

TEST REPORT

Product Name : ONN.BT EARBUD

Brand Mark : onn.

Model No. : AABLK100074910

Extension Model : SMBT-0972A;AABLU100074910; AALAV100074910; AALGW100074910

FCC ID : 2ADZH-ONN28871

Report Number : BLA-EMC-202208-A0402

Date of Sample Receipt : 2022/8/1

Date of Test : 2022/8/1 to 2022/8/11

Date of Issue : 2022/8/11

Test Standard : 47 CFR Part 15, Subpart C 15.247

Test Result : Pass

Prepared for:

Dongguan Siyoto Electronics Co., Ltd.
No.10 North 7th Street, Qiaodong road, Qiaotou town, Dongguan,
Guangdong, China

Prepared by:

BlueAsia of Technical Services(Shenzhen) Co.,Ltd.
Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District,
Shenzhen, Guangdong Province, China

TEL: +86-755-23059481

Compiled by: Charlie

Approved by: Bhe hong

Review by:

2022/8/11

Page 2 of 89

REPORT REVISE RECORD

Version No. Date		Description	
00	2022/8/11	Original	

TABLE OF CONTENTS

1	TE	ST SUMMARY	5
2	GE	ENERAL INFORMATION	6
3	GE	ENERAL DESCRIPTION OF E.U.T	6
4	TE	ST ENVIRONMENT	7
5	TE	ST MODE	7
6	ME	EASUREMENT UNCERTAINTY	7
7		SCRIPTION OF SUPPORT UNIT	
8		ABORATORY LOCATION	
		ST INSTRUMENTS LIST	
9			
10) AN	ITENNA REQUIREMENT	
	10.1	CONCLUSION	
11	СО	ONDUCTED SPURIOUS EMISSIONS	14
	11.1	LIMITS	14
	11.2	BLOCK DIAGRAM OF TEST SETUP	
	11.3	TEST DATA	15
12	2 DW	VELL TIME	16
	12.1	LIMITS	16
	12.2	BLOCK DIAGRAM OF TEST SETUP	
	12.3	TEST DATA	17
13	з но	OPPING CHANNEL NUMBER	18
	13.1	LIMITS	18
	13.2	BLOCK DIAGRAM OF TEST SETUP	
	13.3	TEST DATA	18
14	I CA	ARRIER FREQUENCIES SEPARATION	19
	14.1	LIMITS	19
	14.2	BLOCK DIAGRAM OF TEST SETUP	19
	14.3	TEST DATA	19
15	5 201	DB BANDWIDTH	20
	15.1	BLOCK DIAGRAM OF TEST SETUP	20

20

	15.2	TEST DATA	. 20
16	CON	IDUCTED PEAK OUTPUT POWER	. 21
	16.1	LIMITS	21
	16.2	BLOCK DIAGRAM OF TEST SETUP	21
	16.3	TEST DATA	. 22
17	CON	IDUCTED EMISSIONS AT AC POWER LINE (150KHZ-30MHZ)	. 23
	17.1	LIMITS	23
	17.2	BLOCK DIAGRAM OF TEST SETUP	23
	17.3	PROCEDURE	23
	17.4	TEST DATA	
18	RAD	NATED SPURIOUS EMISSIONS	.27
	18.1	LIMITS	27
	18.2	BLOCK DIAGRAM OF TEST SETUP	28
	18.3	PROCEDURE	28
	18.4	TEST DATA	. 30
19	RAD	NATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS	. 38
	19.1	LIMITS	38
	19.2	BLOCK DIAGRAM OF TEST SETUP	
	19.3	PROCEDURE	
	19.4	TEST DATA	
20	CON	IDUCTED BAND EDGES MEASUREMENT	45
		LIMITS	
	20.2	BLOCK DIAGRAM OF TEST SETUP	
	20.3	TEST DATA	
21	APP	ENDIX	.47
ΑP	PENDI	X A: PHOTOGRAPHS OF TEST SETUP	.87
ΑP	PENDI	X B: PHOTOGRAPHS OF EUT	.89

Page 5 of 89

1 TEST SUMMARY

Test item	Test Requirement	Test Method	Class/Severity	Result
Antenna Requirement	47 CFR Part 15, Subpart C 15.247	N/A	A 47 CFR Part 15, Subpart C 15.203 & 15.247(c)	
Conducted Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.6 & Section 11.11	47 CFR Part 15, Subpart C 15.247(d)	Pass
Dwell Time	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.4	47 CFR Part 15, Subpart C 15.247a(1)(iii)	Pass
Hopping Channel Number	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.3	47 CFR Part 15, Subpart C 15.247a(1)(iii)	Pass
Carrier Frequencies Separation	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.2	47 CFR Part 15, Subpart C 15.247a(1)	Pass
20dB Bandwidth	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.7	47 CFR Part 15, Subpart C 15.247(a)(1)	Pass
Conducted Peak Output Power	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.5	47 CFR Part 15, Subpart C 15.247(b)(3)	Pass
Conducted Emissions at AC Power Line (150kHz-30MHz)	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.2	47 CFR Part 15, Subpart C 15.207	Pass
Radiated Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.4,6.5,6.6	47 CFR Part 15, Subpart C 15.209 & 15.247(d)	Pass
Radiated Emissions which fall in the restricted bands	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.10.5	47 CFR Part 15, Subpart C 15.209 & 15.247(d)	Pass
Conducted Band Edges Measurement	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.8 & Section 11.13.3.2	47 CFR Part 15, Subpart C 15.247(d)	Pass

Page 6 of 89

2 GENERAL INFORMATION

Applicant	Dongguan Siyoto Electronics Co., Ltd.			
Address	No.10 North 7th Street, Qiaodong road, Qiaotou town, Dongguan, Guangdong, China			
Manufacturer	SIYOTO VINA ELECTRONICS CO., LTD			
Address	Lot CN 15.1, Le Chan Street, Chau Son Industrial Park, Le Hong Phong Ward, Phu Ly City, Ha Nam Province, Vietnam			
Factory	SIYOTO VINA ELECTRONICS CO., LTD			
Address	Lot CN 15.1, Le Chan Street, Chau Son Industrial Park, Le Hong Phong Ward, Phu Ly City, Ha Nam Province, Vietnam			
Product Name	ONN.BT EARBUD			
Test Model No.	AABLK100074910			
Extension Model	SMBT-0972A;AABLU100074910;AALAV100074910; AALGW100074910			
Remark	All above models are identical in the same PCB layout, interior structure and electrical circuits. The differences are model name for commercial purpose.			

3 GENERAL DESCRIPTION OF E.U.T.

Hardware Version	V0.2
Software Version	V016
Bluetooth version	V5.3
Operation Frequency:	2402MHz-2480MHz
Modulation Type:	GFSK, pi/4DQPSK
Channel Spacing:	1MHz
Number of Channels:	79
Antenna Type:	PCB Antenna
Antenna Gain:	0dBi(Provided by the customer)

Page 7 of 89

4 TEST ENVIRONMENT

Environment	Temperature	Voltage	
Normal	25° C	3.7Vdc	

5 TEST MODE

TEST MODE	TEST MODE DESCRIPTION		
TX	Keep the EUT in continuously transmitting mode with modulation. (hopping and non		
17	hopping mode all have been tested, non hopping mode is worse case for RE)		
Remarks: Except	Remarks: Except for AC conduction emission, all tests use full battery, DH1, DH3, DH5 have been tested,		
GFSK, Pi/4QPSK modulation has been pre-scanned during the test, only the worst mode of Pi/4QPSK			
will be recorded in this report			

6 MEASUREMENT UNCERTAINTY

Parameter	Expanded Uncertainty (Confidence of 95%)		
Radiated Emission(9kHz-30MHz)	±4.34dB		
Radiated Emission(30Mz-1000MHz)	±4.24dB		
Radiated Emission(1GHz-18GHz)	±4.68dB		
AC Power Line Conducted Emission(150kHz-30MHz)	±3.45dB		

Page 8 of 89

DESCRIPTION OF SUPPORT UNIT

Device Type	Manufacturer	Model Name	Serial No.	Remark
PC	HASEE	K610D	N/A	N/A

LABORATORY LOCATION 8

All tests were performed at:

BlueAsia of Technical Services(Shenzhen) Co., Ltd.

Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen, Guangdong Province,

China

Telephone: TEL: +86-755-28682673 FAX: +86-755-28682673

No tests were sub-contracted.

Page 9 of 89

9 TEST INSTRUMENTS LIST

Test Equipment Of Radiated Spurious Emissions						
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due	
Chamber	SKET	966	N/A	10/11/2020	9/11/2023	
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022	
Receiver	R&S	ESR7	101199	24/9/2021	23/9/2022	
broadband Antenna	Schwarzbeck	VULB9168	00836 P:00227	26/9/2020	25/9/2022	
Horn Antenna	Schwarzbeck	9120D	01892 P:00331	26/9/2020	25/9/2022	
Amplifier	SKET	LNPA-0118-45	N/A	24/9/2021	23/9/2022	
EMI software	EZ	EZ-EMC	N/A	N/A	N/A	
Loop antenna	SCHNARZBECK	FMZB1519B	00102	26/9/2020	25/9/2022	

Test Equipment Of Radiated Emissions which fall in the restricted bands					
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Chamber	SKET	966	N/A	10/11/2020	9/11/2023
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022
Receiver	R&S	ESR7	101199	24/9/2021	23/9/2022
broadband Antenna	Schwarzbeck	VULB9168	00836 P:00227	26/9/2020	25/9/2022
Horn Antenna	Schwarzbeck	9120D	01892 P:00331	26/9/2020	25/9/2022
Amplifier	SKET	LNPA-0118-45	N/A	24/9/2021	23/9/2022
EMI software	EZ	EZ-EMC	N/A	N/A	N/A
Loop antenna	SCHNARZBECK	FMZB1519B	00102	26/9/2020	25/9/2022

Page 10 of 89

Test Equipment Of Conducted Band Edges Measurement					
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022
Spectrum	Agilent	N9020A	MY49100060	24/9/2021	23/9/2022
Signal Generator	Agilent	N5182A	MY49060650	24/9/2021	23/9/2022
Signal Generator	Agilent	E8257D	MY44320250	24/9/2021	23/9/2022

Test Equipment Of Conducted Spurious Emissions					
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022
Spectrum	Agilent	N9020A	MY49100060	24/9/2021	23/9/2022
Signal Generator	Agilent	N5182A	MY49060650	24/9/2021	23/9/2022
Signal Generator	Agilent	E8257D	MY44320250	24/9/2021	23/9/2022

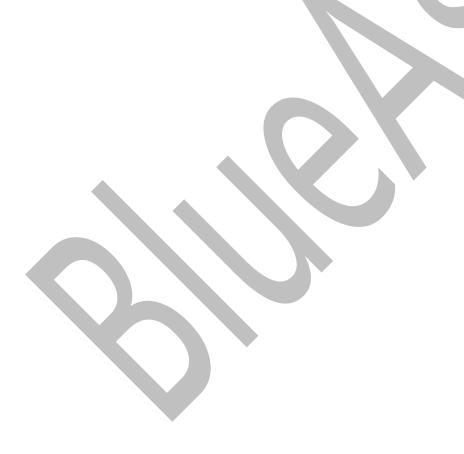
Test Equipment Of Dwell Time					
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022
Spectrum	Agilent	N9020A	MY49100060	24/9/2021	23/9/2022
Signal Generator	Agilent	N5182A	MY49060650	24/9/2021	23/9/2022
Signal Generator	Agilent	E8257D	MY44320250	24/9/2021	23/9/2022

Test Equipment Of Hopping Channel Number					
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022

Page 11 of 89

Spectrum	Agilent	N9020A	MY49100060	24/9/2021	23/9/2022
Signal Generator	Agilent	N5182A	MY49060650	24/9/2021	23/9/2022
Signal Generator	Agilent	E8257D	MY44320250	24/9/2021	23/9/2022

Test Equipment Of Carrier Frequencies Separation					
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022
Spectrum	Agilent	N9020A	MY49100060	24/9/2021	23/9/2022
Signal Generator	Agilent	N5182A	MY49060650	24/9/2021	23/9/2022
Signal Generator	Agilent	E8257D	MY44320250	24/9/2021	23/9/2022


Test Equipment Of 2	20dB Bandwidth				
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022
Spectrum	Agilent	N9020A	MY49100060	24/9/2021	23/9/2022
Signal Generator	Agilent	N5182A	MY49060650	24/9/2021	23/9/2022
Signal Generator	Agilent	E8257D	MY44320250	24/9/2021	23/9/2022

Test Equipment Of Conducted Peak Output Power					
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022
Spectrum	Agilent	N9020A	MY49100060	24/9/2021	23/9/2022
Signal Generator	Agilent	N5182A	MY49060650	24/9/2021	23/9/2022
Signal Generator	Agilent	E8257D	MY44320250	24/9/2021	23/9/2022

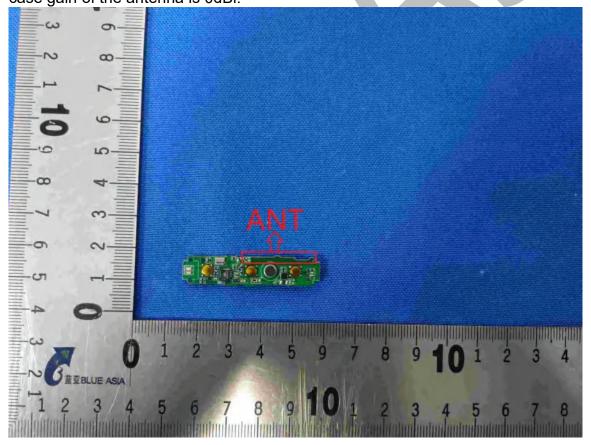
Page 12 of 89

Test Equipment Of	Test Equipment Of Conducted Emissions at AC Power Line (150kHz-30MHz)				
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Shield room	SKET	833	N/A	25/11/2020	24/11/2023
Receiver	R&S	ESPI3	101082	24/9/2021	23/9/2022
LISN	R&S	ENV216	3560.6550.15	24/9/2021	23/9/2022
LISN	AT	AT166-2	AKK1806000003	26/9/2021	25/9/2022
EMI software	EZ	EZ-EMC	N/A	N/A	N/A

Page 13 of 89

10 ANTENNA REQUIREMENT

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	N/A


10.1 CONCLUSION

Standard Requirement:

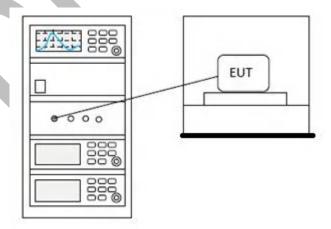
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit permanently attached antenna or of an so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0dBi.

Page 14 of 89

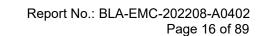
11 CONDUCTED SPURIOUS EMISSIONS


Test Standard	47 CFR Part 15, Subpart C 15.247		
Test Method	ANSI C63.10 (2013) Section 7.8.6 & Section 11.11		
Test Mode (Pre-Scan)	TX		
Test Mode (Final Test)	TX		
Tester	Charlie		
Temperature	25℃		
Humidity	60%		

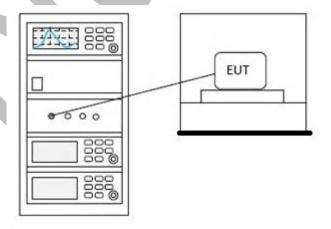
11.1 LIMITS

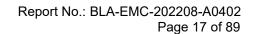
Limit:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).


11.2 BLOCK DIAGRAM OF TEST SETUP

11.3 TEST DATA


12 DWELL TIME


Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 7.8.4
Test Mode (Pre-Scan)	TX
Test Mode (Final Test)	TX
Tester	Charlie
Temperature	25℃
Humidity	60%

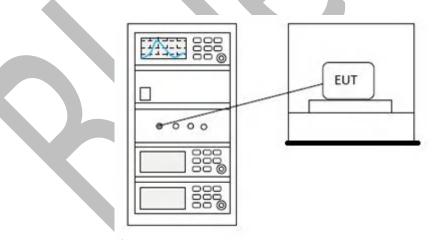
12.1 LIMITS

Frequency(MHz)	Limit
	0.4S within a 20S period(20dB
002.020	bandwidth<250kHz)
902-928	0.4S within a 10S period(20dB
	bandwidth≥250kHz)
	0.4S within a period of 0.4S multiplied by the
2400-2483.5	number
	of hopping channels
5725-5850	0.4S within a 30S period

12.2 BLOCK DIAGRAM OF TEST SETUP

12.3 TEST DATA

Page 18 of 89


13 HOPPING CHANNEL NUMBER

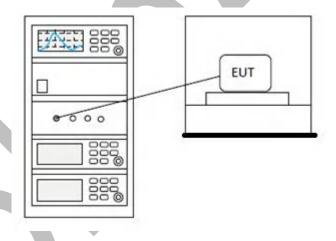
Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 7.8.3
Test Mode (Pre-Scan)	TX
Test Mode (Final Test)	TX
Tester	Charlie
Temperature	25℃
Humidity	60%


13.1 LIMITS

Frequency range(MHz)	Number of hopping channels (minimum)
002.020	50 for 20dB bandwidth <250kHz
902-928	25 for 20dB bandwidth ≥250kHz
2400-2483.5	15
5725-5850	75

13.2 BLOCK DIAGRAM OF TEST SETUP

13.3 TEST DATA


14 CARRIER FREQUENCIES SEPARATION

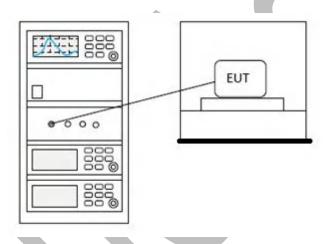
Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 7.8.2
Test Mode (Pre-Scan)	TX
Test Mode (Final Test)	TX
Tester	Charlie
Temperature	25℃
Humidity	60%

14.1 LIMITS

Limit: 2/3 of the 20dB bandwidth base on the transmission power is less than 0.125W

14.2 BLOCK DIAGRAM OF TEST SETUP

14.3 TEST DATA



Page 20 of 89

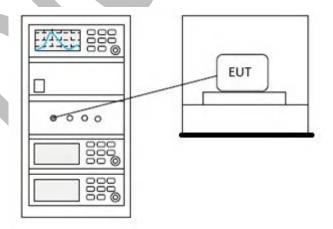
15 20DB BANDWIDTH

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 7.8.7
Test Mode (Pre-Scan)	TX
Test Mode (Final Test)	TX
Tester	Charlie
Temperature	25℃
Humidity	60%

15.1 BLOCK DIAGRAM OF TEST SETUP

15.2 TEST DATA

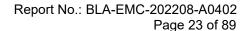
Page 21 of 89


16 CONDUCTED PEAK OUTPUT POWER

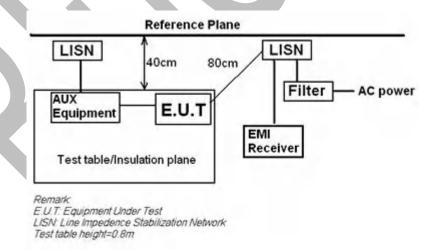
Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 7.8.5
Test Mode (Pre-Scan)	TX
Test Mode (Final Test)	TX
Tester	Charlie
Temperature	25℃
Humidity	60%

16.1 LIMITS

Frequency range(MHz)	Output power of the intentional radiator(watt)
	1 for ≥50 hopping channels
902-928	0.25 for 25≤ hopping channels <50
	1 for digital modulation
	1 for ≥75 non-overlapping hopping channels
2400-2483.5	0.125 for all other frequency hopping systems
	1 for digital modulation
5705 5050	1 for frequency hopping systems and digital
5725-5850	modulation


16.2 BLOCK DIAGRAM OF TEST SETUP

16.3 TEST DATA


17 CONDUCTED EMISSIONS AT AC POWER LINE (150KHZ-30MHZ)

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 6.2
Test Mode (Pre-Scan)	TX
Test Mode (Final Test)	TX
Tester	Charlie
Temperature	25℃
Humidity	60%

17.1 LIMITS

Frequency of	Conducted	limit(dBµV)
emission(MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50
*Decreases with the logarithm	of the frequency.	

17.2 BLOCK DIAGRAM OF TEST SETUP

17.3 PROCEDURE

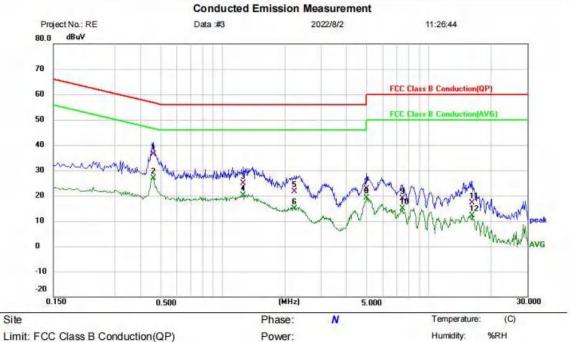
- 1) The mains terminal disturbance voltage test was conducted in a shielded room.
- 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50ohm/50H + 5ohm linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.

Page 24 of 89

3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,

4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.

5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.


Remark: LISN=Read Level+ Cable Loss+ LISN Factor

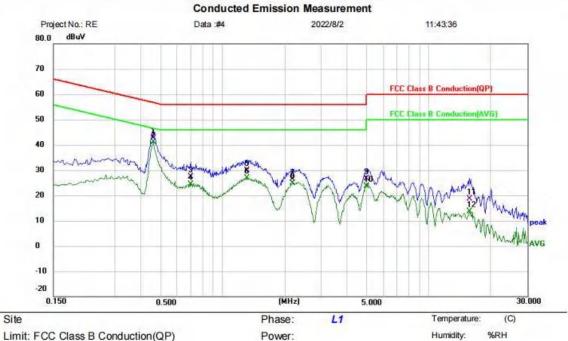
17.4 TEST DATA

[TestMode: BT mode]; [Line: Neutral]; Voltage: [120V/60Hz]

Limit: FCC Class B Conduction(QP)

EUT: ONN.BT EARBUD M/N: AABLK100074910

Mode: TX mode


Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.4580	26.71	9.79	36.50	56.73	-20.23	QP	
2	*	0.4580	17.12	9.79	26.91	46.73	-19.82	AVG	
3		1.2620	14.99	9.85	24.84	56.00	-31.16	QP	
4		1.2620	10.32	9.85	20.17	46.00	-25.83	AVG	
5		2.2220	11.73	9.87	21.60	56.00	-34.40	QP	
6		2.2220	5.04	9.87	14.91	46.00	-31.09	AVG	
7		4.9820	12.68	9.95	22.63	56.00	-33.37	QP	
8		4.9820	9.14	9.95	19.09	46.00	-26.91	AVG	
9		7.4260	8.82	10.05	18.87	60.00	-41.13	QP	
10		7.4260	4.84	10.05	14.89	50.00	-35.11	AVG	
11		16.1700	6.75	10.31	17.06	60.00	-42.94	QP	
12		16.1700	1.83	10.31	12.14	50.00	-37.86	AVG	

*:Maximum data x:Over limit !:over margin (Reference Only

[TestMode: BT mode]; [Line: Line]; Voltage: [120V/60Hz]

Limit: FCC Class B Conduction(QP)

EUT: ONN.BT EARBUD M/N: AABLK100074910

Mode: TX mode

Note:

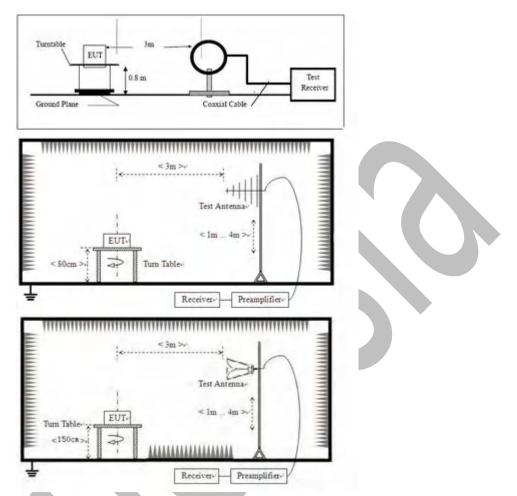
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.4580	32.84	9.87	42.71	56.73	-14.02	QP	
2	*	0.4580	31.14	9.87	41.01	46.73	-5.72	AVG	
3		0.6980	17.60	9.89	27.49	56.00	-28.51	QP	
4		0.6980	14.59	9.89	24.48	46.00	-21.52	AVG	
5		1.3060	19.86	9.93	29.79	56.00	-26.21	QP	
6		1.3060	16.89	9.93	26.82	46.00	-19.18	AVG	
7		2.1820	16.51	9.94	26.45	56.00	-29.55	QP	
8		2.1820	15.05	9.94	24.99	46.00	-21.01	AVG	
9		4.9740	16.65	10.02	26.67	56.00	-29.33	QP	
10		4.9740	13.67	10.02	23.69	46.00	-22.31	AVG	
11		15.7660	8.28	10.35	18.63	60.00	-41.37	QP	
12		15.7660	3.23	10.35	13.58	50.00	-36.42	AVG	

*:Maximum data x:Over limit !:over margin (Reference Only

Page 27 of 89

18 RADIATED SPURIOUS EMISSIONS

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 6.4,6.5,6.6
Test Mode (Pre-Scan)	TX
Test Mode (Final Test)	TX
Tester	Charlie
Temperature	25℃
Humidity	60%


18.1 LIMITS

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

18.2 BLOCK DIAGRAM OF TEST SETUP

18.3 PROCEDURE

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

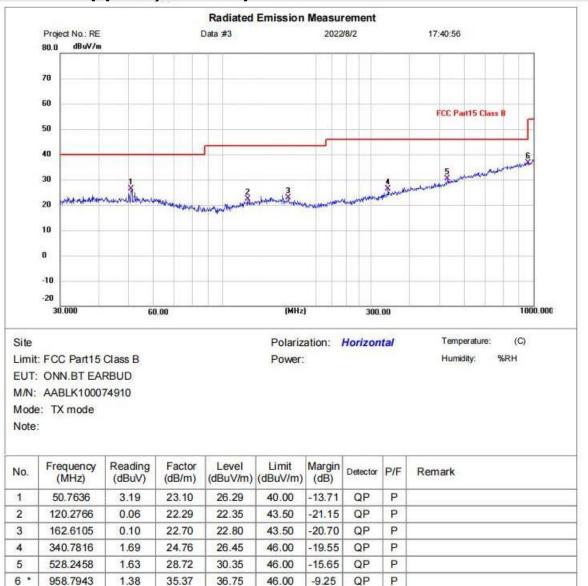
Page 29 of 89

- h. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- j. Repeat above procedures until all frequencies measured was complete.

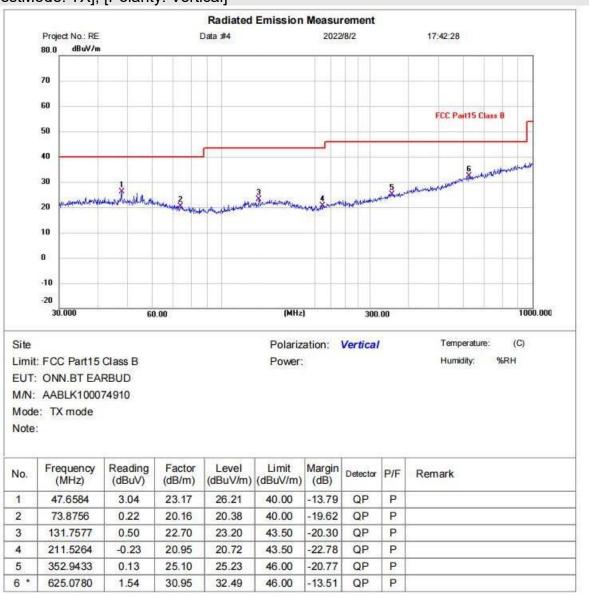
Remark:

- 1) For emission below 1GHz, through pre-scan found the worst case is the lowest channel. Only the worst case is recorded in the report.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

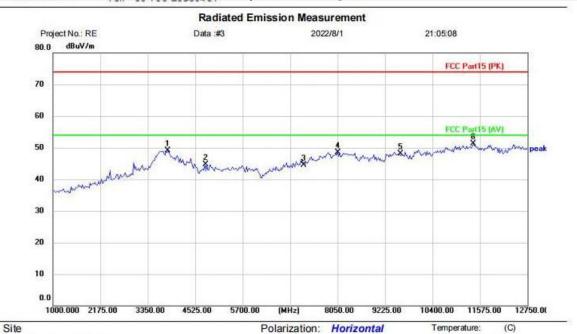
Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor


- 3) Scan from 9kHz to 25GHz, the disturbance above 12.75GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported fundamental frequency is blocked by filter, and only spurious emission is shown.
- 4) For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

18.4 TEST DATA


[TestMode: TX]; [Polarity: Horizontal]

^{*:}Maximum data x:Over limit !:over margin


[TestMode: TX]; [Polarity: Vertical]

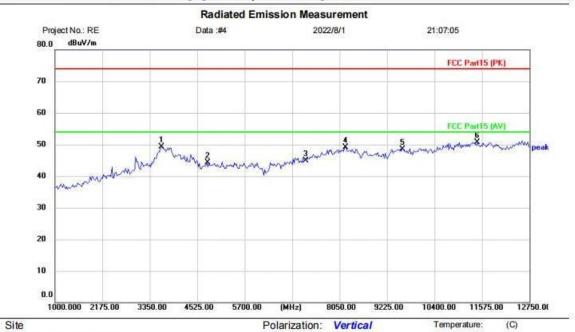
^{*:}Maximum data x:Over limit !:over margin

[TestMode: TX lowest channel]; [Polarity: Horizontal]

Limit: FCC Part15 (PK) EUT: ONN.BT EARBUD M/N: AABLK100074910

Mode: TX-L Note:

No. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1	3843.500	42.08	7.12	49.20	74.00	-24.80	peak		
2	4804.000	40.95	3.71	44.66	74.00	-29.34	peak		
3	7206.000	38.64	5.96	44.60	74.00	-29.40	peak		
4	8050.000	40.42	8.01	48.43	74.00	-25.57	peak		
5	9608.000	38.75	9.29	48.04	74.00	-25.96	peak		
6 *	11410.500	39.48	11.78	51.26	74.00	-22.74	peak		


Power:

*:Maximum data x:Over limit !:over margin (Reference Only

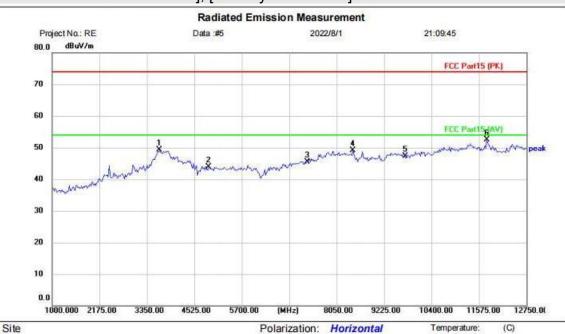
%RH

[TestMode: TX lowest channel]; [Polarity: Vertical]

Limit: FCC Part15 (PK) EUT: ONN.BT EARBUD M/N: AABLK100074910

Mode: TX-L Note:

No.	Mk.	Freq.	Reading Level	Correct	Measure- ment	Limit	Over			
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1		3632.000	41.53	7.77	49.30	74.00	-24.70	peak		
2		4804.000	40.60	3.71	44.31	74.00	-29.69	peak		
3		7206.000	38.96	5.96	44.92	74.00	-29.08	peak		
4		8191.000	40.97	8.20	49.17	74.00	-24.83	peak		
5		9608.000	39.18	9.29	48.47	74.00	-25.53	peak		
6	*	11457.500	38.94	11.84	50.78	74.00	-23.22	peak		


Power:

*:Maximum data x:Over limit !:over margin (Reference Only

%RH

[TestMode: TX middle channel]; [Polarity: Horizontal]

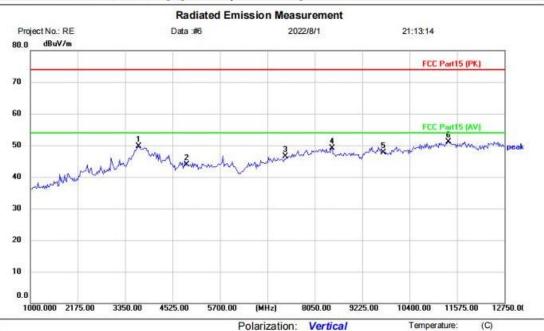
Limit: FCC Part15 (PK)

EUT: ONN.BT EARBUD M/N: AABLK100074910

Mode: TX-M

Note:

No. I	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1		3655.500	41.60	7.76	49.36	74.00	-24.64	peak		
2		4882.000	40.52	3.36	43.88	74.00	-30.12	peak		
3		7323.000	39.11	6.43	45.54	74.00	-28.46	peak		
4		8449.500	40.83	8.20	49.03	74.00	-24.97	peak		
5		9764.000	37.60	9.63	47.23	74.00	-26.77	peak		
6	*	1763.000	40.82	11.63	52.45	74.00	-21.55	peak		


Power:

*:Maximum data x:Over limit !:over margin (Reference Only

%RH

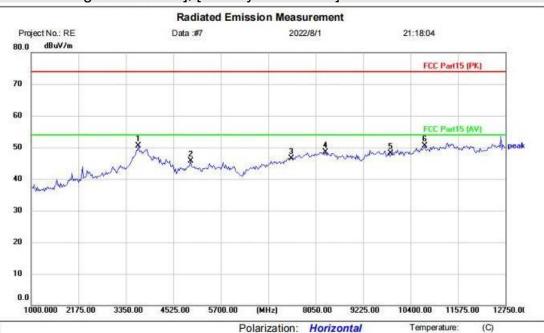
[TestMode:TX middle channel]; [Polarity: Vertical]

Limit: FCC Part15 (PK)

EUT: ONN.BT EARBUD M/N: AABLK100074910

Mode: TX-M Note:

No. Mk	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1	3679.000	41.93	7.73	49.66	74.00	-24.34	peak		
2	4882.000	40.48	3.36	43.84	74.00	-30.16	peak		
3	7323.000	40.14	6.43	46.57	74.00	-27.43	peak		
4	8473.000	41.02	8.17	49.19	74.00	-24.81	peak		
5	9764.000	38.11	9.63	47.74	74.00	-26.26	peak		
6 *	11363.500	39.31	11.81	51.12	74.00	-22.88	peak		


Power:

*:Maximum data x:Over limit !:over margin (Reference Only

%RH

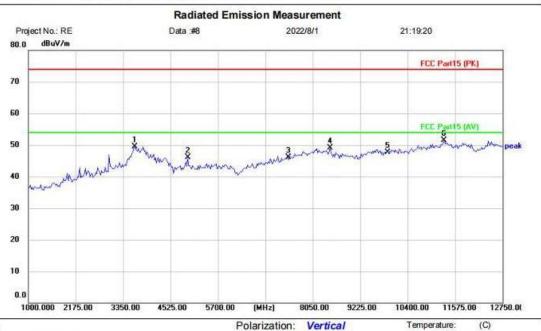
[TestMode: TX highest channel]; [Polarity: Horizontal]

Site Limit: FCC Part15 (PK)

EUT: ONN.BT EARBUD M/N: AABLK100074910

Mode: TX-H Note:

No. N	/lk. Freq.	Reading Level	Correct	Measure- ment	Limit	Over			
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1	3655.50	0 42.66	7.76	50.42	74.00	-23.58	peak		
2	4948.00	0 42.11	3.65	45.76	74.00	-28.24	peak		
3	7440.00	0 39.61	6.86	46.47	74.00	-27.53	peak		
4	8285.00	0 40.26	8.24	48.50	74.00	-25.50	peak		
5	9920.00	0 37.96	10.16	48.12	74.00	-25.88	peak		
6 *	10752.50	0 38.93	11.62	50.55	74.00	-23.45	peak		


Power:

*:Maximum data x:Over limit !:over margin (Reference Only

%RH

[TestMode: TX highest channel]; [Polarity: Vertical]

Limit: FCC Part15 (PK)

EUT: ONN.BT EARBUD M/N: AABLK100074910

Mode: TX-H Note:

Site

No. Mk	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment
1	3632.000	41.75	7.77	49.52	74.00	-24.48	peak	
2	4948.000	42.44	3.65	46.09	74.00	-27.91	peak	
3	7440.000	39.16	6.86	46.02	74.00	-27.98	peak	
4	8473.000	40.86	8.17	49.03	74.00	-24.97	peak	
5	9920.000	37.48	10.16	47.64	74.00	-26.36	peak	
6 *	11293.000	39.69	11.91	51.60	74.00	-22.40	peak	

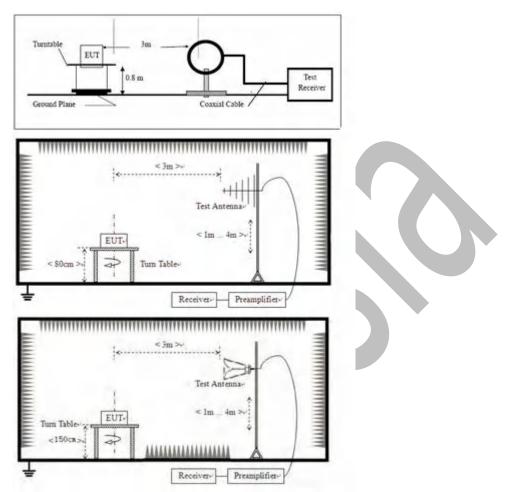
Power:

*:Maximum data x:Over limit !:over margin (Reference Only

Page 38 of 89

19 RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 6.10.5
Test Mode (Pre-Scan)	TX
Test Mode (Final Test)	TX
Tester	Charlie
Temperature	25℃
Humidity	60%


19.1 LIMITS

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

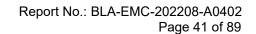
19.2 BLOCK DIAGRAM OF TEST SETUP

19.3 PROCEDURE

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Page 40 of 89

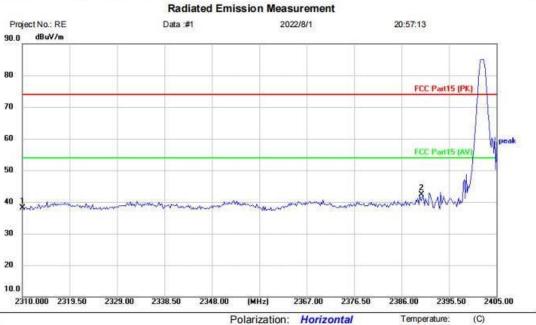
h. Test the EUT in the lowest channel, the middle channel, the Highest channel.


i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

j. Repeat above procedures until all frequencies measured was complete.

Remark 1: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

Remark 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.



%RH

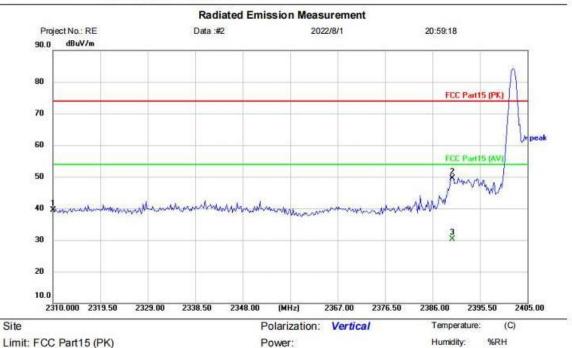
19.4 TEST DATA

[TestMode: TX lowest channel]; [Polarity: Horizontal]

Site Limit: FCC Part15 (PK)

EUT: ONN.BT EARBUD M/N: AABLK100074910

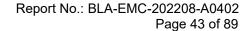
Mode: TX-L Note:


No. Mk.	Freq.	Reading Level	Correct	Measure- ment		Over			
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1	2310.000	42.07	-3.93	38.14	74.00	-35.86	peak		
2 *	2390.000	45.97	-3.58	42.39	74.00	-31.61	peak		

Power:

*:Maximum data x:Over limit !:over margin (Reference Only

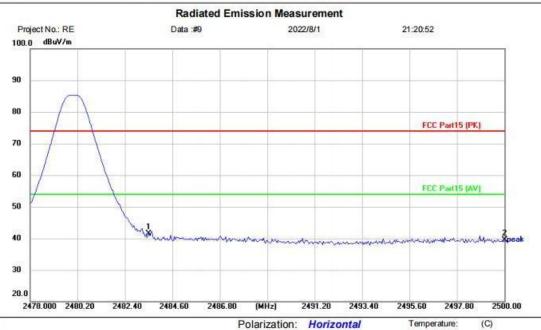
[TestMode: TX lowest channel]; [Polarity: Vertical]



Limit: FCC Part15 (PK) EUT: ONN.BT EARBUD M/N: AABLK100074910

Mode: TX-L Note:

No.	Mk.	Freq.	Reading Level	Correct	Measure- ment	Limit	Over			
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1		2310.000	43.48	-3.93	39.55	74.00	-34.45	peak		
2		2390.000	53.13	-3.58	49.55	74.00	-24.45	peak		
3	*	2390.000	33.82	-3.58	30.24	54.00	-23.76	AVG		



Humidity: %RH

[TestMode: TX highest channel]; [Polarity: Horizontal]

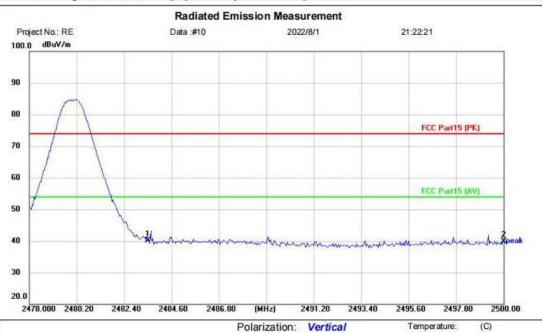
Site Limit: FCC Part15 (PK)

EUT: ONN.BT EARBUD M/N: AABLK100074910

Mode: TX-H

Note:

No.	Mk.	Freq.	Reading Level	Correct Factor dB/m	Measure- ment dBuV/m	Limit dBuV/m	Over	Detector	Comment	
1	*	2483.500	44.66	-3.14	41.52	74.00	-32.48	peak		
2		2500.000	42.49	-3.08	39.41	74.00	-34.59	peak		


Power:

*:Maximum data x:Over limit !:over margin (Reference Only

%RH

[TestMode: TX highest channel]; [Polarity: Vertical]

Limit: FCC Part15 (PK)

EUT: ONN.BT EARBUD M/N: AABLK100074910

Mode: TX-H Note:

Site

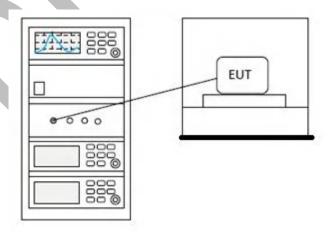
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment dBuV/m	Limit dBuV/m	Over	Detector	Comment	
							dB			
1	*	2483.500	43.30	-3.14	40.16	74.00	-33.84	peak		
2		2500.000	43.00	-3.08	39.92	74.00	-34.08	peak		

Power:

*:Maximum data x:Over limit !:over margin (Reference Only

Page 45 of 89

20 CONDUCTED BAND EDGES MEASUREMENT


Test Standard	47 CFR Part 15, Subpart C 15.247					
Test Method	ANSI C63.10 (2013) Section 7.8.8 & Section 11.13.3.2					
Test Mode (Pre-Scan)	TX					
Test Mode (Final Test)	TX					
Tester	Charlie					
Temperature	25℃					
Humidity	60%					

20.1 LIMITS

Limit:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

20.2 BLOCK DIAGRAM OF TEST SETUP

20.3 TEST DATA

