

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

Telephone: +86-755-26648640 Fax: +86-755-26648637

Website: <u>www.cqa-cert.com</u>

Report Template Version: V04

Report Template Revision Date: 2018-07-06

Test Report

Report No.: CQASZ20220400631E-01

Applicant: Shenzhen Hollyland Technology Co.,Ltd

Address of Applicant: 8F, Building 5D, Skyworth Innovation Valley, Tangtou Road. Shiyan Street, Baoan

District Shenzhen, China.

Equipment Under Test (EUT):

Product: WIRELESS VIDEO TRANSMISSION SYSTEM

Model No.: MARS 300 PRO II, MARS 300 PRO Premium, MARS 300 PRO 2022, MARS 300

PRO Max

Teat Model No.: MARS 300 PRO II

Brand Name: Hollyland

FCC ID: 2ADZC-9802HT

Standards: 47 CFR Part 15, Subpart E

KDB 789033 D02 General UNII Test Procedures New Rules v02r01

KDB 558074 D01 15.247 Meas Guidance v05r02

Date of Receipt: 2022-04-13

Date of Test: 2022-04-13 to 2022-05-27

Date of Issue: 2022-05-31
Test Result: PASS*

*In the configuration tested, the EUT complied with the standards specified above

Tested By:

(Lewis Zhou)

Reviewed By:

(K Liao)

Approved By:

(Jack Ai)

Report No.: CQASZ20220400631E-01

1 Version

Revision History Of Report

Report No.	Version	Description	Issue Date
CQASZ20220400631E-01	Rev.01	Initial report	2022-05-31

Report No.: CQASZ20220400631E-01

2 Test Summary

Test Item	Test Item Test Requirement		Result
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	rt C ANSI C63.10-2013	
Conducted Output Power and transmit power control mechanism			PASS
Emission Bandwidth	47 CFR Part 15 Subpart E	ANSI C63.10-2013	PASS
Peak Power Spectral Density	47 CFR Part 15 Subpart E	ANSI C63.10-2013	PASS
Frequency stability	47 CFR Part 15 Subpart E	ANSI C63.10-2013	PASS
Operation in the absence of information to the transmit	47 CFR Part 15 Subpart E	47 CFR Part 15 Subpart E	PASS
Radiated Spurious Emissions	47 CFR Part 15 Subpart E	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15 Subpart E	ANSI C63.10-2013	PASS

Remark:

The tested sample(s) and the sample information are provided by the client.

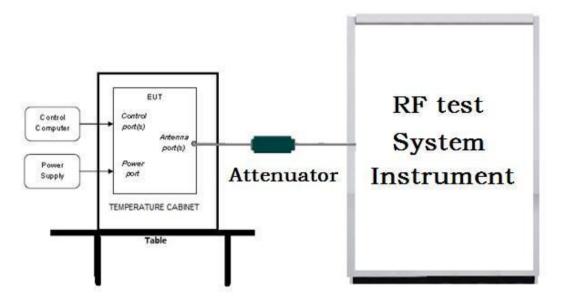
Tx: In this whole report Tx (or tx) means Transmitter. Rx: In this whole report Rx (or rx) means Receiver. RF: In this whole report RF means Radiated Frequency.

In this whole report CH means channel. CH: In this whole report Volt means Voltage. Volt: In this whole report Temp means Temperature. Temp: Humid: In this whole report Humid means humidity. In this whole report Press means Pressure. Press:

N/A: In this whole report not application

Report No.: CQASZ20220400631E-01

3 Content


	Page
1 VERSION	
2 TEST SUMMARY	
3 CONTENT	4
4 TEST REQUIREMENT	
4.1 TEST SETUP	5
4.1.1 For Conducted test setup	
4.1.2 For Radiated Emissions test setup	
4.1.3 For Conducted Emissions lest setup	
4.3 TEST CONDITION	
5 GENERAL INFORMATION	9
5.1 CLIENT INFORMATION	Ç
5.2 GENERAL DESCRIPTION OF EUT	
5.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD	
5.4 DESCRIPTION OF SUPPORT UNITS	
5.5 TEST LOCATION	
5.7 DEVIATION FROM STANDARDS	
5.8 ABNORMALITIES FROM STANDARD CONDITIONS	
5.9 OTHER INFORMATION REQUESTED BY THE CUSTOMER	
5.10 Measurement Uncertainty (95% confidence levels, k=2)	
6 EQUIPMENT LIST	12
7 RADIO TECHNICAL REQUIREMENTS SPECIFICATION	13
Appendix A): Emission Bandwidth	14
Appendix C): Power Spectral Density	
Appendix D): Band Edge Measurements	
Appendix E): Frequency Stability	
Appendix F): Amerina Regularitem Appendix G): Operation in the absence of information to the transmit	24
Appendix H): AC Power Line Conducted Emission	25
Appendix I): Restricted bands around fundamental frequency (Radiated Emission)	
Appendix J): Radiated Spurious Emissions	
8 PHOTOGRAPHS - EUT TEST SETUP	35
8.1 RADIATED SPURIOUS EMISSION	
8.2 CONDUCTED EMISSION	36
9 PHOTOGRAPHS - EUT CONSTRUCTIONAL DETAILS	37

4 Test Requirement

4.1 Test setup

4.1.1 For Conducted test setup

4.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

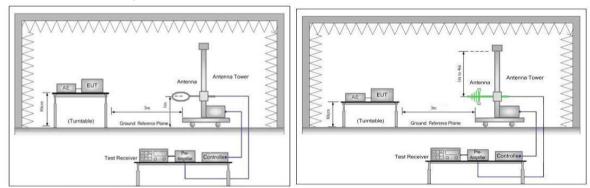


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

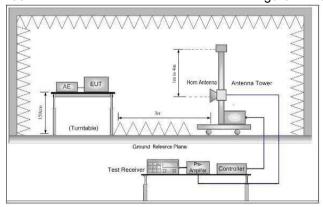



Figure 3. Above 1GHz

Report No.: CQASZ20220400631E-01

4.1.3 For Conducted Emissions test setup Conducted Emissions setup

4.2 Test Environment

Operating Environment	:			
Conducted Emissions:				
Temperature:	25.6 °C			
Humidity:	60 % RH			
Atmospheric Pressure:	1009 mbar			
Radiated Emissions:				
Temperature:	25.5 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1009mbar			
Radio conducted item t	est (RF Conducted test room):			
Temperature:	25.3 °C			
Humidity:	50 % RH	50 % RH		
Atmospheric Pressure:	1009 mbar			
Test Condition	Temperature (°C)	Voltage (V)		
TN/VN	+15 to +35	7.6		
TL/VL	0	6.84		
TH/VL	50	6.84		
TL/VH	0	8.36		
TH/VH	50	8.36		

Remark:

- 1)The EUT just work in such extreme temperature of 0 °C to 50 °C and the extreme voltage of 6.84V to
- 8.36V, so here the EUT is tested in the temperature of 0 °C to 50 °C and the voltage of 6.84V to 8.36V.
- 2)VN: Normal Voltage; TN: Normal Temperature;
- TL: Low Extreme Test Temperature; TH: High Extreme Test Temperature;
- VL: Low Extreme Test Voltage; VH: High Extreme Test Voltage.

Report No.: CQASZ20220400631E-01

4.3 Test Condition

Test channel:

•				
Tx/Rx	RF Channel			
I X/KX	Low(L)	High(H)	High(H)	
5150MHz ~5250 MHz	Channel 0	Channel 1	/	
	5180MHz	5220MHz	/	
5705MH - 5050 MH -	Channel 2	Channel 3	Channel 4	
5725MHz ~5850 MHz	5745MHz	5785MHz	5825MHz	

Report No.: CQASZ20220400631E-01

Test mode:

Pre-scan under all rate at lowest channel for Ant1

Report No.: CQASZ20220400631E-01

5 General Information

5.1 Client Information

Applicant:	Shenzhen Hollyland Technology Co.,Ltd
Address of Applicant:	8F, Building 5D, Skyworth Innovation Valley, Tangtou Road. Shiyan Street, Baoan District Shenzhen, China.
Manufacturer:	Shenzhen Hollyland Technology Co.,Ltd
Address of Manufacturer:	8F, Building 5D, Skyworth Innovation Valley, Tangtou Road. Shiyan Street, Baoan District Shenzhen, China.
Factory:	Shenzhen Hollyland Technology Co.,Ltd BanTian Branch
Address of Factory:	8F, Building 5D, Skyworth Innovation Valley, Tangtou Road. Shiyan Street, Baoan District Shenzhen, China.

5.2 General Description of EUT

Product Name:	WIRELESS VIDEO TRANSMISSION SYSTEM		
Model No.:	MARS 300 PRO II, MARS 300 PRO Premium, MARS 300 PRO 2022, MARS 300 PRO Max		
Test Model No.:	MARS 300 PRO II		
Trade Mark:	Hollyland		
Software Version:	V1.0.0.5		
Hardware Version:	V1.1.0		
Power Supply:	DC 12V 2A		
EUT Supports Radios application:	5GHz: custom: U-NII-1: 5.15-5.25GHz; U-NII-3: 5.725-5.850GHz		

5.3 Product Specification subjective to this standard

Operation Frequency:	5180MHz ~5220 MHz 5745MHz ~5825 MHz
Channel Numbers:	5180MHz ~5220MHz/ 2 channel 5745MHz ~5825MHz/ 3 channel
Type of Modulation:	OFDM
Sample Type:	
Test Power Grade:	N/A
Test Software of EUT:	MainWindow (manufacturer declare)
Antenna Type:	External antenna
Antenna gain:	3dBi

Report No.: CQASZ20220400631E-01

Operation Frequency each of channel

5150MHz ~5250 MHz						
Channel	Channel Frequency Channel					
0	5180MHz 1 522					
	5725MHz ~5850 MHz					
Channel Frequency Channel Frequence						
2	5745MHz	3	5785MHz			
4	5825MHz	NA	NA			

5.4 Description of Support Units

The EUT has been tested with associated equipment below.

Description	Manufacturer	Model No.	Certification	Supplied by
PC	Lenovo	ThinkPad E450c	FCC ID	CQA

Report No.: CQASZ20220400631E-01

5.5 Test Location

All tests were performed at:

Shenzhen Huaxia Testing Technology Co., Ltd.,

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua New District, Shenzhen, Guangdong, China

5.6 Test Facility

• A2LA (Certificate No. 4742.01)

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 4742.01.

• FCC Registration No.: 522263

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.:522263

5.7 Deviation from Standards

None.

5.8 Abnormalities from Standard Conditions

None.

5.9 Other Information Requested by the Customer

None.

5.10 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty	
1	Radio Frequency	3 x 10 ⁻⁸	
2	RF power, conducted	0.86dB	
3	Padiated Spurious emission test	5.12dB (Below 1GHz)	
3	Radiated Spurious emission test	4.6dB (Above 1GHz)	
4	Conduction emission	3.5dB (9kHz to 150kHz)	
4	Conduction emission	3.1dB (150kHz to 30MHz)	
5	Temperature test	0.8°C	
6	Humidity test	2.0%	
7	DC power voltages	0.5%	

Report No.: CQASZ20220400631E-01

6 Equipment List

_ = 9 0 p					
Test Equipment	Manufacturer	Model No.	Instrument No.	Calibration Date	Calibration Due Date
EMI Test Receiver	R&S	ESR7	CQA-005	2021/9/10	2022/9/09
Spectrum analyzer	R&S	FSU26	CQA-038	2021/9/10	2022/9/09
Spectrum analyzer	R&S	FSU40	CQA-075	2021/9/10	2022/9/09
Preamplifier	MITEQ	AFS4-00010300-18- 10P-4	CQA-035	2021/9/14	2024/9/13
Preamplifier	MITEQ	AMF-6D-02001800- 29-20P	CQA-036	2021/9/14	2024/9/13
Preamplifier	EMCI	EMC184055SE	CQA-089	2021/9/14	2024/9/13
Loop antenna	Schwarzbeck	FMZB1516	CQA-060	2021/9/14	2024/9/13
Bilog Antenna	R&S	HL562	CQA-011	2021/9/10	2022/9/09
Horn Antenna	R&S	HF906	CQA-012	2021/9/10	2022/9/09
Horn Antenna	Schwarzbeck	BBHA 9170	CQA-088	2021/9/10	2022/9/09
Coaxial Cable (Above 1GHz)	CQA	N/A	C007	2021/9/10	2022/9/09
Coaxial Cable (Below 1GHz)	CQA	N/A	C013	2021/9/10	2022/9/09
RF cable(9KHz~40GHz)	CQA	RF-01	CQA-079	2021/9/10	2022/9/09
Antenna Connector	CQA	RFC-01	CQA-080	2021/9/10	2022/9/09
Power Sensor	KEYSIGHT	U2021XA	CQA-30	2021/9/10	2022/9/09
N1918A Power Analysis Manager Power Panel	Agilent	N1918A	CQA-074	2021/9/14	2024/9/13
Power meter	R&S	NRVD	CQA-029	2021/9/14	2024/9/13
Power divider	MIDWEST	PWD-2533-02-SMA- 79	CQA-067	2021/9/14	2024/9/13
EMI Test Receiver	R&S	ESR7	CQA-005	2021/9/14	2024/9/13
LISN	R&S	ENV216	CQA-003	2021/9/14	2024/9/13
Coaxial cable	CQA	N/A	CQA-C009	2021/9/14	2024/9/13
DC power	KEYSIGHT	E3631A	CQA-028	2021/9/14	2024/9/13

Test software:

	Manufacturer	Software brand
Radiated Emissions test software	Tonscend	JS1120-3
Conducted Emissions test software	Audix	e3
RF Conducted test software	Audix	e3

Report No.: CQASZ20220400631E-01

7 Radio Technical Requirements Specification

Reference documents for testing:

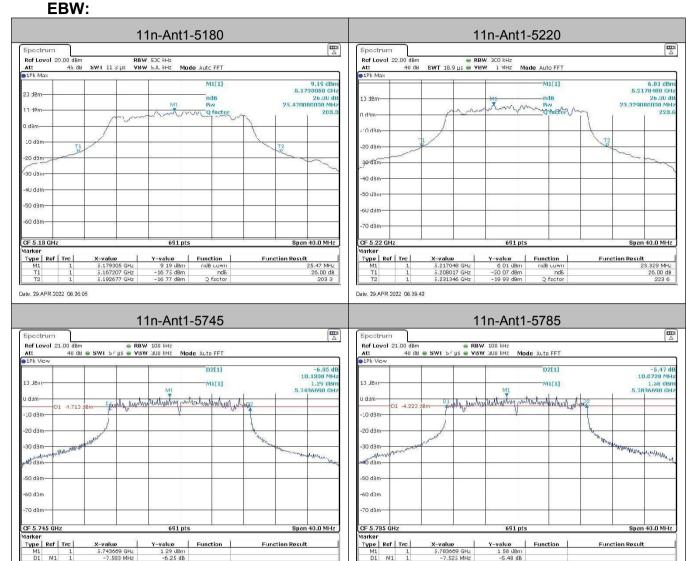
No.	Identity	Document Title
1	FCC Part15E	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices
3	KDB 789033 D02 General U-NII Test Procedures New Rules v02r01	Guidelines for compliance testing of unlicensed national information infrastructure (U-NII) device part 15, subpart E
4	KDB 662911 D01 Multiple Transmitter Output v02r01	Emissions Testing of Transmitters with Multiple Outputs in the Same Band

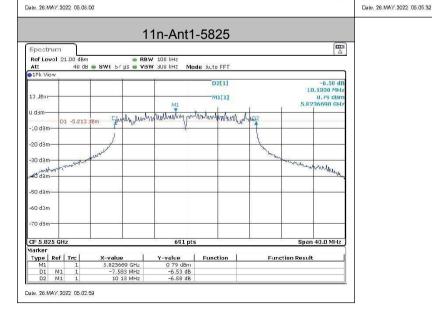
Test Results List:

Cot Negatio List.				
Test Requirement	Test method	Test item	Verdict	Note
Part15E Section 15.407	KDB789033	Emission Bandwidth and Occupied Bandwidth	PASS	Appendix A)
Part15E Section 15.407	KDB789033 / KDB 662911	Conducted Output Power and transmit power control mechanism	PASS	Appendix B)
Part15E Section 15.407	KDB789033 / KDB 662911	Power Spectral Density	PASS	Appendix C)
Part15E Section 15.407	KDB789033 / KDB 662911	Band Edge Measurements	PASS	Appendix D)
Part15E Section 15.407	KDB789033	Frequency stability	PASS	Appendix E)
Part15C Section 15.203	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15E Section 15.407	Section 15.407	Operation in the absence of information to the transmit	PASS	Appendix G)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix H)
Part15E Section 15.407	KDB789033	Restricted bands around fundamental frequency(Radiated Emission)	PASS	Appendix I)
Part15E Section 15.407	KDB789033	Radiated Spurious Emissions	PASS	Appendix J)

Report No.: CQASZ20220400631E-01

Appendix A): Emission Bandwidth

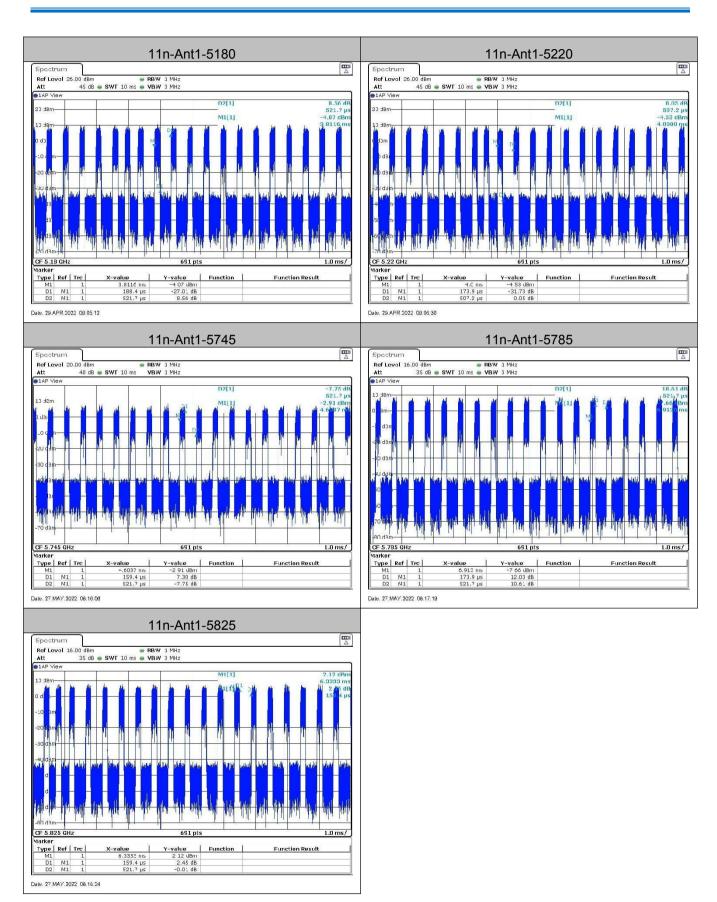

Result Table


Test Mode	Antenna	Channel	EBW[MHz]	Verdict
11n	Ant1	5180	22.365	PASS
11n	Ant1	5220	23.329	PASS
Test Mode	Antenna	Channel	6 dB OBW [MHz]	Verdict
11n	Ant1	5745	17.713	PASS
11n	Ant1	5785	17.597	PASS
11n	Ant1	5825	17.713	PASS

Report No.: CQASZ20220400631E-01

Test Graph

Report No.: CQASZ20220400631E-01


Appendix B): Maximum Conduct Output Power

1.Duty Cycle (x)

Measurement Data

Test Mode	Antenna	Channel	Duty Cycle[%]	10log(1/x) Factor[dB]
11n	Ant1	5180	36.11	4.424
11n	Ant1	5220	34.29	4.648
11n	Ant1	5745	30.55	5.15
11n	Ant1	5785	33.33	4.772
11n	Ant1	5825	30.55	5.15

Report No.: CQASZ20220400631E-01

2. Conducted Average Output Power

Measurement Data

Test Mode	Antenna	Channel	Meas.Level [dBm]	Av.Power [dBm]	Verdict
11n	Ant1	5180	9.226	13.65	PASS
11n	Ant1	5220	8.602	13.25	PASS
11n	Ant1	5745	7.99	13.14	PASS
11n	Ant1	5785	8.548	13.32	PASS
11n	Ant1	5825	7.99	13.14	PASS

Remark:

Av.Power=Meas.Level+10 log (1/duty cycle)

E.i.r.p=Av.Power+G, G = antenna gain in dBi.

Report No.: CQASZ20220400631E-01

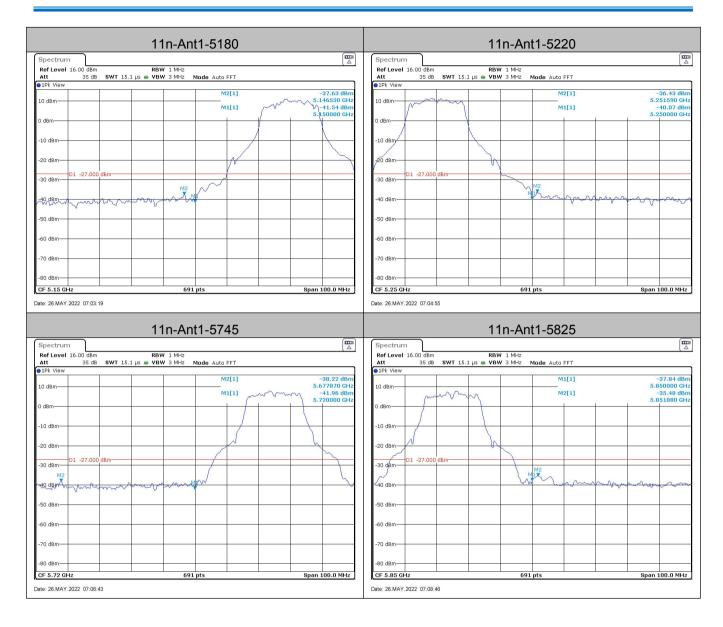
Appendix C): Power Spectral Density

Result Table

Test	Antenna	Channel	Meas.Level	Duty Cycle	PSD	Limit	Verdict
Mode	Antenna	Chamile	[dBm]	Factor [dB]	[dBm/MHz]	[dBm/MHz]	Verdict
11n	Ant1	5180	3.35	4.424	9.654	11.00	PASS
11n	Ant1	5220	3.16	4.648	9.878	11.00	PASS
Test	A (Channel	Meas.Level	Duty Cycle	PSD	Limit	Verdict
Mode	Antenna	Chamilei	[dBm]	Factor [dB]	[dBm/MHz]	[dBm/500kHz]	verdict
11n	Ant1	5745	5.23	5.15	10.38	30.00	PASS
11n	Ant1	5785	4.57	4.772	9.342	30.00	PASS
11n	Ant1	5825	5.45	5.15	10.6	30.00	PASS

Remark:

PSD = Meas PSD + Duty Cycle Factor


Report No.: CQASZ20220400631E-01

Appendix D): Band Edge Measurements

Result Table

- 1100411						
Test Mode	Antenna	Channel	Max.Leve	Verdict		
11n	Ant1	5180	-37.	-37.63		
11n	Ant1	5220	-36.	63	PASS	
			Max.Leve			
Test Mode	Antenna	itenna Channel	Below 5715	5715-5725	Verdict	
11n	Ant1	5745	-41.96	-38.22	PASS	
			Max.Leve			
Test Mode	Antenna C	tenna Channel	5850-5860	Above 5860	Verdict	
11n	Ant1	5825	-37.84	-35.45	PASS	

Appendix E): Frequency Stability

Measurement Data

	Frequency Stability Versus Temp.						
	Operating F	Frequency: 5220 MHz					
Temp	Temp Measured Frequency Frequency Drift						
(°C)	Volta ge	(MHz)	(ppm)				
50		5219.944	-10.728				
40		5219.935	-12.452				
30		5219.942	-11.111				
20		5219.946	-10.345				
10	VN	5219.934	-12.644				
0		5219.925	-14.368				
-10		5219.914	-16.475				
-20		5219.974	-4.981				

Frequency Stability Versus Temp. Operating Frequency: 5220 MHz					
Measured Frequency					
Temp.	Volta ge	(MHz)	(ppm)		
	VL	5219.932	-13.027		
TN	VN	5219.914	-16.475		
	VH	5219.965	-6.705		

Note: All the modulation and channels had been tested, but only the worst data recorded in the report.

Report No.: CQASZ20220400631E-01

Appendix F): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.407(a)(1) (2) requirement:

The conducted output power limit specified in paragraph (a) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (a) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power and the peak power spectral density shall be reduced by the by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is External antenna with reversed SMA connector. The best case gain of the 5G antenna is 3dBi@Band 1, 3dBi@Band 4, Only one antenna is used for transmission, and the other root is a receiving antenna and does not transmit signals.

Appendix G): Operation in the absence of information to the transmit

15.407(c) requirement:

The device shall automatically discontinue transmission in case of either absence of information to transmit or operational failure. These provisions are not intended to preclude the transmission of control or signal ling information or the use of repetitive codes used by certain digital technologies to complete frame or burst intervals. Applicants shall include in their application for equipment authorization a description of how this requirement is met.

Operation in the absence of information to the transmit

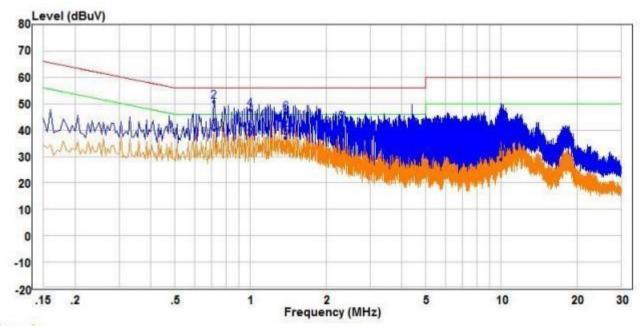
While the EUT is not transmitting any information, the EUT can automatically discontinue transmission and become standby mode for power saving. The EUT can detect the controlling signal of ASK message transmitting from remote device and verify whether it shall resend or discontinue transmission. (manufacturer declare)

Report No.: CQASZ20220400631E-01

Appendix H): AC Power Line Conducted Emission

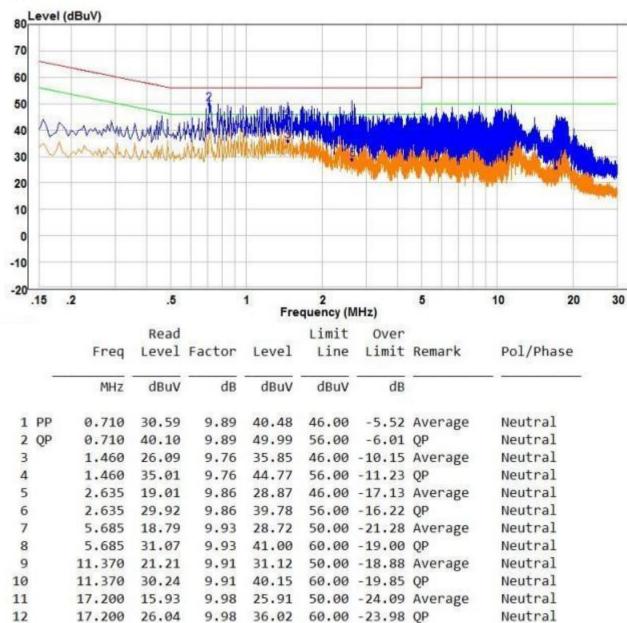
Appendix nj. A	C Power Line Condu	icted Ellission	1	
Test Procedure:	Test frequency range :150KHz 1)The mains terminal disturba 2) The EUT was connected to Stabilization Network) which power cables of all other to which was bonded to the grown the unit being measure multiple power cables to a exceeded. 3)The tabletop EUT was place reference plane. And for flot horizontal ground reference 4) The test was performed wi EUT shall be 0.4 m from the reference plane was bonded 1 was placed 0.8 m from ground reference plane f plane. This distance was b All other units of the EUT a LISN 2. 5) In order to find the maximulal of the interface cable conducted measurement.	nce voltage test was con AC power source through provides a 50Ω/50μ units of the EUT were of ground reference plane and A multiple socket of single LISN provided the dupon a non-metalling poor-standing arrangement and a vertical ground reference to the horizontal ground and associated equipment and associated equipment in emission, the relative	rugh a LISN 1 (Line In In H + 5Ω linear impedition in the same way as utlet strip was used the rating of the LISN of table 0.8m above the table 0.8m above the table 0.8m. The verticular reference plane. The verticular reference plane in top of the ground into the LISN 1 and ent was at least 0.8 for positions of equiver positions of equiver the table of the LISN 1 and the positions of equiver positions of equiver the table of the LISN 1 and the positions of equiver the table of the LISN 1 and the positions of equiver the table of the LISN 1 and the positions of equiver the table of the LISN 1 and the positions of equiver the table of the LISN 1 and the positions of equiver the table of the LISN 1 and the positions of equiver the table of the LISN 1 and the positions of equiver the table of the LISN 1 and the positions of equiver the table of the LISN 1 and the positions of equiver the table of the LISN 1 and table of t	mpedance lance. The hd LISN 2, the LISN 1 to connect was not the ground ced on the rear of the cal ground. The LISN onded to a reference d the EUT. In from the pment and
Limit:		Limit (d	RuV)	
	Frequency range (MHz)	Quasi-peak	Average	
	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5	56	46	
	5-30	60	50	
* The limit decreases linearly with the logarithm of the frequency in the ran MHz to 0.50 MHz. NOTE: The lower limit is applicable at the transition frequency				range 0.15

Measurement Data


An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Live line:

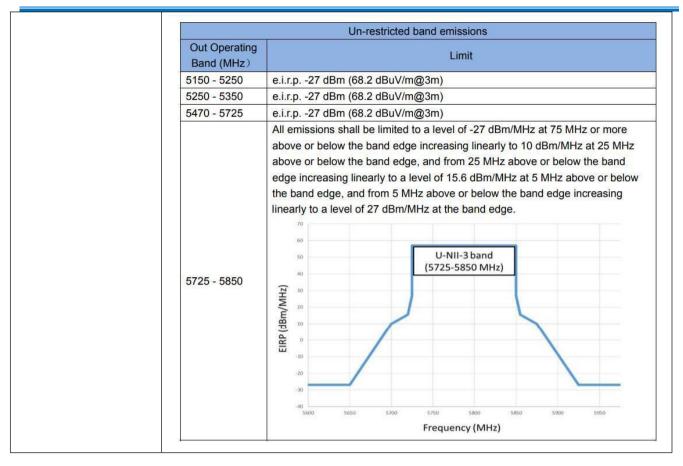


	Freq	Level	Factor	Level	Limit Line	Over	Remark	Pol/Phase
_	MHZ	dBuV	dB	dBuV	dBuV	dB	2	
1 AV	0.715	30.35	9.89	40.24	46.00	-5.76	Average	Line
2 PP	0.715	41.08	9.89	50.97	56.00	-5.03	QP	Line
3	0.995	28.68	9.70	38.38	46.00	-7.62	Average	Line
4	0.995	37.97	9.70	47.67	56.00	-8.33	QP	Line
5	1.380	27.32	9.72	37.04	46.00	-8.96	Average	Line
5 6 7	1.380	36,86	9.72	46.58	56.00	-9.42	QP	Line
7	2.300	23.53	9.79	33.32	46.00	-12.68	Average	Line
8	2.300	33.13	9.79	42.92	56.00	-13.08	QP	Line
9	4.420	19.03	9.97	29.00	46.00	-17.00	Average	Line
10	4.420	30.26	9.97	40.23	56.00	-15.77	QP	Line
11	9.950	19.04	9.90	28.94	50.00	-21.06	Average	Line
12	9.950	27.99	9.90	37.89	60.00	-22.11	QP	Line

Neutral line:

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. The 6Mbps of rate of OFDM 5240 is the worst case, only the worst data recorded in the report.



Report No.: CQASZ20220400631E-01

Appendix I): Restricted bands around fundamental frequency (Radiated Emission)

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark			
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak			
	Above 1GHz	Peak	1MHz	3MHz	Peak			
	Above IGHZ	Peak	1MHz	10Hz	Average			
Test Procedure:	Below 1GHz test procedu a. The EUT was placed of at a 3 meter semi-anecd determine the position of the EUT was set 3 meters was mounted on the total control of the EUT was set 3 meters was mounted on the total control of the antenna height is was turned to the antenna was turned was turned from 0 degres. The test-receiver systems and width with Maximum for the entermine the spectral for lowest and highest of the EUT in the logical of the EUT in the logica	re as below: In the top of a rotal choic camber. The of the highest raditers away from the pof a variable-he varied from one ment value of the field enna are set to ment are set to ment are set to ment are set to ment are set to Peaum Hold Mode. The end of the restricted from analyzer plot. The channel are as below: It is the test site, ber and change from the distance is 1 ments are performed found the X axis	ating table to table was liation. The interfere to form table as the mass arrange of the control	0.8 meters rotated 3 ence-receina tower. ur meters a Both horneasurement ged to its valunction a losest to the maximunction a losest to the emissions or each poor eac	rs above the grade of the grade	o which ound to ertical d then ble		
	960MHz-1GHz	54.0		Quasi-pe	eak Value			
		54.0 Average Value						
	Above 1GHz	_		Averag	je Value			

Report No.: CQASZ20220400631E-01

Test plot as follows:

Test channel	0						
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
5150.00	57.43	-2.21	55.22	68.2	-12.98	peak	Н
5150.00	57.04	-2.21	54.83	68.2	-13.37	peak	V

Test channel	2						
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
5350.00	52.89	-1.24	51.65	68.2	-16.55	peak	Н
5350.00	60.3	-1.24	59.06	68.2	-9.14	peak	V

Test channel	3						
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
5650	60.08	-0.49	59.59	68.2	-8.61	peak	Н
5925	60.31	-0.82	59.49	68.2	-8.71	peak	Н
5650	49.69	-0.49	49.20	68.2	-19.00	peak	V
5925	53.09	-0.82	52.27	68.2	-15.93	peak	V

Test channel	:	5					
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
5650	57.42	-0.49	56.93	68.2	-11.27	peak	Н
5925	56.46	-0.82	55.64	68.2	-12.56	peak	Н
5650	55.64	-0.49	55.15	68.2	-13.05	peak	V
5925	58.07	-0.82	57.25	68.2	-10.95	peak	V

Final Test Level =Receiver Reading - Correct Factor
Correct Factor = Preamplifier Factor—Antenna Factor—Cable Factor

¹⁾ Through Pre-scan transmitting mode with all kind of modulation and data rate, find the 6Mbps is the worst case of OFDM; and then Only the worst case is recorded in the report.

²⁾ The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Report No.: CQASZ20220400631E-01

Appendix J): Radiated Spurious Emissions

Receiver Setup:

	T	T	1	T
Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
Above 1CH=	Peak	1MHz	3MHz	Peak
Above 1GHz	Peak	1MHz	10Hz	Average

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

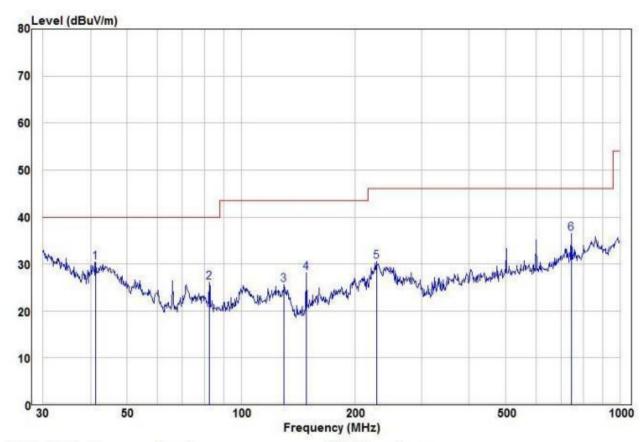
- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 metre to 1.5 metre(Above 18GHz the distance is 1 meter and table is 1.5 metre)
- h. Test the EUT in the lowest channel .the middle channel .the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- i. Repeat above procedures until all frequencies measured was complete.

L	ir	n	it:	
_	•••	• •	٠	

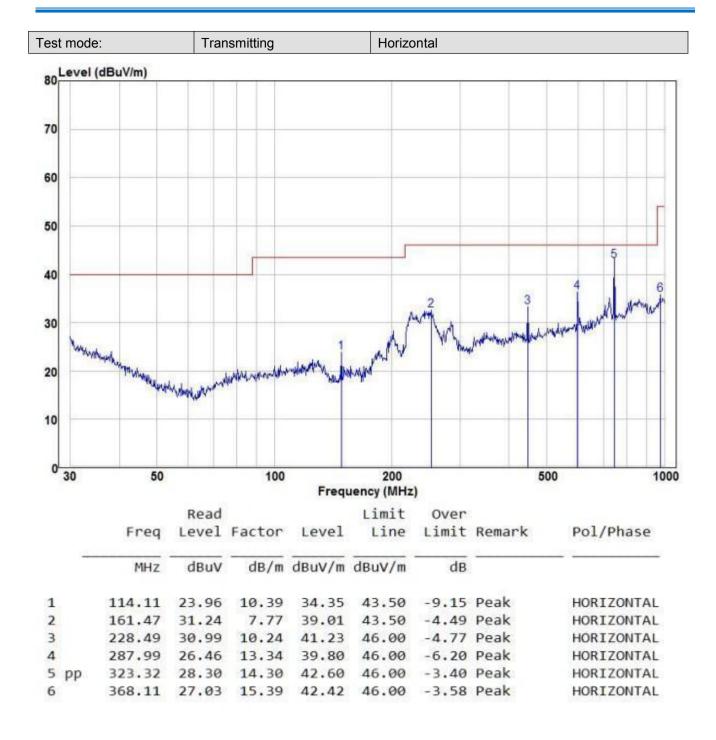
Frequency	Field strength (microvolt/meter)	Limit (dBµV/cm)	Remark	Measurement distance (cm)
0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
0.490MHz-1.705MHz	24000/F(kHz)	-	-	30
1.705MHz-30MHz	30	-	-	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500		Quasi-peak	3
Above 1GHz	Above 1GHz 500		Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Test result: PASS



Test Data:


Radiated Emission below 1GHz

30MHz~1GHz		
Test mode:	Transmitting	Vertical

	Freq	Read Level	Factor	Level	Limit Line	Over Limit	Remark	Pol/Phase
-	MHZ	dBuV	dB/m	dBuV/m	dBuV/m	dB		
1	41.28	18.18	12.20	30.38	40.00	-9.62	Peak	VERTICAL
2	82.36	16.19	9.84	26.03	40.00	-13.97	Peak	VERTICAL
3	129.92	15.32	10.32	25.64	43.50	-17.86	Peak	VERTICAL
4	148.44	19.66	8.41	28.07	43.50	-15.43	Peak	VERTICAL
5	227.69	20.48	10.14	30.62	46.00	-15.38	Peak	VERTICAL
6 pp	744.87	14.67	21.88	36.55	46.00	-9.45	Peak	VERTICAL

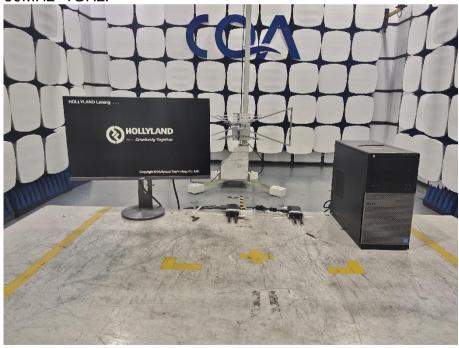
Report No.: CQASZ20220400631E-01

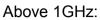
Transmitter Emission above 1GHz

Test mode:	OFDM(6MI	ops)		Test chann	el:	1	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type	H/V
10440	53.20	-4.26	48.94	74	-25.06	peak	Н
10440	36.85	-4.26	32.59	54	-21.41	AVG	Н
15660	50.39	1.18	51.57	74	-22.43	peak	Н
15660	38.63	1.18	39.81	54	-14.19	AVG	Н
10440	55.40	-4.26	51.14	74	-22.86	peak	V
10440	38.64	-4.26	34.38	54	-19.62	AVG	V
15660	51.64	1.18	52.82	74	-21.18	peak	V
15660	35.30	1.18	36.48	54	-17.52	AVG	V

Remark:

- 1) The 6Mbps of rate of OFDM at 1 channel is the worst case, only the worst data recorded in the report.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level = Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 3) Scan from 9kHz to 40GHz, The disturbance above 18GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.


8 Photographs - EUT Test Setup


8.1 Radiated Spurious Emission

9kHz~30MHz:

30MHz~1GHz:

8.2 Conducted Emission

9 Photographs - EUT Constructional Details

