

CTATED I Shenzhen CTA Testing Technology Co., Ltd. Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

Report Reference No	CTA24081601801 2ADZC-6302C	TATESTING
Compiled by (position+printed name+signature)	 File administrators Jinghua Xiao 	Jung unit Dhoo
Supervised by (position+printed name+signature)	Project Engineer Xudong Zhang	approved
Approved by (position+printed name+signature)	RF Manager Eric Wang	Erric Wang
Date of issue	: Aug. 24, 2024	CTATES
Testing Laboratory Name	Shenzhen CTA Testing Technolog	y Co., Ltd.
Address	Room 106, Building 1, Yibaolai Indu Fuhai Street, Baoʻan District, Shenz	•
Applicant's name	: Shenzhen Hollyland Technology Co.	.,Ltd.
Address	8F, Building 5D, Skyworth Innovation : Shiyan Street, Baoan District, Shenz	
Test specification		
Test specification	: IEEE 1528:2013; FCC 47 CFR Part	2.1093; FCC KDB 447498 D01;
Standard Shenzhen CTA Testing Technology This publication may be reproduced i CTA Testing Technology Co., Ltd. is a CTA Testing Technology Co., Ltd. tak	EEE 1528:2013; FCC 47 CFR Part ANSI/IEEE C95.1:2005; Reference KDB 865664 D01 ; KDB 865664 D0	2.1093; FCC KDB 447498 D01; 22; KDB 248227 D01 rposes as long as the Shenzher ource of the material. Shenzher me liability for damages resulting ent and context.
Standard Shenzhen CTA Testing Technology This publication may be reproduced i CTA Testing Technology Co., Ltd. is a CTA Testing Technology Co., Ltd. tak	IEEE 1528:2013; FCC 47 CFR Part ANSI/IEEE C95.1:2005; Reference KDB 865664 D01 ; KDB 865664 D0 y Co., Ltd. All rights reserved. In whole or in part for non-commercial put acknowledged as copyright owner and s es no responsibility for and will not assur e reproduced material due to its placeme	2.1093; FCC KDB 447498 D01; 22; KDB 248227 D01 rposes as long as the Shenzher ource of the material. Shenzher me liability for damages resulting ent and context.
Standard Shenzhen CTA Testing Technology This publication may be reproduced i CTA Testing Technology Co., Ltd. is a CTA Testing Technology Co., Ltd. tak from the reader's interpretation of the	IEEE 1528:2013; FCC 47 CFR Part ANSI/IEEE C95.1:2005; Reference KDB 865664 D01 ; KDB 865664 D0 y Co., Ltd. All rights reserved. n whole or in part for non-commercial put acknowledged as copyright owner and s es no responsibility for and will not assur e reproduced material due to its placeme : Wireless Microphone	2.1093; FCC KDB 447498 D01; 22; KDB 248227 D01 rposes as long as the Shenzher ource of the material. Shenzher me liability for damages resulting ent and context.
Standard Shenzhen CTA Testing Technology This publication may be reproduced i CTA Testing Technology Co., Ltd. is a CTA Testing Technology Co., Ltd. tak from the reader's interpretation of the Test item description	IEEE 1528:2013; FCC 47 CFR Part ANSI/IEEE C95.1:2005; Reference KDB 865664 D01 ; KDB 865664 D0 y Co., Ltd. All rights reserved. n whole or in part for non-commercial put acknowledged as copyright owner and s es no responsibility for and will not assur e reproduced material due to its placeme : Wireless Microphone : Wireless Microphone	2.1093; FCC KDB 447498 D01; 22; KDB 248227 D01 proses as long as the Shenzher ource of the material. Shenzher me liability for damages resulting ent and context.
Standard Shenzhen CTA Testing Technology This publication may be reproduced i CTA Testing Technology Co., Ltd. is a CTA Testing Technology Co., Ltd. take from the reader's interpretation of the Test item description Trade Mark	IEEE 1528:2013; FCC 47 CFR Part ANSI/IEEE C95.1:2005; Reference KDB 865664 D01 ; KDB 865664 D0 y Co., Ltd. All rights reserved. n whole or in part for non-commercial put acknowledged as copyright owner and s es no responsibility for and will not assur e reproduced material due to its placeme : Wireless Microphone : Wireless Microphone : Shenzhen Hollyland Technology Co.	2.1093; FCC KDB 447498 D01; 22; KDB 248227 D01 rposes as long as the Shenzher ource of the material. Shenzher me liability for damages resulting ent and context.
Standard Shenzhen CTA Testing Technology This publication may be reproduced i CTA Testing Technology Co., Ltd. is a CTA Testing Technology Co., Ltd. take from the reader's interpretation of the Test item description Trade Mark Manufacturer	IEEE 1528:2013; FCC 47 CFR Part ANSI/IEEE C95.1:2005; Reference KDB 865664 D01 ; KDB 865664 D0 y Co., Ltd. All rights reserved. n whole or in part for non-commercial put acknowledged as copyright owner and s es no responsibility for and will not assur e reproduced material due to its placemer wireless Microphone Wireless Microphone Shenzhen Hollyland Technology Co. M32R2 N/A DC 5V from adapter AC 120V/60Hz	2.1093; FCC KDB 447498 D01; D2; KDB 248227 D01 Imposes as long as the Shenzher ource of the material. Shenzher me liability for damages resulting ent and context.

Page 2 of 53

CTATE	5 ¹ TE	ST RE	PORT	
		CTATES		
Equipmer	nt under Test : Wi	reless Microphone	TATESI	
			GIA CTATEST	GTA CTA
Model /Ty	vpe : M3	2R2		CTI
TING				
Listed Mo	dels : N/A	ĮG		
Applican	t : Sh	enzhen Hollyland Te	chnology Co.,Ltd.	
				TATESTING
Address	•		h Innovation Valley, Tangtou	
	Shi	iyan Street, Baoan Di	strict, Shenzhen, 518055 Ch	ina
Manufact	turer : Sh	enzhen Hollyland Te	chnology Co.,Ltd.	
CTA		STING	oo.ogy eo.,	
Address	: 8F.	Building 5D, Skywort	h Innovation Valley, Tangtou	Road, Shiyan Street,
		oan District, Shenzhe	-FS'	
			1.51	
.6	Tost Rosult.		PASS	GTA CTA
ring	Test Result:		PASS	CTP CTP
The lest re	eport merely correspon			GT CTA
The lest re	eport merely correspon		ithout the written permission	
The lest re	eport merely correspon		ithout the written permission	
The lest re	eport merely correspon		ithout the written permission	
The lest re	eport merely correspon		ithout the written permission	
It is not pe	eport merely correspon rmitted to copy extracts		ithout the written permission	of the test laboratory.
It is not pe	eport merely correspon rmitted to copy extracts	s of these test result w	rithout the written permission	
It is not pe	eport merely correspon rmitted to copy extracts	s of these test result w	rithout the written permission	CTATESTING
It is not pe	eport merely correspon rmitted to copy extracts	s of these test result w	rithout the written permission	CTATESTING
The test re	eport merely correspon rmitted to copy extracts		rithout the written permission	CTATESTING
It is not pe	eport merely correspon rmitted to copy extracts	s of these test result w	rithout the written permission	CTATESTING
It is not pe	eport merely correspon rmitted to copy extracts	s of these test result w	rithout the written permission	CTATESTING
It is not pe	eport merely correspon rmitted to copy extracts	s of these test result w	rithout the written permission	CTATESTING

REV.	X X Revision History	DESCRIPTION
Rev.1.0	Aug. 24, 2024	Initial Test Report Release
	G	TATESIN
		GUN
		G C
ING		G
	TESTING	
C	TATESTING	
	CTAT	ES
		TESTIN
		CIP
TEST		
CTATESTING	ESTING	
	CTA16	
	GTA CTATESTING	TATESIN
		GA CTATESTING
		GA CTATES
	TATESTING CTAT	
	TESTING	
	TA TESTING	EST.
	CAN C.	TESTIN
		CTA .
CTATESTING		
CTP .	STING	
	CTATES	
	GIA CTATESTING	TESTIC
		GA CTATESTING

Contents

1 State	ement of Compliance	
2 Gene	eral Information	7
2.1	General Remarks	
2.2	Description of Equipment Under Test (EUT)	TES
2.3	Device Category and SAR Limits	
2.4	Applied Standard	
2.5	Test Facility	
2.6	Environment of Test Site	
2.7	Test Configuration	
3 Spec	cific Absorption Rate (SAR)	
3.1	Introduction	
3.2	SAR Definition	
	Measurement System	
4.1	E-Field Probe	
4.2	Data Acquisition Electronics (DAE)	
4.3	Robot	
4.4	Measurement Server	
4.5	Phantom	
4.6	Device Holder	
4.7	Data Storage and Evaluation	
	Equipment List	
Tissu	Le Simulating Liquids	18
Svst	em Verification Procedures	20
	Testing Position	
- - 0 . 8.1	Body-Supported Device Configurations	
8.2	Test Distance for SAR Evaluation	
	surement Procedures	
9.1	Spatial Peak SAR Evaluation	
9.2	Power Reference Measurement	
9.3	Area Scan Procedures	
9.4	Zoom Scan Procedures	24
9.5	Volume Scan Procedures	
9.6	Power Drift Monitoring	
	T CONDITIONS AND RESULTS	
10.1	Conducted Power Results	
10.1	Transmit Antennas	
10.2	SAR Test Results	
10.5	SAR Measurement Variability	
10.4	Simultaneous Transmission Analysis	
	ix A ix B. Plots of SAR System Check	
Appendi		
۰ م ۸		
Appendi		

Statement of Compliance 1

<Highest SAR Summary>

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-2005, and had CTA TES been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013 The maximum results of Specific Absorption Rate (SAR) found during testing are as follows.

<highest sar="" summary=""></highest>	,
---------------------------------------	---

	TING <	Highest SAR Summary>	
CTATE	From Dand	Highest Reported 1g-SAR(W/Kg)	Simultaneous
	Frequency Band	Body (0mm)	Reported SAR (W/Kg)
	2.4G (1M)	0.107	NI/A
	2.4G(2M)	0.102	N/A
-	SAR Test Limit (W/Kg)	1.60	CTATL
G	Test Result	PASS	CIA

2.1 General Remarks

2.1 General Remarks			
Date of receipt of test sample	and the second	Aug. 12, 2024	
Testing commenced on		Aug. 12, 2024	Card C
Testing concluded on	:	Aug. 24, 2024	

2.2 Description of Equipment Under Test (EUT)

Product Name:	Wireless Microphone
Model/Type reference:	M32R2
Power supply:	DC 5V from adapter AC 120V/60Hz or DC 3.87V from battery or DC from Wireless Microphone Charging Box
Testing sample ID:	CTA240816018-1# (Engineer sample) CTA240816018-2# (Normal sample)
Hardware Version:	V18
Software Version:	V1.1.0.4
Tx Frequency:	SRD: 2.4G: 2402~2480MHz
Type of Modulation:	GFSK
Category of device:	Body close device

Remark:

The above DUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description. CTATEST

STATES

2.3 Device Category and SAR Limits

This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user. Limit for General Population/Uncontrolled exposure should be applied for this device, it is 1.6 W/kg as averaged over any 1 gram of tissue.

2.4 Applied Standard

CTATES The Specific Absorption Rate (SAR) testing specification, method, and procedure for this device is in accordance with the following standards:

- FCC 47 CFR Part 2 (2.1093:2013)
- ANSI/IEEE C95.1:2005
- IEEE Std 1528:2013
- KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04
- KDB 865664 D02 RF Exposure Reporting v01r02
- KDB 447498 D01 General RF Exposure Guidance v06
- KDB 248227 D01 802 11 Wi-Fi SAR v02r02

2.5 Test Facility

FCC-Registration No.: 517856 **Designation Number: CN1318**

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

ISED#: 27890 CAB identifier: CN0127

Shenzhen CTA Testing Technology Co., Ltd. has been listed by Innovation, Science and Economic Development Canada to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010. GTA TESTING

Environment of Test Site 2.6

Items	Required	Actual
Temperature (°C)	18-25	22~23
Humidity (%RH)	30-70	55~65
2.7 Test Configuration		GT CIA

2.7 Test Configuration

The device was controlled by using a base station emulator. Communication between the device and the emulator was established by air link. The distance between the EUT and the antenna of the emulator is larger than 50 cm and the output power radiated from the emulator antenna is at least 30 dB smaller than the output power of EUT. The EUT was set from the emulator to radiate maximum output power during all tests. For WLAN SAR testing, WLAN engineering testing software installed on the EUT can GIA CTA provide continuous transmitting RF signal.

Specific Absorption Rate (SAR) 3

3.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

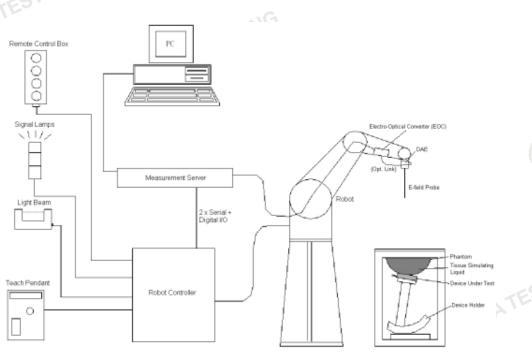
3.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (p). The equation CTA TESTING description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg) SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = C\left(\frac{\delta T}{\delta t}\right)$$


Where: C is the specific head capacity, δT is the temperature rise and δ tisthe exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied. CTA TESTING

SAR Measurement System

DASY System Configurations

The DASY system for performance compliance tests is illustrated above graphically. This system consists of the following items:

- A standard high precision 6-axis robot with controller, a teach pendant and software $\mathbf{>}$
- A data acquisition electronic (DAE) attached to the robot arm extension \triangleright
- \triangleright A dosimetric probe equipped with an optical surface detector system
- \triangleright The electro-optical converter (EOC) performs the conversion between optical and electrical signals
- A measurement server performs the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- \triangleright A probe alignment unit which improves the accuracy of the probe positioning
- \geq A computer operating Windows XP
- DASY software \triangleright
- GA CTATESTING Remove control with teach pendant and additional circuitry for robot safety such as warming \geq lamps, etc.
- The SAM twin phantom \triangleright
- A device holder \triangleright
- \geq Tissue simulating liquid
- Dipole for evaluating the proper functioning of the system \geq

components are described in details in the following sub-sections.

4.1 E-Field Probe

The SAR measurement is conducted with the dosimetric probe (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special CTATES calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom. CTATESTING

Page 11 of 53

E-Field Probe Specification

<ex3dv4< th=""><th>Probe></th></ex3dv4<>	Probe>

	Construction	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)	X	
	Frequency	10 MHz to 6 GHz; Linearity: ± 0.2 dB		TES
	Directivity	± 0.3 dB in HSL (rotation around probe axis)		CTAIL
		± 0.5 dB in tissue material (rotation normal to		
TES		probe axis)		
CTATE	Dynamic Range	10 μ W/g to 100 W/kg; Linearity: ± 0.2 dB (noise:	the second s	
		typically< 1 μW/g)		
	Dimensions	Overall length: 330 mm (Tip: 20 mm)		
		Tip diameter: 2.5 mm (Body: 12 mm)	Photo of EX3DV4	3
		Typical distance from probe tip to dipole	TESTIN	
		centers: 1 mm	CTA IL	

E-Field Probe Calibration

Each probe needs to be calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy shall be evaluated and within \pm 0.25dB. The sensitivity parameters (NormX, NormY, and NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested. The calibration data can be referred to appendix C of this report.

4.2 Data Acquisition Electronics (DAE)

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock. The input impedance of the DAE is 200MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80dB.

Photo of DAE

Page 13 of 53

4.3 Robot

The SPEAG DASY system uses the high precision robots (DASY5: TX60XL) type from Stäubli SA (France). For the 6-axis controllersystem, the robot controller version (DASY5: CS8c) from Stäubli is used. The Stäublirobot series have many features that are important for our application:

- High precision (repeatability ±0.035 mm)
- High reliability (industrial design)
- Jerk-free straight movements
- > Low ELF interference (the closed metallic construction shields against motor control fields)

Photo of DASY5

4.4 Measurement Server

The measurement server is based on a PC/104 CPU board with CPU (DASY5: 400 MHz, Intel Celeron), chipdisk (DASY5: 128 MB), RAM (DASY5: 128 MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O board, which is directly connected to the PC/104 bus of the CPU board.

The measurement server performs all the real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operations.

Photo of Server for DASY5

4.5 Phantom

<sam phantom="" twin=""></sam>	TESI	
Shell Thickness	2 ± 0.2 mm;	
	Center ear point: 6 ± 0.2 mm	
Filling Volume	Approx. 25 liters	G BU, TO
Dimensions	Length: 1000 mm; Width: 500 mm;	
	Height: adjustable feet	
Measurement Areas	Left Hand, Right Hand, Flat Phantom	
	TATESTING	
	TE	Photo of SAM Phantom

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

<ELI4 Phantom>

Shell Thickness	2 ± 0.2 mm (sagging: <1%)	
Filling Volume	Approx. 30 liters	
Dimensions	Major ellipse axis: 600 mm Minor axis:400 mm	Photo of ELI4 Phantom

The ELI4 phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI4 is fully compatible with standard and all known tissue simulating liquids.

4.6 Device Holder

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5 mm distance, a positioning uncertainty of ± 0.5 mm would produce a SAR uncertainty of $\pm 20\%$. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.

The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

Page 15 of 53

The DASY device holder is constructed of low-loss POM material having the following dielectric parameters: relative permittivity ε = 3 and loss tangent δ = 0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

Device Holder

4.7 Data Storage and Evaluation

Data Storage

The DASY software stores the assessed data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all the necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files. The post-processing software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of erroneous parameter settings. For example, if a measurement has been performed with an incorrect crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be reevaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type (e.g., [V/m], [A/m], [W/kg]). Some of these units are not available in certain situations or give meaningless results, e.g., a SAR-output in a non-lose media, will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation

The DASY post-processing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

	Probe parameters:	- Sensitivity	Norm _i , a _{i0} , a _{i1} , a _i		
	TEST	- Conversion factor	Con	ινFi	
K C/I		- Diode compression point		dcpi	
	Device parameters:	- Frequency		f	
		- Crest factor		cf TES	
	Media parameters:	- Conductivity		σ	
		- Density	ρ		

Page 16 of 53

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multi-meter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power.

The formula for each channel can be given as:

$$\mathbf{V}_{i} = \mathbf{U}_{i} + \mathbf{U}_{i}^{2} \cdot \frac{\mathbf{cf}}{\mathbf{dcp}_{i}}$$

with V_i = compensated signal of channel i, (i = x, y, z)

 U_i = input signal of channel i, (i = x, y, z)

cf = crest factor of exciting field (DASY parameter)

dcp_i = diode compression point (DASY parameter)

From the compensated input signals, the primary field data for each channel can be evaluated:

E-field Probes: $E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$

H-field Probes:
$$H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$$

with V_i = compensated signal of channel i,(i= x, y, z)

Norm = sensor sensitivity of channel i, (i= x, y, z), $\mu V/(V/m)^2$ for E-field Probes

ConvF= sensitivity enhancement in solution

aij= sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

Ei= electric field strength of channel iin V/m

H_i= magnetic field strength of channel iin A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude): CTA TESTING

$$\mathbf{E_{tot}} = \sqrt{\mathbf{E_x^2} + \mathbf{E_y^2} + \mathbf{E_z^2}}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$

with SAR = local specific absorption rate in W/kg

Etot= total field strength in V/m

 σ = conductivity in [mho/m] or [Siemens/m]

 ρ = equivalent tissue density in g/cm³

CTATES' Note that the density is set to 1, to account for actual head tissue density rather than the density of the tissue simulating liquid.

Test Equipment List 5

		T	O and a block have	Calib		
Manufacturer	Name of Equipment	Type/Model	Serial Number	Last Cal.	Due Date	
SPEAG	2450MHz System Validation Kit	D2450V2	745	Aug. 28,2023	Aug. 27,2026	
Rohde &	UNIVERSAL RADIO		1201.0002K50-	Nov 05, 2022	Nov 04 2024	
Schwarz	COMMUNICATION TESTER	CMW500	104209-JC	Nov.05, 2023	Nov.04, 2024	TTA
SPEAG	Data Acquisition Electronics	DAE3	428	Aug.30,2023	Aug.29,2024	
SPEAG	Dosimetric E-Field Probe	EX3DV4	7624	Sep. 06,2023	Sep. 05,2024	
Agilent	ENA Series Network Analyzer	E5071C	MY46317418	Oct.25, 2023	Oct.24, 2024	
SPEAG	DAK	DAK-3.5	1226	Oct.25, 2023	Oct.24, 2024	
SPEAG	SAM Twin Phantom	QD000P40CD	1802	NA1	NA1	
SPEAG	ELI Phantom	QDOVA004AA	2058	NA1	NA1	
AR	Amplifier	ZHL-42W	QA1118004	Oct.25, 2023	Oct.24, 2024	
Agilent	Power Meter	N1914A	MY50001102	Oct.25, 2023	Oct.24, 2024	
Agilent	Power Sensor	N8481H	MY51240001	Oct.25, 2023	Oct.24, 2024	
R&S	Spectrum Analyzer	N9020A	MY51170037	Oct.25, 2023	Oct.24, 2024	
Agilent	Signal Generation	N5182A	MY48180656	Oct.25, 2023	Oct.24, 2024	
Worken	Directional Coupler	0110A05601O-10	COM5BNW1A2	Oct.25, 2023	Oct.24, 2024	

Note:

The calibration certificate of DASY can be referred to appendix C of this report. 1.

2. The dipole calibration interval can be extended to 3 years with justification. The dipoles are also not physically damaged, or repaired during the interval.

- The Insertion Loss calibration of Dual Directional Coupler and Attenuator were characterized via the network analyzer 3. and compensated during system check.
- The dielectric probe kit was calibrated via the network analyzer, with the specified procedure (calibrated in pure water) 4. and calibration kit (standard) short circuit, before the dielectric measurement. The specific procedure and calibration kit are provided by Agilent.
- In system check we need to monitor the level on the power meter, and adjust the power amplifier level to have precise 5. power level to the dipole; the measured SAR will be normalized to 1W input power according to the ratio of 1W to the input power to the dipole. For system check, the calibration of the power amplifier is deemed not critically required CTATESTING for correct measurement; the power meter is critical and we do have calibration for it

6. "1" : NA as this is not measurement equipment.

Tissue Simulating Liquids 6

For the measurement of the field distribution inside the SAM phantom with DASY, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 6.1. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm, which is shown as followed:

Photo of Liquid Height

The following table gives the recipes for tissue simulating liquid.

The bellowing tables give the recipes for tissue simulating liquids to be used in different frequency bands:

Ingredients		F	requency (MHz)					
(% by weight)	450	700-900	1750-2000	2300-2500	2500-2700			
Water	38.56	40.30 v	55.24	55.00	54.92			
Salt (NaCl)	3.95	1.38	0.31	0.2	0.23			
Sucrose	56.32	57.90	OSTINO	0	0			
HEC 🥑	0.98	0.24	0	0	0			
Bactericide	0.19	0.18	0	0	031			
Tween	0	0	44.45	44.80	44.85			
Salt: 99+% Pure	Sodium Chloride		S	Sucrose: 98+% P	ure Sucrose			
Water: De-ionized	d, 16 MΩ+ resistiv	ity	HEC	HEC: Hydroxyethyl Cellulose				
Tween: Polyoxye	thylene (20) sorbi	tan monolaurate						
HSL5GHz is com	posed of the follo	wing ingredients:						
Water: 50-65%		ESTIN						
Mineral oil: 10-3	0%							
Emulsifiers: 8-25	5%	wing ingredients:		TATESTING				
Sodium salt: 0-1								
Table 1:		sue Simulate Liquid	C.		GM			
	Recipe of fise							

CTA CTA GA CTATES

Measured Tissue

σ

1.712

Dev.

(%)

-4.03%

Report No.: CTA24081601801

εr

39.2

Measured

Frequency

(MHz)

2450

Target Tissue

σ

1.80

The following table shows the measuring results for simulating liquid.

εr

37.621

Page 19 of 53

Test Data

08/12/2024

Liquid

Temp.

22.6

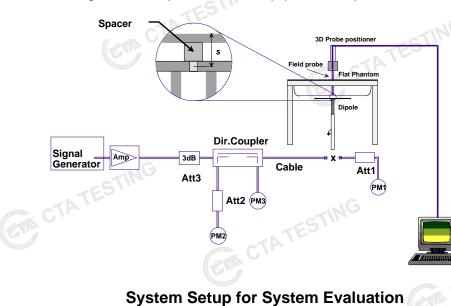
Dev.

(%)

-4.89%

TATESTING

System Verification Procedures 7


Each DASY system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the DASY software, enable the user to conduct the system performance check and system validation. System validation kit includes a dipole, tripod holder to fix it underneath the flat phantom and a corresponding distance holder.

\geq Purpose of System Performance check

The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal SAR measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates TESTING situations where the system uncertainty is exceeded due to drift or failure.

\geq System Setup

In the simplified setup for system evaluation, the EUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

Photo of Dipole Setup

Validation Results

Comparing to the original SAR value provided by SPEAG, the verification data should be within its specification of 10%. The table below shows the target SAR and measured SAR after normalized to 1W input power. It indicates that the system performance check can meet the variation criterion and the plots can be referred to Appendix A of this report.

	Date	Frequency (MHz)	Power fed onto reference dipole (mW)	Targeted SAR 1g (W/kg)	Measured SAR1g (W/kg)	Normalized SAR (W/kg)	Deviation (%)
	08/12/2024	2450	250	52.7	12.65	51.60	-2.09%
G	TING				C.		GA

8 EUT Testing Position

ESTING

8.1 Body-Supported Device Configurations

According to KDB 616217 section 4.3, SAR should be separately assessed with each surface and separation distance positioned against the flat phantom that correspond to the intended use as specified by the manufacturer. The antennas in tablets are typically located near the back (bottom) surface and/or along the edges of the devices; therefore, SAR evaluation is required for these configurations. Exposures from antennas through the front (top) surface of the display section of a full-size tablet, away from the edges, are generally limited to the user's hands. Exposures to hands for typical consumer transmitters used in tablets are not expected to exceed the extremity SAR limit; therefore, SAR evaluation for the front surface of tablet display screens are generally not necessary, except for tablets that are designed to require continuous operations with the hand(s) next to the antenna(s).

To position the device parallel to the phantom surface with either keypad up or down.

- > To adjust the device parallel to the flat phantom.
- > To adjust the distance between the device surface and the flat phantom to 0 mm.
- When each surface is measurement, the SAR Test Exclusion Threshold in KDB 447498 should be applied.

Fig.81 Illustration for Body Position

8.2 Test Distance for SAR Evaluation

In this case the EUT(Equipment under Test) is set 5mm away from the phantom, the test distance is 5mm.

Measurement Procedures 9

The measurement procedures are as follows:

- (a) Use base station simulator (if applicable) or engineering software to transmit RF power continuously (continuous Tx) in the middle channel.
- (b) Keep EUT to radiate maximum output power or 100% duty factor (if applicable)
- (c) Measure output power through RF cable and power meter.
- (d) Place the EUT in the positions as setup photos demonstrates.
- (e) Set scan area, grid size and other setting on the DASY software.
- (f) Measure SAR transmitting at the middle channel for all applicable exposure positions.
- Identify the exposure position and device configuration resulting the highest SAR (g)
- (h) Measure SAR at the lowest and highest channels attheworst exposure position and device configuration if applicable.

According to the test standard, the recommended procedure for assessing the peak spatial-average CTATES SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

9.1 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a provinced

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- (a) Extraction of the measured data (grid and values) from the Zoom Scan
- (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- (c) Generation of a high-resolution mesh within the measured volume
- (d) Interpolation of all measured values form the measurement grid to the high-resolution grid
- (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- Calculation of the averaged SAR within masses of 1g and 10g (f)

9.2 Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface CTATES determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

9.3 Area Scan Procedures

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum found in the scanned area, within a range of the global maximum. The range (in dB0 is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan), if only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of zoom scans has to be increased accordingly.

Area scan parameters extracted from FCC KDB 865664 D01 SAR measurement 100 MHz to 6 GHz.

	\leq 3 GHz	> 3 GHz	
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	$5 \text{ mm} \pm 1 \text{ mm}$	$\frac{1}{2} \cdot \delta \cdot \ln(2) \text{ mm} \pm 0.5 \text{ mm}$	
Maximum probe angle from probe axis to phantom surface normal at the measurement location	$30^\circ\pm1^\circ$	$20^{\circ} \pm 1^{\circ}$	TING
	\leq 2 GHz: \leq 15 mm 2 - 3 GHz: \leq 12 mm	$\begin{array}{l} 3-4 \text{ GHz:} \leq 12 \text{ mm} \\ 4-6 \text{ GHz:} \leq 10 \text{ mm} \end{array}$	ESTING
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension measurement plane orientat above, the measurement res corresponding x or y dimen at least one measurement po		

9.4 Zoom Scan Procedures

Zoom scans are used assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10gram of simulated tissue. The zoom scan measures points (refer to table below) within a cube shoes base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the zoom scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label.

Zoom scan parameters extracted from FCC KDB 865664 D01 SAR measurement 100 MHz to 6 GHz.

			\leq 3 GHz	> 3 GHz]
Maximum zoom scan spatial resolution: Δx_{zoom} , Δy_{zoom}			\leq 2 GHz: \leq 8 mm	$3-4$ GHz: ≤ 5 mm [*]	
	1		$2-3 \text{ GHz}: \le 5 \text{ mm}^*$	$4 - 6 \text{ GHz} \le 4 \text{ mm}^*$	
				$3 - 4 \text{ GHz}: \le 4 \text{ mm}$	
	uniform	grid: $\Delta z_{Zoom}(n)$	\leq 5 mm	$4-5$ GHz: ≤ 3 mm	
				$5-6~\mathrm{GHz}$: $\leq 2~\mathrm{mm}$	STIN
Maximum zoom	graded			3 – 4 GHz: < 3 mm	E
scan spatial resolution, normal to			\leq 4 mm	$4 - 5 \text{ GHz} \le 2.5 \text{ mm}$	
phantom surface			face	$5-6$ GHz: ≤ 2 mm	
	grid $\Delta z_{Zoom}(n>1)$: between subsequent points		\leq 1.5 \cdot Δz_{Zoo}	_	
Minimum zoom				$3 - 4 \text{ GHz} \ge 28 \text{ mm}$	
scan volume	x, y, z		\geq 30 mm	$4-5 \text{ GHz}$: $\geq 25 \text{ mm}$	
				$5-6$ GHz: ≥ 22 mm	

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see IEEE Std 1528-2013 for details.

* When zoom scan is required and the <u>reported</u> SAR from the *area scan based 1-g SAR estimation* procedures of KDB Publication 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Report No.: CTA24081601801 9.5 Volume Scan Procedures

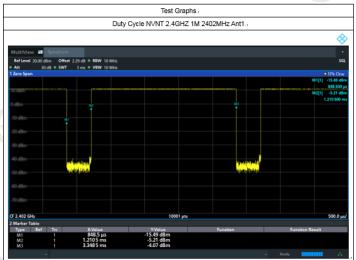
The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregateSAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR.

Page 25 of 53

9.6 Power Drift Monitoring

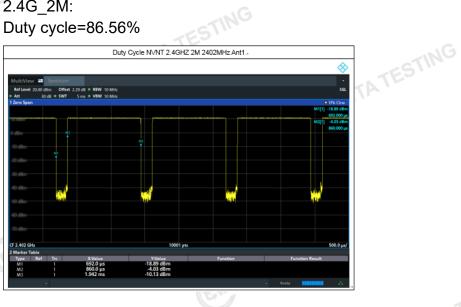
All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drift more than 5%, the SAR will be retested.

Report No.: CTA24081601801 **10 TEST CONDITIONS AND RESULTS**

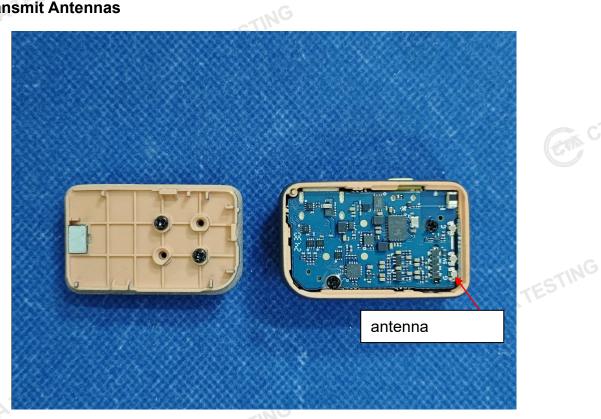

10.1 Conducted Power Results

< 2.4GHz Conducted Power>

And the second second			CTATES		eT.	ING	
Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Correction Factor (dB)	Total Power (dBm)	Tune- up(dBm)
NVNT	2.4G 1M	2402	Ant1	11.1	0.68	11.78	12.00
NVNT	2.4G 1M	2440	Ant1	10.57	0.68	11.25	12.00
NVNT	2.4G 1M	2480	Ant1	10.74	0.68	11.42	12.00
NVNT	2.4G 2M	2402	Ant1	10.93	0.63	11.56	12.00
NVNT	2.4G 2M	2440	Ant1	10.41	0.63	11.04	12.00
NVNT	2.4G 2M	2480	Ant1	10.63	0.63	11.26	12.00
2.4G_ Duty c	1M: ycle=85.52	%		CIT CIT		CTATE	STING
	Duty	Test Graphs., Cycle NVNT 2.4GHZ 1M 2402MH	Hz Ant1.			N. C.	


2.4G 1M:

Duty cycle=85.52%



2.4G_2M:

Duty cycle=86.56%

10.2 Transmit Antennas

Note: The different antenna directions, please see the test photos.

10.3 SAR Test Results

General Note:

- Per KDB 447498 D01v06, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.
 - Tune-up scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the a) For SAR testing of WLAN signal with non-100% duty cycle, the measured SAR is scaled-up by the duty cycle scaling factor which is equal to "1/ (duty cycle)" maximum rated power among all production units.
 - b)
 - duty cycle scaling factor which is equal to "1/ (duty cycle)"
- CTATESTING For WLAN/Bluetooth: Reported SAR(W/kg)= Measured SAR(W/kg)* Duty Cycle scaling factor * Tuneup scaling factor
 - 2 Per KDB 447498 D01v06, for each exposure position, testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:
 - \leq 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \leq 100 MHz
 - ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
 - \leq 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \geq 200 MHz
 - 3 Per KDB 865664 D01v01r04, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/kg. CTATES CTATESTING

< SAR Results>

The calculated SAR is obtained by the following formula:

Reported SAR=Measured SAR*10(Ptarget-Pmeasured))/10* DutyCycle Factor

Scaling factor=10(Ptarget-Pmeasured))/10

Reported SAR= Measured SAR* Scaling factor* DutyCycle Factor

Where

GTA CTATESTING

Ptarget is the power of manufacturing upper limit;

Pmeasured is the measured power;

Measured SAR is measured SAR at measured power which including power drift)

Reported SAR which including Power Drift and Scaling factor

SAR Values [2.4G]

	Gin C			SAR \	/alues [2.4	4G]					
Mode	Test Position	Ch.	Freq. (MHz)	Duty Cycle Factor	Average Power (dBm)	Tune-Up Limit (dBm)	Scaling Factor	Power Drift (dB)	Measured SAR _{1g} (W/kg)	Scaled SAR _{1g} (W/kg)	Pla
			measured / r	eported SAF	R numbers -	Body (distan	ce 0mm)				
	Front side	00	2402	1.169	11.78	12.00	1.052	0.02	0.066	0.081	
	Rear side	00	2402	1.169	11.78	12.00	1.052	-0.15	0.087	0.107	#1
	Left side	00	2402	1.169	11.78	12.00	1.052	-0.14	0.052	0.064	
2.4G _1M	Right side	00	2402	1.169	11.78	12.00	1.052	-0.02	0.015	0.018	
	Top side	00	2402	1.169	11.78	12.00	1.052	-0.10	0.005	0.006	
	Bottom side	00	2402	1.169	11.78	12.00	1.052	0.09	0.047	0.058	
			measured / r	eported SAF	R numbers -	Body (distan	ce 0mm)				-
	Front side	00	2402	1.155	11.56	12.00	1.107	-0.01	0.057	0.073	5
TING	Rear side	00	2402	1.155	11.56	12.00	1.107	-0.19	0.080	0.102	#2
ES .	Left side	00	2402	1.155	11.56	12.00	1.107	0.20	0.045	0.058	
2.4G _2M	Right side	00	2402	1.155	11.56	12.00	1.107	0.05	0.010	0.013	
	Top side	00	2402	1.155	11.56	12.00	1.107	-0.14	0.002	0.003	
	Bottom side	00	2402	1.155	11.56	12.00	1.107	0.06	0.034	0.043	

Note: Per KDB 248227 D01v02r02, for 2.4GHz 802.11g/n SAR testing is not required when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg. these thresholds should be multiplied by 2.5 when 10-g extremity SAR is considered.

10.4 SAR Measurement Variability

SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. The following procedures are applied to determine if repeated measurements are required.

Page 30 of 53

- Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply. 1
- 2 When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once.
- 3 Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is \geq 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 4 Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated CTA CTA measurements is > 1.20.

Band	Mode	Test Position	Ch.	Original SAR (W/kg)	First Repeated SAR (W/kg)	The Ratio	Second Repeated SAR (W/kg)
N/A	N/A	N/A	N/A	S N/A	N/A	N/A	N/A
		CTA CTA	TED		CTAT		

SAR Measurement Variability

10.5 Simultaneous Transmission Analysis


Per FCC KD B447498 D01, simultaneous transmission SAR test exclusion may be applied when the sum of the 1-g SAR for all the transmitting antenna in a specific a physical test configuration is \leq 1.6 W/Kg. When the sum is greater than the SAR limit, SAR test exclusion is determined by the SAR to peak location separation ratio.

 $Ratio = \frac{(SAR_1 + SAR_2)^{1.5}}{(\text{peak location separation,mm})} < 0.04$

The following procedures adopted from "FCC SAR Considerations for Cell Phones with Multiple Transmitters" are applicable to handsets with built-in unlicensed transmitters such as 802.11 a/b/g/n and Bluetooth devices which may simultaneously transmit with the licensed transmitter.

The EUT only have one ANT, So the Simultaneous Transmission Analysis is not applicable for the EUT.

Appendix A.

2450MHz System Check

Date: 08/12/2024

Page 33 of 53

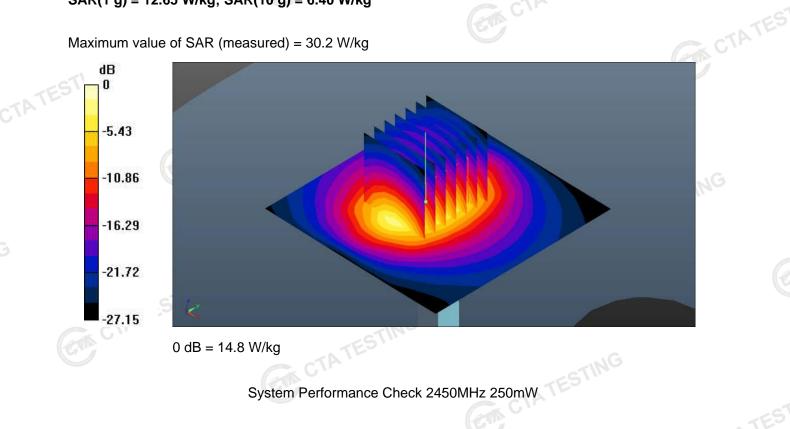
DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 745

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz; σ = 1.712 S/m; ϵ r = 37.621; ρ = 1000 kg/m3 Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7624; ConvF(7.85, 7.85, 7.85); Calibrated: Sep. 06, 2023
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn428; Calibrated: 08/30/2023
- Phantom: Twin-SAM V8.0 ; Type: QD 000 P41 AA; Serial: 1974
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)


Area Scan (4x8x1): Measured grid: dx=12 mm, dy=12 mm Maximum value of SAR (measured) = 20.7 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 84.2 V/m; Power Drift = 0.15 dB

Peak SAR (extrapolated) = 32.1 W/kg

SAR(1 g) = 12.65 W/kg; SAR(10 g) = 6.40 W/kg

Maximum value of SAR (measured) = 30.2 W/kg

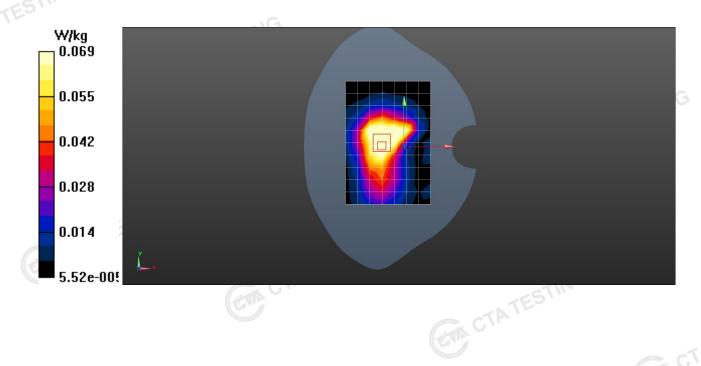
Appendix C. Plots of SAR Test Data

#1 Date: 08/12/2024

2.4G(1M) 0CH Body Rear side 0mm

Communication System: UID 0, Generic WIFI (0); Frequency: 2402 MHz; Duty Cycle: 1:1.169 Medium parameters used: f = 2402 MHz; σ = 1.796 S/m; ϵ r =37.895; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:


- Probe: EX3DV4 SN7624; ConvF(7.85, 7.85, 7.85); Calibrated: Sep. 06, 2023 •
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn428; Calibrated: 08/30/2023 •
- Phantom: Twin-SAM V8.0 ; Type: QD 000 P41 AA; Serial: 1974 ٠
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Area Scan (8x11x1): Measured grid: dx=12 mm, dy=12 mm Maximum value of SAR (measured) = 0.355 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm GAA CTATESTING Reference Value = 1.63 V/m; Power Drift = -0.15 dB Peak SAR (extrapolated) = 0.209 W/kg

SAR(1 g) = 0.087 W/kg; SAR(10 g) = 0.051 W/kg

Maximum value of SAR (measured) = 0.342 W/kg

#2

Date: 08/12/2024

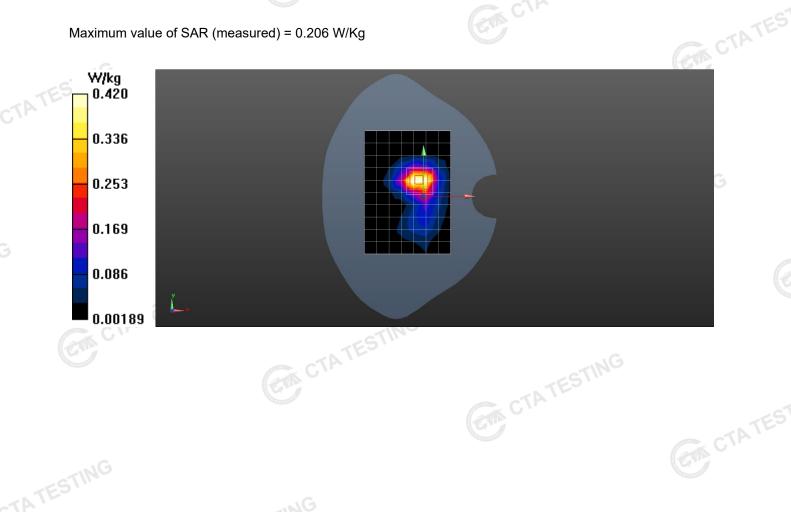
2.4G(2M) 0CH Body Rear side 0mm

Communication System: UID 0, Generic WIFI (0); Frequency: 2402 MHz; Duty Cycle: 1:1.155 Medium parameters used: f = 2402 MHz; σ = 1.796 S/m; ϵ r =37.895; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7624; ConvF(7.85, 7.85, 7.85); Calibrated: Sep. 06, 2023
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn428; Calibrated: 08/30/2023
- Phantom: Twin-SAM V8.0 ; Type: QD 000 P41 AA; Serial: 1974 •
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Area Scan (8x11x1): Measured grid: dx=12 mm, dy=12 mm Maximum value of SAR (measured) = 0.212 W/kg


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 0.986 V/m; Power Drift = -0.19 dB

Peak SAR (extrapolated) = 0.154 W/kg

SAR(1 g) = 0.080 W/kg; SAR(10 g) = 0.036 W/kg

Maximum value of SAR (measured) = 0.206 W/Kg

Page 35 of 53

Appendix D. DASY System Calibration Certificate In Collaboration with 中国认可 CAICT р e CALIBRATION LABORATORY RA 校准 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China CALIBRATION Tel: +86-10-62304633-2117 CNAS L0570 E-mail: emf@caict.ac.cn http://www.caict.ac.cn INNOWAVE Client **Certificate No:** J23Z60222 CALIBRATION CERTIFICATE Object EX3DV4 - SN: 7624 Calibration Procedure(s) FF-Z11-004-02 Calibration Procedures for Dosimetric E-field Probes Calibration date: September 06, 2023 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date(Calibrated by, Certificate No.) Scheduled Calibration Power Meter NRP2 101919 12-Jun-23(CTTL, No.J23X05435) Jun-24 Power sensor NRP-Z91 101547 12-Jun-23(CTTL, No.J23X05435) Jun-24 Power sensor NRP-Z91 12-Jun-23(CTTL, No.J23X05435) 101548 Jun-24 Reference 10dBAttenuator 19-Jan-23(CTTL, No.J23X00212) 18N50W-10dB Jan-25 Reference 20dBAttenuator 18N50W-20dB 19-Jan-23(CTTL, No.J23X00211) Jan-25 Reference Probe EX3DV4 SN 3846 31-May-23(SPEAG, No.EX-3846_May23) May-24 DAE4 SN 549 24-Jan-23(SPEAG, No.DAE4-549_Jan23) Jan-24 DAE4 SN 1744 30-Aug-22(SPEAG, No.DAE4-1744_Aug22) Aug-23 Secondary Standards ID # Cal Date(Calibrated by, Certificate No.) Scheduled Calibration SignalGenerator MG3700A 6201052605 12-Jun-23(CTTL, No.J23X05434) Jun-24 Network Analyzer E5071C MY46110673 10-Jan-23(CTTL, No.J23X00104) Jan-24 Reference 10dBAttenuator BT0520 11-May-23(CTTL, No.J23X04061) May-25 Reference 20dBAttenuator BT0267 11-May-23(CTTL, No.J23X04062) May-25 OCP DAK-3.5 SN 1040 18-Jan-23(SPEAG, No.OCP-DAK3.5-1040_Jan23) Jan-24 Name Function Signature Calibrated by: Yu Zongying SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader

Issued: September 12, 2023 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: J23Z60222

Page 1 of 9

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn

Glossary:

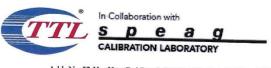
Clossaly.	
TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A,B,C,D	modulation dependent linearization parameters
Polarization Φ	Φ rotation around probe axis
Polarization θ	θ rotation around an axis that is in the plane normal to probe

 θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i $\theta=0$ is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010

d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" Methods Applied and Interpretation of Parameters:


- NORMx, y, z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the
 frequency response is included in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y.z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.

 Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.

- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No:J23Z60222

Page 2 of 9

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn

DASY/EASY – Parameters of Probe: EX3DV4 – SN:7624

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm(µV/(V/m)²) ^A	0.57	0.59	0.58	±10.0%
DCP(mV) ^B	112.6	113.4	119.4	10.070
			110.4	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc ^E (<i>k</i> =2)
0	CW	X	0.0	0.0	1.0	0.00	200.3	±4.7%
		Y	0.0	0.0	1.0		212.4	
		Z	0.0	0.0	1.0		202.8	-

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 4).

^B Numerical linearization parameter: uncertainty not required.

E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No:J23Z60222

Page 3 of 9

In Collaboration with S P e a g CALIBRATION LABORATORY

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn

DASY/EASY – Parameters of Probe: EX3DV4 – SN:7624

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) [⊧]	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (<i>k</i> =2)
750	41.9	0.89	10.58	10.58	10.58	0.20	1.06	±12.7%
835	41.5	0.90	10.19	10.19	10.19	0.19	1.20	±12.7%
1750	40.1	1.37	8.66	8.66	8.66	0.21	1.13	±12.7%
1900	40.0	1.40	8.35	8.35	8.35	0.33	0.91	±12.7%
2100	39.8	1.49	8.27	8.27	8.27	0.23	1.08	±12.79
2300	39.5	1.67	8.13	8.13	8.13	0.58	0.67	±12.7%
2450	39.2	1.80	7.85	7.85	7.85	0.63	0.66	±12.7%
2600	39.0	1.96	7.66	7.66	7.66	0.65	0.66	±12.7%
3500	37.9	2.91	7.20	7.20	7.20	0.34	1.00	±13.9%
3700	37.7	3.12	7.00	7.00	7.00	0.36	1.07	±13.9%
3900	37.5	3.32	6.85	6.85	6.85	0.30	1.50	±13.99
4100	37.2	3.53	6.78	6.78	6.78	0.30	1.35	±13.99
4200	37.1	3.63	6.68	6.68	6.68	0.30	1.45	±13.99
4400	36.9	3.84	6.61	6.61	6.61	0.30	1.45	±13.99
4600	36.7	4.04	6.47	6.47	6.47	0.40	1.30	±13.9%
4800	36.4	4.25	6.37	6.37	6.37	0.40	1.40	
4950	36.3	4.40	6.08	6.08	6.08	0.40	1.40	±13.9%
5250	35.9	4.71	5.55	5.55	5.55	0.40	1.40	
5600	35.5	5.07	4.96	4.96	4.96	0.40		±13.9%
5750	35.4	5.22	4.98	4.98	4.98	0.35	1.70 1.80	±13.9%

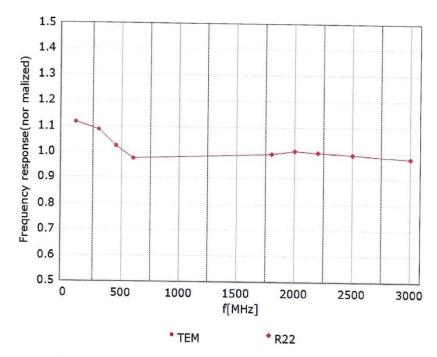
Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity above 300 MHz of \pm 100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to \pm 50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz.

^FAt frequency up to 6 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No:J23Z60222


Page 4 of 9

In Collaboration with S p e a g CALIBRATION LABORATORY

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn

Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)

Certificate No:J23Z60222

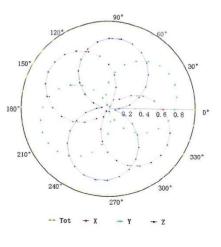
Page 5 of 9

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn

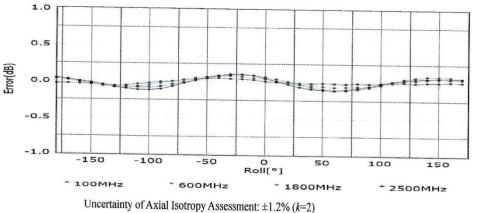
а

e

CALIBRATION LABORATORY

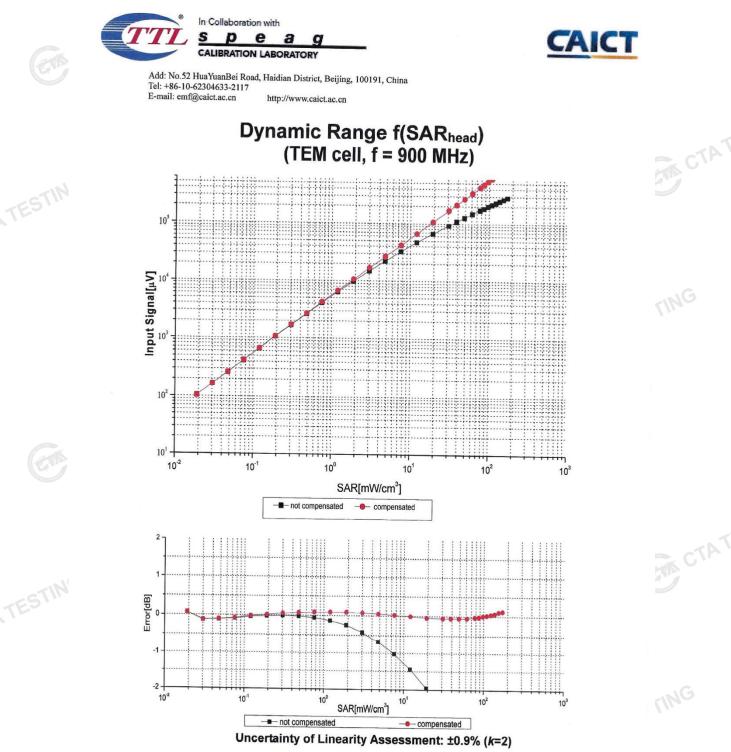

f=600 MHz, TEM

In Collaboration with


D

<u>s</u>

f=1800 MHz, R22



Certificate No:J23Z60222

Page 6 of 9

Certificate No:J23Z60222

Page 7 of 9

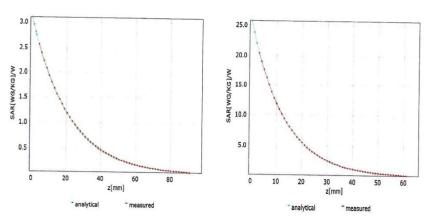
Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn

а

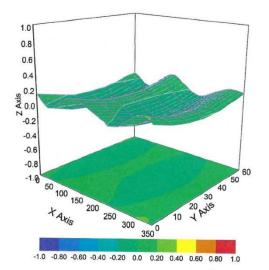
е

CALIBRATION LABORATORY

In Collaboration with


р

S


Conversion Factor Assessment

f=750 MHz,WGLS R9(H_convF) f=1

f=1750 MHz,WGLS R22(H_convF)

Deviation from Isotropy in Liquid

Uncertainty of Spherical Isotropy Assessment: ±3.2% (k=2)

Certificate No:J23Z60222

Page 8 of 9

CALIBRATION LABORATORY Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn

In Collaboration with

p e

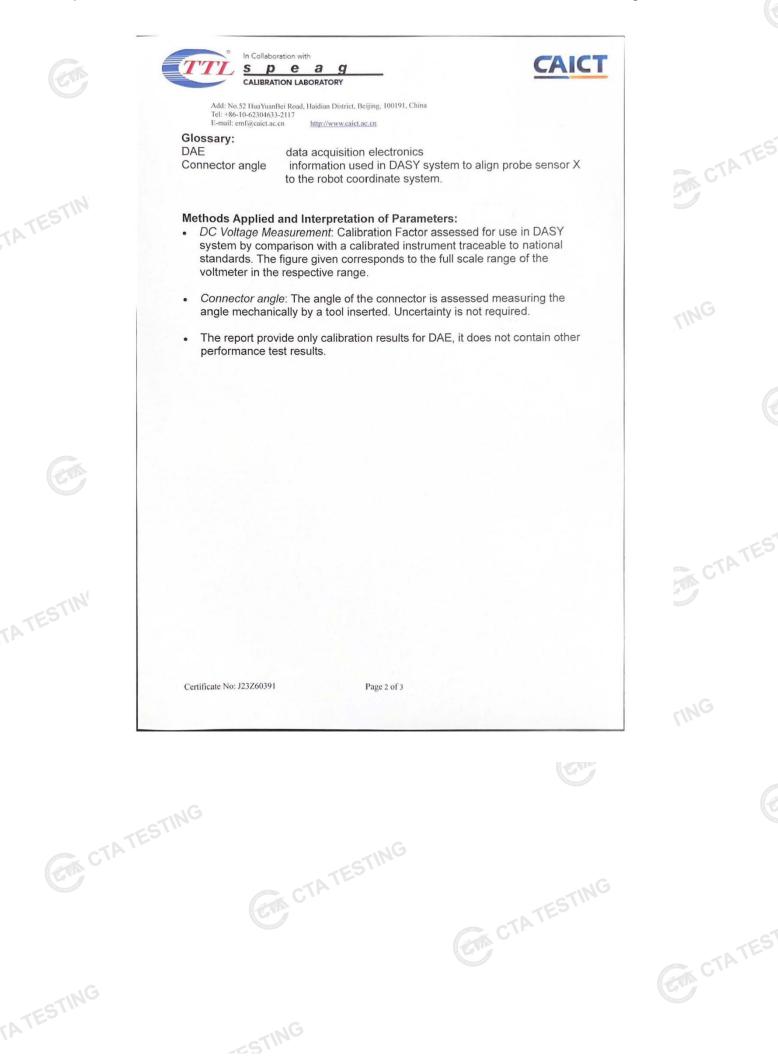
<u>s</u>

http://www.caict.ac.cn

а

a

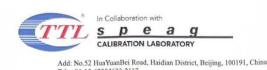
DASY/EASY - Parameters of Probe: EX3DV4 - SN:7624


Other Probe Parameters	
Sensor Arrangement	Triangular
Connector Angle (°)	151.7
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	9mm
Tip Diameter	2.5mm
Probe Tip to Sensor X Calibration Point	1mm
Probe Tip to Sensor Y Calibration Point	1mm
Probe Tip to Sensor Z Calibration Point	1mm
Recommended Measurement Distance from Surface	1.4mm

Certificate No:J23Z60222

Page 9 of 9

Client : CTA		Certificat	te No: J23Z60391
CALIBRATION	CERTIFICAT	E	
Object	DAE3 -	SN: 428	
Calibration Procedure(s)	FF-Z11-	002.01	
		ion Procedure for the Data Acqu	isition Electronics
Calibration date:	August	30, 2023	
measurements(SI). The r pages and are part of the	neasurements and t certificate.	raceability to national standards, whe uncertainties with confidence pro	obability are given on the following
humidity<70%.	en conducted in ti	he closed laboratory facility: envir	onment temperature(22±3)°C and
Calibration Equipment us	ed (M&TE critical fo	or calibration)	
Primary Standards	ID # Cal	Date(Calibrated by, Certificate No.)	Scheduled Calibration
Process Calibrator 753	1971018	12-Jun-23 (CTTL, No.J23X05436)	Jun-24
Calibrated by:	Name	Function	Signature
	Yu Zongying	SAR Test Engineer	Frind
Reviewed by:	Lin Hao	SAR Test Engineer	林ろ
Approved by:	Qi Dianyuan	SAR Project Leader	25
This calibration certificate	shall not be reproc	luced except in full without written a	Issued: September 06, 2023 approval of the laboratory.


-

1	Calibration Facto	nt parameters: Auto Zero Time: 3 s	ange = -100+300 m ange = -1+3mV sec; Measuring time: 3 sec	Z	
14	High Range	404.468 ± 0.15% (k=2)	404.804 ± 0.15% (k=2)		
	Low Range	3.95934 ± 0.7% (k=2)	3.95437 ± 0.7% (k=2)	3.91875 ± 0.7% (k=2)	
	Connector Angle				
	Connector Angle	to be used in DASY system		258.5° ± 1 °	
N					
21	Certificate No: J23Z603	391 Page	e 3 of 3		

Client CTA		Certificate No: J	23Z60389
CALIBRATION C	ERTIFICAT	E	
Object	D2450	V2 - SN: 745	
Calibration Procedure(s)		-003-01 tion Procedures for dipole validation kits	
Calibration date:	August	28, 2023	
	conducted in t	the closed laboratory facility: environment	temperature (22±3)°C and
humidity<70%. Calibration Equipment used	d (M&TE critical fo	or calibration)	
humidity<70%. Calibration Equipment used Primary Standards	I (M&TE critical fo	or calibration) Cal Date (Calibrated by, Certificate No.)	Scheduled Calibratio
humidity<70%. Calibration Equipment used	d (M&TE critical fo	or calibration) Cal Date (Calibrated by, Certificate No.) 22-Sep-22 (CTTL, No.J22X09561)	Scheduled Calibratic Sep-23
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2	ID # 106277 104291	or calibration) Cal Date (Calibrated by, Certificate No.)	Scheduled Calibratic
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S	ID # 106277 104291	or calibration) Cal Date (Calibrated by, Certificate No.) 22-Sep-22 (CTTL, No.J22X09561) 22-Sep-22 (CTTL, No.J22X09561)	Scheduled Calibratio Sep-23 Sep-23
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4	ID # 106277 104291 SN 3617	Cal Date (Calibrated by, Certificate No.) 22-Sep-22 (CTTL, No.J22X09561) 22-Sep-22 (CTTL, No.J22X09561) 31-Mar-23(CTTL-SPEAG,No.Z23-60161)	Scheduled Calibratio Sep-23 Sep-23 Mar-24 Jan-24
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	ID # 106277 104291 SN 3617 SN 1556 ID # MY49071430	Cal Date (Calibrated by, Certificate No.) 22-Sep-22 (CTTL, No.J22X09561) 22-Sep-22 (CTTL, No.J22X09561) 31-Mar-23(CTTL-SPEAG,No.Z23-60161) 11-Jan-23(CTTL-SPEAG,No.Z23-60034) Cal Date (Calibrated by, Certificate No.)	Scheduled Calibratio Sep-23 Sep-23 Mar-24 Jan-24
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards	ID # 106277 104291 SN 3617 SN 1556 ID # MY49071430	Cal Date (Calibrated by, Certificate No.) 22-Sep-22 (CTTL, No.J22X09561) 22-Sep-22 (CTTL, No.J22X09561) 31-Mar-23(CTTL-SPEAG,No.Z23-60161) 11-Jan-23(CTTL-SPEAG,No.Z23-60034) Cal Date (Calibrated by, Certificate No.) 05-Jan-23 (CTTL, No. J23X00107)	Scheduled Calibratio Sep-23 Sep-23 Mar-24 Jan-24 Scheduled Calibration
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	ID # 106277 104291 SN 3617 SN 1556 ID # MY49071430	Cal Date (Calibrated by, Certificate No.) 22-Sep-22 (CTTL, No.J22X09561) 22-Sep-22 (CTTL, No.J22X09561) 31-Mar-23(CTTL-SPEAG,No.Z23-60161) 11-Jan-23(CTTL-SPEAG,No.Z23-60034) Cal Date (Calibrated by, Certificate No.) 05-Jan-23 (CTTL, No. J23X00107)	Scheduled Calibratio Sep-23 Sep-23 Mar-24 Jan-24 Scheduled Calibration Jan-24
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	I (M&TE critical fo ID# 106277 104291 SN 3617 SN 1556 ID# MY49071430 MY46110673	or calibration) Cal Date (Calibrated by, Certificate No.) 22-Sep-22 (CTTL, No.J22X09561) 22-Sep-22 (CTTL, No.J22X09561) 31-Mar-23(CTTL-SPEAG,No.Z23-60161) 11-Jan-23(CTTL-SPEAG,No.Z23-60034) Cal Date (Calibrated by, Certificate No.) 05-Jan-23 (CTTL, No. J23X00107) 10-Jan-23 (CTTL, No. J23X00104)	Scheduled Calibration Sep-23 Sep-23 Mar-24 Jan-24 Scheduled Calibration Jan-24 Jan-24
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C NetworkAnalyzer E5071C	ID # 106277 104291 SN 3617 SN 1556 ID # MY49071430 MY46110673 Name	Cal Date (Calibrated by, Certificate No.) 22-Sep-22 (CTTL, No.J22X09561) 22-Sep-22 (CTTL, No.J22X09561) 31-Mar-23(CTTL-SPEAG,No.Z23-60161) 11-Jan-23(CTTL-SPEAG,No.Z23-60034) Cal Date (Calibrated by, Certificate No.) 05-Jan-23 (CTTL, No. J23X00107) 10-Jan-23 (CTTL, No. J23X00104) Function	Scheduled Calibration Sep-23 Sep-23 Mar-24 Jan-24 Scheduled Calibration Jan-24 Jan-24
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C NetworkAnalyzer E5071C	I (M&TE critical fo ID # 106277 104291 SN 3617 SN 1556 ID # MY49071430 MY46110673 Name Zhao Jing	Cal Date (Calibrated by, Certificate No.) 22-Sep-22 (CTTL, No.J22X09561) 22-Sep-22 (CTTL, No.J22X09561) 31-Mar-23(CTTL-SPEAG,No.Z23-60161) 11-Jan-23(CTTL-SPEAG,No.Z23-60034) Cal Date (Calibrated by, Certificate No.) 05-Jan-23 (CTTL, No. J23X00107) 10-Jan-23 (CTTL, No. J23X00104) Function SAR Test Engineer	Scheduled Calibration Sep-23 Sep-23 Mar-24 Jan-24 Scheduled Calibration Jan-24 Jan-24

2

Tel: +86-10-62304633-2117 http://www.caict.ac.cn E-mail: cttl@chinattl.com

Glossary: TSL ConvF N/A

tissue simulating liquid sensitivity in TSL / NORMx,y,z not applicable or not measured

a g

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-held and Body-mounted Wireless Communication Devices- Part 1528: Human Models, Instrumentation and Procedures (Frequency range of 4 MHz to 10 GHz)", October 2020
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: J23Z60389

Page 2 of 6

In Collaboration with TTL spea g CALIBRATION LABORATORY

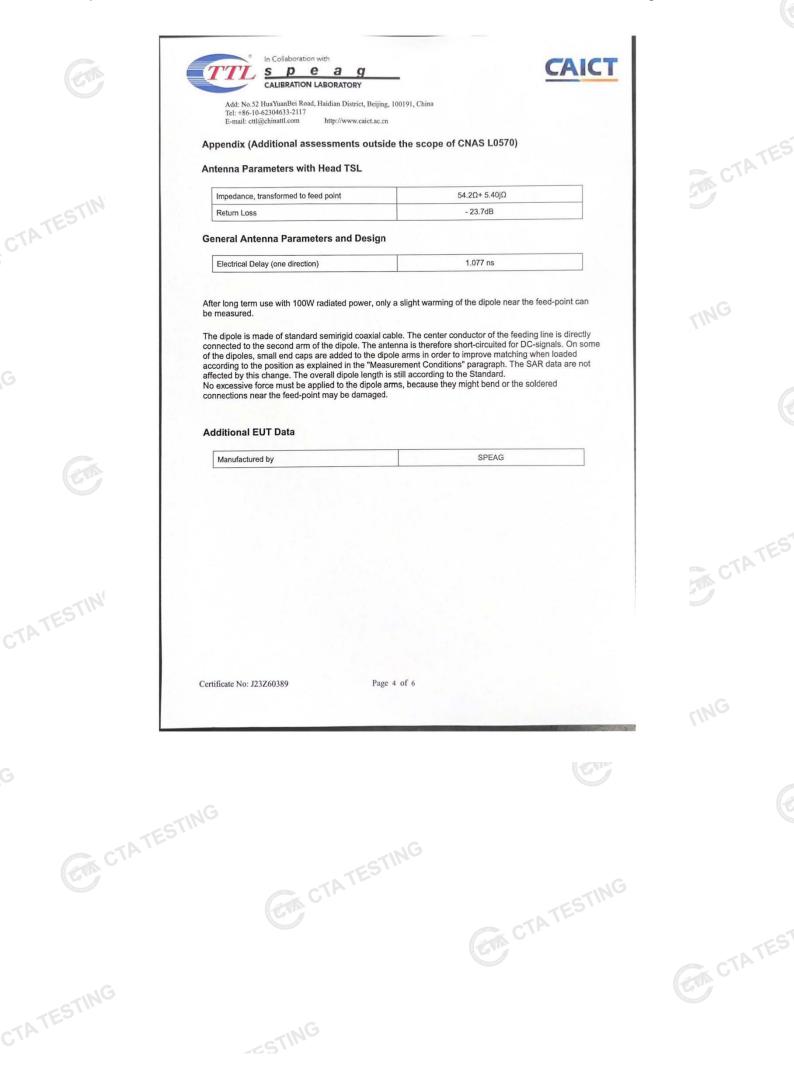
Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: ettl@chinattl.com http://www.eaiet.ac.cn

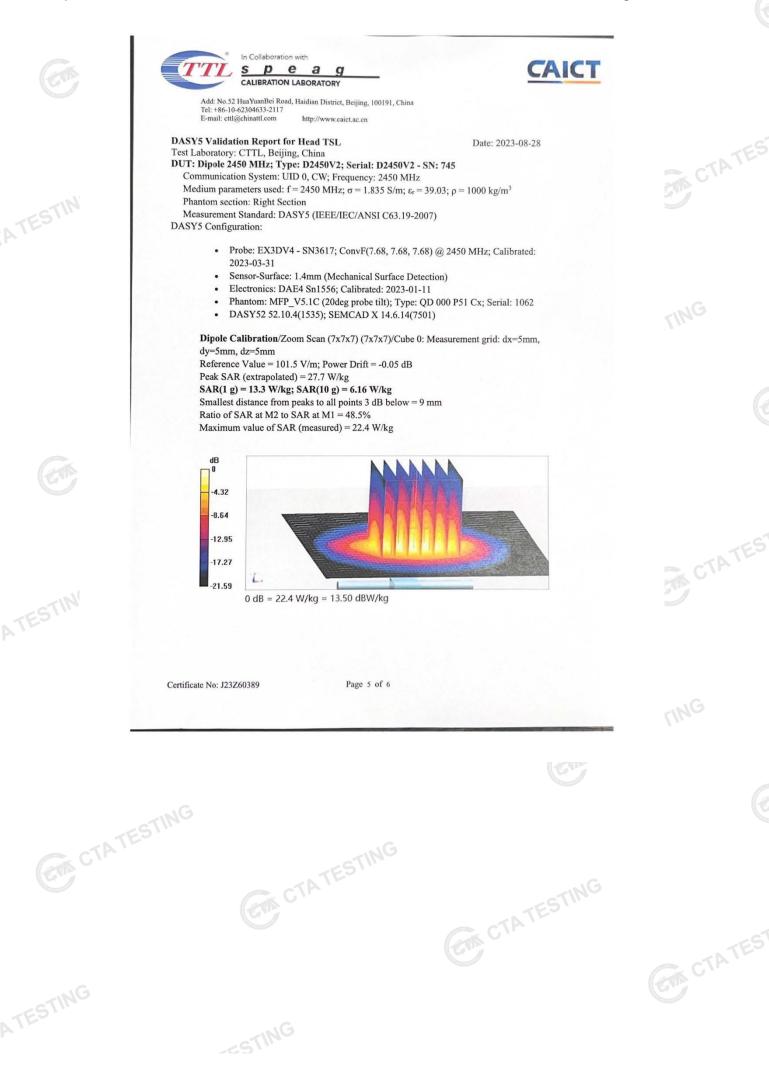
Measurement Conditions

DASY Version	DASY52	52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

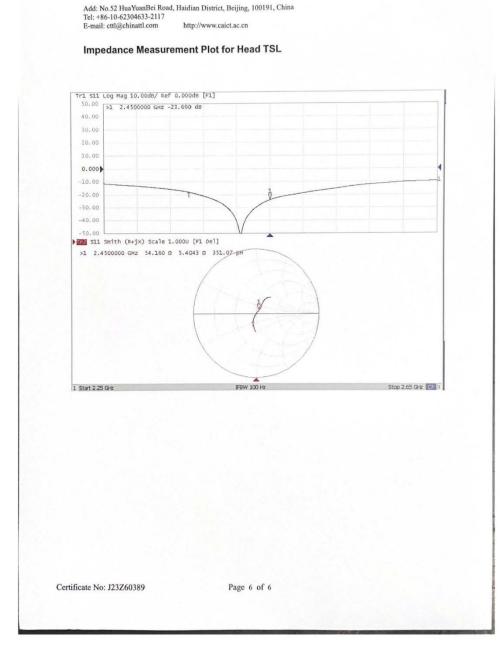

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.0 ± 6 %	1.84 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		


SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.3 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.7 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	6.16 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.5 W/kg ± 18.7 % (k=2)

Certificate No: J23Z60389

Page 3 of 6



*****END OF REPORT****

G

In Collaboration with

<u>spea</u>

CALIBRATION LABORATORY

g

CAICT