FCC Test Report

Report No.: AGC01097160901FE03

FCC ID	: 2ADZIASP-769FB
APPLICATION PURPOSE	: Original Equipment
PRODUCT DESIGNATION	: 2.1 Infinity stereo speaker BT
BRAND NAME	: N/A
MODEL NAME	: ASP-769FB, ASP-772TB
CLIENT	: ATake Digital Technology (Shenzhen) Co., Ltd
DATE OF ISSUE	: Sep.19, 2016
STANDARD(S) TEST PROCEDURE(S)	: FCC Part 15 Rules
REPORT VERSION	: V1.0

Attestation of Global Compliance (Shenzhen) Co., Ltd

CAUTION:

This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	/	Sep.19, 2016	Valid	Original Report

Report Revise Record

TABLE OF CONTENTS

1. VERIFICATION OF CONFORMITY	4
2. GENERAL INFORMATION	5
2.1. PRODUCT DESCRIPTION	5
2.2. TABLE OF CARRIER FREQUENCYS	5
3. MEASUREMENT UNCERTAINTY	6
4. DESCRIPTION OF TEST MODES	6
5. SYSTEM TEST CONFIGURATION	8
5.1. CONFIGURATION OF EUT SYSTEM	8
5.2. EQUIPMENT USED IN EUT SYSTEM	8
5.3. SUMMARY OF TEST RESULTS	8
6. TEST FACILITY	9
TEST METHODOLOGY	9
7. ALL TEST EQUIPMENT LIST	9
8. RADIATED EMISSION	11
8.1TEST LIMIT	11
8.2. MEASUREMENT PROCEDURE	12
8.3. TEST SETUP	14
8.4. TEST RESULT	16
9. BAND EDGE EMISSION	32
9.1. MEASUREMENT PROCEDURE	32
9.2 TEST SETUP	32
9.3 RADIATED TEST RESULT	33
10. 20DB BANDWIDTH	37
10.1. MEASUREMENT PROCEDURE	37
10.2. TEST SET-UP	37
10.3. LIMITS AND MEASUREMENT RESULTS	37
11. FCC LINE CONDUCTED EMISSION TEST	44
11.1. LIMITS OF LINE CONDUCTED EMISSION TEST	44
11.2. BLOCK DIAGRAM OF LINE CONDUCTED EMISSION TEST	44
11.3. PRELIMINARY PROCEDURE OF LINE CONDUCTED EMISSION TEST	45
11.4. FINAL PROCEDURE OF LINE CONDUCTED EMISSION TEST	45
11.5. TEST RESULT OF LINE CONDUCTED EMISSION TEST	46
APPENDIX A: PHOTOGRAPHS OF TEST SETUP	48
APPENDIX B: PHOTOGRAPHS OF EUT	51

Applicant	ATake Digital Technology (Shenzhen) Co., Ltd	
Address	15th Building, Changxing Industry Zone, Changzhen Village, Gong Ming, GuangMing New District, Shenzhen, China 518132	
Manufacturer	ATake Digital Technology (Shenzhen) Co., Ltd	
Address	15th Building, Changxing Industry Zone, Changzhen Village, Gong Ming, GuangMing New District, Shenzhen, China 518132	
Product Designation	2.1 Infinity stereo speaker BT	
Brand Name	N/A	
Test Model	ASP-769FB	
Series Model	ASP-772TB	
Difference description	All the same except for the model name	
Date of test	Sep.12, 2016 to Sep.14, 2016	
Deviation	None	
Condition of Test Sample	Normal	
Report Template	AGCRT-US-BR/RF	

1. VERIFICATION OF CONFORMITY

We hereby certify that:

The above equipment was tested by Dongguan Precise Testing Service Co., Ltd. The test data, the energy emitted by the sample tested as described in this report is in compliance with the requirements of FCC Rules Part 15.249.

Strive Ling **Tested By** Strive Liang(Liang Faqiang) Sep.19, 2016 owest in **Reviewed By** Forrest Lei(Lei Yonggang) Sep.19, 2016 ç.y ~ Y Approved By Solger Zhang(Zhang Hongyi) Sep.19, 2016 Authorized Officer

2. GENERAL INFORMATION

2.1. PRODUCT DESCRIPTION

Operation Frequency	2.402 GHz to 2.480GHz	
RF Output Power	-2.06dBm (Max EIRP Power=Max radiation field-95.2)	
Bluetooth Version	V2.1+EDR	
Modulation	GFSK, π /4-DQPSK, 8DPSK	
Number of channels	79	
Hardware Version	V1.0	
Software Version	V1.0	
Antenna Designation	PCB Antenna	
Antenna Gain	0dBi	
Power Supply (by adapter)	Input:100-240VAC 0.3A 50-60Hz Output:5V-2000mA	
Note: The USB port only be used for speaker and can't be used to transfer data with PC.		

2.2. TABLE OF CARRIER FREQUENCYS

BR/EDR channel List

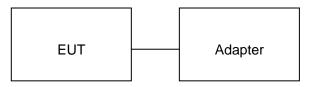
Frequency Band	Channel Number	Frequency
	0	2402MHZ
	1	2403MHZ
	•••	:
	38	2440 MHZ
2400~2483.5MHZ	39	2441 MHZ
	40	2442 MHZ
		:
	77	2479 MHZ
	78	2480 MHZ

3. MEASUREMENT UNCERTAINTY

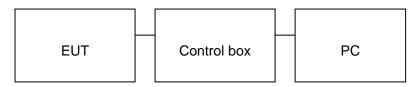
The reported uncertainty of measurement y $\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 % \circ

No.	Item	Uncertainty
1	Conducted Emission Test	±3.18dB
2	All emissions, adiated	±3.91dB
3	Temperature	±0.5°C
4	Humidity	±2%

4. DESCRIPTION OF TEST MODES


NO.	TEST MODE DESCRIPTION	
1	Low channel TX(GFSK)	
2	Middle channel TX (GFSK)	
3	High channel TX (GFSK)	
4	Low channel TX(π/4-DQPSK)	
5	Middle channel TX(π/4-DQPSK)	
6	High channel TX (π/4-DQPSK)	
7	Low channel TX(8DPSK)	
8	Middle channel TX (8DPSK)	
9	High channel TX (8DPSK)	
10	BT Link	

Appolech RF Control Kit Y4.0 Specification IC Model CW66xx · Specification COM Port Info Fix RX mode Port: CONI · Rate: 921000 Send DUI MODE FCC Mode · OK FX RX mode (1)uncheck FIX RX 24xx (2)check channel to set channel number (3)check power to set IX signal amplitude (4)Modulation Enable OF (2)uncheck FIX RX 24xx SingleIone Hopping: OFF · IF Channel 41 (2-80) Ix Modulation: ON · Weaver 6 (0-7) Packet Type: 3DH5 · Test scenario 3 Transnitter test - 1010 pattern · RF R12 · 60ED · Write Read Address 0226 Val 04 · OI 19 FC 40 0F 40 B2 41 04 06 A0 40 00 81 00 00 80 0 · (2) Beck power (1) Beck power (3) check power (1) Beck power (4) Bed 04 01 19 FC 40 07 40 B2 41 04 06 A0 40 00 81 00 00 80 0 · (4) Bed 04 01 08 FC 00 (1) Beck 0 · (1) 04 EC 40 02 7 00 06 28 2F FD 03 (4) Bed 04 01 08 FC 00 (1) Beck 0 · (4) Bed 04 01 08 FC 00 (1) Beck 0 · (4) Bed 04 00 08 FC 00 (1) Beck 0 · (4) Bed 04 00 08 FC 00 (1) Beck 0 ·	Softwar	e Setting	
IC Model CW66xx 「 COM Port Info Send Port: COMI 「Rate: 921600 Send DUT MODE FCC Mode 「OK OK RF Trim Cite Comment of the set channel number (3) check channel to set channel number (3) check power to set TX signal amplitude (4) Modulation Enable OFF RF Trim TX Channel 41 (2-80) Tx Modulation: ON 「 V Eower 6 (0-7) Packet Type: 3DH5 「 Test scenario 3 Transmitter test - 1010 pattern 「 Image: Comment of the set	💑 AppoTech RF Control Kit ¥4.0		
COM Port Info Send [2] check channel to set channel number Port: COM1 • Rate: 921600 Image: send [1] uncheck FIX_RX_24xx DUT MODE FCC Mode OK RF Trim OK [1] uncheck FIX_RX_24xx F Eix_RX_24xx SingleTone Hopping: OFF Image: send [1] uncheck FIX_RX_24xx F Channel 41 (2-80) Tx Modulation: ON Image: send [1] uncheck FIX_RX_24xx F Channel 41 (2-80) Tx Modulation: Image: send [1] uncheck FIX_RX_24xx [2] check channel to set channel number Image: send [3] check power to set TX signal amplitude [4] Modulation: [0] [1] uncheck FIX_RX_24xx [5] select Packet Type [3] check power to set TX signal amplitude [4] Modulation: [1] uncheck FIX_RX_24xx [5] select Packet Type [3] check power [6] (0-7) Packet Type: [3] Check power [6] (0-7) Packet Type: [3] Check power [6] (1] Seconario (3] Transmitter test - 1010 pattern [6] Fize [6] 1] S FC 40 OF 40 B2 41 04 06 A0 40 00 81 00 00 80 0 [6] Fize [6			
Port: COM1	-CON Part Info	FIX RX mode	(1)check FIX_RX_24xx (2)check channel to set channel number
RF Trim (1) uncheck FIX_RX_24xx Fix_RX_24xx SingleTone Hopping: OFF (2) check channel to set channel number node If Ex_RX_24xx SingleTone Hopping: OFF (3) check power to set IX signal amplitude If Channel 41 (2-80) IX Modulation: ON (1) uncheck FIX_RX_24xx If Power 6 (0-7) Packet Type: 3DH5 (1) uncheck FIX_RX_24xx Test scenario 3 Transmitter test - 1010 pattern (3) check power RF R12 60ED Write Read Address 0206 Val 04 Write_XSFR Read_xSFR 01 19 FC 40 0F 40 B2 41 04 06 A0 40 00 81 00 00 80 0 (2) uncheck channel to gate Patch 1 Image Patch 1 04 0E 04 01 19 FC 00 04 00 06 40 108 FC 00 04 00 07 01 09 FC 00 0C BD 60 04 8280 048280 04824E 04 0E 07 01 09 FC 00 0C BD 60 9 9 9 048040 048073 04 0E 07 01 09 FC 00 0C BD 60 9 9 9 9 048040 048073 04 0E 07 01 09 FC 00 0C BD 60 9 9 9 9 048040 048073 04 0E 07 01 09 FC 00 0C ED 60 9 9	Port: COM1 Rate: 921600	FIX TX mode	(2) check channel to set channel number(3) check power to set TX signal amplitude
Image: Name of the set	DOI MODE FCC Mode OK		
Image: Channel 41 (2-80) Tx Modulation: ON Image: Construction of the second secon			(3) check power to set TX signal amplitude (4) Modulation Enable ON
Image: Second constraints Image			,
Power 6 (0-7) Packet Type: 3DH5 and TX Modulation OFF Test scenario 3 Transmitter test - 1010 pattern (3) check power (3) check power (4) select Packet Type (4) select Packet Type RF R12 60BD Write Read Address 0206 Val 04 Write_xSFR Read_xSFR 01 19 FC 40 0F 40 B2 41 04 06 A0 40 00 81 00 00 00 00 00 00 04 Write_xSFR Read_xSFR 01 19 FC 00 01 19 FC 00 00 81 00 00 80 0 0 Image: Second se			
Test scenario 3 Transmitter test - 1010 pattern iff is (4) select Packet Type RF R12 60BD Write Read Address 0206 Val 04 Write_xSFR Read_xSFR 01 19 FC 40 0F 40 B2 41 04 06 A0 00 81 00 00 80 0 Image: Second condition of the second cond condition of	Power 6 (0-7) Packet Type: 3DH5	mode	and TX Modulation OFF
01 19 FC 40 62 41 104 06 A0 40 00 81 00 00 80 0 101 19 FC 102 11 102 11 102 11 102 101 103 102 101 103 102 101 103 100 10	Test scenario 3 Transmitter test-1010 pattern 💌	语言	
04 0E 04 01 19 FC 00 01 08 FC 03 68 4F 00 04 0E 04 01 08 FC 00 01 9E 01 9E 04 <	RF R12 - 60BD Write Read	Address 0200	6 Val 04 Write_xSFR Read_xSFR
04 0E 07 01 09 FC 00 0C ED 60	04 0E 04 01 19 FC 00 01 08 FC 03 68 4F 00 04 0E 04 01 08 FC 00	00C845	00C0CF 019E68 019E69
01 09 FC 01 0C 04 0E 07 01 09 FC 00 0C ED 60		JUNOZOU	040040 040013
	01 09 FC 01 0C	PFile	
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	Sen
	I SHOW HCI SAVE Kead mKOM	,	


5. SYSTEM TEST CONFIGURATION

5.1. CONFIGURATION OF EUT SYSTEM

Configure 1: (Normal hopping)

Configure 2: (Control continuous TX)

5.2. EQUIPMENT USED IN EUT SYSTEM

ITEM	EQUIPMENT	MFR/BRAND	MODEL/TYPE NO.	REMARK
1	2.1 Infinity stereo speaker BT	ATake	ASP-769FB	EUT
2	PC	Sony	E1412AYCW	A.E
3	Control box	CSR	USB_SPI_TOOLS	A.E
4	Adapter	XuHai	XH12-0520A03	EUT

5.3. SUMMARY OF TEST RESULTS

FCC RULES	DESCRIPTION OF TEST	RESULT
§15.249	Radiated Emission	Compliant
§15.249	Band Edges	Compliant
§15.207	Conduction Emission	Compliant
§15.215	Bandwidth	Compliant

6. TEST FACILITY

Site	Dongguan Precise Testing Service Co., Ltd.
Location	Building D,Baoding Technology Park,Guangming Road2,Dongcheng District, Dongguan, Guangdong, China,
FCC Registration No.	371540
Description	The test site is constructed and calibrated to meet the FCC requirements in documents ANSI C63.4:2014.

TEST METHODOLOGY

All measurements contained in this report were conducted with ANSI C63.10-2013

7. ALL TEST EQUIPMENT LIST

FOR RADIATED EMISSION TEST (BELOW 1GHZ)

	Radiat	ed Emission Tes	t Site		
Name of Equipment	Manufacturer	Model Number	Serial Number	Last Calibration	Due Calibration
EMI Test Receiver	Rohde & Schwarz	ESCI	101417	July 4, 2016	July 3, 2017
Trilog Broadband Antenna (25M-1GHz)	SCHWARZBECK	VULB9160	9160-3355	July 4, 2016	July 3, 2017
Signal Amplifier	SCHWARZBECK	BBV 9475	9745-0013	July 4, 2016	July 3, 2017
RF Cable	SCHWARZBECK	AK9515E	96221	July 4, 2016	July 3, 2017
3m Anechoic Chamber	CHENGYU	966	PTS-001	June 6, 2016	June 5, 2017
MULTI-DEVICE Positioning Controller	Max-Full	MF-7802	MF780208339	N/A	N/A
Active loop antenna (9K-30MHz)	Schwarzbeck	FMZB1519	1519-038	June 6, 2016	June 5, 2017
Spectrum analyzer	Agilent	E4407B	MY46185649	June 6, 2016	June 5, 2017
Radiation Cable 1	MXT	RS1	R005	June 6, 2016	June 5, 2017
Radiation Cable 2	MXT	RS1	R006	June 6, 2016	June 5, 2017
temporary antenna connector	N/A	S100		July 4, 2016	July 3, 2017

	Radiated Emission Test Site											
Name of Equipment	Manufacturer	Model Number	Serial Number	Last Calibration	Due Calibration							
EMI Test Receiver	Rohde & Schwarz	ESCI	101417	July 4, 2016	July 3, 2017							
Horn Antenna (1G-18GHz)	SCHWARZBECK	BBHA9120D	9120D-1246	July 11, 2016	July 10, 2017							
Spectrum Analyzer	Agilent	E4411B	MY4511453	July 4, 2016	July 3, 2017							
Signal Amplifier	SCHWARZBECK	BBV 9718	9718-269	July 7, 2016	July 6, 2017							
RF Cable	SCHWARZBECK	AK9515H	96220	July 8, 2016	July 7, 2017							
3m Anechoic Chamber	CHENGYU	966	PTS-001	June 6, 2016	June 5, 2017							
MULTI-DEVICE Positioning Controller	Max-Full	MF-7802	MF780208339	N/A	N/A							
Horn Ant (18G-40GHz)	Schwarzbeck	BBHA 9170	9170-181	June 6, 2016	June 5, 2017							
Radiation Cable 1	MXT	RS1	R005	June 6, 2016	June 5, 2017							
Radiation Cable 2	MXT	RS1	R006	June 6, 2016	June 5, 2017							

FOR RADIATED EMISSION TEST (1GHZ ABOVE)

	Conducted Emission Test Site											
Name of Equipment	Manufacturer	Model Number	Serial Number	Last Calibration	Due Calibration							
EMI Test Receiver	Rohde & Schwarz	ESCI	101417	July 4, 2016	July 3, 2017							
Artificial Mains Network	Narda	L2-16B	000WX31025	July 8, 2016	July 7, 2017							
Artificial Mains Network (AUX)	Narda	L2-16B	000WX31026	July 8, 2016	July 7, 2017							
RF Cable	SCHWARZBECK	AK9515E	96222	July 4, 2016	July 3, 2017							
Shielded Room	CHENGYU	843	PTS-002	June 6, 2016	June 5, 2017							
Conduction Cable	МХТ	SE1	S003	June 6, 2016	June 5, 2017							

8. RADIATED EMISSION

8.1TEST LIMIT

Standard FCC15.249

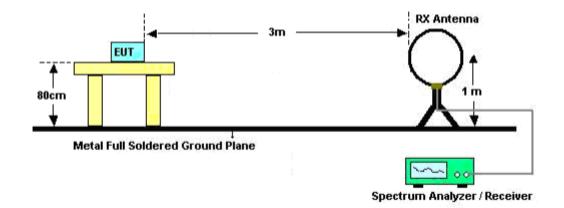
Fundamental Frequency	Field Strength of Fundamental	Field Strength of Harmonics			
	(millivolts/meter)	(microvolts/meter)			
900-928MHz	50	500			
2400-2483.5MHz	50	500			
5725-5875MHz	50	500			
24.0-24.25GHz	250	2500			

Standard FCC 15.209

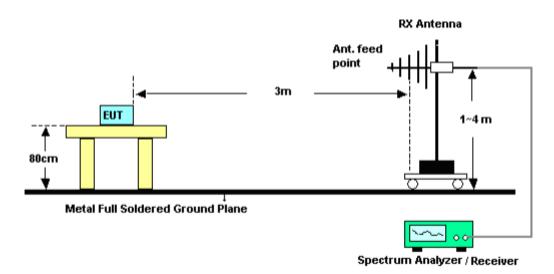
Frequency	Distance	Field Strer	ngths Limit							
(MHz)	Meters	μ V/m	dB(µV)/m							
0.009 ~ 0.490	300	2400/F(kHz)								
0.490 ~ 1.705	30	24000/F(kHz)								
1.705 ~ 30	30	30								
30 ~ 88	3	100	40.0							
88 ~ 216	3	150	43.5							
216 ~ 960	3	200	46.0							
960 ~ 1000	3	500	54.0							
Above 1000	3	Other:74.0 dB(µV)/m (Peal	<)							
		54.0 dB(μV)/m (Average)								
Remark: (1) Emission le	evel dBµ V = 20 log Emissio	n level µ V/m								
(2) The smalle	(2) The smaller limit shall apply at the cross point between two frequency bands.									

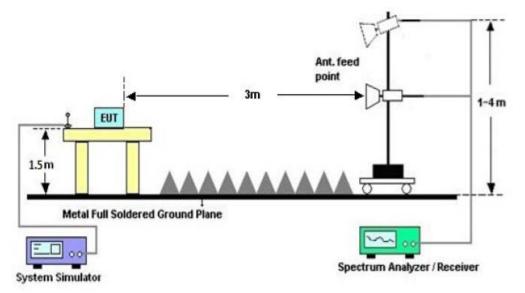
(3) Distance is the distance in meters between the measuring instrument, antenna and the closest point of any part of the device or system.

8.2. MEASUREMENT PROCEDURE


- 1. The measuring distance of 3m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation(Below 1GHz)
- 2. The measuring distance of 3m shall used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation(Above 1GHz)
- 3. The height of the test antenna shall vary between 1m to 4m.Both horizontal and vertical polarization Of the antenna are set to make the measurement.
- 4. The initial step in collecting radiated emission data is a receive peak detector mode. Pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- 5. All readings are peak unless otherwise stated QP in column of Note. Peak denoted that the Peak reading compliance with the QP limits and then QP Mode measurement didn't perform(Below 1GHz)
- 6. All readings are Peak mode value unless otherwise stated AVG in column of Note. If the Peak mode measured value compliance with the Peak limits and lower than AVG Limits, the EUT shall be deemed to meet Peak & AVG limits and then only Peak mode was measured, but AVG mode didn't perform.(Above 1GHz)

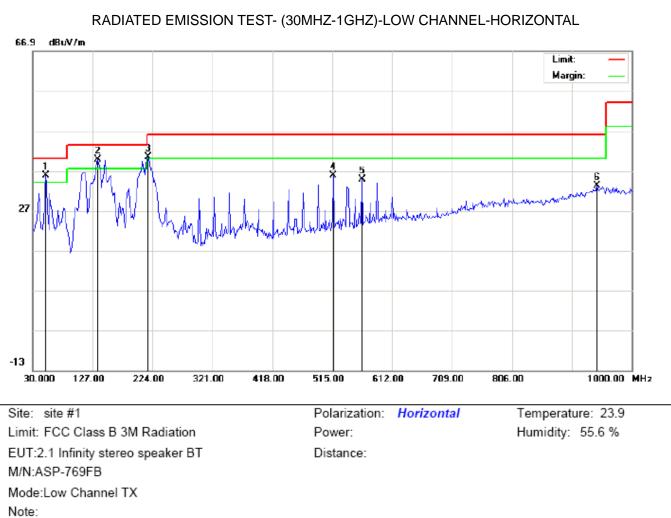
Spectrum Parameter	Setting					
Start ~Stop Frequency	9KHz~150KHz/RB 200Hz for QP					
Start ~Stop Frequency	150KHz~30MHz/RB 9KHz for QP					
Start ~Stop Frequency	30MHz~1000MHz/RB 120KHz for QP					
Start ~Stop Frequency	1GHz~26.5GHz 1MHz/3MHz for Peak, 1MHz/10Hz for Average					
Receiver Parameter	Setting					
Start ~Stop Frequency	9KHz~150KHz/RB 200Hz for QP					
Start ~Stop Frequency	150KHz~30MHz/RB 9KHz for QP					
Start ~Stop Frequency	30MHz~1000MHz/RB 120KHz for QP					


The following table is the setting of spectrum analyzer and receiver.


8.3. TEST SETUP

Radiated Emission Test-Setup Frequency Below 30MHz

RADIATED EMISSION TEST SETUP 30MHz-1000MHz


RADIATED EMISSION TEST SETUP ABOVE 1000MHz

8.4. TEST RESULT

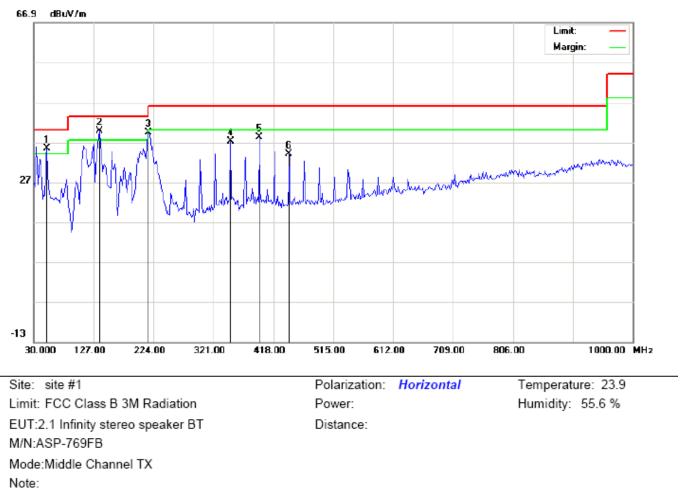
(Worst modulation: GFSK)

RADIATED EMISSION BELOW 30MHZ

No emission found between lowest internal used/generated frequencies to 30MHz.

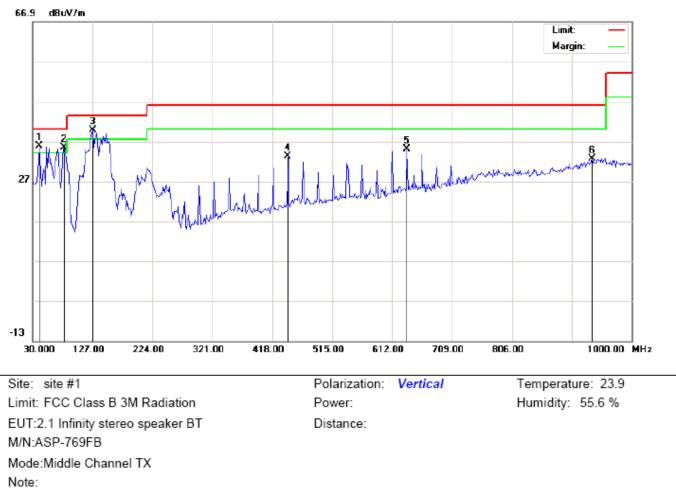
RADIATED EMISSION BELOW 1GHZ

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	-	MHz	dBu∨	dB/m	dBu∀/m	dBu∨/m	dB		cm	degree	
1	ļ	51.0167	25.61	10.15	35.76	40.00	-4.24	peak			
2	*	135.0833	26.85	12.90	39.75	43.50	-3.75	peak			
3	ļ	217.5332	30.20	10.21	40.41	46.00	-5.59	peak			
4		516.6167	14.23	21.58	35.81	46.00	-10.19	peak			
5		563.5000	12.07	22.82	34.89	46.00	-11.11	peak			
6		943.4166	3.35	29.82	33.17	46.00	-12.83	peak			


RADIATED EMISSION TEST- (30MHZ-1GHZ)-LOW CHANNEL -VERTICAL

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	-	MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB		cm	degree	
1	*	68.7999	31.63	4.73	36.36	40.00	-3.64	peak			
2	İ	133.4667	27.18	12.48	39.66	43.50	-3.84	peak			
3		219.1500	19.85	10.88	30.73	46.00	-15.27	peak			
4		516.6167	17.78	21.58	39.36	46.00	-6.64	peak			
5		587.7500	13.85	22.67	36.52	46.00	-9.48	peak			
6		612.0000	13.14	23.00	36.14	46.00	-9.86	peak			

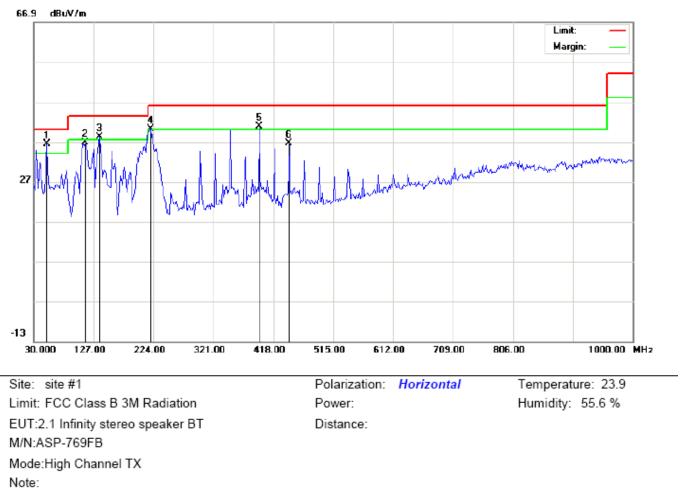
RESULT: PASS


Note: 1. Factor=Antenna Factor + Cable loss, Margin=Measurement-Limit.

2. The "Factor" value can be calculated automatically by software of measurement system.

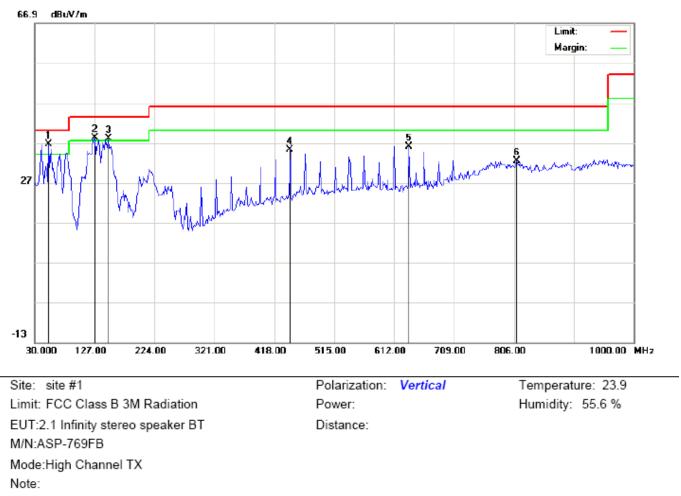
RADIATED EMISSION TEST- (30MHZ-1GHZ)-MIDDLE CHANNEL-HORIZONTAL

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	-	MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB		cm	degree	
1	ļ	51.0167	25.27	10.15	35.42	40.00	-4.58	peak			
2	*	136.6999	26.10	13.66	39.76	43.50	-3.74	peak			
3	İ	215.9166	29.05	10.38	39.43	43.50	-4.07	peak			
4		348.4832	18.59	18.64	37.23	46.00	-8.77	peak			
5		395.3666	19.17	19.04	38.21	46.00	-7.79	peak			
6		443.8666	13.68	20.40	34.08	46.00	-11.92	peak			


RADIATED EMISSION TEST- (30MHZ-1GHZ)-MIDDLE CHANNEL -VERTICAL

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	-	MHz	dBu∀	dB/m	dBu∀/m	dBuV/m	dB		cm	degree	
1	İ	41.3166	27.02	8.81	35.83	40.00	-4.17	peak			
2	ļ	81.7332	32.95	2.42	35.37	40.00	-4.63	peak			
3	*	127.0000	29.93	9.78	39.71	43.50	-3.79	peak			
4		443.8666	12.87	20.40	33.27	46.00	-12.73	peak			
5		636.2500	11.40	23.54	34.94	46.00	-11.06	peak			
6		935.3333	3.07	29.59	32.66	46.00	-13.34	peak			

RESULT: PASS


Note: 1. Factor=Antenna Factor + Cable loss, Margin=Measurement-Limit.

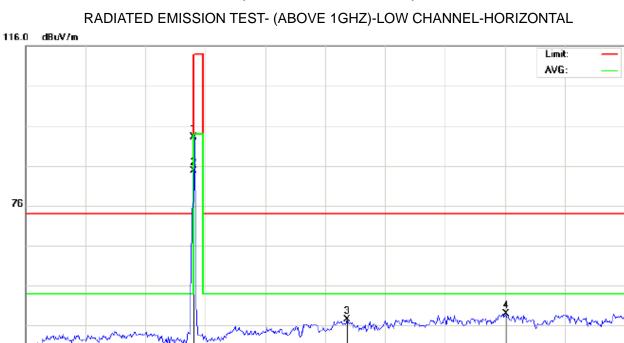
2. The "Factor" value can be calculated automatically by software of measurement system.

RADIATED EMISSION TEST- (30MHZ-1GHZ)-HIGH CHANNEL-HORIZONTAL

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	•	MHz	dBu∀	dB/m	dBu∀/m	dBuV/m	dB		cm	degree	
1	*	51.0167	26.27	10.15	36.42	40.00	-3.58	peak			
2		114.0666	29.55	7.23	36.78	43.50	-6.72	peak			
3	İ	136.6999	24.60	13.66	38.26	43.50	-5.24	peak			
4	İ	219.1500	30.11	10.05	40.16	46.00	-5.84	peak			
5	İ	395.3666	21.67	19.04	40.71	46.00	-5.29	peak			
6		443.8666	16.18	20.40	36.58	46.00	-9.42	peak			

RADIATED EMISSION TEST- (30MHZ-1GHZ)-HIGH CHANNEL -VERTICAL

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	-	MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB		cm	degree	
1	*	52.6332	28.31	8.22	36.53	40.00	-3.47	peak			
2	ļ	127.0000	28.43	9.78	38.21	43.50	-5.29	peak			
3	ļ	149.6331	22.70	15.26	37.96	43.50	-5.54	peak			
4		443.8666	14.87	20.40	35.27	46.00	-10.73	peak			
5		636.2500	12.40	23.54	35.94	46.00	-10.06	peak			
6		810.8500	5.01	27.32	32.33	46.00	-13.67	peak			


RESULT: PASS

Note: 1. Factor=Antenna Factor + Cable loss, Margin=Measurement-Limit.

2. The "Factor" value can be calculated automatically by software of measurement system.

RADIATED EMISSION ABOVE 1GHZ

(Worst modulation: GFSK)

 Site:
 site #1
 Polarization:
 Horizontal
 Temperature:
 22.7

 Limit:
 FCC Class B 3M Radiation above 1GHZ(PK) Power:
 Humidity:
 53.6 %

 EUT:2.1 Infinity stereo speaker BT
 Distance:
 M/N:ASP-769FB
 Mode:
 Low Channel TX

 Mote:
 Low Channel TX
 Low Channel TX
 Low Channel TX
 Low Channel TX

3500.00

4000.00

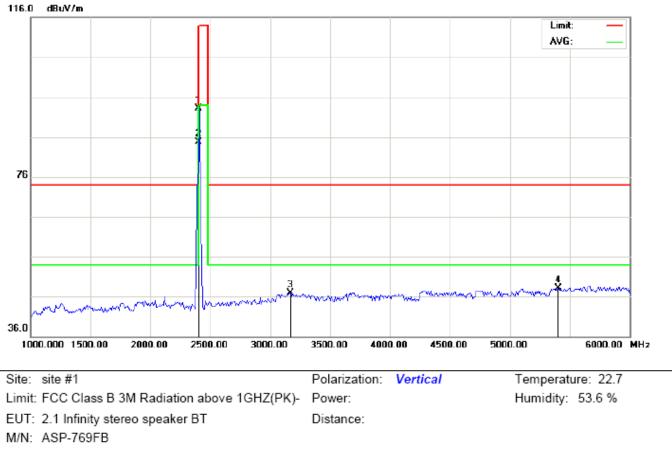
4500.00

5000.00

6000.00 MHz

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	•	MHz	dBu∀	dB/m	dBu∀/m	dBuV/m	dB		cm	degree	
1		2402.000	82.81	10.32	93.13	114.00	-20.87	peak			
2	*	2402.000	74.37	10.32	84.69	94.00	-9.31	AVG	100	152	
3		3683.333	34.32	13.24	47.56	74.00	-26.44	peak			
4		5008.333	40.86	8.03	48.89	74.00	-25.11	peak			

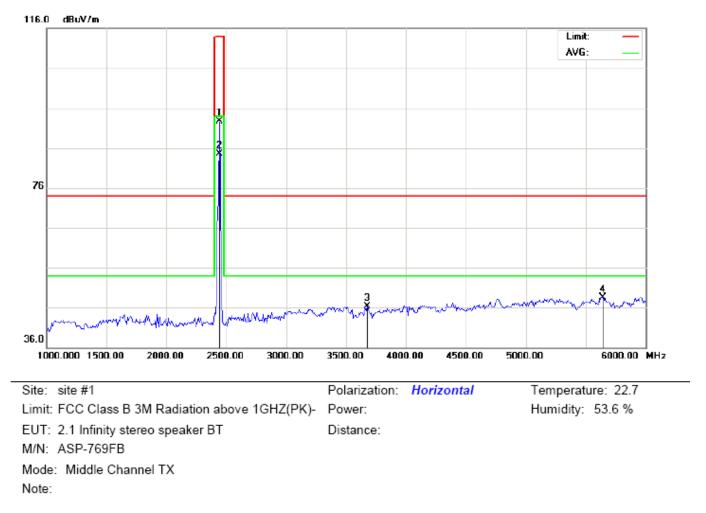
RESULT: PASS


36.0

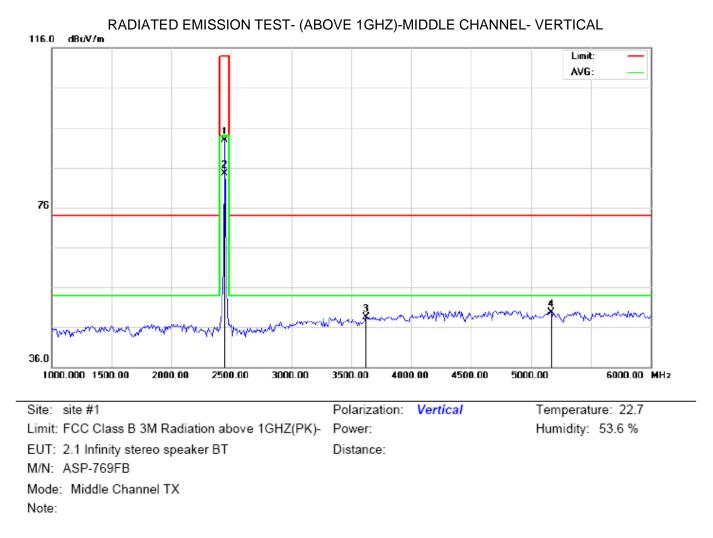
1000.000 1500.00

2000.00

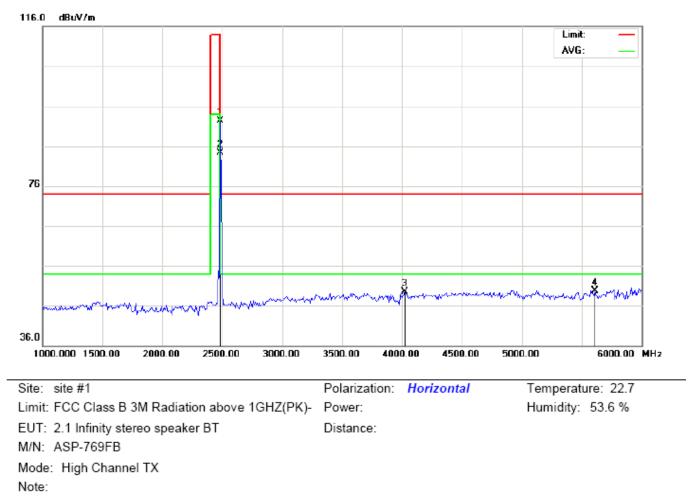
2500.00


3000.00

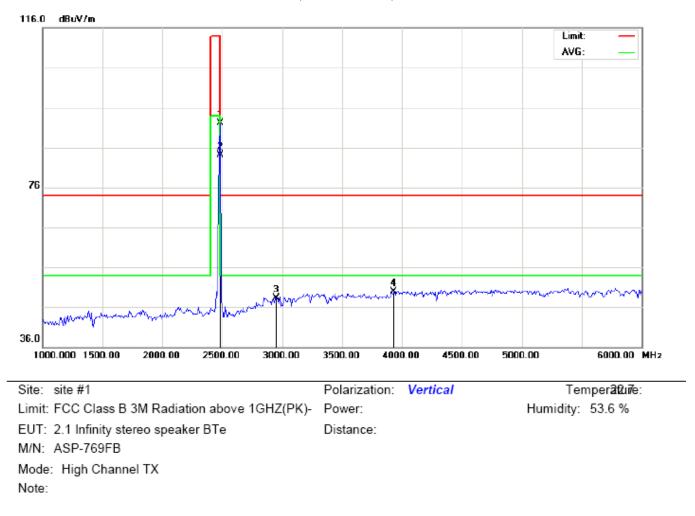
RADIATED EMISSION TEST- (ABOVE 1GHZ)-LOW CHANNEL- VERTICAL


Mode: Low Channel TX Note:

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	-	MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB		cm	degree	
1		2402.000	82.82	10.32	93.14	114.00	-20.86	peak			
2	*	2402.000	74.40	10.32	84.72	94.00	-9.28	AVG	150	100	
3		3166.667	35.09	11.80	46.89	74.00	-27.11	peak			
4		5400.000	47.98	0.19	48.17	74.00	-25.83	peak			


RADIATED EMISSION TEST- (ABOVE 1GHZ)-MIDDLE CHANNEL-HORIZONTAL

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	-	MHz	dBu∀	dB/m	dBu∀/m	dBuV/m	dB		cm	degree	
1		2441.000	82.26	10.36	92.62	114.00	-21.38	peak			
2	*	2441.000	74.06	10.36	84.42	94.00	-9.58	AVG	150	24	
3		3675.000	33.08	13.19	46.27	74.00	-27.73	peak			
4		5641.667	50.34	-1.74	48.60	74.00	-25.40	peak			


No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height		Comment
	•	MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB		cm	degree	
1		2441.000	82.49	10.36	92.85	114.00	-21.15	peak			
2	*	2441.000	74.17	10.36	84.53	94.00	-9.47	AVG	100	149	
3		3625.000	35.66	12.88	48.54	74.00	-25.46	peak			
4		5166.667	44.93	4.86	49.79	74.00	-24.21	peak			

RESULT: PASS

RADIATED EMISSION TEST- (ABOVE 1GHZ)-HIGH CHANNEL-HORIZONTAL

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	•	MHz	dBu∨	dB/m	dBu∀/m	dBuV/m	dB		cm	degree	
1		2480.000	81.97	10.41	92.38	114.00	-21.62	peak			
2	*	2480.000	73.83	10.41	84.24	94.00	-9.76	AVG	100	179	
3		4025.000	34.77	14.77	49.54	74.00	-24.46	peak			
4		5608.333	51.42	-1.76	49.66	74.00	-24.34	peak			

RADIATED EMISSION TEST- (ABOVE 1GHZ)-HIGH CHANNEL- VERTICAL

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height		Comment
	-	MHz	dBu∨	dB/m	dBu∀/m	dBuV/m	dB		cm	degree	
1		2480.000	81.69	10.41	92.10	114.00	-21.90	peak			
2	*	2480.000	73.75	10.41	84.16	94.00	-9.84	AVG	150	314	
3		2950.000	36.80	11.52	48.32	74.00	-25.68	peak			
4		3933.333	35.11	14.78	49.89	74.00	-24.11	peak			

RESULT: PASS

Note: 6~25GHz at least have 20dB margin. No recording in the test report.

Factor=Antenna Factor + Cable loss - Amplifier gain, Margin=Measurement-Limit.

The "Factor" value can be calculated automatically by software of measurement system.

Field strength of the fundamental signal

1Mbps Result:

Peak value

Frequency	Reading Level	Factor	Measurement	Limit	Over	Antenna
(MHz)	(dBuv)	(dB/m)	(dBuv/m)	(dBuv/m)	(dB)	Polarization
2402	82.81	10.32	93.13	114	-20.87	Horizontal
2402	82.82	10.32	93.14	114	-20.86	Vertical
2441	82.26	10.36	92.62	114	-21.38	Horizontal
2441	82.49	10.36	92.85	114	-21.15	Vertical
2480	81.97	10.41	92.38	114	-21.62	Horizontal
2480	81.69	10.41	92.10	114	-21.90	Vertical

Average value

Frequency	Reading Level	Factor	Measurement	Limit	Over	Antenna
(MHz)	(dBuv)	(dB/m)	(dBuv/m)	(dBuv/m)	(dB)	Polarization
2402	74.37	10.32	84.69	94	-9.31	Horizontal
2402	74.40	10.32	84.72	94	-9.28	Vertical
2441	74.06	10.36	84.42	94	-9.58	Horizontal
2441	74.17	10.36	84.53	94	-9.47	Vertical
2480	73.83	10.41	84.24	94	-9.76	Horizontal
2480	73.75	10.41	84.16	94	-9.84	Vertical

2Mbps Result:

Peak value

Frequency	Reading Level	Factor	Measurement	Limit	Over	Antenna
(MHz)	(dBuv)	(dB/m)	(dBuv/m)	(dBuv/m)	(dB)	Polarization
2402	82.34	10.32	92.66	114	-21.34	Horizontal
2402	82.37	10.32	92.69	114	-21.31	Vertical
2441	81.72	10.36	92.08	114	-21.92	Horizontal
2441	81.75	10.36	92.11	114	-21.89	Vertical
2480	81.46	10.41	91.87	114	-22.13	Horizontal
2480	81.47	10.41	91.88	114	-22.12	Vertical

Average value

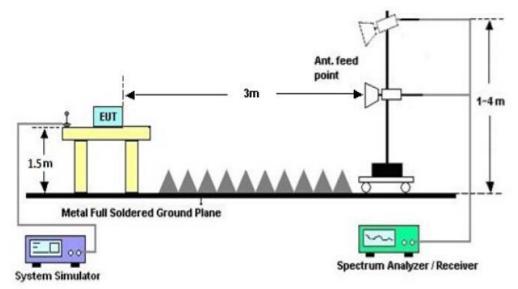
Frequency	Reading Level	Factor	Measurement	Limit	Over	Antenna
(MHz)	(dBuv)	(dB/m)	(dBuv/m)	(dBuv/m)	(dB)	Polarization
2402	73.80	10.32	84.12	94	-9.88	Horizontal
2402	73.82	10.32	84.14	94	-9.86	Vertical
2441	73.58	10.36	83.94	94	-10.06	Horizontal
2441	73.61	10.36	83.97	94	-10.03	Vertical
2480	73.35	10.41	83.76	94	-10.24	Horizontal
2480	73.38	10.41	83.79	94	-10.21	Vertical

3Mbps Result:

Peak value

Frequency	Reading Level	Factor	Measurement	Limit	Over	Antenna
(MHz)	(dBuv)	(dB/m)	(dBuv/m)	(dBuv/m)	(dB)	Polarization
2402	81.82	10.32	92.14	114	-21.86	Horizontal
2402	81.83	10.32	92.15	114	-21.85	Vertical
2441	81.33	10.36	91.69	114	-22.31	Horizontal
2441	81.36	10.36	91.72	114	-22.28	Vertical
2480	80.91	10.41	91.32	114	-22.68	Horizontal
2480	80.93	10.41	91.34	114	-22.66	Vertical

Average value

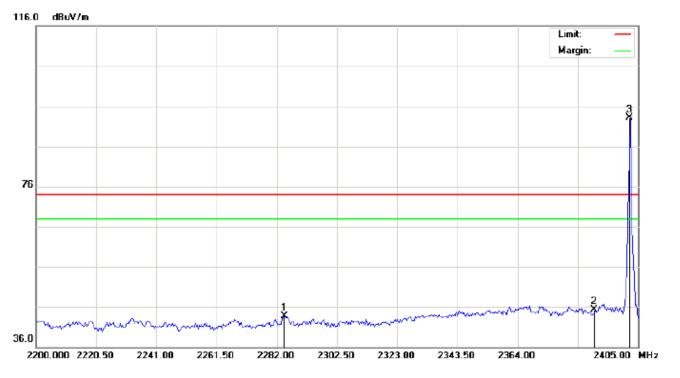

Frequency	Reading Level	Factor	Measurement	Measurement Limit		Antenna
(MHz)	(dBuv)	(dB/m)	(dBuv/m)	(dBuv/m)	(dB)	Polarization
2402	73.36	10.32	83.68	94	-10.32	Horizontal
2402	73.37	10.32	83.69	94	-10.31	Vertical
2441	73.29	10.36	83.65	94	-10.35	Horizontal
2441	73.33	10.36	83.69	94	-10.31	Vertical
2480	72.83	10.41	83.24	94	-10.76	Horizontal
2480	72.84	10.41	83.25	94	-10.75	Vertical

9. BAND EDGE EMISSION

9.1. MEASUREMENT PROCEDURE

- 1. The EUT operates at hopping-off test mode. The lowest or highest channels are tested to verify the largest transmission and spurious emissions power at the continuous transmission mode.
- 2. Max hold the trace of the setup1, and the EUT operates at hopping-on test mode to verify the largest spurious emissions power.
- 3. Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission

9.2 TEST SETUP

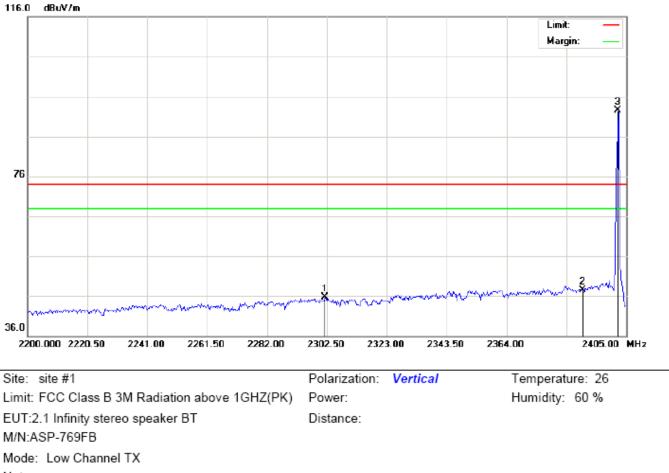


RADIATED EMISSION TEST SETUP

9.3 RADIATED TEST RESULT

(Worst modulation: GFSK)

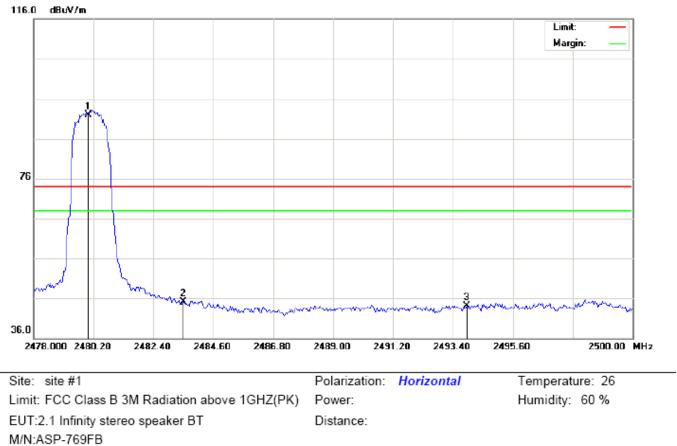
TEST PLOT OF BAND EDGE FOR LOW CHANNEL-Horizontal



Site: site #1 Limit: FCC Class B 3M Radiation above 1GHZ(PK) EUT:2.1 Infinity stereo speaker BT M/N:ASP-769FB Mode:Low Channel TX Note: Polarization: *Horizontal* Power:

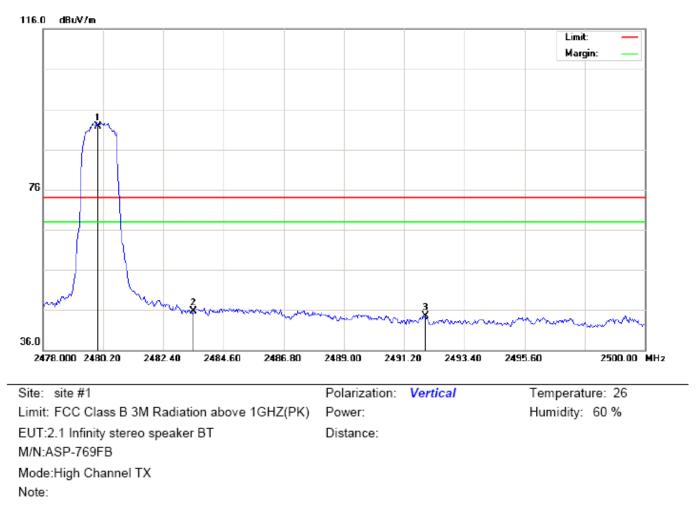
Temperature: 26 Humidity: 60 %

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	-	MHz	dBu∨	dB/m	dBu∀/m	dBuV/m	dB		cm	degree	
1		2284.733	33.61	10.19	43.80	74.00	-30.20	peak			
2		2390.000	35.00	10.31	45.31	74.00	-28.69	peak			
3	*	2402.000	82.72	10.32	93.04	74.00	19.04	peak			


Distance:

TEST PLOT OF BAND EDGE FOR LOW CHANNEL -Vertical

Note:


No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	-	MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB		cm	degree	
1		2301.817	35.57	10.21	45.78	74.00	-28.22	peak			
2		2390.000	37.21	10.31	47.52	74.00	-26.48	peak			
3	*	2402.000	82.09	10.32	92.41	74.00	18.41	peak			

TEST PLOT OF BAND EDGE FOR HIGH CHANNEL -Horizontal

Mode:High Channel TX Note:

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	-	MHz	dBu∀	dB/m	dBu\//m	dBu∨/m	dB		cm	degree	
1	*	2480.000	81.55	10.41	91.96	74.00	17.96	peak			
2		2483.500	34.69	10.41	45.10	74.00	-28.90	peak			
3		2493.913	33.73	10.42	44.15	74.00	-29.85	peak			

TEST PLOT OF BAND EDGE FOR HIGH CHANNEL-Vertical

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	-	MHz	dBu∀	dB/m	dBuV/m	dBu∀/m	dB		cm	degree	
1	*	2480.000	81.32	10.41	91.73	74.00	17.73	peak			
2		2483.500	35.26	10.41	45.67	74.00	-28.33	peak			
3		2491.970	34.09	10.42	44.51	74.00	-29.49	peak			

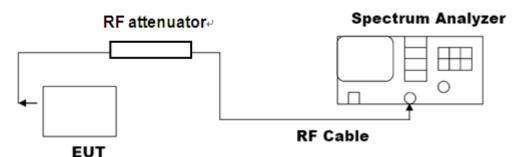
RESULT: PASS

Note: The other modes radiation emission have enough 20dB margin.

Factor=Antenna Factor + Cable loss - Amplifier gain, Over=Measure-Limit.

The "Factor" value can be calculated automatically by software of measurement system.

Hopping on mode and Hopping off mode have been tested, but only worst case reported.


10. 20DB BANDWIDTH

10.1. MEASUREMENT PROCEDURE

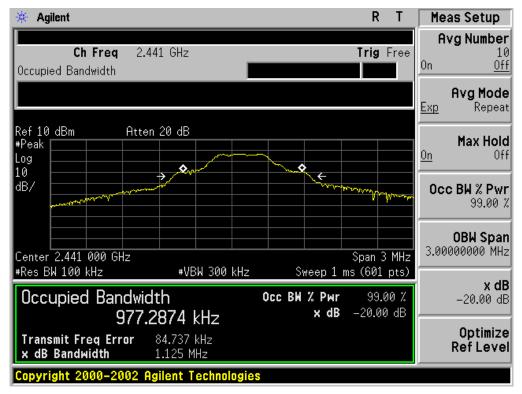
- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 3. Set Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hoping channel RBW ≥ 1% of the 20 dB bandwidth, VBW ≥ RBW; Sweep = auto; Detector function = peak
- 4. Set SPA Trace 1 Max hold, then View.

10.2. TEST SET-UP

(BLOCK DIAGRAM OF CONFIGURATION)

Note: The EUT has been used temporary antenna connector for testing.

10.3. LIMITS AND MEASUREMENT RESULTS


FOR BR/EDR

BLUETOOTH 1MBPS LIMITS AND MEASUREMENT RESULT									
	Measurement Result								
Applicable Limits		- <i>K</i>							
		99%OBW (MHz)	-20dB BW(MHz)	Result					
	Low Channel	0.982	1.125	PASS					
N/A	Middle Channel	0.977	1.125	PASS					
	High Channel	0.982	1.124	PASS					

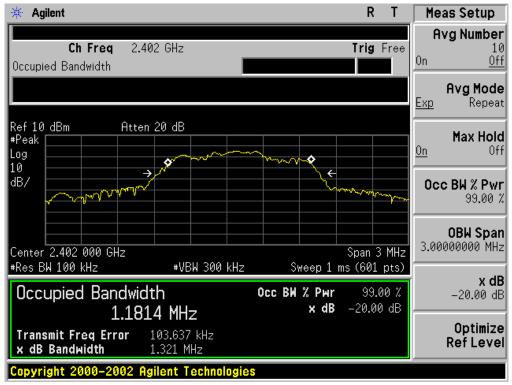
TEST PLOT OF BANDWIDTH FOR LOW CHANNEL

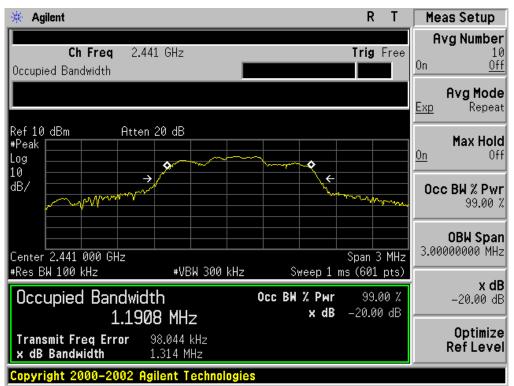
TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL

TEST PLOT OF BANDWIDTH FOR HIGH CHANNEL

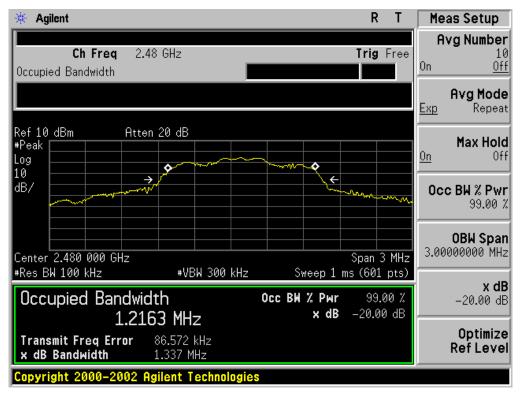
BLUETOOTH 2MBPS LIMITS AND MEASUREMENT RESULT									
	Measurement Result								
Applicable Limits		D It							
		99%OBW (MHz)	-20dB BW(MHz)	Result					
	Low Channel	1.164	1.308	PASS					
N/A	Middle Channel	1.178	1.302	PASS					
	High Channel	1.175	1.283	PASS					

TEST PLOT OF BANDWIDTH FOR LOW CHANNEL


TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL


TEST PLOT OF BANDWIDTH FOR HIGH CHANNEL

BLUETOOTH 3MBPS LIMITS AND MEASUREMENT RESULT									
	Measurement Result								
Applicable Limits		Decult							
		99%OBW (MHz)	-20dB BW(MHz)	Result					
	Low Channel	1.181	1.321	PASS					
N/A	Middle Channel	1.191	1.314	PASS					
	High Channel	1.216	1.337	PASS					

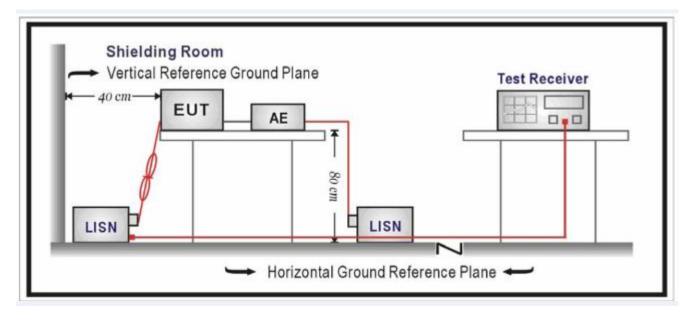

TEST PLOT OF BANDWIDTH FOR LOW CHANNEL

TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL

TEST PLOT OF BANDWIDTH FOR HIGH CHANNEL

11. FCC LINE CONDUCTED EMISSION TEST

11.1. LIMITS OF LINE CONDUCTED EMISSION TEST


E	Maximum RF Line Voltage							
Frequency	Q.P.(dBuV)	Average(dBuV)						
150kHz~500kHz	66-56	56-46						
500kHz~5MHz	56	46						
5MHz~30MHz	60	50						

Note:

1. The lower limit shall apply at the transition frequency.

2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

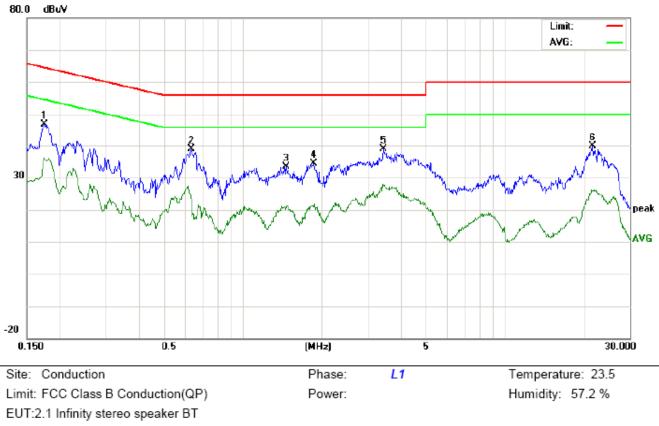
11.2. BLOCK DIAGRAM OF LINE CONDUCTED EMISSION TEST

11.3. PRELIMINARY PROCEDURE OF LINE CONDUCTED EMISSION TEST

- The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.
- 2. Support equipment, if needed, was placed as per ANSI C63.10.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4. All support equipments received AC120V/60Hz power from a LISN, if any.
- 5. The EUT received 120V/60Hzpower by a LISN.
- 6. The test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 kHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.
- 9. The test mode(s) were scanned during the preliminary test.

Then, the EUT configuration and cable configuration of the above highest emission level were recorded for reference of final testing.

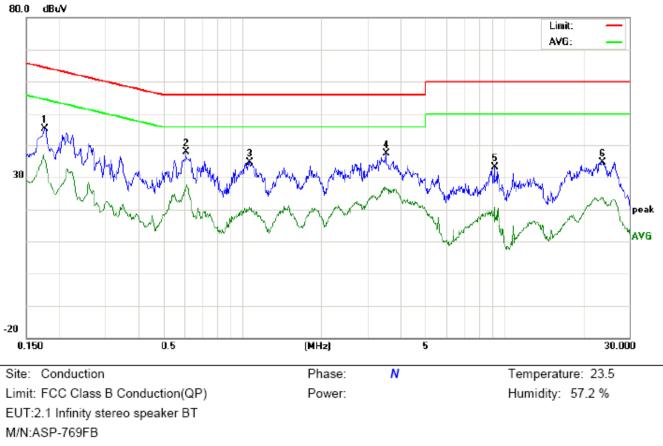
11.4. FINAL PROCEDURE OF LINE CONDUCTED EMISSION TEST


- 1. EUT and support equipment was set up on the test bench as per step 2 of the preliminary test.
- A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. If EUT emission level was less –2dB to the A.V. limit in Peak mode, then the emission signal was re-checked using Q.P and Average detector.
- 3. The test data of the worst case condition(s) was reported on the Summary Data page.

11.5. TEST RESULT OF LINE CONDUCTED EMISSION TEST

By adapter(worst case)

FOR BR/EDR

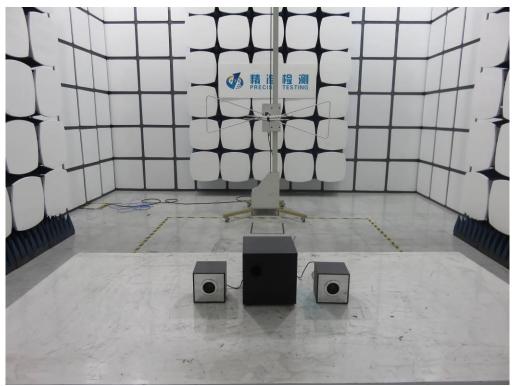


M/N:ASP-769FB

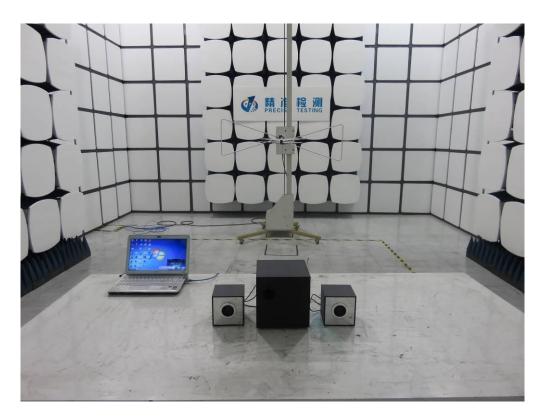
Mode:BT Link with charging Note:

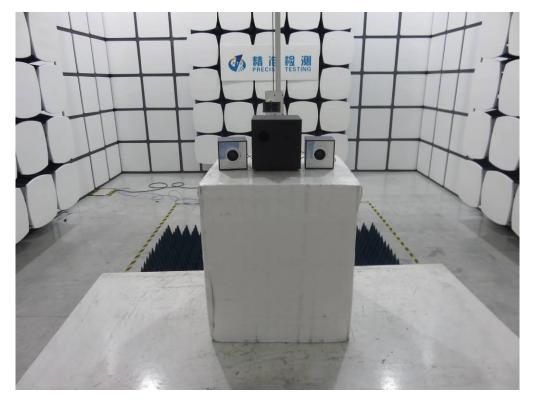
No.	No. Freq.		Reading_Level (dBuV)		Correct Measurement Factor (dBuV)			Limit (dBuV)		Margin (dB)		P/F	Comment	
	(MHz)	Peak	QP	AVG	dB	Peak	QP	AVG	QP	AVG	QP	AVG		
1	0.1748	36.59		25.72	10.19	46.78		35.91	64.72	54.72	-17.94	-18.81	Р	
2	0.6340	28.61		12.29	10.32	38.93		22.61	56.00	46.00	-17.07	-23.39	Р	
3	1.4657	23.00		10.51	10.38	33.38		20.89	56.00	46.00	-22.62	-25.11	Р	
4	1.8660	24.07		10.55	10.26	34.33		20.81	56.00	46.00	-21.67	-25.19	Р	
5	3.4420	28.38		17.06	10.51	38.89		27.57	56.00	46.00	-17.11	-18.43	Р	
6	21.6097	29.65		15.74	10.12	39.77		25.86	60.00	50.00	-20.23	-24.14	Р	

Line Conducted Emission Test Line 2-N

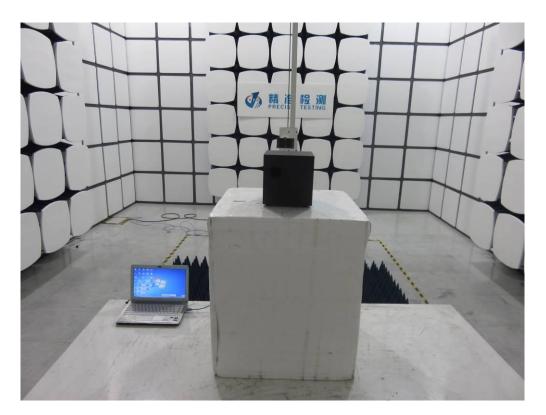

Mode:BT Link with charging Note:

No.	No. Freq.		Reading_Level (dBuV)		Correct Measurement Factor (dBuV)			Limit (dBuV)		Margin (dB)		P/F	Comment	
	(MHz)	Peak	QP	AVG	dB	Peak	QP	AVG	QP	AVG	QP	AVG		
1	0.1758	35.13		25.41	10.19	45.32		35.60	64.68	54.68	-19.36	-19.08	Р	
2	0.6097	27.59		16.55	10.31	37.90		26.86	56.00	46.00	-18.10	-19.14	Р	
3	1.0700	24.32		10.23	10.37	34.69		20.60	56.00	46.00	-21.31	-25.40	Ρ	
4	3.5459	27.00		15.73	10.50	37.50		26.23	56.00	46.00	-18.50	-19.77	Р	
5	9.1699	22.80		10.46	10.27	33.07		20.73	60.00	50.00	-26.93	-29.27	Р	
6	23.6900	24.55		13.53	10.11	34.66		23.64	60.00	50.00	-25.34	-26.36	Р	


APPENDIX A: PHOTOGRAPHS OF TEST SETUP FCC LINE CONDUCTED EMISSION TEST SETUP

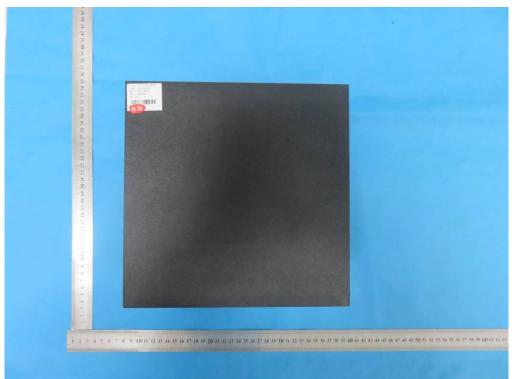


FCC RADIATED EMISSION TEST SETUP



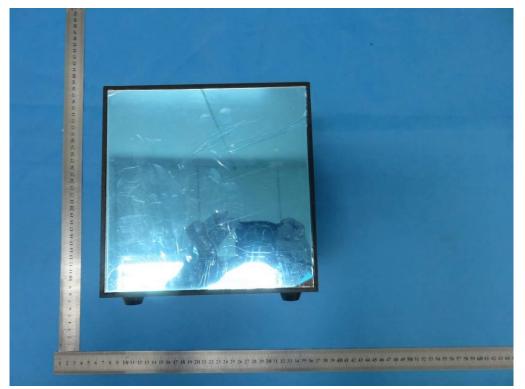
Report No.: AGC01097160901FE03 Page 49 of 58

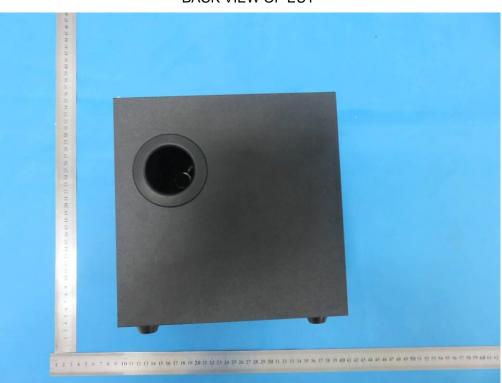
Report No.: AGC01097160901FE03 Page 50 of 58


Report No.: AGC01097160901FE03 Page 51 of 58

APPENDIX B: PHOTOGRAPHS OF EUT

ALL VIEW OF EUT

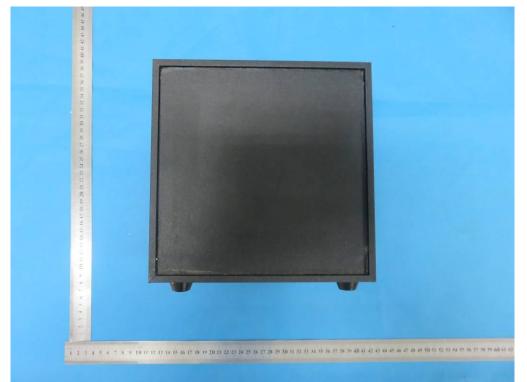

TOP VIEW OF EUT



BOTTOM VIEW OF EUT

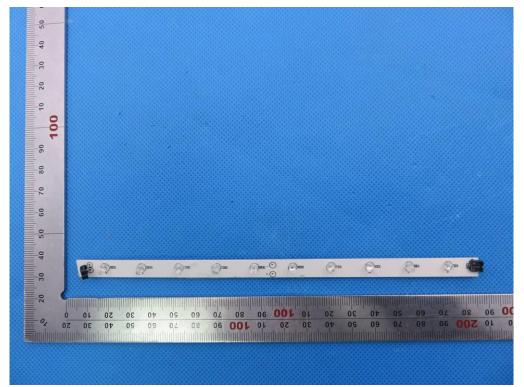
FRONT VIEW OF EUT

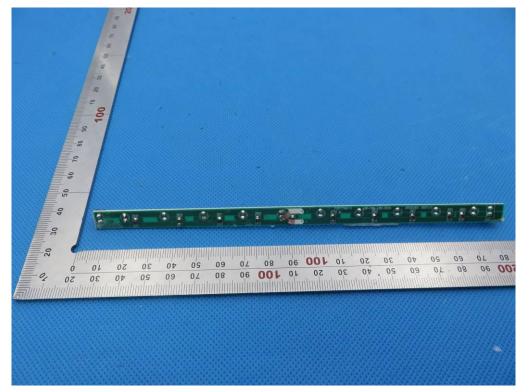
Report No.: AGC01097160901FE03 Page 53 of 58


BACK VIEW OF EUT

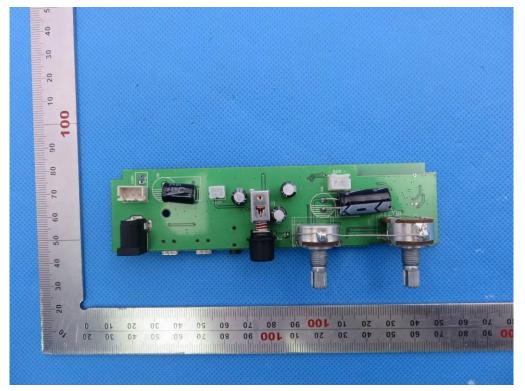
LEFT VIEW OF EUT

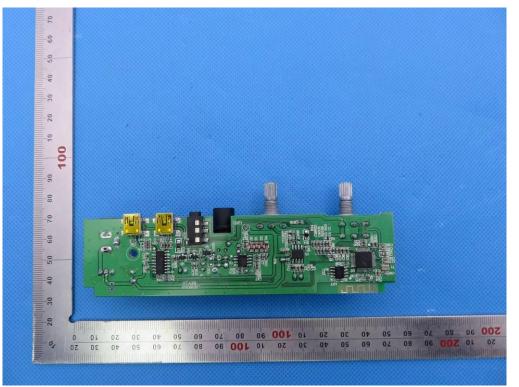
VIEW OF EUT (PORT)



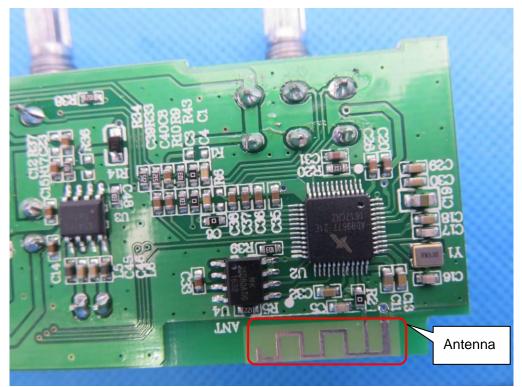

RIGHT VIEW OF EUT

OPEN VIEW OF EUT


INTERNAL VIEW OF EUT-1



INTERNAL VIEW OF EUT-2


INTERNAL VIEW OF EUT-3

INTERNAL VIEW OF EUT-4

INTERNAL VIEW OF EUT-5

VIEW OF ADAPTER

----END OF REPORT----