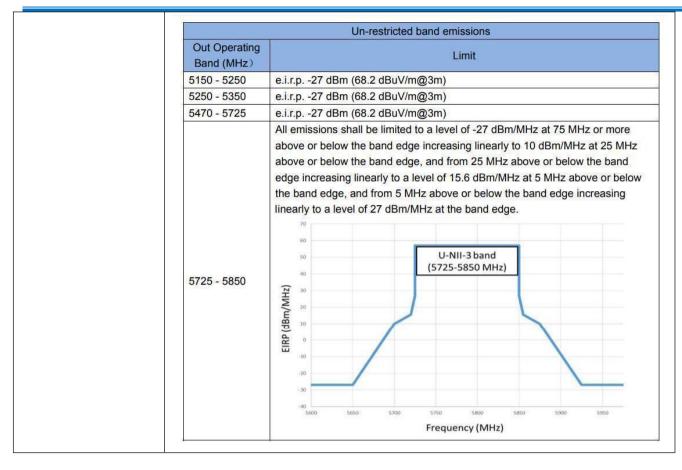


	Freq	Read Level	Factor	Level	Limit Line		Remark	Pol/Phase
2	MHZ	dBuV	dB	dBuV	dBuV	dB		
1	0.170	23.32	9.66	32.98	54.96	-21.98	Average	Line
2	0.170	36.20	9.66	45.86	64.96	-19.10	QP	Line
2 3 4 5	0.195	24.10	9.62	33.72	53.82	-20.10	Average	Line
4	0.195	35.16	9.62	44.78	63.82	-19.04	QP	Line
	0.240	22.38	9.56	31.94	52.10	-20.16	Average	Line
6 7 8	0.240	31.85	9.56	41.41	62.10	-20.69	QP	Line
7	0.305	23.98	9.50	33.48	50.11	-16.63	Average	Line
8	0.305	31.41	9.50	40.91	60.11	-19.20	QP	Line
9 PP	0.515	30.19	9.72	39.91	46.00	-6.09	Average	Line
10 QP	0.515	37.45	9.72	47.17	56.00	-8.83	QP	Line
11	7.115	17.79	9.80	27.59	50.00	-22.41	Average	Line
12	7.115	23.61	9.80	33.41	60.00	-26.59	OP	Line

	Freq	Level	Factor	Level	Line	Limit	Remark	Pol/Phase
-	MHz	dBuV	dB	dBuV	dBuV	dB		
1	0.160	24.27	9.68	33.95	55.46	-21.51	Average	Neutral
2	0.160	38.68	9.68	48.36	65.46	-17.10	QP	Neutral
3	0.195	24.49	9.62	34.11	53.82	-19.71	Average	Neutral
4	0.195	36.21	9.62	45.83	63.82	-17.99	QP	Neutral
5	0.240	23.08	9.55	32.63	52.10	-19.47	Average	Neutral
6	0.240	35.21	9.55	44.76	62.10	-17.34	QP	Neutral
7	0.265	23.47	9.52	32.99	51.27	-18.28	Average	Neutral
8	0.265	33.42	9.52	42.94	61.27	-18.33	QP	Neutral
9 PP	0.520	29.83	9.72	39.55	46.00	-6.45	Average	Neutral
10 QP	0.520	37.67	9.72	47.39	56.00	-8.61	QP	Neutral
11	2.990	20.66	9.76	30.42	46.00	-15.58	Average	Neutral
12	2.990	25.66	9.76	35.42	56.00	-20.58	QP	Neutral

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. The 13Mbps of rate of OFDM_5240 is the worst case, only the worst data recorded in the report.



Report No.: CQASZ20220701184E-01

Appendix I): Restricted bands around fundamental frequency (Radiated Emission)

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	Above 1GHz	Peak	1MHz	3MHz	Peak	
	Above IGHZ	Peak	1MHz	10Hz	Average	
Test Procedure:	a. The EUT was placed of at a 3 meter semi-aneodetermine the position of the EUT was set 3 meters and was mounted on the top of the EUT was set 3 meters and was mounted on the top of the antenna height is was mounted on the top of the antenna was turned of the antenna was turned was turned from 0 degres. The test-receiver system and was turned from 0 degres. The test-receiver system and was turned from 0 degres. The test-receiver system and was turned from 0 degres. The test-receiver system and was turned from 0 degres. The test-receiver system and was turned from 0 degres. The test-receiver system and was turned from 0 degres. The test-receiver system and was turned from 0 degres. The test-receiver system and was turned was turned from 0 degres. The test-receiver system and was turned was turned from 0 degress. The test-receiver system and was turned from 0 degress. The test-receiver system and was turned was turned from 0 degress. The test-receiver system of the end of the test-receiver system of the antenna was turned was turned from 0 degress. The test-receiver system and was turned was turned was turned was turned from 0 degress. The test-receiver system of the end	n the top of a rohoic camber. The hoic camber. The highest raters away from pof a variable-fraried from one moved are set to hission, the EUT to heights from the set to 360 degrees to 360 degrees to 360 degrees to 360 means set to poliance. Also mum analyzer places to the test site ber and change the distance is 1 west channel, the ments are perford found the X axis.	ne table was adiation. the interference interference in table meter to found the last position in table meter and the Highest rmed in X, kis positionic the interference in table meter and the Highest rmed in X, kis positionic the interference in A, kis positionic in table meter and the Highest rmed in X, kis positionic in table meter and the Highest rmed in X, kis positionic in table meter and t	ence-receinna tower. ur meters n. Both horneasureme ged to its v 4 meters a the maxin Function a losest to the emissions or each por com Semi- 0.8 metre table is 1.9 channel Y, Z axis p ng which i	above the grant and versit case and the rotata num reading. Ind Specified the transmit is in the restrict ower and modern	which bund to ertical d then ble eted ulation
Limit:	Frequency 30MHz-88MHz 88MHz-216MHz	Limit (dBµV/ 40.0)	Quasi-pe	mark eak Value eak Value	
	216MHz-960MHz	46.0		· ·	eak Value	
	960MHz-1GHz	54.0		·	eak Value	
	JOOIVII IZ- I OI IZ			·		
	Above 1GHz	54.0 Average Value 74.0 Peak Value				

Report No.: CQASZ20220701184E-01

Result Table

Test channel	:	0					
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
5150.00	58.82	-9.2	49.62	68.2	-18.58	peak	Н
5150.00	58.24	-9.2	49.04	68.2	-19.16	peak	V

Test channel	Test channel:					3			
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.		
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V		
5350.00	60.23	-9.39	50.84	68.2	-17.36	peak	Н		
5350.00	59.49	-9.39	50.10	68.2	-18.10	peak	V		

Test channel	:			4				
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V	
5650	57.98	-9.29	48.69	68.2	-19.51	peak	Н	
5925	58.03	-9.29	48.74	68.2	-19.46	peak	Н	
5650	58.30	-9.29	49.01	68.2	-19.19	peak	V	
5925	58.16	-9.29	48.87	68.2	-19.33	peak	V	

Test channel	:		8				
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type	H/V
5650	52.35	-9.29	43.06	68.2	-25.14	peak	Н
5925	50.55	-9.29	41.26	68.2	-26.94	peak	Н
5650	51.58	-9.29	42.29	68.2	-25.91	peak	V
5925	49.29	-9.29	40.00	68.2	-28.20	peak	V

Note

Factor = Preamplifier Factor - Antenna Factor - Cable Factor

¹⁾ Through Pre-scan transmitting mode with all kind of modulation and data rate, find the 13Mbps is the worst case of OFDM; and then Only the worst case is recorded in the report.

²⁾ The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Report No.: CQASZ20220701184E-01

Appendix J): Radiated Spurious Emissions

Receiver Setup:

	T	T	1	T
Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
Above 1GHz	Peak	1MHz	3MHz	Peak
Above IGHZ	Peak	1MHz	10Hz	Average

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

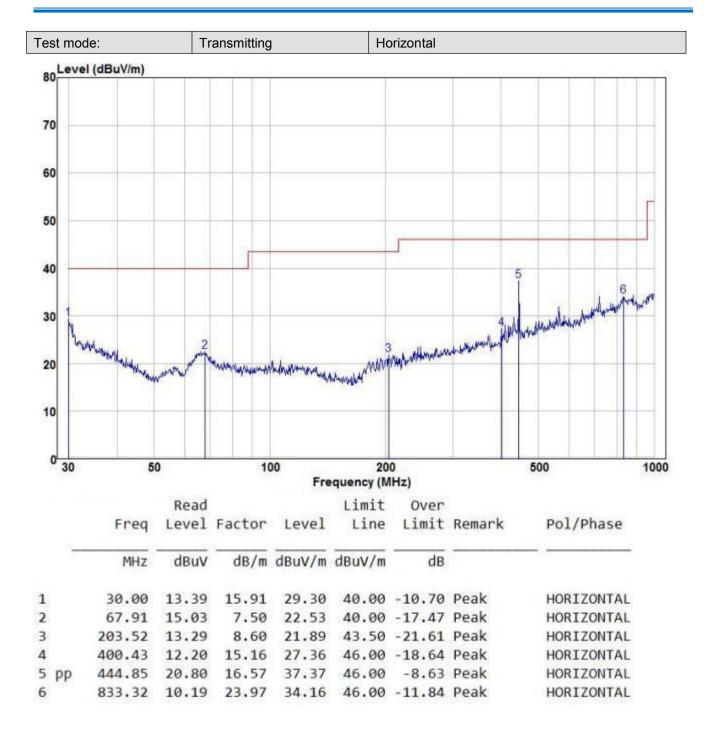
- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 metre to 1.5 metre(Above 18GHz the distance is 1 meter and table is 1.5 metre)
- h. Test the EUT in the lowest channel .the middle channel .the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- i. Repeat above procedures until all frequencies measured was complete.

L	ir	n	it:	
_	•••	• •	٠	

Frequency	Field strength (microvolt/meter)	Limit (dBµV/cm)	Remark	Measurement distance (cm)
0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
0.490MHz-1.705MHz	24000/F(kHz)	-	-	30
1.705MHz-30MHz	30	-	-	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Test result: PASS

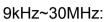


Test Data: Radiated Emission below 1GHz

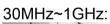
0MHz~	1GHZ								
st mode		Trar	nsmitting		Vert	ical			
Leve	l (dBuV/m)								
	AN - II								
70									
60									
50									
40								5	6
30							4	I Landon Market March	wald
h	Who have in hart	1 /1 ×		2		tabal of	Mary Company Company	Valter	
20	Aller Marchany of the Asset	2	happy before the Mary of	nachadra bahayad	philosophylas-park	angishi padhan da kara	ng parameter of the other of	Reptole terresine protections	
10 0 30	Haraman proprietario		Major Manager Million	0	200	0	ng parametris et parametris de	500	
10				0	200 quency (M) Hz)	May a Character of the second of the second		1000
10		Read		0 Fre	200 quency (M Limit) Hz) Over	Remark		1000
10	50	Read	10 Factor	0 Fre	200 quency (M Limit Line) Hz) Over		500	1000
10 0 30	Freq MHz	Read Level	Factor dB/m	0 Fre Level	quency (M Limit Line dBuV/m	Over Limit dB	Remark	Pol/Phase	1000
10 0 30 1 pp	Freq MHZ 30.00	Read Level dBuV	10 Factor	0 Fre Level dBuV/m 35.07	quency (M Limit Line dBuV/m	Over Limit dB	Remark Peak	500	1000
10 0 30	50 Freq MHZ 30.00 66.50	Read Level dBuV 19.16 18.72	10 Factor dB/m 15.91	0 Fre Level dBuV/m 35.07 25.77	quency (M Limit Line dBuV/m 40.00 40.00	Over Limit dB -4.93	Remark Peak Peak	Pol/Phase	1000
1 pp	50 Freq MHZ 30.00 66.50	Read Level dBuV 19.16 18.72	10 Factor dB/m 15.91 7.05 10.50	0 Fre Level dBuV/m 35.07 25.77 20.33	quency (M Limit Line dBuV/m 40.00 40.00 43.50	Over Limit dB -4.93	Remark Peak Peak Peak	Pol/Phase VERTICAL VERTICAL	1000
10 0 30 1 pp 2	50 Freq MHz 30.00 66.50 116.13	Read Level dBuV 19.16 18.72 9.83 14.61	10 Factor dB/m 15.91 7.05 10.50	0 Fre Level dBuV/m 35.07 25.77 20.33 31.18	quency (M Limit Line dBuV/m 40.00 40.00 43.50	Over Limit dB -4.93 -14.23 -23.17 -14.82	Remark Peak Peak Peak Peak	POI/Phase VERTICAL VERTICAL VERTICAL	1000

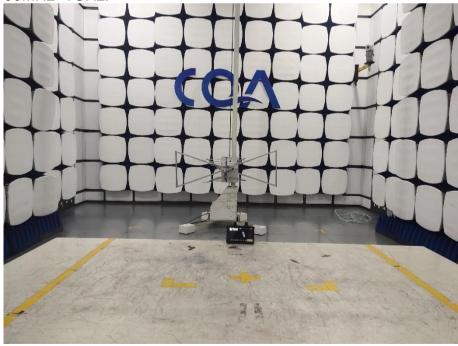
Report No.: CQASZ20220701184E-01

Transmitter Emission above 1GHz

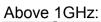

Test mode:	OFDM(13N	/lbps)		Test chann	el:	1	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type	H/V
10440	53.03	-4.12	48.91	74	-25.09	peak	Н
10440	37.74	-4.12	33.62	54	-20.38	AVG	Н
15660	49.30	1.46	50.76	74	-23.24	peak	Н
15660	35.10	1.46	36.56	54	-17.44	AVG	Н
10440	52.58	-4.12	48.46	74	-25.54	peak	V
10440	36.84	-4.12	32.72	54	-21.28	AVG	V
15660	50.00	1.46	51.46	74	-22.54	peak	V
15660	35.80	1.46	37.26	54	-16.74	AVG	V

Remark:


- 1) The 13Mbps of rate of OFDM at 1 channel is the worst case, only the worst data recorded in the report.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level = Meter Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 3) Scan from 9kHz to 40GHz, The disturbance above 18GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

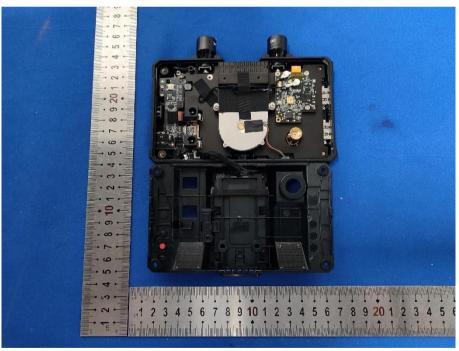

8 Photographs - EUT Test Setup

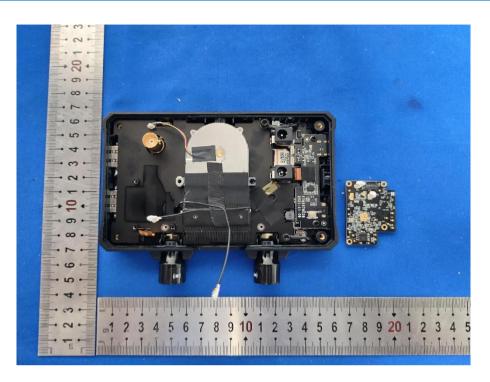
8.1 Radiated Spurious Emission

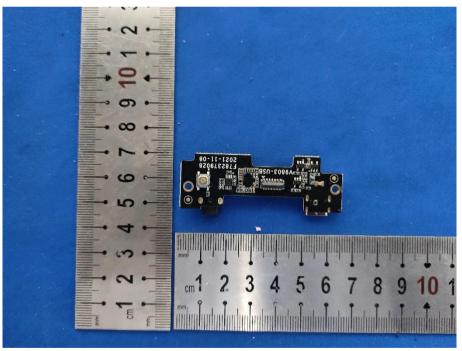


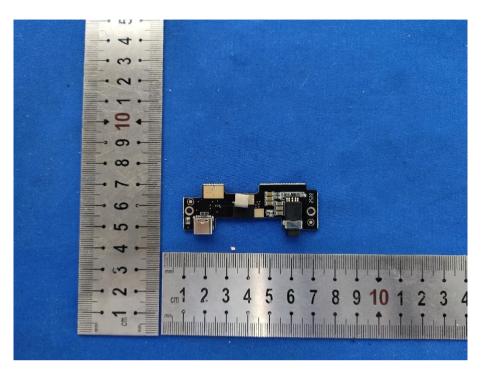
8.2 Conducted Emission

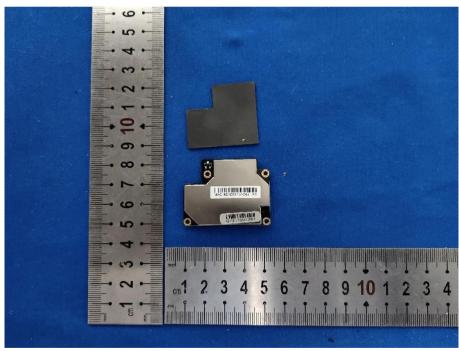

9 Photographs - EUT Constructional Details

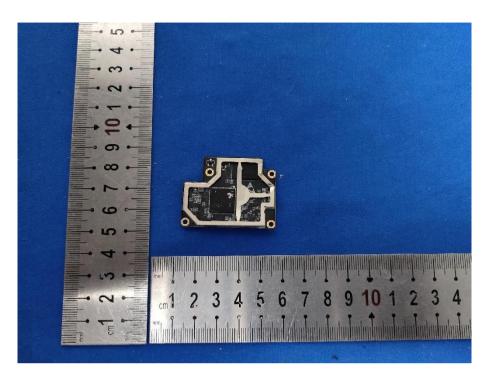


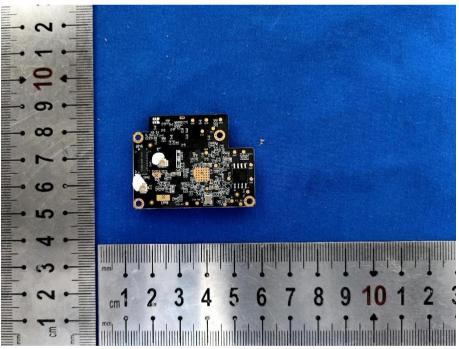


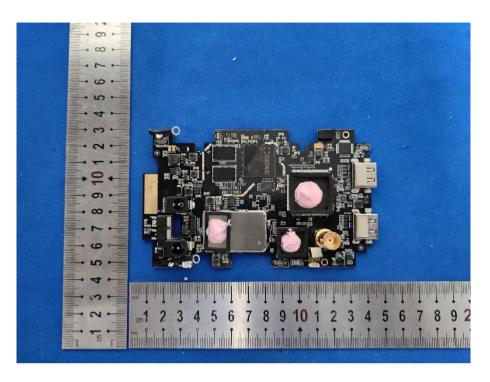


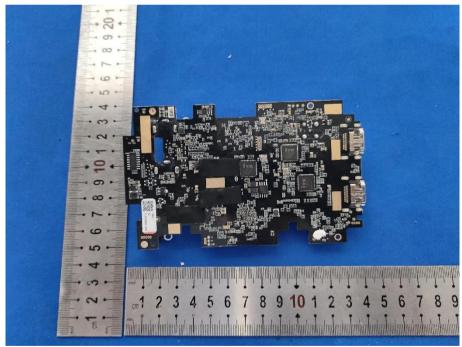












*** End of Report ***