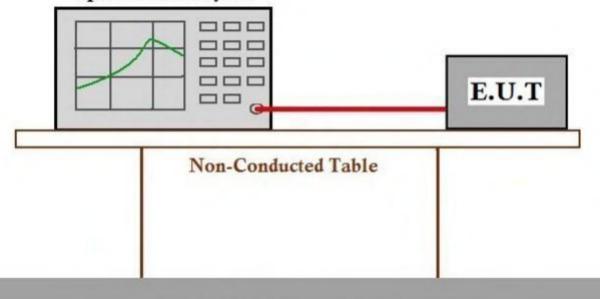


Test Result:

TestMode	ChName	Freq(MHz)	Result[dBm]	Limit[dBm]	Verdict
	Low	5180	-45.03	≤-27	PASS
11A	High	5240	-46.12	≤-27	PASS
	Low	5180	-44.98	≤-27	PASS
11N20SISO	High	5240	-46.02	≤-27	PASS
	Low	5190	-45.37	≤-27	PASS
11N40SISO	High	5230	-46.52	≤-27	PASS
	Low	5180	-46.03	≤-27	PASS
11AC20SISO	High	5240	-46.79	≤-27	PASS
	Low	5190	-45.55	≤-27	PASS
11AC40SISO	High	5230	-45.41	≤-27	PASS
	Low	5210	-45.69	≤-27	PASS
11AC80SISO	High	5210	-46.51	≤-27	PASS

Appendix E): Frequency Stability


Test Requirement 47 CFR Part 15, Subpart C 15.407 (g)

Test Method: ANSI C63.10 (2013) Section 6.8

Limit: The frequency tolerance shall be maintained within the band of operation frequency over a temperature variation of 0 degrees to 35 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.

Test Setup Diagram

Spectrum Analyzer

Ground Reference Plane

Measurement Data

				Voltage				
TestMode	Antenna	Freq(MHz)	Voltage [Vdc]	Temperat ure (℃)	Deviation (Hz)	Deviation (ppm)	Limit (ppm)	Verdict
			NV	NT	27000.00	5.212355	20	PASS
		5180	LV	NT	27000.00	5.212355	20	PASS
			HV	NT	27000.00	5.212355	20	PASS
			NV	NT	28000.00	5.384615	20	PASS
11A	Ant1	5200	LV	NT	27000.00	5.192308	20	PASS
			HV	NT	28000.00	5.384615	20	PASS
			NV	NT	28000.00	5.343511	20	PASS
		5240	LV	NT	27000.00	5.152672	20	PASS
			HV	NT	27000.00	5.152672	20	PASS
			NV	NT	27000.00	5.212355	20	PASS
		5180	LV	NT	28000.00	5.405405	20	PASS
			HV	NT	27000.00	5.212355	20	PASS
			NV	NT	28000.00	5.384615	20	PASS
11N20SISO	Ant1	5200	LV	NT	27000.00	5.192308	20	PASS
			HV	NT	27000.00	5.192308	20	PASS
		5240	NV	NT	28000.00	5.343511	20	PASS
			LV	NT	28000.00	5.343511	20	PASS
			HV	NT	28000.00	5.343511	20	PASS
			NV	NT	28000.00	5.394990	20	PASS
		5190	LV	NT	27000.00	5.202312	20	PASS
			HV	NT	27000.00	5.202312	20	PASS
11N40SISO	Ant1		NV	NT	29000.00	5.544933	20	PASS
		5230	LV	NT	28000.00	5.353728	20	PASS
			HV	NT	28000.00	5.353728	20	PASS
			NV	NT	28000.00	5.405405	20	PASS
		5180	LV	NT	27000.00	5.212355	20	PASS
			HV	NT	27000.00	5.212355	20	PASS
			NV	NT	27000.00	5.192308	20	PASS
11AC20SIS	Ant1	5200	LV	NT	27000.00	5.192308	20	PASS
0			HV	NT	28000.00	5.384615	20	PASS
			NV	NT	28000.00	5.343511	20	PASS
		5240	LV	NT	28000.00	5.343511	20	PASS
			HV	NT	28000.00	5.343511	20	PASS

		5190	NV	NT	28000.00	5.394990	20	PASS
			LV	NT	28000.00	5.394990	20	PASS
11AC40SIS	• • •		HV	NT	27000.00	5.202312	20	PASS
0	Ant1	5230	NV	NT	28000.00	5.353728	20	PASS
			LV	NT	28000.00	5.353728	20	PASS
			HV	NT	28000.00	5.353728	20	PASS
	11AC80SIS Ant1		NV	NT	28000.00	5.374280	20	PASS
		5210	LV	NT	28000.00	5.374280	20	PASS
0			HV	NT	28000.00	5.374280	20	PASS

				Temperature	•			
TestMode	Antenna	Freq(MHz)	Voltage [Vdc]	Temperat ure (℃)	Deviation (Hz)	Deviation (ppm)	Limit (ppm)	Verdict
			NV	-30	27000.00	5.212355	20	PASS
			NV	-20	27000.00	5.212355	20	PASS
			NV	-10	27000.00	5.212355	20	PASS
			NV	0	28000.00	5.405405	20	PASS
		5180	NV	10	27000.00	5.212355	20	PASS
			NV	20	27000.00	5.212355	20	PASS
			NV	30	28000.00	5.405405	20	PASS
			NV	40	27000.00	5.212355	20	PASS
			NV	50	27000.00	5.212355	20	PASS
			NV	-30	28000.00	5.384615	20	PASS
			NV	-20	27000.00	5.192308	20	PASS
110	A		NV	-10	28000.00	5.384615	20	PASS
11A	Ant1		NV	0	28000.00	5.384615	20	PASS
		5200	NV	10	28000.00	5.384615	20	PASS
			NV	20	28000.00	5.384615	20	PASS
			NV	30	27000.00	5.192308	20	PASS
			NV	40	28000.00	5.384615	20	PASS
			NV	50	28000.00	5.384615	20	PASS
			NV	-30	28000.00	5.343511	20	PASS
			NV	-20	27000.00	5.152672	20	PASS
		5040	NV	-10	28000.00	5.343511	20	PASS
		5240	NV	0	28000.00	5.343511	20	PASS
			NV	10	28000.00	5.343511	20	PASS
			NV	20	27000.00	5.152672	20	PASS

		1	1	1	1		•	
			NV	30	28000.00	5.343511	20	PASS
			NV	40	28000.00	5.343511	20	PASS
			NV	50	28000.00	5.343511	20	PASS
			NV	-30	28000.00	5.405405	20	PASS
			NV	-20	28000.00	5.405405	20	PASS
			NV	-10	27000.00	5.212355	20	PASS
			NV	0	27000.00	5.212355	20	PASS
		5180	NV	10	27000.00	5.212355	20	PASS
			NV	20	27000.00	5.212355	20	PASS
			NV	30	27000.00	5.212355	20	PASS
			NV	40	28000.00	5.405405	20	PASS
			NV	50	27000.00	5.212355	20	PASS
			NV	-30	28000.00	5.384615	20	PASS
			NV	-20	27000.00	5.192308	20	PASS
			NV	-10	28000.00	5.384615	20	PASS
			NV	0	28000.00	5.384615	20	PASS
11N20SISO	Ant1	5200	NV	10	28000.00	5.384615	20	PASS
			NV	20	28000.00	5.384615	20	PASS
			NV	30	28000.00	5.384615	20	PASS
			NV	40	28000.00	5.384615	20	PASS
			NV	50	28000.00	5.384615	20	PASS
			NV	-30	28000.00	5.343511	20	PASS
			NV	-20	28000.00	5.343511	20	PASS
			NV	-10	28000.00	5.343511	20	PASS
			NV	0	28000.00	5.343511	20	PASS
		5240	NV	10	28000.00	5.343511	20	PASS
			NV	20	28000.00	5.343511	20	PASS
			NV	30	28000.00	5.343511	20	PASS
			NV	40	28000.00	5.343511	20	PASS
			NV	50	28000.00	5.343511	20	PASS
			NV	-30	27000.00	5.202312	20	PASS
			NV	-20	27000.00	5.202312	20	PASS
			NV	-10	27000.00	5.202312	20	PASS
11N40SISO	Ant1	5190	NV	0	28000.00	5.394990	20	PASS
			NV	10	28000.00	5.394990	20	PASS
			NV	20	28000.00	5.394990	20	PASS
			NV	30	27000.00	5.202312	20	PASS

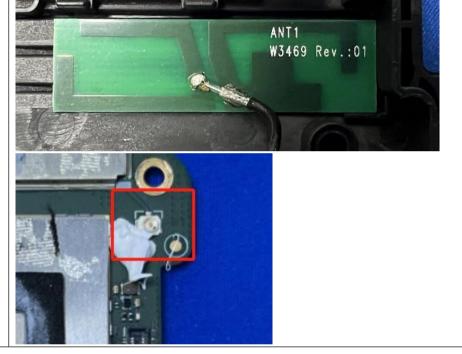
			N N /	40	07000.00	E 0000 (0		DAGG
			NV	40	27000.00	5.202312	20	PASS
			NV	50	27000.00	5.202312	20	PASS
			NV	-30	28000.00	5.353728	20	PASS
			NV	-20	28000.00	5.353728	20	PASS
			NV	-10	27000.00	5.162524	20	PASS
			NV	0	28000.00	5.353728	20	PASS
		5230	NV	10	28000.00	5.353728	20	PASS
			NV	20	28000.00	5.353728	20	PASS
			NV	30	27000.00	5.162524	20	PASS
			NV	40	28000.00	5.353728	20	PASS
			NV	50	28000.00	5.353728	20	PASS
			NV	-30	27000.00	5.212355	20	PASS
			NV	-20	28000.00	5.405405	20	PASS
			NV	-10	27000.00	5.212355	20	PASS
			NV	0	27000.00	5.212355	20	PASS
		5180	NV	10	28000.00	5.405405	20	PASS
			NV	20	27000.00	5.212355	20	PASS
			NV	30	27000.00	5.212355	20	PASS
			NV	40	27000.00	5.212355	20	PASS
			NV	50	28000.00	5.405405	20	PASS
			NV	-30	28000.00	5.384615	20	PASS
			NV	-20	27000.00	5.192308	20	PASS
			NV	-10	27000.00	5.192308	20	PASS
11AC20SIS			NV	0	27000.00	5.192308	20	PASS
0	Ant1	5200	NV	10	27000.00	5.192308	20	PASS
			NV	20	27000.00	5.192308	20	PASS
			NV	30	28000.00	5.384615	20	PASS
			NV	40	28000.00	5.384615	20	PASS
			NV	50	28000.00	5.384615	20	PASS
			NV	-30	28000.00	5.343511	20	PASS
	5240		NV	-20	28000.00	5.343511	20	PASS
			NV	-10	27000.00	5.152672	20	PASS
			NV	0	28000.00	5.343511	20	PASS
		5240	NV	10	28000.00	5.343511	20	PASS
			NV	20	28000.00	5.343511	20	PASS
			NV	30	28000.00	5.343511	20	PASS
			NV	40	28000.00	5.343511	20	PASS
				40	20000.00	0.040011	20	FA33

Report No.: CQASZ20230500829E-03

			NV	50	28000.00	5.343511	20	PASS
			NV	-30	28000.00	5.394990	20	PASS
			NV	-20	28000.00	5.394990	20	PASS
			NV	-10	28000.00	5.394990	20	PASS
			NV	0	28000.00	5.394990	20	PASS
		5190	NV	10	27000.00	5.202312	20	PASS
			NV	20	27000.00	5.202312	20	PASS
			NV	30	28000.00	5.394990	20	PASS
			NV	40	27000.00	5.202312	20	PASS
11AC40SIS			NV	50	28000.00	5.394990	20	PASS
О	Ant1		NV	-30	28000.00	5.353728	20	PASS
		5230	NV	-20	28000.00	5.353728	20	PASS
			NV	-10	28000.00	5.353728	20	PASS
			NV	0	28000.00	5.353728	20	PASS
			NV	10	28000.00	5.353728	20	PASS
			NV	20	28000.00	5.353728	20	PASS
			NV	30	28000.00	5.353728	20	PASS
			NV	40	28000.00	5.353728	20	PASS
			NV	50	28000.00	5.353728	20	PASS
			NV	-30	27000.00	5.182342	20	PASS
			NV	-20	28000.00	5.374280	20	PASS
			NV	-10	28000.00	5.374280	20	PASS
444.000010			NV	0	28000.00	5.374280	20	PASS
11AC80SIS	IS Ant1	nt1 5210	NV	10	28000.00	5.374280	20	PASS
0			NV	20	28000.00	5.374280	20	PASS
			NV	30	27000.00	5.182342	20	PASS
			NV	40	28000.00	5.374280	20	PASS
			NV	50	28000.00	5.374280	20	PASS

Note: All the modulation and channels had been tested, but only the worst data recorded in the report.

Appendix F): Antenna Requirement


15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.407(a)(1) (2) requirement:

The conducted output power limit specified in paragraph (a) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (a) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power and the peak power spectral density shall be reduced by the by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is FPC antenna.

The connection/connection type between the antenna to the EUT's antenna port is: unique coupling. This is either permanently attachment or a unique coupling that satisfies the requirement.

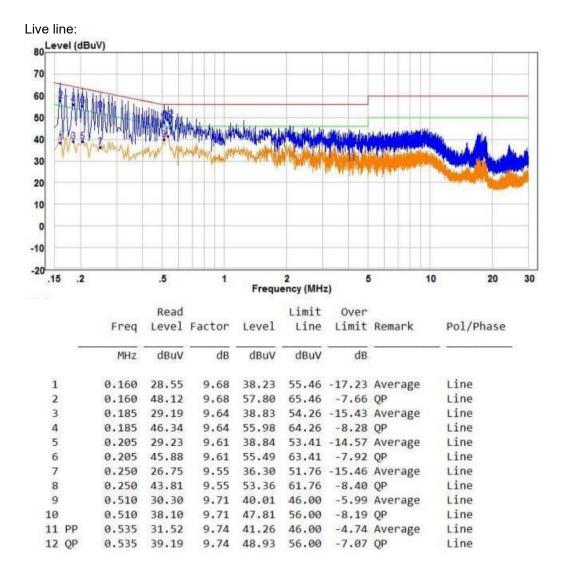
Appendix G): Operation in the absence of information to the transmit

15.407(c) requirement:

The device shall automatically discontinue transmission in case of either absence of information to transmit or operational failure. These provisions are not intended to preclude the transmission of control or signal ling information or the use of repetitive codes used by certain digital technologies to complete frame or burst intervals. Applicants shall include in their application for equipment authorization a description of how this requirement is met.

Operation in the absence of information to the transmit

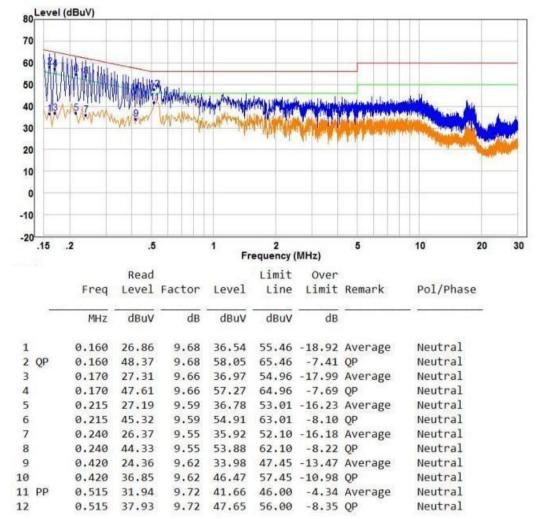
While the EUT is not transmitting any information, the EUT can automatically discontinue transmission and become standby mode for power saving. The EUT can detect the controlling signal of ASK message transmitting from remote device and verify whether it shall resend or discontinue transmission. (manufacturer declare)


Appendix H): A	C Power Line Condu	ucted Emissio	า					
Test Procedure:	 Test frequency range :150KHz 1)The mains terminal disturba 2) The EUT was connected to Stabilization Network) which power cables of all other us which was bonded to the g for the unit being measure multiple power cables to a exceeded. 3)The tabletop EUT was place reference plane. And for fle horizontal ground reference 4) The test was performed w EUT shall be 0.4 m from the reference plane was bonded 1 was placed 0.8 m from ground reference plane f plane. This distance was b All other units of the EUT a LISN 2. 5) In order to find the maximus all of the interface cable conducted measurement. 	z-30MHz nce voltage test was ca o AC power source thro ch provides a 50Ω/50µ units of the EUT were ground reference plane ed. A multiple socket of single LISN provided t red upon a non-metalli por-standing arrangem e plane, ith a vertical ground refer ed to the horizontal gro the boundary of the u for LISNs mounted or petween the closest po and associated equipm im emission, the relativ	onducted in a shielde bugh a LISN 1 (Line I $IH + 5\Omega$ linear imped connected to a secon- in the same way as butlet strip was used he rating of the LISN c table 0.8m above to ent, the EUT was plate efference plane. The ence plane. The verti- bund reference plane, nit under test and bo- n top of the ground ints of the LISN 1 and ent was at least 0.8 m ve positions of equi	mpedance lance. The nd LISN 2, the LISN 1 to connect was not the ground ced on the rear of the cal ground The LISN onded to a reference d the EUT. m from the pment and				
Limit:								
	Frequency range (MHz)	Limit (d	. ,					
		Quasi-peak	Average					
	0.15-0.5 66 to 56* 56 to 46*							
	0.5-5	56	46					
	5-30	60	50					
	 * The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz. NOTE : The lower limit is applicable at the transition frequency 							

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.



Page:62 of 75

Neutral line:

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. The 6Mbps of rate of 802.11A_5240 is the worst case, only the worst data recorded in the report.

Appendix I): Restricted bands around fundamental frequency (Radiated Emission)

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark		
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak		
		Peak	1MHz	3MHz	Peak		
	Above 1GHz	Peak	1MHz	10Hz	Average]	
Test Procedure:	Below 1GHz test procedu a. The EUT was placed of at a 3 meter semi-anect determine the position of the EUT was set 3 me was mounted on the top b. The EUT was set 3 me was mounted on the top c. The antenna height is was a termine the maximum polarizations of the antend was turned from 0 degr e. The test-receiver syste Bandwidth with Maximu f. Place a marker at the effrequency to show com bands. Save the spectrr for lowest and highest of the fully Anechoic Chammetre (Above 1GHz test procedu g. Different between above to fully Anechoic Chammetre (Above 18GHz tf h. Test the EUT in the loi. The radiation measurem Transmitting mode, and j. Repeat above procedu Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 960MHz-1GHz	re as below: In the top of a re- hoic camber. The of the highest ra- ters away from p of a variable-by- varied from one n value of the fi- enna are set to hission, the EUT to heights from rees to 360 deg m was set to Per- um Hold Mode. and of the restrice pliance. Also me um analyzer plo- channel tre as below: re is the test sites ber and change ments are perfo- d found the X ax-	btating table he table wa adiation. the interfer- meight anter meter to fo eld strength make the n was arran 1 meter to rees to find eak Detect I cted band c beasure any ot. Repeat f e, change fr e form table meter and the Highest rmed in X, kis positioni uencies me m @3cm) 0	e 0.8 meter is rotated 3 ence-recei na tower. our meters n. Both hor neasureme ged to its 4 meters a the maxin Function a closest to the emissions for each po rom Semi- 10.8 metre table is 1.9 channel Y, Z axis p ing which i easured wa Rer Quasi-pe Quasi-pe	rs above the gr 360 degrees to iving antenna, above the grou- izontal and ve ent. worst case and and the rotatal num reading. nd Specified ne transmit s in the restrict ower and modu Anechoic Cha to 1.5 5 metre).	which und to ertical d then ole ted ulation	
		54.0		· · ·	je Value		
Above 1GHz 74.0 Peak Value							

Test plot as follows:

Worse case	mode:	802.11a(6Mbps)		Test channel:		36	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
5150.00	61.38	-3.63	57.75	74	-16.25	peak	Н
5150.00	44.20	-3.63	40.57	54	-13.43	AVG	Н
5150.00	45.38	-3.63	41.75	74	-32.25	peak	V
5150.00	43.99	-3.63	40.36	54	-13.64	AVG	V

Worse case	mode:	802.11a(6Mbps)		Test channel:		48	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
5350.00	55.23	-3.59	51.64	74	-22.36	peak	Н
5350.00	42.14	-3.59	38.55	54	-15.45	AVG	Н
5350.00	52.70	-3.59	49.11	74	-24.89	peak	V
5350.00	38.60	-3.59	35.01	54	-18.99	AVG	V

Worse case	mode:	802.11n(HT20)(6.5Mbps)		Test channel:		36	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
5150.00	62.07	-3.63	58.44	74	-15.56	peak	Н
5150.00	44.55	-3.63	40.92	54	-13.08	AVG	Н
5150.00	44.31	-3.63	40.68	74	-33.32	peak	V
5150.00	45.53	-3.63	41.90	54	-12.10	AVG	V

Worse case mode:		802.11n(HT20)(6.5Mbps)		Test channel:		48	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB) Type		H/V
5350.00	56.92	-3.59	53.33	74	-20.67	peak	Н
5350.00	43.16	-3.59	39.57	54	-14.43	AVG	Н
5350.00	53.45	-3.59	49.86	74	-24.14	peak	V
5350.00	38.33	-3.59	34.74	54	-19.26	AVG	V

Worse case mode:		802.11n(HT40)(13.5Mbps)		Test channel:		38	
Frequency	Meter Reading	Factor	Factor Emission Limits Over		Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m) (dB)		Туре	H/V
5150	62.02	-3.63	58.39	74	-15.61	peak	Н
5150	46.27	-3.63	42.64	54	-11.36	AVG	Н
5150	44.42	-3.63	40.79	74	-33.21	peak	V
5150	44.77	-3.63	41.14	54	-12.86	AVG	V

Worse case mode:		802.11n(HT40)(13.5Mbps)		Test channel:		46	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
5350.00	55.52	-3.59	51.93	74	-22.07	peak	Н
5350.00	41.39	-3.59	37.80	54	-16.20	AVG	Н
5350.00	51.78	-3.59	48.19	74	-25.81	peak	V
5350.00	38.27	-3.59	34.68	54	-19.32	AVG	V

Worse case mode:		802.11ac(HT20)(6.5Mbps)		Test channel:		36	
Frequency	Meter Reading	Factor	FactorEmission LevelLimitsOverDetector Type(dB)(dBµV/m)(dBµV/m)(dB)			Ant. Pol.	
(MHz)	(dBµV)	(dB)			туре	H/V	
5150.00	60.39	-3.63	56.76	74	-17.24	peak	Н
5150.00	44.63	-3.63	41.00	54	-13.00	AVG	Н
5150.00	44.76	-3.63	41.13	74	-32.87	peak	V
5150.00	44.27	-3.63	40.64	54	-13.36	AVG	V

Worse case mode:		802.11ac(HT20)(6.5Mbps)		Test channel:		48	
Frequency	Meter Reading	Factor	Level		Detector	Ant. Pol.	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
5350.00	57.07	-3.59	53.48	74	-20.52	peak	Н
5350.00	41.43	-3.59	37.84	54	-16.16	AVG	Н
5350.00	52.20	-3.59	48.61	74	-25.39	peak	V
5350.00	37.58	-3.59	33.99	54	-20.01	AVG	V

Worse case mode:		802.11ac(VHT40)(13.5Mbps)		Test channel:		38	
Frequency	Meter Reading	Factor Emission Level Limits Over Detector (ID) (ID) (ID) Type		Detector	Ant. Pol.		
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	туре	H/V
5150.00	60.90	-3.63	57.27	74	-16.73	peak	Н
5150.00	45.59	-3.63	41.96	54	-12.04	AVG	Н
5150.00	44.39	-3.63	40.76	74	-33.24	peak	V
5150.00	45.88	-3.63	42.25	54	-11.75	AVG	V

Worse case mode:		802.11ac(VHT40)(13	.5Mbps)	Test channel:		46	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB) Type		H/V
5350.00	55.52	-3.59	51.93	74	-22.07	peak	Н
5350.00	42.91	-3.59	39.32	54	-14.68	AVG	Н
5350.00	51.88	-3.59	48.29	74	-25.71	peak	V
5350.00	36.36	-3.59	32.77	54	-21.23	AVG	V

Worse case	mode:	802.11ac(VHT80)(29	.3Mbps)	Test chann	el:	42	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
5150.00	60.46	-3.63	56.83	74	-17.17	peak	Н
5150.00	43.89	-3.63	40.26	54	-13.74	AVG	Н
5150.00	44.82	-3.63	41.19	74	-32.81	peak	V
5150.00	46.34	-3.63	42.71	54	-11.29	AVG	V
5350.00	54.83	-3.59	51.24	74	-21.15	peak	Н
5350.00	41.59	-3.59	38.00	54	-14.77	AVG	Н
5350.00	52.59	-3.59	49.00	74	-20.04	peak	V
5350.00	37.64	-3.59	34.05	54	-13.43	AVG	V

Note:

1) Through Pre-scan transmitting mode with all kind of modulation and data rate, Only the worst case is recorded in the report.

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor Correct Factor = Preamplifier Factor – Antenna Factor–Cable Factor

Appendix J): Radiated Spurious Emissions

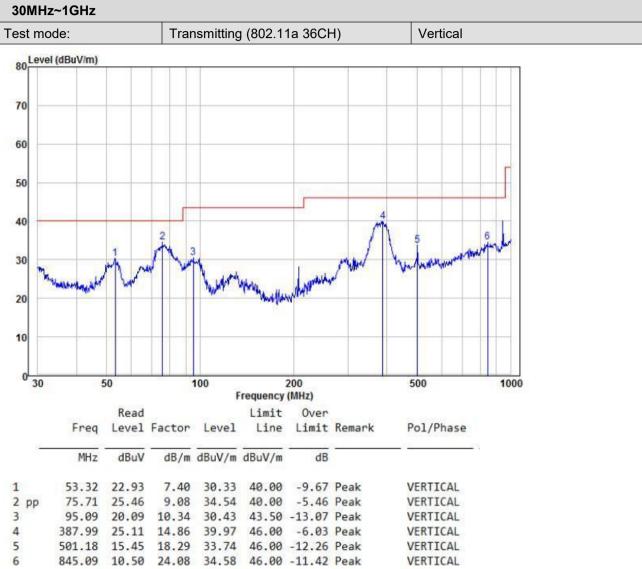
Receiver Setup:		-			-
•	Frequency	Detector	RBW	VBW	Remark
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
	Above 1GHz	Peak	1MHz	3MHz	Peak
	Above IGHZ	Peak	1MHz	10Hz	Average

Test Procedure:

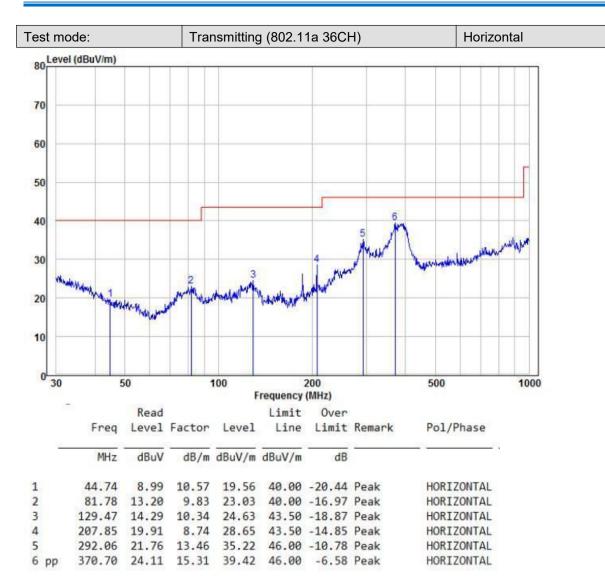
Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:


- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 metre to 1.5 metre(Above 18GHz the distance is 1 meter and table is 1.5 metre)
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

Limit:		r							
	Frequency	Field strength (microvolt/meter)	Limit (dBµV/cm)	Remark	Measurement distance (cm)				
	0.009MHz-0.490MHz	2400/F(kHz)	-	-	300				
	0.490MHz-1.705MHz	24000/F(kHz)	-	-	30				
	1.705MHz-30MHz	30	-	-	30				
	30MHz-88MHz	100	40.0	Quasi-peak	3				
	88MHz-216MHz	150	43.5	Quasi-peak	3				
	216MHz-960MHz	200	46.0	Quasi-peak	3				
	960MHz-1GHz	500	54.0	Quasi-peak	3				
	Above 1GHz	500	54.0	Average	3				
	Note: 15.35(b), Unless of	Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency							
	emissions is 20dB above								
	applicable to the equipme		peak limit appl	ies to the total					
	peak emission level radiated by the device.								
Test result:	PASS								



Test Data:

Radiated Emission below 1GHz

Test mode:	802.11a(6N	/lbps)		Test chann	el:	36 CH	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
10360	53.04	2.26	55.30	74	-18.70	peak	Н
10360	36.92	2.26	39.18	54	-14.82	AVG	н
15540	51.94	3.75	55.69	74	-18.31	peak	Н
15540	38.69	3.75	42.44	54	-11.56	AVG	н
10360	55.80	2.26	58.06	74	-15.94	peak	V
10360	38.22	2.26	40.48	54	-13.52	AVG	V
15540	51.87	3.75	55.62	74	-18.38	peak	V
15540	36.10	3.75	39.85	54	-14.15	AVG	V

Transmitter Emission above 1GHz

Test mode:	802.11a(6N	/lbps)		Test chann	el:	48 CH	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
10480	52.62	2.31	54.93	74	-19.07	peak	н
10480	36.96	2.31	39.27	54	-14.73	AVG	н
15720	49.93	3.79	53.72	74	-20.28	peak	н
15720	35.71	3.79	39.50	54	-14.50	AVG	н
10480	53.49	2.31	55.80	74	-18.20	peak	V
10480	36.97	2.31	39.28	54	-14.72	AVG	V
15720	49.23	3.79	53.02	74	-20.98	peak	V
15720	36.04	3.79	39.83	54	-14.17	AVG	V

Remark:

1) The 802.11a 6Mbps of rate is the worst case, only the worst data recorded in the report.

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor

3) Scan from 9kHz to 40GHz, The disturbance above 18GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

8 Photographs - EUT Test Setup

8.1 Radiated Spurious Emission

9kHz~30MHz:

30MHz~1GHz:

8.2 Conducted Emissions Test Setup

9 Photographs - EUT Constructional Details

Refer to PHOTOGRAPHS OF EUT for CQASZ20230500829E-01.

*** END OF REPORT ***