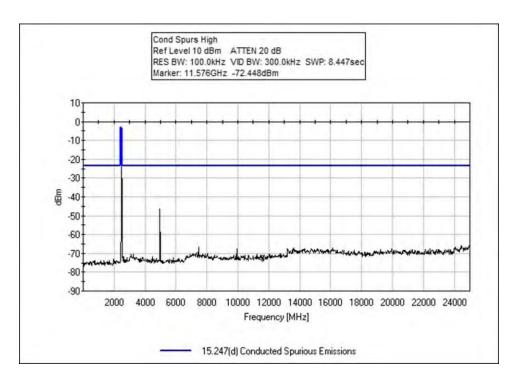
Philips Oral Healthcare, Inc. WO#: 98106 Sequence#: 2 Date: 2/4/2016 15.247(d) Conducted Spurious Emissions Test Lead: 120V 60Hz Ant




### Test Equipment:


| ID | Asset #/Serial # | Description       | Model  | <b>Calibration Date</b> | Cal Due Date |
|----|------------------|-------------------|--------|-------------------------|--------------|
|    | AN02872          | Spectrum Analyzer | E4440A | 11/18/2015              | 11/18/2017   |

Page 23 of 54 Report No.: 98106-15




#### **Plots**











|                    | Band Edge Summary                       |                   |                |         |  |  |  |  |  |
|--------------------|-----------------------------------------|-------------------|----------------|---------|--|--|--|--|--|
| Limit applied:     | Limit applied: Max Power/100kHz - 20dB. |                   |                |         |  |  |  |  |  |
| Frequency<br>(MHz) | Modulation                              | Measured<br>(dBm) | Limit<br>(dBm) | Results |  |  |  |  |  |
| 2400.0             | GSFK                                    | -38.9             | <-22.2         | Pass    |  |  |  |  |  |
| 2483.5             | GSFK                                    | -46.3             | <-23.3         | Pass    |  |  |  |  |  |

#### **Band Edge Setup / Data**

Test Location: CKC Laboratories, Inc. • 22116 23rd Dr. SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: Philips Oral Healthcare, Inc.

Specification: 15.247(d) Conducted Spurious Emissions

Work Order #: 98106 Date: 2/4/2016
Test Type: Conducted Emissions Time: 13:54:33
Tested By: Steven Pittsford Sequence#: 2

Tested By: Steven Pittsford Sequence#: 2
Software: EMITest 5.03.00 Sequence#: 120V 60Hz

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 1

Support Equipment:

| Device          | Manufacturer | Model # | S/N |  |
|-----------------|--------------|---------|-----|--|
| Configuration 1 |              |         |     |  |

#### Test Conditions / Notes:

Frequency tested: 2402MHz and 2480MHz

Firmware power setting: Max Software: RealTerm 2.0.0.70 Protocol /MCS/Modulation: BLE

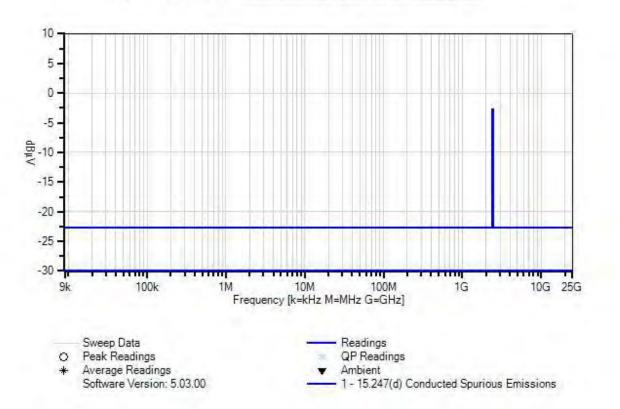
Antenna type: Integral Inverted F antenna

Antenna Gain: 0.0 dBi.

Duty Cycle: 63%

Test Mode: Continuously transmitting on low and high channels

Test Setup: EUT is transmitting through a temporary antenna connector and is attached directly to the spectrum


analyzer.

Emissions for EUT off the charger represents emissions for both on and off charger.

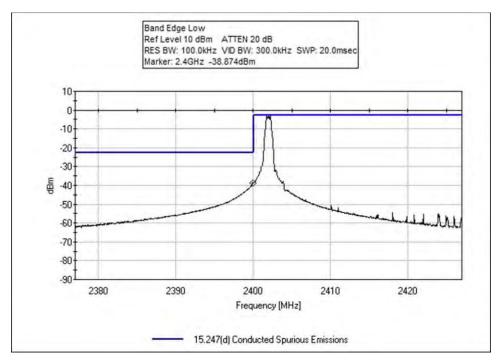
Page 26 of 54 Report No.: 98106-15

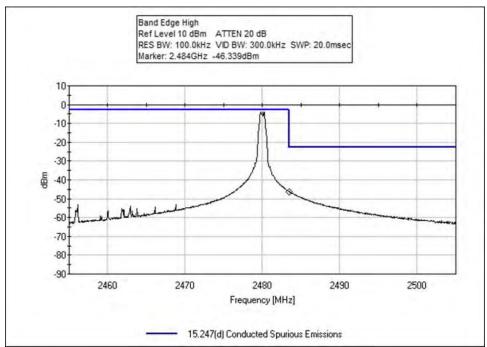


Philips Oral Healthcare, Inc. WO#: 98106 Sequence#: 2 Date: 2/4/2016 15.247(d) Conducted Spurious Emissions Test Lead: 120V 60Hz Ant



#### Test Equipment:


| ID | Asset #/Serial # | Description       | Model  | <b>Calibration Date</b> | Cal Due Date |  |
|----|------------------|-------------------|--------|-------------------------|--------------|--|
|    | AN02872          | Spectrum Analyzer | E4440A | 11/18/2015              | 11/18/2017   |  |


| Measi | urement Data: | Re        | eading l | listed by ma | argin. | Test Lead: Ant |       |           |           |        |       |
|-------|---------------|-----------|----------|--------------|--------|----------------|-------|-----------|-----------|--------|-------|
| #     | Freq          | Rdng      |          |              |        |                | Dist  | Corr      | Spec      | Margin | Polar |
|       | MHz           | $dB\mu V$ | dB       | dB           | dB     | dB             | Table | $dB\mu V$ | $dB\mu V$ | dB     | Ant   |
| 1     | 2400.000M     | -38.9     |          |              |        |                | +0.0  | -38.9     | -22.7     | -16.2  | Ant   |
| 2     | 2483.500M     | -46.3     |          |              |        |                | +0.0  | -46.3     | -22.7     | -23.6  | Ant   |

Page 27 of 54 Report No.: 98106-15



# Band Edge Plots







# **Test Setup Photo**



Page 29 of 54 Report No.: 98106-15



# 15.247(d) Radiated Emissions & Band Edge

#### Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 22116 23rd Dr. SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: **Philips Oral Healthcare, Inc.** 

Specification: 15.247(d) / 15.209 Radiated Spurs (AVG for BE)

Work Order #: 98106 Date: 2/8/2016
Test Type: Radiated Scan Time: 13:10:45
Tested By: Steven Pittsford Sequence#: 6

Software: EMITest 5.03.00

**Equipment Tested:** 

Device Manufacturer Model # S/N
Configuration 2

Support Equipment:

Device Manufacturer Model # S/N
Configuration 2

Test Conditions / Notes:

Frequency Range: 9k-25GHz

Frequency tested: 2402MHz, 2440MHz and 2480MHz

Firmware power setting: Max Software: RealTerm 2.0.0.70 Protocol /MCS/Modulation: BLE

Antenna type: Integral Inverted F antenna

Antenna Gain: 0.0 dBi.

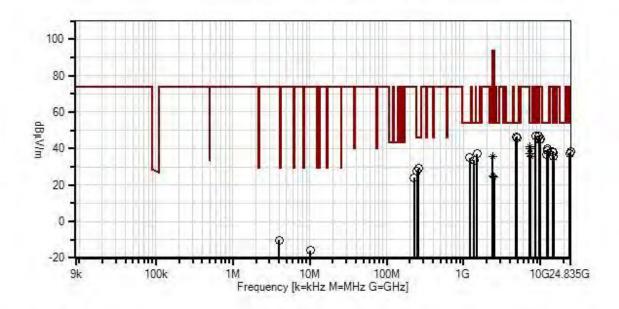
Duty Cycle: 63%

ANSI C63.10 (2013) KDB 558074 D01 DTS Meas Guidance v03r04, January 7, 2016

Test Mode: Continuously transmitting on low, mid and high channels

Test Setup: The EUT is set on a Styrofoam test bench inside the semi-anechoic chamber.

The EUT is tested in X, Y & Z orientations. Only the worst case is reported.


Emissions for EUT off the charger represents emissions for both on and off charger.

The EUTs battery is fully charged.

Page 30 of 54 Report No.: 98106-15



Philips Oral Healthcare, Inc. WO#: 98106 Sequence#: 6 Date: 2/8/2016 15.247(d) / 15.209 Radiated Spurs (AVG for BE) Test Distance: 3 Meters Horiz



Readings QP Readings

Ambient 1 - 15.247(d) / 15.209 Radiated Spurs (AVG for BE)

O Peak Readings \* Average Readings Software Version: 5.03.00



### Test Equipment:

| ID  | Asset #/Serial # | Description                                | Model                           | Calibration Date | Cal Due Date |
|-----|------------------|--------------------------------------------|---------------------------------|------------------|--------------|
| T1  | AN02872          | Spectrum Analyzer                          | E4440A                          | 11/18/2015       | 11/18/2017   |
| T2  | AN00052          | Loop Antenna                               | 6502                            | 5/20/2014        | 5/20/2016    |
| T3  | ANP05305         | Cable                                      | ETSI-50T                        | 2/20/2014        | 2/20/2016    |
| T4  | ANP06540         | Cable                                      | Heliax                          | 10/29/2015       | 10/29/2017   |
| T5  | AN03540          | Preamp                                     | 83017A                          | 4/30/2015        | 4/30/2017    |
| Т6  | AN01467          | Horn Antenna-<br>ANSI C63.5<br>Calibration | 3115                            | 8/12/2015        | 8/12/2017    |
| T7  | AN02741          | Active Horn<br>Antenna                     | AMFW-5F-<br>12001800-20-<br>10P | 1/14/2015        | 1/14/2017    |
| T8  | AN02742          | Active Horn<br>Antenna                     | AMFW-5F-<br>18002650-20-<br>10P | 1/14/2015        | 1/14/2017    |
| T9  | AN02763-69       | Waveguide                                  | Multiple                        | 5/21/2014        | 5/21/2016    |
| T10 | AN03122          | Cable                                      | 32026-2-29801-<br>36            | 5/13/2014        | 5/13/2016    |
| T11 | ANP06678         | Cable                                      | 32026-29801-<br>29801-144       | 9/18/2014        | 9/18/2016    |
| T12 | AN02307          | Preamp                                     | 8447D                           | 3/14/2014        | 3/14/2016    |
| T13 | AN01996          | Biconilog Antenna                          | CBL6111C                        | 7/16/2014        | 7/16/2016    |
| T14 | ANP05360         | Cable                                      | RG214                           | 12/1/2014        | 12/1/2016    |
| T15 | ANP05963         | Cable                                      | RG-214                          | 2/21/2014        | 2/21/2016    |

| Measi | irement Data: | R    | eading lis | ted by ma | argin. |      | Те    | est Distanc | e: 3 Meters |        |       |
|-------|---------------|------|------------|-----------|--------|------|-------|-------------|-------------|--------|-------|
| #     | Freq          | Rdng | T1         | T2        | Т3     | T4   | Dist  | Corr        | Spec        | Margin | Polar |
|       |               |      | T5         | T6        | T7     | T8   |       |             |             |        |       |
|       |               |      | Т9         | T10       | T11    | T12  |       |             |             |        |       |
|       |               |      | T13        | T14       | T15    |      |       |             |             |        |       |
|       | MHz           | dΒμV | dB         | dB        | dB     | dB   | Table | $dB\mu V/m$ | $dB\mu V/m$ | dB     | Ant   |
| 1     | 4879.350M     | 43.1 | +0.0       | +0.0      | +3.9   | +0.9 | +0.0  | 46.4        | 54.0        | -7.6   | Horiz |
|       |               |      | -34.2      | +32.7     | +0.0   | +0.0 |       |             | Mid         |        |       |
|       |               |      | +0.0       | +0.0      | +0.0   | +0.0 |       |             |             |        |       |
|       |               |      | +0.0       | +0.0      | +0.0   |      |       |             |             |        |       |
| 2     | 4804.694M     | 42.9 | +0.0       | +0.0      | +3.8   | +0.9 | +0.0  | 46.1        | 54.0        | -7.9   | Horiz |
|       |               |      | -34.2      | +32.7     | +0.0   | +0.0 |       |             | Low         |        |       |
|       |               |      | +0.0       | +0.0      | +0.0   | +0.0 |       |             |             |        |       |
|       |               |      | +0.0       | +0.0      | +0.0   |      |       |             |             |        |       |
| 3     | 4959.825M     | 42.1 | +0.0       | +0.0      | +4.0   | +0.9 | +0.0  | 45.6        | 54.0        | -8.4   | Horiz |
|       |               |      | -34.2      | +32.8     | +0.0   | +0.0 |       |             | High        |        |       |
|       |               |      | +0.0       | +0.0      | +0.0   | +0.0 |       |             |             |        |       |
|       |               |      | +0.0       | +0.0      | +0.0   |      |       |             |             |        |       |
| 4     | 7319.339M     | 33.3 | +0.0       | +0.0      | +4.8   | +1.2 | +0.0  | 40.8        | 54.0        | -13.2  | Horiz |
|       | Ave           |      | -34.6      | +36.1     | +0.0   | +0.0 |       |             | Mid         |        |       |
|       |               |      | +0.0       | +0.0      | +0.0   | +0.0 |       |             |             |        |       |
|       |               |      | +0.0       | +0.0      | +0.0   |      |       |             |             |        |       |

Page 32 of 54 Report No.: 98106-15



| 5   | 12401.390    | 44.5 | +0.0      | +0.0          | +7.1        | +1.6        | +0.0        | 39.9 | 54.0        | -14.1 | Horiz        |
|-----|--------------|------|-----------|---------------|-------------|-------------|-------------|------|-------------|-------|--------------|
| 3   | M            | 44.3 | +0.0      | +0.0          | -13.3       | +0.0        | 10.0        | 39.9 | 34.0        | -14.1 | 110112       |
|     | 141          |      | +0.0      | +0.0          | +0.0        | +0.0        | 254         |      | High        |       | 192          |
|     |              |      | +0.0      | +0.0          | +0.0        | . 0.0       | 20.         |      | 111511      |       | 1,2          |
| 6   | 12198.770    | 43.9 | +0.0      | +0.0          | +7.0        | +1.5        | +0.0        | 39.0 | 54.0        | -15.0 | Horiz        |
|     | M            |      | +0.0      | +0.0          | -13.4       | +0.0        |             |      |             |       |              |
|     |              |      | +0.0      | +0.0          | +0.0        | +0.0        |             |      | Mid         |       | 192          |
|     |              |      | +0.0      | +0.0          | +0.0        |             |             |      |             |       |              |
| 7   | 7319.288M    | 30.0 | +0.0      | +0.0          | +4.8        | +1.2        | +0.0        | 37.5 | 54.0        | -16.5 | Horiz        |
|     | Ave          |      | -34.6     | +36.1         | +0.0        | +0.0        |             |      | Mid         |       |              |
|     |              |      | +0.0      | +0.0          | +0.0        | +0.0        |             |      |             |       |              |
|     |              |      | +0.0      | +0.0          | +0.0        |             |             |      |             |       |              |
| ^   | 7319.300M    | 44.4 | +0.0      | +0.0          | +4.8        | +1.2        | +0.0        | 51.9 | 54.0        | -2.1  | Horiz        |
|     |              |      | -34.6     | +36.1         | +0.0        | +0.0        |             |      | Mid         |       |              |
|     |              |      | +0.0      | +0.0          | +0.0        | +0.0        |             |      |             |       |              |
|     | 1.405.00005  | 44.0 | +0.0      | +0.0          | +0.0        |             | . 0. 0      | 2= 2 | <b>5.1.</b> | 1.50  | ** .         |
| 9   | 1495.000M    | 44.9 | +0.0      | +0.0          | +2.1        | +0.5        | +0.0        | 37.2 | 54.0        | -16.8 | Horiz        |
|     |              |      | -35.6     | +25.3         | +0.0        | +0.0        |             |      |             |       |              |
|     |              |      | +0.0      | +0.0          | +0.0        | +0.0        |             |      |             |       |              |
| 10  | 260.700M     | 41.5 | +0.0      | +0.0          | +0.0        | +0.2        | +0.0        | 29.2 | 46.0        | -16.8 | Howin        |
| 10  | 200.700M     | 41.5 | +0.0 +0.0 | +0.0 +0.0     | +0.0 +0.0   | +0.2 $+0.0$ | +0.0<br>229 | 29.2 | 46.0        | -10.8 | Horiz<br>147 |
|     |              |      | +0.0      | +0.0 +0.0     | +0.0 +0.0   | -27.1       | 229         |      |             |       | 14/          |
|     |              |      | +12.9     | +1.0          | +0.7        | -27.1       |             |      |             |       |              |
| 11  | 12011.420    | 41.5 | +0.0      | +0.0          | +6.8        | +1.5        | +0.0        | 36.7 | 54.0        | -17.3 | Horiz        |
| 11  | M            | 41.5 | +0.0      | +0.0          | -13.1       | +0.0        | 10.0        | 30.7 | 54.0        | 17.5  | HOHZ         |
|     | 1.1          |      | +0.0      | +0.0          | +0.0        | +0.0        | 360         |      | Low         |       | 197          |
|     |              |      | +0.0      | +0.0          | +0.0        |             |             |      |             |       |              |
| 12  | 7441.050M    | 27.9 | +0.0      | +0.0          | +4.7        | +1.3        | +0.0        | 35.8 | 54.0        | -18.2 | Horiz        |
|     | Ave          |      | -34.7     | +36.6         | +0.0        | +0.0        |             |      | High        |       |              |
|     |              |      | +0.0      | +0.0          | +0.0        | +0.0        |             |      | •           |       |              |
|     |              |      | +0.0      | +0.0          | +0.0        |             |             |      |             |       |              |
| ^   | 7441.050M    | 41.5 | +0.0      | +0.0          | +4.7        | +1.3        | +0.0        | 49.4 | 54.0        | -4.6  | Horiz        |
|     |              |      | -34.7     | +36.6         | +0.0        | +0.0        |             |      | High        |       |              |
|     |              |      | +0.0      | +0.0          | +0.0        | +0.0        |             |      |             |       |              |
|     |              |      | +0.0      | +0.0          | +0.0        |             |             |      |             |       |              |
| 14  | 247.200M     | 40.1 | +0.0      | +0.0          | +0.0        | +0.2        | +0.0        | 27.4 | 46.0        | -18.6 | Horiz        |
|     |              |      | +0.0      | +0.0          | +0.0        | +0.0        | 348         |      |             |       | 147          |
|     |              |      | +0.0      | +0.0          | +0.0        | -27.1       |             |      |             |       |              |
| 1.7 | 1100 00015   | 45.0 | +12.5     | +1.0          | +0.7        | 10.4        | 10.0        | 25.1 | 540         | 10.0  | TT. *        |
| 15  | 1198.000M    | 45.2 | +0.0      | +0.0          | +1.9        | +0.4        | +0.0        | 35.1 | 54.0        | -18.9 | Horiz        |
|     |              |      | -36.6     | +24.2         | +0.0 +0.0   | +0.0        |             |      |             |       |              |
|     |              |      | +0.0 +0.0 | $^{+0.0}$     | +0.0 +0.0   | +0.0        |             |      |             |       |              |
| 16  | 1360.000M    | 42.4 | +0.0      | +0.0          | +2.0        | +0.4        | +0.0        | 33.5 | 54.0        | -20.5 | Vert         |
| 10  | 1300.000101  | 42.4 | -36.0     | +24.7         | +2.0 $+0.0$ | +0.4        | 10.0        | 33.3 | 34.0        | -20.3 | v ert        |
|     |              |      | +0.0      | +24.7<br>+0.0 | +0.0 +0.0   | +0.0 +0.0   |             |      |             |       |              |
|     |              |      | +0.0      | +0.0          | +0.0        | .0.0        |             |      |             |       |              |
| 17  | 8587.000M    | 37.8 | +0.0      | +0.0          | +5.5        | +1.7        | +0.0        | 47.0 | 73.7        | -26.7 | Vert         |
| 1,  | 55 57.000111 | 57.0 | -34.8     | +36.8         | +0.0        | +0.0        | 0.0         | .,.0 | , 5.1       | 20.7  | , 011        |
|     |              |      | +0.0      | +0.0          | +0.0        | +0.0        |             |      |             |       |              |
|     |              |      | +0.0      | +0.0          | +0.0        |             |             |      |             |       |              |
|     |              |      |           |               |             | ±0.0        |             |      |             |       |              |

Page 33 of 54 Report No.: 98106-15



| 18  | 9605.925M   | 36.8 | +0.0          | +0.0      | +6.3         | +1.5      | +0.0  | 47.0 | 73.7  | -26.7 | Vert          |
|-----|-------------|------|---------------|-----------|--------------|-----------|-------|------|-------|-------|---------------|
|     |             |      | -35.0         | +37.4     | +0.0         | +0.0      |       |      | Low   |       |               |
|     |             |      | +0.0          | +0.0      | +0.0         | +0.0      |       |      |       |       |               |
| 10  | 0010 0753 4 | 25.6 | +0.0          | +0.0      | +0.0         | +1.2      | 10.0  | 45.2 | 72.7  | 20.7  | тт. '         |
| 19  | 9919.075M   | 35.6 | +0.0          | +0.0      | +6.3         | +1.3      | +0.0  | 45.2 | 73.7  | -28.5 | Horiz         |
|     |             |      | -35.2         | +37.2     | +0.0         | +0.0      |       |      | High  |       |               |
|     |             |      | +0.0 +0.0     | +0.0 +0.0 | +0.0 +0.0    | +0.0      |       |      |       |       |               |
| 20  | 9759.300M   | 34.9 | +0.0          | +0.0      | +6.3         | +1.4      | +0.0  | 44.8 | 73.7  | -28.9 | Horiz         |
| 20  | 9/39.300M   | 34.9 | -35.1         | +37.3     | +0.0         | +0.0      | +0.0  | 44.6 | Mid   | -20.9 | ПОПЕ          |
|     |             |      | +0.0          | +0.0      | +0.0         | +0.0      |       |      | IVIIU |       |               |
|     |             |      | +0.0          | +0.0      | +0.0         | . 0.0     |       |      |       |       |               |
| 21  | 2390.000M   | 28.3 | +0.0          | +0.0      | +2.7         | +0.6      | +0.0  | 24.7 | 54.0  | -29.3 | Horiz         |
|     | Ave         | 20.5 | -34.6         | +27.7     | +0.0         | +0.0      | 360   | 2    | 21.0  | 27.5  | 147           |
|     |             |      | +0.0          | +0.0      | +0.0         | +0.0      |       |      |       |       |               |
|     |             |      | +0.0          | +0.0      | +0.0         |           |       |      |       |       |               |
| ٨   | 2390.000M   | 60.3 | +0.0          | +0.0      | +2.7         | +0.6      | +0.0  | 56.7 | 54.0  | +2.7  | Horiz         |
|     |             |      | -34.6         | +27.7     | +0.0         | +0.0      | 360   |      |       |       | 147           |
|     |             |      | +0.0          | +0.0      | +0.0         | +0.0      |       |      |       |       |               |
|     |             |      | +0.0          | +0.0      | +0.0         |           |       |      |       |       |               |
| 23  | 2483.500M   | 28.1 | +0.0          | +0.0      | +2.7         | +0.6      | +0.0  | 24.6 | 54.0  | -29.4 | Horiz         |
|     | Ave         |      | -34.5         | +27.7     | +0.0         | +0.0      | 360   |      |       |       | 147           |
|     |             |      | +0.0          | +0.0      | +0.0         | +0.0      |       |      |       |       |               |
|     |             |      | +0.0          | +0.0      | +0.0         |           |       |      |       |       |               |
| ^   | 2483.500M   | 70.1 | +0.0          | +0.0      | +2.7         | +0.6      | +0.0  | 66.6 | 54.0  | +12.6 | Horiz         |
|     |             |      | -34.5         | +27.7     | +0.0         | +0.0      | 360   |      |       |       | 147           |
|     |             |      | +0.0          | +0.0      | +0.0         | +0.0      |       |      |       |       |               |
| 25  | 7205 2503 5 | 22.6 | +0.0          | +0.0      | +0.0         | 11.0      | 10.0  | 40.0 | 72.7  | 22.0  | <b>1</b> 7. 4 |
|     | 7205.350M   | 33.6 | +0.0          | +0.0      | +4.8         | +1.2      | +0.0  | 40.8 | 73.7  | -32.9 | Vert          |
|     | Ave         |      | -34.5<br>+0.0 | +35.7     | +0.0         | +0.0      |       |      | Low   |       |               |
|     |             |      | +0.0<br>+0.0  | +0.0 +0.0 | +0.0<br>+0.0 | +0.0      |       |      |       |       |               |
| ^   | 7205.350M   | 44.6 | +0.0          | +0.0      | +4.8         | +1.2      | +0.0  | 51.8 | 73.7  | -21.9 | Vert          |
|     | 1 403.330W  | 44.0 | -34.5         | +35.7     | +0.0         | +0.0      | 10.0  | 31.0 | Low   | -21.9 | v CI l        |
|     |             |      | +0.0          | +0.0      | +0.0 +0.0    | +0.0 +0.0 |       |      | LUW   |       |               |
|     |             |      | +0.0          | +0.0      | +0.0         | .0.0      |       |      |       |       |               |
| 2.7 | 7206.775M   | 32.8 | +0.0          | +0.0      | +4.8         | +1.2      | +0.0  | 40.0 | 73.7  | -33.7 | Vert          |
|     | Ave         | 32.0 | -34.5         | +35.7     | +0.0         | +0.0      | . 0.0 | .0.0 | Low   | 55.1  | , 010         |
|     |             |      | +0.0          | +0.0      | +0.0         | +0.0      |       |      |       |       |               |
|     |             |      | +0.0          | +0.0      | +0.0         |           |       |      |       |       |               |
| ٨   | 7206.775M   | 44.0 | +0.0          | +0.0      | +4.8         | +1.2      | +0.0  | 51.2 | 73.7  | -22.5 | Vert          |
|     |             |      | -34.5         | +35.7     | +0.0         | +0.0      |       |      | Low   |       |               |
|     |             |      | +0.0          | +0.0      | +0.0         | +0.0      |       |      |       |       |               |
|     |             |      | +0.0          | +0.0      | +0.0         |           |       |      |       |       |               |
| 29  | 14410.550   | 42.9 | +0.0          | +0.0      | +8.1         | +1.8      | +0.0  | 38.4 | 73.7  | -35.3 | Horiz         |
|     | M           |      | +0.0          | +0.0      | -14.4        | +0.0      |       |      |       |       |               |
|     |             |      | +0.0          | +0.0      | +0.0         | +0.0      | 61    |      | Low   |       | 197           |
|     |             |      | +0.0          | +0.0      | +0.0         |           |       |      |       |       |               |
| 30  | 24792.500   | 37.4 | +0.0          | +0.0      | +0.0         | +0.0      | +0.0  | 38.3 | 73.7  | -35.4 | Horiz         |
|     | M           |      | +0.0          | +0.0      | +0.0         | -12.3     |       |      |       |       |               |
|     |             |      | +2.7          | +2.7      | +7.8         | +0.0      | 8     |      | High  |       | 157           |
|     |             |      | +0.0          | +0.0      | +0.0         |           |       |      |       |       |               |

Page 34 of 54 Report No.: 98106-15



| 2.1 | 24762 020      | 27.2  | 100            | 100          | ΙΛ.Λ         | 100           | 10.0  | 20.2  | 72.7    | 25.5  | II.    |
|-----|----------------|-------|----------------|--------------|--------------|---------------|-------|-------|---------|-------|--------|
| 31  | 24763.920<br>M | 37.2  | $+0.0 \\ +0.0$ | +0.0         | +0.0         | +0.0          | +0.0  | 38.2  | 73.7    | -35.5 | Horiz  |
|     | IVI            |       | +0.0 +2.8      | +0.0<br>+2.7 | +0.0<br>+7.8 | -12.3<br>+0.0 |       |       | Mid     |       | 157    |
|     |                |       | +2.8 $+0.0$    | +0.0         | +0.0         | ±0.0          |       |       | IVIIU   |       | 13/    |
| 32  | 14638.580      | 41.5  | +0.0           | +0.0         | +8.3         | +1.8          | +0.0  | 37.5  | 73.7    | -36.2 | Horiz  |
| 32  | M              | 41.5  | +0.0           | +0.0         | -14.1        | +0.0          | 10.0  | 31.3  | 13.1    | -30.2 | 110112 |
|     | 1V1            |       | +0.0           | +0.0         | +0.0         | +0.0          | 360   |       | Mid     |       | 192    |
|     |                |       | +0.0           | +0.0         | +0.0         | 10.0          | 300   |       | Wild    |       | 1)2    |
| 33  | 24017.440      | 37.9  | +0.0           | +0.0         | +0.0         | +0.0          | +0.0  | 37.3  | 73.7    | -36.4 | Horiz  |
|     | M              | 31.7  | +0.0           | +0.0         | +0.0         | -13.8         | 10.0  | 37.3  | 73.7    | 30.4  | HOHZ   |
|     | 141            |       | +2.9           | +2.6         | +7.7         | +0.0          |       |       | Low     |       | 165    |
|     |                |       | +0.0           | +0.0         | +0.0         |               |       |       |         |       |        |
| 34  | 14881.390      | 39.7  | +0.0           | +0.0         | +8.4         | +1.8          | +0.0  | 35.8  | 73.7    | -37.9 | Horiz  |
|     | M              | 0,,,  | +0.0           | +0.0         | -14.1        | +0.0          | 0.0   | 55.0  | , , , , | 57.5  | 110112 |
|     |                |       | +0.0           | +0.0         | +0.0         | +0.0          | 360   |       | High    |       | 200    |
|     |                |       | +0.0           | +0.0         | +0.0         |               | -     |       | C       |       |        |
| 35  | 2400.000M      | 39.3  | +0.0           | +0.0         | +2.7         | +0.6          | +0.0  | 35.7  | 73.7    | -38.0 | Horiz  |
|     | Ave            |       | -34.6          | +27.7        | +0.0         | +0.0          | 360   |       |         |       | 147    |
|     |                |       | +0.0           | +0.0         | +0.0         | +0.0          |       |       |         |       |        |
|     |                |       | +0.0           | +0.0         | +0.0         |               |       |       |         |       |        |
| ^   | 2400.000M      | 78.2  | +0.0           | +0.0         | +2.7         | +0.6          | +0.0  | 74.6  | 73.7    | +0.9  | Horiz  |
|     |                |       | -34.6          | +27.7        | +0.0         | +0.0          | 360   |       |         |       | 147    |
|     |                |       | +0.0           | +0.0         | +0.0         | +0.0          |       |       |         |       |        |
|     |                |       | +0.0           | +0.0         | +0.0         |               |       |       |         |       |        |
| 37  | 227.700M       | 38.1  | +0.0           | +0.0         | +0.0         | +0.2          | +0.0  | 24.0  | 73.7    | -49.7 | Horiz  |
|     |                |       | +0.0           | +0.0         | +0.0         | +0.0          | 360   |       |         |       | 147    |
|     |                |       | +0.0           | +0.0         | +0.0         | -27.2         |       |       |         |       |        |
|     |                |       | +11.3          | +0.9         | +0.7         |               |       |       |         |       |        |
| 38  | 4.001M         | 20.1  | +0.0           | +9.5         | +0.1         | +0.0          | -40.0 | -10.3 | 73.7    | -84.0 | Perp   |
|     |                |       | +0.0           | +0.0         | +0.0         | +0.0          |       |       |         |       |        |
|     |                |       | +0.0           | +0.0         | +0.0         | +0.0          |       |       |         |       |        |
|     |                |       | +0.0           | +0.0         | +0.0         |               |       |       |         |       |        |
| 39  | 10.176M        | 14.7  | +0.0           | +9.3         | +0.1         | +0.0          | -40.0 | -15.9 | 73.7    | -89.6 | Perp   |
|     |                |       | +0.0           | +0.0         | +0.0         | +0.0          |       |       |         |       |        |
|     |                |       | +0.0           | +0.0         | +0.0         | +0.0          |       |       |         |       |        |
|     |                | 10 =  | +0.0           | +0.0         | +0.0         |               | 10.0  | • • • |         |       |        |
| 40  | 23.672M        | 13.6  | +0.0           | +5.5         | +0.2         | +0.0          | -40.0 | -20.7 | 73.7    | -94.4 | Perp   |
|     |                |       | +0.0           | +0.0         | +0.0         | +0.0          |       |       |         |       |        |
|     |                |       | +0.0           | +0.0         | +0.0         | +0.0          |       |       |         |       |        |
| 4.1 | 16 1011        | 45.4  | +0.0           | +0.0         | +0.0         | 10.0          | 00.0  | 21.0  | 70.7    | 0.4.7 | D      |
| 41  | 16.191k        | 45.4  | +0.0           | +13.6        | +0.0         | +0.0          | -80.0 | -21.0 | 73.7    | -94.7 | Perp   |
|     |                |       | +0.0           | +0.0         | +0.0         | +0.0          |       |       |         |       |        |
|     |                |       | +0.0           | +0.0         | +0.0         | +0.0          |       |       |         |       |        |
| 40  | 150,0001       | 4 ( 1 | +0.0           | +0.0         | +0.0         | 10.0          | 00.0  | 242   | 72.7    | 00.0  | D -    |
| 42  | 150.000k       | 46.1  | +0.0           | +9.6         | +0.0         | +0.0          | -80.0 | -24.3 | 73.7    | -98.0 | Perp   |
|     |                |       | +0.0           | +0.0         | +0.0         | +0.0          |       |       |         |       |        |
|     |                |       | +0.0           | +0.0         | +0.0         | +0.0          |       |       |         |       |        |
|     |                |       | +0.0           | +0.0         | +0.0         |               |       |       |         |       |        |

Page 35 of 54 Report No.: 98106-15



| Band Edge Summary  |            |                     |                                |                       |         |  |  |  |
|--------------------|------------|---------------------|--------------------------------|-----------------------|---------|--|--|--|
| Frequency<br>(MHz) | Modulation | Ant. Type           | Field Strength<br>(dBuV/m @3m) | Limit<br>(dBuV/m @3m) | Results |  |  |  |
| 2390.0             | GFSK       | Integral Inverted F | 24.7                           | <54                   | Pass    |  |  |  |
| 2400.0             | GFSK       | Integral Inverted F | 38.1                           | <73.7                 | Pass    |  |  |  |
| 2483.5             | GFSK       | Integral Inverted F | 24.7                           | <54                   | Pass    |  |  |  |

#### Band Edge Setup / Data

Test Location: CKC Laboratories, Inc. • 22116 23rd Dr. SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: Philips Oral Healthcare, Inc.

Specification: 15.247(d) / 15.209 Radiated Spurs (AVG for BE)

Work Order #: 98106 Date: 2/8/2016
Test Type: Radiated Scan Time: 13:10:45
Tested By: Steven Pittsford Sequence#: 6

Software: EMITest 5.03.00

**Equipment Tested:** 

| Device          | Manufacturer | Model # | S/N |  |
|-----------------|--------------|---------|-----|--|
| Configuration 2 |              |         |     |  |

Support Equipment:

| Device          | Manufacturer | Model # | S/N |
|-----------------|--------------|---------|-----|
| Configuration 2 |              |         |     |

#### Test Conditions / Notes:

Frequency tested: 2402MHzand 2480MHz

Firmware power setting: Max Software: RealTerm 2.0.0.70 Protocol /MCS/Modulation: BLE

Antenna type: Integral Inverted F antenna

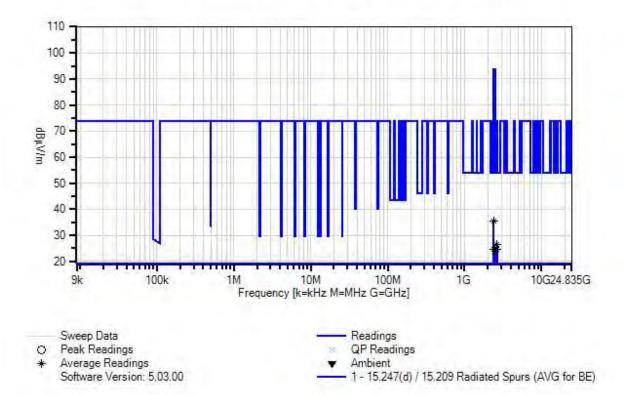
Antenna Gain: 0.0 dBi.

Duty Cycle: 63%

ANSI C63.10 (2013)

Test Mode: Continuously transmitting on low and high channels

Test Setup: The EUT is set on a Styrofoam test bench inside the semi-anechoic chamber.


The EUT is tested in X, Y & Z orientations. Only the worst case is reported.

Emissions for EUT off the charger represents emissions for both on and off charger.

Page 36 of 54 Report No.: 98106-15

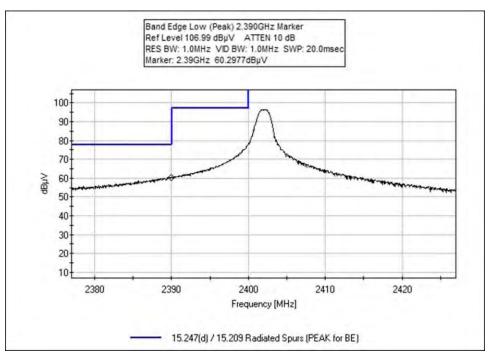


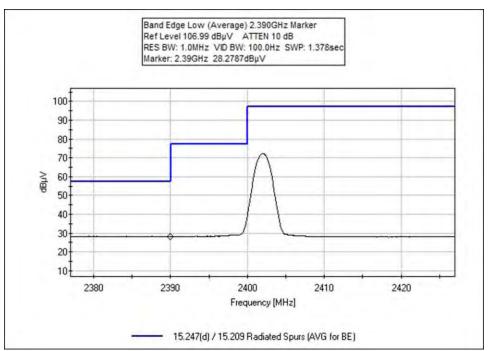
Philips Oral Healthcare, Inc. WO#: 98106 Sequence#: 6 Date: 2/8/2016 15.247(d) / 15.209 Radiated Spurs (AVG for BE) Test Distance: 3 Meters Horiz





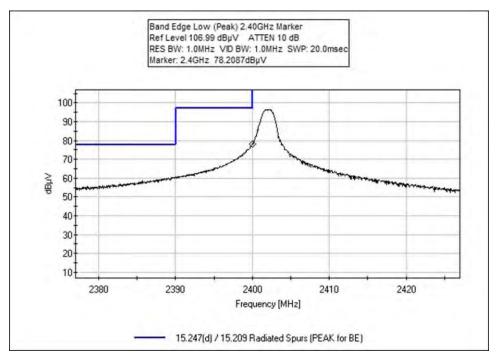
# Test Equipment:

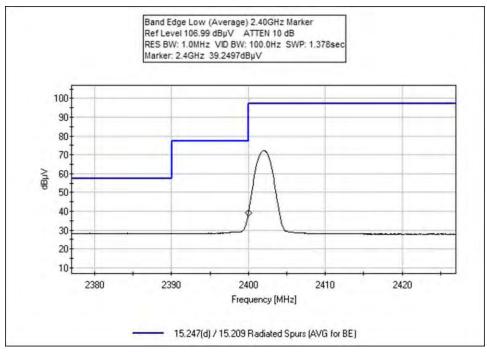

| ID | Asset #/Serial # | Description                                | Model                           | Calibration Date | Cal Due Date |
|----|------------------|--------------------------------------------|---------------------------------|------------------|--------------|
| T1 | AN02872          | Spectrum Analyzer                          | E4440A                          | 11/18/2015       | 11/18/2017   |
|    | AN00052          | Loop Antenna                               | 6502                            | 5/20/2014        | 5/20/2016    |
| T2 | ANP05305         | Cable                                      | ETSI-50T                        | 2/20/2014        | 2/20/2016    |
| T3 | ANP06540         | Cable                                      | Heliax                          | 10/29/2015       | 10/29/2017   |
| T4 | AN03540          | Preamp                                     | 83017A                          | 4/30/2015        | 4/30/2017    |
| T5 | AN01467          | Horn Antenna-<br>ANSI C63.5<br>Calibration | 3115                            | 8/12/2015        | 8/12/2017    |
|    | AN02741          | Active Horn<br>Antenna                     | AMFW-5F-<br>12001800-20-<br>10P | 1/14/2015        | 1/14/2017    |
|    | AN02742          | Active Horn<br>Antenna                     | AMFW-5F-<br>18002650-20-<br>10P | 1/14/2015        | 1/14/2017    |
|    | AN02763-69       | Waveguide                                  | Multiple                        | 5/21/2014        | 5/21/2016    |
|    | AN03122          | Cable                                      | 32026-2-29801-<br>36            | 5/13/2014        | 5/13/2016    |
|    | ANP06678         | Cable                                      | 32026-29801-<br>29801-144       | 9/18/2014        | 9/18/2016    |
|    | AN02307          | Preamp                                     | 8447D                           | 3/14/2014        | 3/14/2016    |
|    | AN01996          | Biconilog Antenna                          | CBL6111C                        | 7/16/2014        | 7/16/2016    |
|    | ANP05360         | Cable                                      | RG214                           | 12/1/2014        | 12/1/2016    |
|    | ANP05963         | Cable                                      | RG-214                          | 2/21/2014        | 2/21/2016    |


| Measi | urement Data: | Re   | eading lis | ted by ma | argin. |       | Te    | est Distance | e: 3 Meters |        |       |
|-------|---------------|------|------------|-----------|--------|-------|-------|--------------|-------------|--------|-------|
| #     | Freq          | Rdng | T1         | T2        | T3     | T4    | Dist  | Corr         | Spec        | Margin | Polar |
|       |               |      | T5         |           |        |       |       |              |             |        |       |
|       | MHz           | dΒμV | dB         | dB        | dB     | dB    | Table | dBμV/m       | $dB\mu V/m$ | dB     | Ant   |
| 1     | 2655.000M     | 29.1 | +0.0       | +2.8      | +0.7   | -34.5 | +0.0  | 26.5         | 54.0        | -27.5  | Horiz |
|       | Ave           |      | +28.4      |           |        |       | 360   |              |             |        | 112   |
| 2     | 2655.000M     | 27.4 | +0.0       | +2.8      | +0.7   | -34.5 | +0.0  | 24.8         | 54.0        | -29.2  | Horiz |
|       | Ave           |      | +28.4      |           |        |       | 360   |              |             |        | 112   |
| ^     | 2655.000M     | 42.5 | +0.0       | +2.8      | +0.7   | -34.5 | +0.0  | 39.9         | 54.0        | -14.1  | Horiz |
|       |               |      | +28.4      |           |        |       | 360   |              |             |        | 104   |
| 4     | 2390.000M     | 28.3 | +0.0       | +2.7      | +0.6   | -34.6 | +0.0  | 24.7         | 54.0        | -29.3  | Horiz |
|       | Ave           |      | +27.7      |           |        |       | 360   |              |             |        | 147   |
| ^     | 2390.000M     | 60.3 | +0.0       | +2.7      | +0.6   | -34.6 | +0.0  | 56.7         | 54.0        | +2.7   | Horiz |
|       |               |      | +27.7      |           |        |       | 360   |              |             |        | 147   |
| 6     | 2483.500M     | 28.1 | +0.0       | +2.7      | +0.6   | -34.5 | +0.0  | 24.6         | 54.0        | -29.4  | Horiz |
|       | Ave           |      | +27.7      |           |        |       | 360   |              |             |        | 147   |
| ^     | 2483.500M     | 70.1 | +0.0       | +2.7      | +0.6   | -34.5 | +0.0  | 66.6         | 54.0        | +12.6  | Horiz |
|       |               |      | +27.7      |           |        |       | 360   |              |             |        | 147   |
| 8     | 2400.000M     | 39.3 | +0.0       | +2.7      | +0.6   | -34.6 | +0.0  | 35.7         | 73.7        | -38.0  | Horiz |
|       | Ave           |      | +27.7      |           |        |       | 360   |              |             |        | 147   |
| ^     | 2400.000M     | 78.2 | +0.0       | +2.7      | +0.6   | -34.6 | +0.0  | 74.6         | 73.7        | +0.9   | Horiz |
|       |               |      | +27.7      |           |        |       | 360   |              |             |        | 147   |

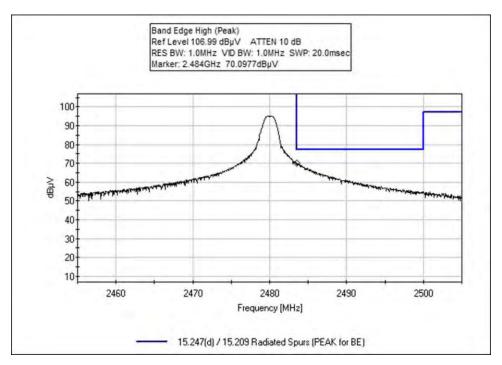
Page 38 of 54 Report No.: 98106-15

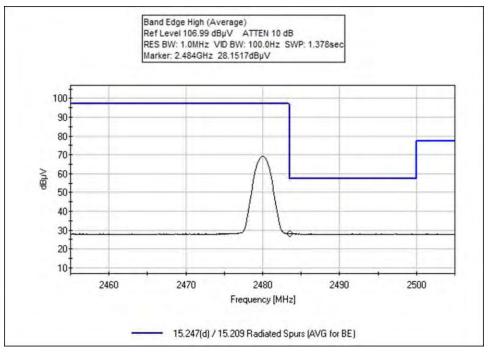



### **Band Edge Plots**







Page 39 of 54 Report No.: 98106-15

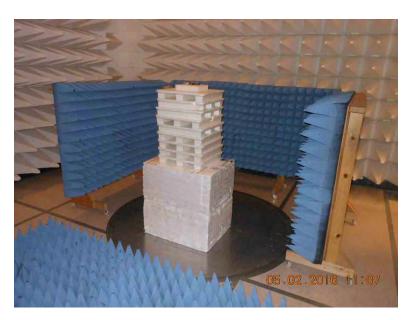













# **Test Setup Photos**



< 1GHz

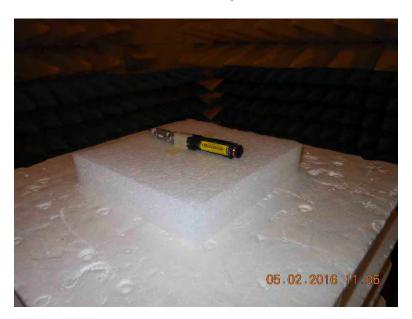


> 1GHz





X Axis, < 1GHz




X Axis, >1GHz





Y Axis, < 1GHz



Y Axis, > 1GHz





Z Axis, < 1GHz



Z Axis, >1GHz



# 15.207 AC Conducted Emissions

### **Test Setup / Conditions / Data**

Test Location: CKC Laboratories, Inc. • 22116 23rd Dr. SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: Philips Oral Healthcare, Inc. Specification: 15.207 AC Mains - Average

Work Order #: 98106 Date: 2/8/2016
Test Type: Conducted Emissions Time: 3:08:06 PM

Tested By: Steven Pittsford Sequence#: 13

Software: EMITest 5.03.00 120V 60Hz

**Equipment Tested:** 

Device Manufacturer Model # S/N
Configuration 3

Support Equipment:

Device Manufacturer Model # S/N
Configuration 3

### Test Conditions / Notes:

Frequency Range: 150k-30MHz Firmware power setting: Max Software: RealTerm 2.0.0.70 Protocol /MCS/Modulation: BLE

Temperature: 22°C Relative Humidity: 32%

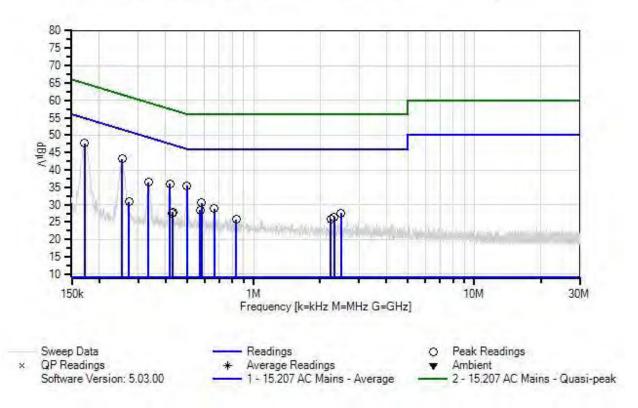
Antenna type: Integral Inverted F antenna

Antenna Gain: 0.0 dBi.

Duty Cycle: 63%

Test Method: ANSI C63.10 (2013)

Test Mode: Transmitting in normal operation


Test Setup: The EUT is sitting on the inductive charger and is charging. The inductive charger is sitting on a

wooden test bench.

Page 46 of 54 Report No.: 98106-15



Philips Oral Healthcare, Inc. WO#: 98106 Sequence#: 13 Date: 2/8/2016 15,207 AC Mains - Average Test Lead: 120V 60Hz Line





# Test Equipment:

| ID | Asset #/Serial # | Description       | Model        | <b>Calibration Date</b> | Cal Due Date |
|----|------------------|-------------------|--------------|-------------------------|--------------|
| T1 | ANP06219         | Attenuator        | 768-10       | 4/23/2014               | 4/23/2016    |
| T2 | ANP05305         | Cable             | ETSI-50T     | 2/20/2014               | 2/20/2016    |
| T3 | ANP06540         | Cable             | Heliax       | 10/29/2015              | 10/29/2017   |
| T4 | AN01492          | 50uH LISN-Line    | 3816/2NM     | 8/5/2015                | 8/5/2017     |
|    | AN01492          | 50uH LISN-Neutral | 3816/2NM     | 8/5/2015                | 8/5/2017     |
| T5 | AN02611          | High Pass Filter  | HE9615-150K- | 3/26/2014               | 3/26/2016    |
|    |                  |                   | 50-720B      |                         |              |
|    | AN02872          | Spectrum Analyzer | E4440A       | 11/18/2015              | 11/18/2017   |

| Measu | rement Data: | Re    | eading lis    | ted by ma | argin. |      |       | Test Lead | d: Line |        |       |
|-------|--------------|-------|---------------|-----------|--------|------|-------|-----------|---------|--------|-------|
| #     | Freq         | Rdng  | T1            | T2        | Т3     | T4   | Dist  | Corr      | Spec    | Margin | Polar |
|       |              |       | T5            | 150       | 150    | 15   |       |           |         | 150    |       |
|       | MHz          | dBμV  | dB            | dB        | dB     | dB   | Table | dBμV      | dBμV    | dB     | Ant   |
| 1     | 171.816k     | 35.4  | +10.3         | +0.0      | +0.0   | +1.6 | +0.0  | 47.7      | 54.9    | -7.2   | Line  |
|       | 252 2621     | 21.6  | +0.4          |           |        | .1.0 | 100   | 40.1      | 51.6    | 0.7    | т.    |
| 2     | 253.263k     | 31.6  | +10.3         | +0.0      | +0.0   | +1.0 | +0.0  | 43.1      | 51.6    | -8.5   | Line  |
| 3     | 500.513k     | 24.5  | +0.2          | +0.0      | +0.0   | +0.5 | +0.0  | 35.5      | 46.0    | -10.5  | Line  |
| 3     | 300.313K     | 24.3  | +10.3 $+0.2$  | +0.0      | +0.0   | +0.3 | +0.0  | 33.3      | 40.0    | -10.3  | Line  |
| 4     | 416.884k     | 24.9  | +10.3         | +0.0      | +0.0   | +0.6 | +0.0  | 36.0      | 47.5    | -11.5  | Line  |
| 4     | 410.004K     | 24.7  | +0.2          | 10.0      | 10.0   | 10.0 | 10.0  | 30.0      | 47.3    | -11.3  | Line  |
| 5     | 333.983k     | 25.4  | +10.3         | +0.0      | +0.0   | +0.7 | +0.0  | 36.5      | 49.4    | -12.9  | Line  |
|       |              |       | +0.1          |           |        |      |       |           |         |        |       |
| 6     | 580.505k     | 19.5  | +10.3         | +0.0      | +0.0   | +0.5 | +0.0  | 30.5      | 46.0    | -15.5  | Line  |
|       |              |       | +0.2          |           |        |      |       |           |         |        |       |
| 7     | 663.407k     | 18.1  | +10.2         | +0.0      | +0.0   | +0.4 | +0.0  | 28.9      | 46.0    | -17.1  | Line  |
|       |              |       | +0.2          |           |        |      |       |           |         |        |       |
| 8     | 573.961k     | 17.4  | +10.3         | +0.0      | +0.0   | +0.5 | +0.0  | 28.4      | 46.0    | -17.6  | Line  |
|       |              |       | +0.2          |           |        |      |       |           |         |        |       |
| 9     | 2.493M       | 16.7  | +10.3         | +0.1      | +0.0   | +0.4 | +0.0  | 27.6      | 46.0    | -18.4  | Line  |
| 10    | 420.7011     | 1.6.0 | +0.1          |           |        | 10.6 | 100   | 27.0      | 47.0    | 10.2   | т.    |
| 10    | 430.701k     | 16.8  | +10.3<br>+0.2 | +0.0      | +0.0   | +0.6 | +0.0  | 27.9      | 47.2    | -19.3  | Line  |
| 11    | 2.323M       | 15.6  | +10.3         | +0.1      | +0.0   | +0.4 | +0.0  | 26.5      | 46.0    | -19.5  | Line  |
| 11    | 2.323W       | 13.0  | +0.1          | 10.1      | 10.0   | 10.4 | 10.0  | 20.3      | 40.0    | -19.3  | Line  |
| 12    | 429.247k     | 16.4  | +10.3         | +0.0      | +0.0   | +0.6 | +0.0  | 27.5      | 47.3    | -19.8  | Line  |
| 12    | ,,           | 10    | +0.2          | 0.0       | 0.0    | 0.0  | 0.0   | _7.0      | .,.5    | 17.0   | 2     |
| 13    | 2.242M       | 15.1  | +10.2         | +0.1      | +0.0   | +0.4 | +0.0  | 25.9      | 46.0    | -20.1  | Line  |
|       |              |       | +0.1          |           |        |      |       |           |         |        |       |
| 14    | 832.846k     | 15.0  | +10.1         | +0.1      | +0.0   | +0.4 | +0.0  | 25.8      | 46.0    | -20.2  | Line  |
|       |              |       | +0.2          |           |        |      |       |           |         |        |       |
| 15    | 272.170k     | 19.4  | +10.3         | +0.0      | +0.0   | +0.9 | +0.0  | 30.8      | 51.1    | -20.3  | Line  |
|       |              |       | +0.2          |           |        |      |       |           |         |        |       |

Page 48 of 54 Report No.: 98106-15



Test Location: CKC Laboratories, Inc. • 22116 23rd Dr. SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: Philips Oral Healthcare, Inc. Specification: 15.207 AC Mains - Average

Work Order #: 98106 Date: 2/8/2016
Test Type: Conducted Emissions Time: 3:27:51 PM

Tested By: Steven Pittsford Sequence#: 14

Software: EMITest 5.03.00 120V 60Hz

### **Equipment Tested:**

Device Manufacturer Model # S/N
Configuration 3

### Support Equipment:

| Device          | Manufacturer | Model # | S/N |  |
|-----------------|--------------|---------|-----|--|
| Configuration 3 |              |         |     |  |

### Test Conditions / Notes:

Frequency Range: 150k-30MHz

Firmware power setting: Max Software: RealTerm 2.0.0.70 Protocol /MCS/Modulation: BLE

Temperature: 22°C Relative Humidity: 32%

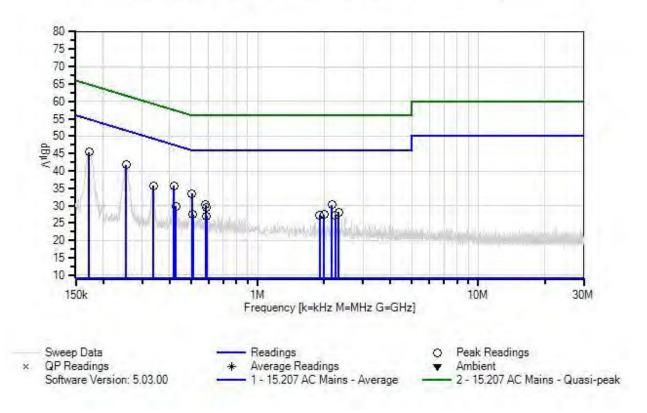
Antenna type: Integral Inverted F antenna

Antenna Gain: 0.0 dBi.

Duty Cycle: 63%

Test Method: ANSI C63.10 (2013)

Test Mode: Transmitting in normal operation


Test Setup: The EUT is sitting on the inductive charger and is charging. The inductive charger is sitting on a

wooden test bench.

Page 49 of 54 Report No.: 98106-15



Philips Oral Healthcare, Inc. WO#: 98106 Sequence#: 14 Date: 2/8/2016 15,207 AC Mains - Average Test Lead: 120V 60Hz Neutral





# Test Equipment:

| ID | Asset #/Serial # | Description       | Model        | <b>Calibration Date</b> | Cal Due Date |
|----|------------------|-------------------|--------------|-------------------------|--------------|
| T1 | ANP06219         | Attenuator        | 768-10       | 4/23/2014               | 4/23/2016    |
| T2 | ANP05305         | Cable             | ETSI-50T     | 2/20/2014               | 2/20/2016    |
| T3 | ANP06540         | Cable             | Heliax       | 10/29/2015              | 10/29/2017   |
|    | AN01492          | 50uH LISN-Line    | 3816/2NM     | 8/5/2015                | 8/5/2017     |
| T4 | AN01492          | 50uH LISN-Neutral | 3816/2NM     | 8/5/2015                | 8/5/2017     |
| T5 | AN02611          | High Pass Filter  | HE9615-150K- | 3/26/2014               | 3/26/2016    |
|    |                  |                   | 50-720B      |                         |              |
|    | AN02872          | Spectrum Analyzer | E4440A       | 11/18/2015              | 11/18/2017   |

| Measu | rement Data: | Re   | eading lis    | ted by ma | argin. |      |        | Test Lead | d: Neutral |        |          |
|-------|--------------|------|---------------|-----------|--------|------|--------|-----------|------------|--------|----------|
| #     | Freq         | Rdng | T1            | T2        | Т3     | T4   | Dist   | Corr      | Spec       | Margin | Polar    |
|       |              |      | T5            | 150       | 150    | 15   |        |           |            | 155    |          |
|       | MHz          | dBμV | dB            | dB        | dB     | dB   | Table  | dBμV      | dBμV       | dB     | Ant      |
| 1     | 172.543k     | 33.1 | +10.3         | +0.0      | +0.0   | +1.6 | +0.0   | 45.4      | 54.8       | -9.4   | Neutr    |
|       | 2.2.2.4.1    | 20.4 | +0.4          |           |        |      |        | 11.0      |            |        | 3.7      |
| 2     | 253.263k     | 30.4 | +10.3         | +0.0      | +0.0   | +0.9 | +0.0   | 41.8      | 51.6       | -9.8   | Neutr    |
|       | 416.0041     | 24.6 | +0.2          | . 0. 0    | . 0. 0 | .0.6 | . 0. 0 | 25.7      | 45.5       | 11.0   | 3.7      |
| 3     | 416.884k     | 24.6 | +10.3         | +0.0      | +0.0   | +0.6 | +0.0   | 35.7      | 47.5       | -11.8  | Neutr    |
| 4     | 502 4221     | 22.5 | +0.2          | 100       | 100    | 10.5 | 100    | 22.5      | 46.0       | 10.5   | <b>M</b> |
| 4     | 503.422k     | 22.5 | +10.3<br>+0.2 | +0.0      | +0.0   | +0.5 | +0.0   | 33.5      | 46.0       | -12.5  | Neutr    |
| 5     | 336.891k     | 24.6 | +10.3         | +0.0      | +0.0   | +0.7 | +0.0   | 35.7      | 49.3       | -13.6  | Neutr    |
| ]     | 330.031K     | 24.0 | +0.1          | 10.0      | 10.0   | 10.7 | 10.0   | 33.1      | 47.3       | -13.0  | Neun     |
| 6     | 581.233k     | 19.4 | +10.3         | +0.0      | +0.0   | +0.4 | +0.0   | 30.3      | 46.0       | -15.7  | Neutr    |
|       | 301.233K     | 17.4 | +0.2          | 10.0      | 10.0   | ٠٠.٦ | 10.0   | 30.3      | 40.0       | 13.7   | ricuti   |
| 7     | 2.170M       | 19.5 | +10.2         | +0.1      | +0.0   | +0.3 | +0.0   | 30.2      | 46.0       | -15.8  | Neutr    |
|       |              |      | +0.1          |           |        |      |        |           |            |        |          |
| 8     | 584.141k     | 18.7 | +10.3         | +0.0      | +0.0   | +0.4 | +0.0   | 29.6      | 46.0       | -16.4  | Neutr    |
|       |              |      | +0.2          |           |        |      |        |           |            |        |          |
| 9     | 425.611k     | 18.8 | +10.3         | +0.0      | +0.0   | +0.5 | +0.0   | 29.8      | 47.3       | -17.5  | Neutr    |
|       |              |      | +0.2          |           |        |      |        |           |            |        |          |
| 10    | 2.332M       | 17.3 | +10.3         | +0.1      | +0.0   | +0.4 | +0.0   | 28.2      | 46.0       | -17.8  | Neutr    |
|       |              |      | +0.1          |           |        |      |        |           |            |        |          |
| 11    | 2.004M       | 16.7 | +10.2         | +0.1      | +0.0   | +0.4 | +0.0   | 27.5      | 46.0       | -18.5  | Neutr    |
|       |              |      | +0.1          |           |        |      |        |           |            |        |          |
| 12    | 510.694k     | 16.4 | +10.3         | +0.0      | +0.0   | +0.5 | +0.0   | 27.4      | 46.0       | -18.6  | Neutr    |
|       |              |      | +0.2          |           |        |      |        |           |            |        |          |
| 13    | 1.911M       | 16.6 | +10.2         | +0.1      | +0.0   | +0.3 | +0.0   | 27.3      | 46.0       | -18.7  | Neutr    |
| 1.4   | 2.2513.5     | 16.5 | +0.1          | 10.1      | 10.0   | +0.4 | 100    | 27.2      | 46.0       | 10.7   | Manada   |
| 14    | 2.251M       | 16.5 | +10.2         | +0.1      | +0.0   | +0.4 | +0.0   | 27.3      | 46.0       | -18.7  | Neutr    |
| 1.5   | 500 5051-    | 16.1 | +0.1          | 10.0      | +0.0   | +0.4 | 10.0   | 27.0      | 46.0       | 10.0   | Moute    |
| 15    | 588.505k     | 16.1 | +10.3         | +0.0      | +0.0   | +0.4 | +0.0   | 27.0      | 46.0       | -19.0  | Neutr    |
|       |              |      | +0.2          |           |        |      |        |           |            |        |          |

Page 51 of 54 Report No.: 98106-15



# **Test Setup Photo**



Page 52 of 54 Report No.: 98106-15



# SUPPLEMENTAL INFORMATION

## **Measurement Uncertainty**

| Uncertainty Value | Parameter                 |
|-------------------|---------------------------|
| 4.73 dB           | Radiated Emissions        |
| 3.34 dB           | Mains Conducted Emissions |
| 3.30 dB           | Disturbance Power         |

Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

## **Emissions Test Details**

### **TESTING PARAMETERS**

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

#### **CORRECTION FACTORS**

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in  $dB\mu V/m$ , the spectrum analyzer reading in  $dB\mu V$  was corrected by using the following formula. This reading was then compared to the applicable specification limit. Individual measurements were compared with the displayed limit value in the margin column. The margin was calculated based on the limit value subtracting the corrected measured value; a negative margin represents a measurement less than the limit while a positive margin represents a measurement exceeding the limit.

| SAMPLE CALCULATIONS |                      |          |  |  |  |  |  |  |
|---------------------|----------------------|----------|--|--|--|--|--|--|
|                     | Meter reading (dBμV) |          |  |  |  |  |  |  |
| +                   | Antenna Factor       | (dB/m)   |  |  |  |  |  |  |
| +                   | Cable Loss           | (dB)     |  |  |  |  |  |  |
| -                   | Distance Correction  | (dB)     |  |  |  |  |  |  |
| -                   | Preamplifier Gain    | (dB)     |  |  |  |  |  |  |
| =                   | Corrected Reading    | (dBμV/m) |  |  |  |  |  |  |

Page 53 of 54 Report No.: 98106-15



#### **TEST INSTRUMENTATION AND ANALYZER SETTINGS**

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

| MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE |                     |                  |                   |  |  |  |  |
|------------------------------------------------------------|---------------------|------------------|-------------------|--|--|--|--|
| TEST                                                       | BEGINNING FREQUENCY | ENDING FREQUENCY | BANDWIDTH SETTING |  |  |  |  |
| CONDUCTED EMISSIONS                                        | 150 kHz             | 30 MHz           | 9 kHz             |  |  |  |  |
| RADIATED EMISSIONS                                         | 9 kHz               | 150 kHz          | 200 Hz            |  |  |  |  |
| RADIATED EMISSIONS                                         | 150 kHz             | 30 MHz           | 9 kHz             |  |  |  |  |
| RADIATED EMISSIONS                                         | 30 MHz              | 1000 MHz         | 120 kHz           |  |  |  |  |
| RADIATED EMISSIONS                                         | 1000 MHz            | >1 GHz           | 1 MHz             |  |  |  |  |

### SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or caret ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

#### Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

### **Quasi-Peak**

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

### **Average**

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.

Page 54 of 54 Report No.: 98106-15