

WSET

WSET.

W5C1

WSET

TEST REPORT

WSET

WSCI

WSIT

WSET

/ W-144

VIII-I

FCC ID: 2ADYY-TU01AIR-R

Product: TWS Earphone

TVI JULY

WSET

WSET W

Model No.: TU01 Air

Trade Mark: TECNO

Report No.: WSCT-ANAB-R&E240800039A-LE

Issued Date: 28 August 2024

WSET

WSET

WSET

Issued for:

W5ET"

WSET

TECNO MOBILE LIMITED

FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25

W.S. SHAN MEI STREET FOTAN NT HONGKONG

W.5

WSET

WSET

Issued By:

WSTT

WSCT

World Standardization Certification & Testing Group(Shenzhen) Co.,Ltd.
Building A-B,Baoli'an Industrial Park,No.58 and 60,Tangtou Avenue, Shiyan
Street, Bao'an District, Shenzhen City, Guangdong Province, China

TEL: +86-755-26996192 FAX: +86-755-86376605

WSET

WSET

AVVI - VI

WSET

Note: This report shall not be reproduced except in full, without the written approval of World Standardization Certification& Testing Group (Shenzhen) Co., Ltd. This document may be altered or revised by World Standardization Certification& Testing Group (Shenzhen) Co., Ltd. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

WSCT

WSIT

WELT

BY BY ONOM * PYTION

W5 CT

ADD. Building A-B, Bao li'an Industrial Park, No.58 and 60. Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China

Page 1 of 41

Standardization Certification& Testing Group(Sh

WSET

Member of the WSCT Group (WSCT SA)

NEFT

WSET

WSET

Report No.: WSCT-ANAB-R&E240800039A-LE

TABLE OF CONTENTS

	WSET WSET WSET	WEET
1.	Test Certification W5FT	3
2.	X X X	4
W5 ET3.		5
4.		6
4.	4.1. TEST ENVIRONMENT AND MODE	6
	4.2. DESCRIPTION OF SUPPORT UNITS	WSET
5.		7
	5.1. FACILITIES	7
WSET	5.2. ACCREDITATIONS WSET WSET WSET	7
	5.3. MEASUREMENT UNCERTAINTY	8
	5.4. MEASUREMENT INSTRUMENTS	9
6.	Test Results and Measurement Data	. 10'5 CT
\times	6.1. ANTENNA REQUIREMENT	10
	6.2. CONDUCTED EMISSION	11
WSLT	6.3. CONDUCTED OUTPUT POWER	13
	6.4. EMISSION BANDWIDTH	17
	6.5. POWER SPECTRAL DENSITY	21
	C.C. COMPUNEED DAMP FROM AND COMPUNE FAMOUR ME COMPUNE	22/1
	6.6. CONDUCTED BAND EDGE AND SPURIOUS EMISSION MEASUREMENT	
	6.6. CONDUCTED BAND EDGE AND SPURIOUS EMISSION MEASUREMENT	
WSET	6.7. RADIATED SPURIOUS EMISSION MEASUREMENT	
WSET		
WSET	6.7. RADIATED SPURIOUS EMISSION MEASUREMENT	
WSET	6.7. RADIATED SPURIOUS EMISSION MEASUREMENT	31
WSLT	6.7. RADIATED SPURIOUS EMISSION MEASUREMENT	
WSCT	6.7. RADIATED SPURIOUS EMISSION MEASUREMENT	31
WSET	6.7. RADIATED SPURIOUS EMISSION MEASUREMENT	31
WSET	6.7. RADIATED SPURIOUS EMISSION MEASUREMENT	31
WSET	6.7. RADIATED SPURIOUS EMISSION MEASUREMENT	31
WSET	6.7. RADIATED SPURIOUS EMISSION MEASUREMENT	31
WSET	6.7. RADIATED SPURIOUS EMISSION MEASUREMENT	31
	6.7. RADIATED SPURIOUS EMISSION MEASUREMENT	31
WSET	6.7. RADIATED SPURIOUS EMISSION MEASUREMENT	W.S.C.T

Report No.: WSCT-ANAB-R&E240800039A-LE

Test Certification

Product:

TWS Earphone

Model No.: TU01 Air

TECNO Trade Mark:

Applicant: TECNO MOBILE LIMITED

FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE

WSET

19-25 SHAN MEI STREET FOTAN NT HONGKONG

TECNO MOBILE LIMITED Manufacturer:

FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE

19-25 SHAN MEI STREET FOTAN NT HONGKONG

15 August 2024 to 28 August 2024 Date of Test:

FCC CFR Title 47 Part 15 Subpart C Section 15.247 Applicable

Standards: KDB 558074 D01 DTS Meas Guidance v04

The above equipment has been tested by World Standardization Certification & Testing Group(Shenzhen)Co., Ltd. and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Tested By:

(Wang Xiang)

Checked By:

(hen

(Chen Xu)

11/4

WSET

Approved By:

WSET

(Li Huaibi)

WSET

WSET

WSET

W5 CT

TEL 0086-755-26996192 26996053 26996144

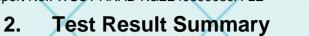
Page 3 of 41

深圳世标检测认证股份有限公司

ac-MRA

Mahalalala

W5 C


W5 C

N5 E

World Standardization Certification & Testing Group (Shenzhen) Co.,ltd.

Report No.: WSCT-ANAB-R&E240800039A-LE

W5 CT

	MARCE STORY	TAPE CTS	TARRET CT	W5 E7
7	Requirement	CFR 47 Section	Result	WELST.
	Antenna requirement	§15.203/§15.247 (c)	PASS	
7	AC Power Line Conducted Emission	W5 CT §15.207	NA WS ET	
_	Conducted Peak Output W5 [7] Power W5 [§15.247 (b)(3) §2.1046	W5 PASS	W5 LT
	6dB Emission Bandwidth	§15.247 (a)(2) §2.1049	PASS	
, ,	Power Spectral Density	§15.247 (e)	PASS	
	Band Edge W5 D	1§5.247(d) §2.1051, §2.1057	PASS W5 CT	WSCI
	Spurious Emission	§15.205/§15.209 §2.1053, §2.1057	PASS	
	Note:	Wall	WSLI	

1. PASS: Test item meets the requirement.

2. Fail: Test item does not meet the requirement.

3. N/A: Test case does not apply to the test object.

4. The test result judgment is decided by the limit of test standard.

W5 E W5 C W5 C W5 CI

WS E7

W5 C1 WS ET W5 CT W5 E1

Page 4 of 41

W5 CT

W5 C1

W5 C

W5 E

World Standardization Certification & Testing Group (Shenzhen) Co., ltd.

W5CT

Report No.: WSCT-ANAB-R&E240800039A-LE

3. EUT Description

	Product Name:	TWS Earphone WSCT WSCT	V5 CT
	Model:	TU01 Air	
	Trade Mark:	TECNO	
7	Operation Frequency:	2402MHz~2480MHz	
	Channel Separation:	1MHz	X
	Number of Channel:	407 WSET WSET	V5 CT
/	Modulation Technology:	GFSK	
7	Antenna Type;	PIFA Antenna	
	Antenna Gain:	-0.78dBi	
	WSET	Rechargeable Li-ion Battery: 14340SK Rated Capacity: 840mAh Nominal Voltage: 3.87V	V5 ET
	Operating Voltage	Rated Energy: 3.26Wh Limited Charge Voltage: 4.45V Rechargeable Li-ion Battery: CP1154AA Nominal Voltage: 3.70V	
		Rated Energy: 0.204Wh Rated Capacity: 55mAh Limited Charge Voltage: 4.20V	X
	Remark:	N/A. WSET WSET	V5 [T]

Operation Frequency each of channel

		7					
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
WS ET		AWS CT		WS CI		W.5 C	7
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz
Remark:	Channel 0, 1	9 & 39 ha	ave been tes	sted.			

WSET

WSET

W5 CT

WSET

WSET

WSCT

WSCT

WELT

WSCT

ADD: Building A-B, Baoil'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, Chin FEL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http: www.wsct-cert.com

深圳世标检测认证股份有限公司 World Standard Pation Certification& Testing Group(Shenzhen) Co

Arres .

WSCT

Page 5 of 41

Report No.: WSCT-ANAB-R&E240800039A-LE

4. Genera Information

4.1. Test environment and mode

Operating Environment:	
Temperature:	25.0 °C
Humidity:	56 % RH
Atmospheric Pressure:	1010 mbar

Test Mode:

Engineering mode:

Keep the EUT in continuous transmitting by select channel and modulations(The value of duty cycle is 98.46%) with Fully-charged battery.

The sample was placed (0.1m below 1GHz, 1.5m above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

4.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
Adapter	XCU32	\times	1	X /

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, 6dB Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

WS CT WS CT

WSET N

1/2/4/4

WSLT Continue Testing Group (Shenzing)

VS ET WS E

W5 C7

IWS CT

DD: Building A-B,Baoli'an Industrial Park,No.58 and 60,Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, Chi EL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http: www.wsct-cert.c

深圳世标检测认证股份有限公司
World Standard Zation Certification& Testing Group (Shenzhen) Co., Ltd

Report No.: WSCT-ANAB-R&E240800039A-LE

5. Facilities and Accreditations

5.1. Facilities

WSET WSET

CT WS CT

All measurement facilities used to collect the measurement data are located at World Standardization Certification & Testing Group (Shenzhen) Co., Ltd. Building A-B,Baoli'an Industrial Park,No.58 and 60,Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China

The sites are constructed in conformance with the requirements of ANSI C63.4 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

5.2.ACCREDITATIONS

ANAB - Certificate Number: AT-3951

The EMC Laboratory has been accredited by the American Association for Laboratory
Accreditation (ANAB). Certification Number: AT-3951

WS	ET W	SET WS	CT WS	ET° V	VS CT°
WSCT	WSET	WSCT	WSCT	WSCT	
	$\langle \hspace{0.1cm} \rangle$	TET WS			VSET
WSET	WSET	WSET	WSET	WSET	
	TET W.S	TET WS	GT WS	TET N	VSET
WSCT	WSET	WSCT	WSCT	WSCT	
	$\langle \hspace{0.1cm} \rangle$	SET WS			
WSCI	WSIT	WSCI	WSCI	Cotton of the state of the stat	Group (Shenzhen

SET WSET

an Industrial Park, No.58 a

Page 7 of 41

WSET WSET

Report No.: WSCT-ANAB-R&E240800039A-LE

W5 CT

5.3. Measurement Uncertainty

The reported uncertainty of measurement y ± U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

	No.	Item	MU	
W5 CT°	1	Power Spectral Density	±3.2dB	
	2	Duty Cycle and Tx-Sequence and Tx-Gap	±1%	X
	3 _{W5} [Medium Utilisation Factor W5 [7]	±1.3%	W5 ET
	4	Occupied Channel Bandwidth	±2.4%	
	5	Transmitter Unwanted Emission in the out-of Band	±1.3%	
W5 CT	6	Transmitter Unwanted Emissions in the Spurious Domain	±2.5%	
	7	Receiver Spurious Emissions	±2.5%	X
	8W5[Conducted Emission Test W5 [7] W5	±3.2dB	W5 CT
	9	RF power, conducted	±0.16dB	
	10	Spurious emissions, conducted	±0.21dB	
<u> WSET</u>	11	All emissions, radiated(<1GHz)	±4.7dB	
	12	All emissions, radiated(>1GHz)	±4.7dB	X
	13/5 C	Temperature WSET WSET WS	±0.5°C	W5 CT
X	14	Humidity	±2.0%	

	W5 CT	WSET	WSET	WS ET	WSET
WSET	$\langle \hspace{0.1cm} \rangle$			CT WS	
	X				

Page 8 of 41

W5 L

World Standardization Certification & Testing Group (Shenzhen) Co., ltd.

Report No.: WSCT-ANAB-R&E240800039A-LE

W5CT

5.4.MEASUREMENT INSTRUMENTS

	J.4.WILASUILLI			\wedge			
_	NAME OF EQUIPMENT	MANUFACTURER	MODEL	SERIAL NUMBER	Calibration Date	Calibration Due.	75 C 1
\langle	Test software		EZ-EMC	CON-03A	-	Χ-	
C	Test software	/	MTS8310	WSIT	- /	15 [T°	
	EMI Test Receiver	R&S	ESCI	100005	11/05/2023	11/04/2024	
	LISN	AFJ	LS16	16010222119	11/05/2023	11/04/2024	\wedge
	LISN(EUT)	Mestec	AN3016	04/10040	11/05/2023	11/04/2024	'5 C I
<	Universal Radio Communication Tester	R&S	CMU 200	1100.0008.02	11/05/2023	11/04/2024	
C	Coaxial cable	Megalon	LMR400	N/A	11/05/2023	11/04/2024	
	GPIB cable	Megalon	GPIB	N/A	11/05/2023	11/04/2024	
	Spectrum Analyzer	R&S	FSU	100114	11/05/2023	11/04/2024	\wedge
	Pre Amplifier	IH.P. <i>ET</i> **	HP8447E 5 /	2945A02715	11/05/2023	11/04/2024	/5 C 1
	Pre-Amplifier	CDSI	PAP-1G18-38		11/05/2023	11/04/2024	
	Bi-log Antenna	SCHWARZBECK	VULB9168	01488	11/05/2023	11/04/2024	
C	9*6*6 Anechoic	ET V	VSET L	W.S CT	11/05/2023	11/04/2024	
	Horn Antenna	COMPLIANCE ENGINEERING	CE18000		11/05/2023	11/04/2024	X
	Horn Antenna	SCHWARZBECK	BBHA9120D	9120D-631	11/05/2023	11/04/2024	15 C I
	Cable	TIME MICROWAVE	LMR-400	N-TYPE04	11/05/2023	11/04/2024	-13
	System-Controller	ccs	N/A	N/A	N.C.R	N.C.R	
C	Turn Table	ccs	V5/7N/A	N/A	N.C.R	N.C.R	
	Antenna Tower	ccs	N/A	N/A	N.C.R	N.C.R	
	RF cable	Murata	MXHQ87WA300 0	-	11/05/2023	11/04/2024	
	Loop Antenna	EMCO	6502W5 L	00042960	11/05/2023	11/04/2024	15 C I
1	Horn Antenna	SCHWARZBECK	BBHA 9170	1123	11/05/2023	11/04/2024	
	Power meter	Anritsu	ML2487A	6K00003613	11/05/2023	11/04/2024	
4	Power sensor	Anritsu	MX248XD	WSET	11/05/2023	11/04/2024	
	Spectrum Analyzer	Keysight	N9010B	MY60241089	11/05/2023	11/04/2024	X

W5 CT

W5 CT

W5 CT

WSLT

WSET

VSCT WSC

IWS CT

W5CT

DD: Building A-B,Baoil'an Industrial Park,No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, Chi L: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http: www.wsct-cert.co 深圳世标检测认证股份有限公司 World Standard ration Certification& Testing

rs r T

SCT WSC

Report No.: WSCT-ANAB-R&E240800039A-LE

6. Test Results and Measurement Data

6.1. Antenna requirement

WSET"

W5CT

W5 []

Standard requirement:

FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The Bluetooth antenna is a PIFA Antenna. it meets the standards, and the best case gain of the antenna is -0.78dBi.

Please refer to the attachment "TU01 Air(R) Internal Photo" for the antenna location

WSCT WSCT WSCT WSCT WSCT

WSCT WSCT WSCT WSCT

WSCT" WSCT" WSCT" WSCT

WSCT WSCT WSCT WSCT WSCT

WSCT WSCT WSCT WSCT

WSCT WSCT WSCT

DD: Building A-B,Baoli'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, Chir EL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.com

na. 深圳世标检测认证股份有限公司
World Standard zation Certification& Testing Group(Shenzhen) C.

WELT

Page 10 of 41

WSET WSET

Report No.: WSCT-ANAB-R&E240800039A-LE

6.2. Conducted Emission

6.	2.1. Test Specification	WSUT WSUT WS	LI
X	Test Requirement:	FCC Part15 C Section 15.207	
WSET	Test Method: 5 [7]	ANSI C63.10:2014 W5 [T] W5 [T]	
	Frequency Range:	150 kHz to 30 MHz	
	Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sweep time=auto	CT.
WSET	Limits:	Frequency range (MHz) Limit (dBuV) 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50	
	X	Reference Plane	
	WSET WSE	40cm 10cm LISN	CT.
WSET	Test Setup:	E.U.T Adapter Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m	TT.
\times	Test Mode:	Charging + Transmitting Mode	
WSET	WSCT	1. The E.U.T is connected to an adapter through a line impedance stabilization network (L.I.S.N.).5 This	
	\times	provides a 50ohm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main	\leq
WSET	Test Procedure:	power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum	
	WSET WSE	conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2014 on conducted measurement.	CT.
	Test Result:	N/A	Group(

Report No.: WSCT-ANAB-R&E240800039A-LE

IWS CT"

6.2.2. EUT OPERATING CONDITIONS

The EUT is working in the Normal link mode. All modes have been tested and normal link mode is worst.

Devices subject to Part 15 must be tested for all available U.S. voltages and frequencies (such as a nominal 120 VAC, 60 Hz and 240 VAC, 50 Hz) for which the device is capable of operation. So, The configuration 120 VAC, 60 Hz and 240 VAC, 50 Hz were tested respectively, but only the worst configuration (120 VAC, 60 Hz) shown here.

Test data:

Note: EUT is powered by batteries and cannot transmit normally while charging. This project does not require testing

WSET	WSET	WSET	WSET	WSET
	W.S	$\langle \hspace{0.1cm} \rangle$	$\langle \hspace{0.1cm} \rangle$	$\langle \times $
WSCT	WSET	WSET	WSET	WSET
	WS	$\langle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\langle \hspace{0.1cm} \rangle$	$\langle \times $
WSCT	WSLT	WSCT	WSET	WSET
	WS	$\langle \hspace{0.1cm} \rangle$		$\langle \times$
WSET	WSCT	WSET	WSET	WSET
W/s	$\langle \hspace{0.1cm} \rangle$	$\langle \hspace{0.1cm} \rangle$	$\langle \hspace{0.1cm} \rangle$	
WSET	WSET	WSET	WSET	WSCT WSCT
				(P) (100)

TEL: 0086-755-26996192 26996053 26996144

Page 12 of 41

ADD: Building A-B,Baoli'an Industrial Park,No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China

WSCT

Report No.: WSCT-ANAB-R&E240800039A-LE

W5CT

6.3. Conducted Output Power

6.3.1. Test Specification W5 ET

W5ET

IWS ET

W5 ET

X	Test Requirement:	FCC Part15 C Section 15.247 (b)(3)	
WSET	Test Method:	KDB558074 W5 [T] W5 [T]	
	Limit:	30dBm	\times
X	Test Setup:	Spectrum Analyzer EUT	W5ET
WSET	Test Mode:	Refer to item 4.1	
WSCT	Test Procedure:	 The testing follows the Measurement Procedure of FCC KDB No. 558074 DTS D01 Meas. Guidance v04. Set spectrum analyzer as following:	WSCT
X	Test Result:	PASS	
WSCT	WSCT	WSCT WSCT WSCT	

	WSET	WSG	W	SCT	WSET	WSCT
WSCT	W.	SET	WSCT	WSCT	WS	7

4W5 [T]

W5ET°

WSET

WSIT

WSCT WSCT

W5CT W5C

W5CT

WS CT

DD: Building A-B,Baoli'an Industrial Park,No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, Chin EL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http: www.wsct-cert.coi

深圳世标检测认证股份有限公司
World Standard Zation Certification & Testing Group(Shen

Report No.: WSCT-ANAB-R&E240800039A-LE

W5CT"

6.3.2. Test Data

	BLE 1M	1		W5 C1
Test channel	Maximum Conducted Output Power (dBm)	Limit (dBm)	Result	
Lowest	6.41	30.00	PASS	
Middle	6.64	30.00	PASS	
Highest	6.54	30.00	PASS	X

August 1	Lowest	6.41	30.00	PASS	
W5LT [®]	Middle	6.64	30.00	PASS	/
	Highest	6.54	30.00	PASS	X
	WS ET"	W5CT W	VSET W	VSET	W5 CT
	Test plots as follows:				
WSET	W5 ET	WSET	W5 CT	W5ET	
	WSCT	W5ET W	VSCT W	VSCT V	W.C. C. T.
WSCT	WSET	W5 ET	WSET	WSET	WSCT
	WSCT	\times	\times	VS ET	WSET
WSET	WSET	WSET	WSET	WSET	
	WSCT		\times	VS ET	WSET
WSET	WSET	WSET	WSET	WSET	
	WSET		\times	\bigvee	Test
WSET	WSET	WSET	WSET	W5	Testing Group (Shenzhou)
		renue, Shiyan Street, Bao'an District, Shenzhen City		「检测认证股份有限公司	PITIOS

ADD: Building A-B,Baoil'an Industrial Park,No.58 and 60,Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China.

TEL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.com World Standard Zation Cert

深圳世标检测认证股份有限公司 World Standard ration Certification& Testing Group(Shenzhen) Co.,Ltd

NS ET

Page 14 of 41

WSCT

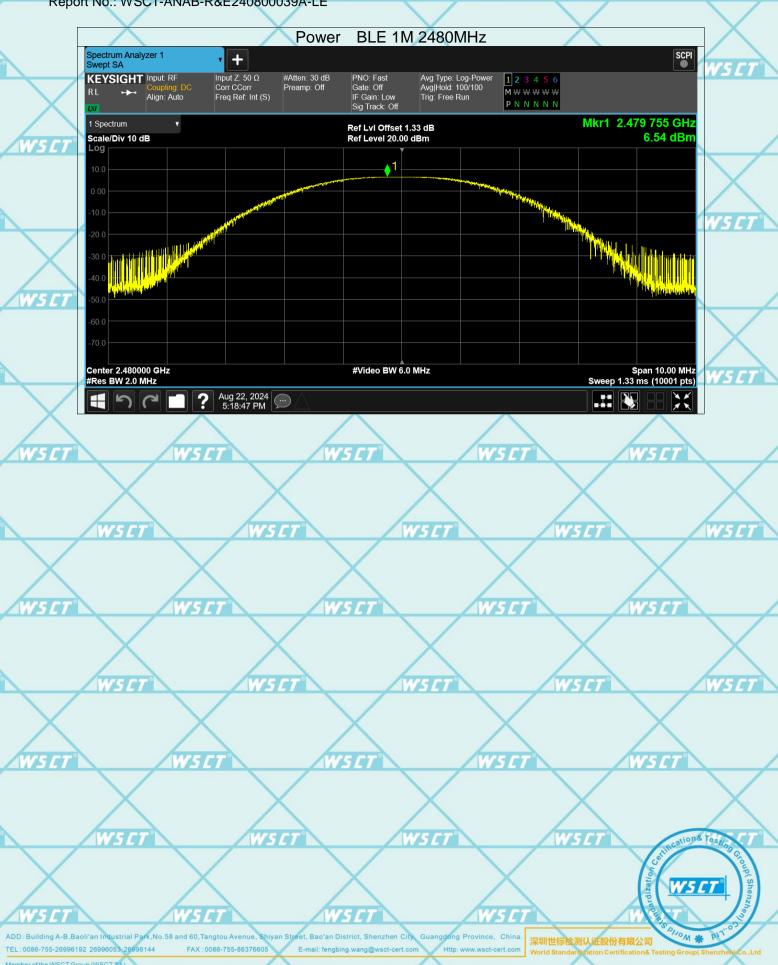
WSCI

Report No.: WSCT-ANAB-R&E240800039A-LE

ADD: Building A-B, Baoli'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China. TEL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http: www.wsct-cert.com

World 深圳世标检测认证股份有限公司

W5 C1


Page 15 of 41

WSET

Report No.: WSCT-ANAB-R&E240800039A-LE

Page 16 of 41

W5 C1

Report No.: WSCT-ANAB-R&E240800039A-LE

6.4. Emission Bandwidth

			I all will make
6/1/1/	Toct C	pecification	
0.4.1.	1621 3	pecilication	

W5 C1

W5 CT

W5C1

X	Test Requirement:	FCC Part15 C Section 15.247 (a)(2)	
W5 ET	Test Method:	KDB558074 W5 [7] W5 [7]	
	Limit:	>500kHz	\setminus
	Test Setup:		WSET
		Spectrum Analyzer EUT	
WSET	Test Mode:	Refer to item 4.1 W5 CT	
WSET	Test Procedure:	 The testing follows FCC KDB Publication No. 558074 DTS D01 Meas. Guidance v04. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must 	WSCT
	Test Result:	be greater than 500 kHz. 4. Measure and record the results in the test report. PASS	X
	WSL	War	WSL/ B

W5 C1 W5 CT W5 CI W5C1 W5 ET

W5 ET

WS ET

W5 C7

W5 E1

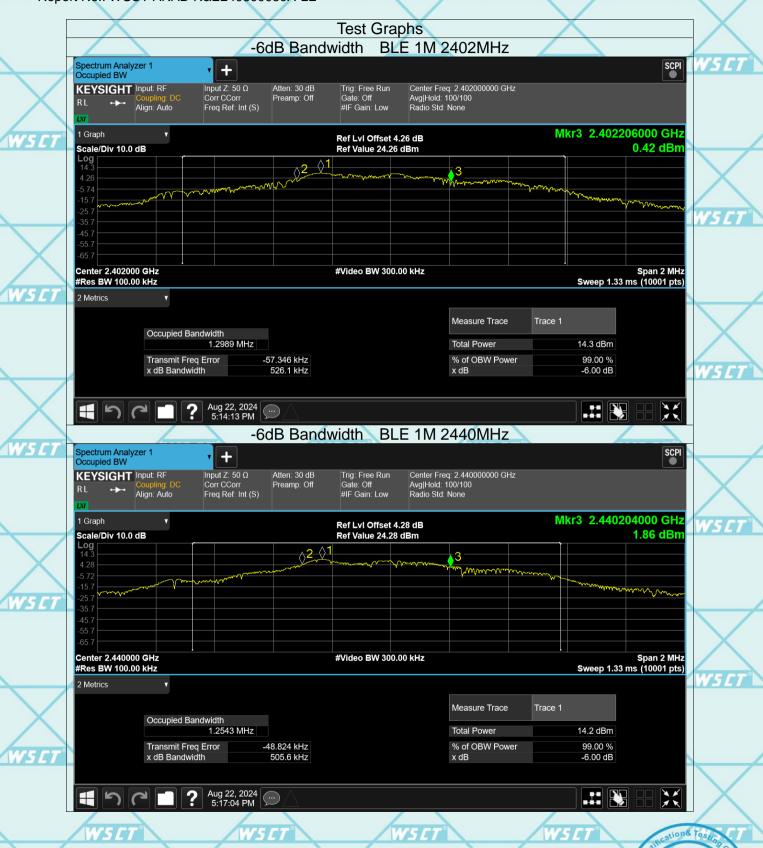
深圳世标检测认证股份有限公司

Report No.: WSCT-ANAB-R&E240800039A-LE

W5CT 1

•	No.: WSCT-ANAB-R&E240 .2. Test data	0800039A-LE			∇	
	/	WELT	WE		WSET	
	Test channel	6dB Emission Bandwidth (kHz)				
	rest chamilei	BT LE mode	Limit	Result		
W5ET°	Lowest	0.526	>500k	W5CT"		
	Middle	0.506	>500k	PASS		
	Highest	0.572	>500k		\wedge	
X	est plots as follows:	WS ET WS ET	WS	CT .	W5 CT°	
WSCT	WSET	W5ET*	WSET	W5CT"		
\ /	WSET	WS ET WS ET	WS	<i>ET</i> 2	WSET	
WSET	WSET	WSET	WSET	WSCT		
	\times	WSET WSET	W.5		WSET	
WSCT	WSLT	WSET	WSET	WSET		
	X	WSCT WSCT	W.5		WSCT	
WSCT	WSET	WSET	WSCT	WSET		
	\times	\times				
/		WSET WSET	W5	Castifications	Testing Gro	

DD: Building A-B,Baoli'an Industrial Park,No.58 and 60,Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China EL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.com


深圳世标检测认证股份有限公司
World Standard Latin Certification& Testing Group (Shenzhen) Co.,Lit

Report No.: WSCT-ANAB-R&E240800039A-LE

ADD: Building A-B,Baoli'an Industrial Park,No.58 and 60,Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China. TEL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.com

深圳世标检测认证股份有限公司
World Standard Zation Certification & Testing Group (Shenzhen) Co.,Ltd

Page 19 of 41

SET WSE

W5

W5 CT W.

Page 20 of 41

W5 C1

W5CT

Report No.: WSCT-ANAB-R&E240800039A-LE

6.5. Power Spectral Density

6.5.1. Test Specification

	WSIT WSI	T WSTT WSTT WST	7
∇	Test Requirement:	FCC Part15 C Section 15.247 (e)	
	Test Method:	KDB558074	
<u> AWSET</u>	Limit:	The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.	1
	Test Setup:	WS E	7
X		Spectrum Analyzer EUT	
Western State of the State of t	Test Mode:	Refer to item 4.1	
WSCT	Test Procedure:	 The testing follows Measurement Procedure 10.2 Method PKPSD of FCC KDB Publication No.558074 D01 DTS Meas. Guidance v04 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW): 3 kHz ≤ RBW ≤ 100 kHz. Video bandwidth VBW ≥ 3 x RBW. In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW) Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level. Measure and record the results in the test report. 	
	Test Result:	PASS	
			1

WSCT WSCT WSCT

WSCT WSCT WSCT WSCT

W5ET W5ET

SET WSE

E-mail: fengbing.wang@wsct-cert.com Http: www.wsct-cert.com

深圳世标检测认证股份有限公司 World Standard zation Certification & Testing Group(Shenzhen) Co.,Ltd

r ago 2 r or

WSCT WSCT

W5CT

Report No.: WSCT-ANAB-R&E240800039A-LE

W5CT°

6.5.2. Test data

<i>W5 [T</i>]
X

MALL	Middle	14.16	8 dBm/3kHz PASS	
	Highest	-13.06	8 dBm/3kHz	
L				
	Test plots as follows:	WSET WSET	WSET	W5CT
	rest plots as follows.			
X			X	
WSET	WSET	WSET	WS CT WS CT	
/ UPIGE	WEG		Walter Walter	
	X	X	X	X
	WSET	WSET*	WSET	W5ET N
			\vee	
W5 CT	WSET	WSET	WS CT WS CT	
C		\times		X
	WSET	WSET WSET	WSET	WSET
X	X	X	X	
August 1	7///			
WSET	WSET	WSET	WS CT WS CT	
	X	X	X	X
	WSCT	WS CT WS CT	W5 CT°	W5CT"
WSET	WSET	WSET	WSCT WSCT	
	X	X	X	X
	W5 CT	WSET WSET	WSET authorit	SET
				out of the contract of the con
			Taria M	Shenz
WSCT	WSET	WSET	W5 CT W	
ADD: Building A-B,Baol TEL: 0086-755-26996192		e, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Pro 16605 E-mail: fengbing.wang@wsct-cert.com Http://www	ovince, China. 深圳世标检测认证股份有限公司	M # PIT
		Titlp: wwi	w.wsct-cert.com World Standardization Certification& Testing Gr	roup(Shenzhen) Co.,Ltd

Page 22 of 41

WSET

WS CT WS C

Report No.: WSCT-ANAB-R&E240800039A-LE Test Graphs BLE 1M 2402MHz **PSD** Spectrum Analyzer 1 Swept SA SCPI Input Z: 50 Ω PNO: Best Wide Avg Type: Log-Power Avg|Hold: 100/100 Trig: Free Run KEYSIGHT Input: RF #Atten: 30 dB 1 2 3 4 5 6 Corr CCorr Freq Ref: Int (S) Preamp: Off Gate: Off IF Gain: Low M ₩ ₩ ₩ ₩ Align: Auto Sig Track: Off 1 Spectrum Mkr1 2.401 857 191 GHz Ref LvI Offset 1.26 dB Ref Level 20.00 dBm Scale/Div 10 dB -14.20 dBm Center 2.4020000 GHz Span 789.0 kHz Sweep 83.2 ms (1001 pts) #Video BW 10 kHz #Res BW 3.0 kHz Aug 22, 2024 5:24:05 PM BLE 1M 2440MHz **PSD** 15 C Spectrum Analyzer 1 Swept SA SCPI + Input Z: 50 Ω #Atten: 30 dB Preamp: Off PNO: Best Wide Avg Type: Log-Power Avg|Hold: 100/100 KEYSIGHT Input: RF 1 2 3 4 5 6 Corr CCorr Freq Ref: Int (S) ___ M ₩ ₩ ₩ ₩ ₩ Align: Auto IF Gain: Low Sig Track: Off Trig: Free Run PNNNN Mkr1 2.439 759 397 GHz Ref LvI Offset 1.28 dB Ref Level 20.00 dBm -14.16 dBm Scale/Div 10 dB Center 2.4400000 GHz #Res BW 3.0 kHz Span 759.0 kHz Sweep 80.1 ms (1001 pts) #Video BW 10 kHz Aug 22, 2024 5:19:45 PM

ADD: Building A-B, Baoli'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China. TEL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 Http://www.wsct-cert.com

深圳世标检测认证股份有限公司

Page 23 of 41

ation& Tes

W5 C1

Report No.: WSCT-ANAB-R&E240800039A-LE

Report No.: WSCT-ANAB-R&E240800039A-LE

6.6. Conducted Band Edge and Spurious Emission Measurement

6.6.1. Test Specification

6.	6.1. Test Specification	T WSET WSET	(W5CT°)
\times	Test Requirement:	FCC Part15 C Section 15.247 (d)	
Week	Test Method:	KDB558074	
WS ET	Limit:	In any 100 kHz bandwidth outside of the authorized frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dB / 30dB relative to the maximum PSD level in 100 kHz by RF conducted measurement and radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).	WSET
	Test Setup:	Spectrum Analyzer EUT	WSET
\bigvee	Test Mode:	Refer to item 4.1	
WSET	Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d). Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band. 	X
	Test Result:	PASS	X
	/ \		

4W3LI

5*CT* W

W5 CT

WSCT WSCT

WSET WSE

W5 C7

awsct

DD: Building A-B,Baoil'an Industrial Park,No.58 and 60,Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, Chir EL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.co

深圳世标检测认证股份有限公司
World Standard zation Certification& Testing Group(Shenzhen) Co., L

Page 25 of 41

WS CT WS

W5 CT

Report No.: WSCT-ANAB-R&E240800039A-LE

ADD: Building A-B, Baoli'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China. TEL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 Http://www.wsct-cert.co

MON # 深圳世标检测认证股份有限公司

Page 26 of 41

15 Ci

W5 C7

ADD: Building A-B,Baoil'an Industrial Park,No.58 and 60,Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China. TEL: 0886-755-26996192 26996053 26996144 FAX: 0886-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.com

深圳世标检测认证股份有限公司
World Standard zation Certification& Testing Group(Shenzhen) Co.,Ltd.

15 C

Report No.: WSCT-ANAB-R&E240800039A-LE

Conducted RF Spurious Emission Test Graphs WSC1 Tx. Spurious BLE 1M 2402MHz Ref Spectrum Analyzer 1 Swept SA SCPI + PNO: Best Wide Gate: Off IF Gain: Low Sig Track: Off Input Z: 50 Ω Corr CCorr Freq Ref: Int (S) #Atten: 30 dB Preamp: Off Avg Type: Log-Power Avg|Hold: 100/100 Trig: Free Run KEYSIGHT Input: RF 1 2 3 4 5 6 __ M ₩ ₩ ₩ ₩ Align: Auto Mkr1 2.401 761 5 GHz 1 Spectrum Ref LvI Offset 4.26 dB Ref Level 20.00 dBm 9.03 dBm Scale/Div 10 dB Center 2.4020000 GHz #Res BW 100 kHz Span 1.500 MHz Sweep 1.00 ms (1001 pts) #Video BW 300 kHz Aug 22, 2024 5:14:40 PM 衄 Tx. Spurious BLE 1M 2402MHz Spectrum Analyzer 1 SCPI + Input Z: 50 Ω Corr CCorr Freq Ref: Int (S) #Atten: 30 dB Preamp: Off Avg Type: Log-Power Avg|Hold: 10/10 PNO: Fast KEYSIGHT Input: RF M ₩ ₩ ₩ ₩ Align: Auto IF Gain: Low Sig Track: Off Trig: Free Run 2.401 7 GHz Mkr1 Ref Lvl Offset 4.26 dB 0.97 dBm Scale/Div 10 dB Ref Level 20.00 dBm DL1 -10.97 dB **⊘**4 Start 30 MHz #Res BW 100 kHz Stop 26.50 GHz Sweep ~2.53 s (30001 pts) #Video BW 300 kHz 5 Marker Table Scale **Function Width** Function Value Mode 0.97 dBm 4.803 4 GHz 4.803 4 GHz 4.803 4 GHz 7.206 9 GHz 9.560 1 GHz -39.64 dBm 2 3 4 5 6 -39.64 dBm -51.16 dBm -52.69 dBm N N

ADD: Building A-B, Baoil'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China. TEL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605

Aug 22, 2024 5:15:11 PM

深圳世标检测认证股份有限公司

MON #

Report No.: WSCT-ANAB-R&E240800039A-LE

The Made and the W5 CI BLE 1M 2440MHz Ref Tx. Spurious SCPI Spectrum Analyzer 1 + Input Z: 50 Ω Corr CCorr #Atten: 30 dB Preamp: Off PNO: Best Wide Gate: Off Avg Type: Log-Power Avg|Hold: 100/100 KEYSIGHT Input: RF **1 2 3 4 5** 6 ____ M ₩ ₩ ₩ ₩ Align: Auto Freq Ref: Int (S) IF Gain: Low Sig Track: Off Trig: Free Run 1 Spectrum Mkr1 2.439 751 0 GHz Ref LvI Offset 4.28 dB Ref Level 20.00 dBm 9.08 dBm Scale/Div 10 dB WW. Center 2.4400000 GHz #Res BW 100 kHz Span 1.500 MHz Sweep 1.00 ms (1001 pts) #Video BW 300 kHz Aug 22, 2024 5:16:13 PM Tx. Spurious BLE 1M 2440MHz Spectrum Analyzer 1 Swept SA SCPI + Avg Type: Log-Power Avg|Hold: 10/10 Trig: Free Run Input Z: 50 Ω #Atten: 30 dB PNO: Fast KEYSIGHT Input: RF 1 2 3 4 5 6 Corr CCorr Freq Ref: Int (S) Gate: Off IF Gain: Low Sig Track: Off M ₩ ₩ ₩ ₩ Align: Auto PNNNNN Mkr1 2.439 7 GHz 1 Spectrum Ref Lvl Offset 4.28 dB 1.61 dBm Scale/Div 10 dB Ref Level 20.00 dBm **⊘**3 **⊘**5

Start 30 MHz #Video BW 300 kHz Stop 26.50 GHz #Res BW 100 kHz Sweep ~2.53 s (30001 pts) 5 Marker Table Function Width Function Value Mode Scale Function 2.439 7 GHz 1.61 dBm 7.319 8 GHz 4.880 2 GHz 7.319 8 GHz -43.01 dBm -49.26 dBm -43.01 dBm N 2 3 4 5 6 N N 9.721 5 GHz -52.08 dBm Aug 22, 2024 5:16:44 PM

ADD: Building A-B, Baoil'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China. TEL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 Http://www.wsct-cert.co

MON # 深圳世标检测认证股份有限公司

15 Ci

Page 29 of 41

ation& Testi

75 C

World Standardization Certification & Testing Group (Shenzhen) Co., ltd.

CCREDITED

Report No.: WSCT-ANAB-R&E240800039A-LE

ADD: Building A-B, Baoil'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China. MON # 深圳世标检测认证股份有限公司 TEL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 Http://www.wsct-cert.co

Page 30 of 41

Aug 22, 2024 5:18:14 PM

VS CI

ation& Testi

Report No.: WSCT-ANAB-R&E240800039A-LE

W5CT"

6.7. Radiated Spurious Emission Measurement

6.7.1.	Test S	pecification	nW5CT
9		poomoane	

IWS ET

W5 ET

W5 CT

6.	7.1. Test Specification	VIPIU VIPIU	WOLL
X	Test Requirement:	FCC Part15 C Section 15.209	
W5 CT°	Test Method:	ANSI C63.10:2014	
	Frequency Range:	9 kHz to 25 GHz	\bigvee
	Measurement Distance:	3 m	\wedge
	Antenna Polarization: W5 [Horizontal & Vertical W5 [7]	W5CT°
	Operation mode:	Refer to item 4.1	
		Frequency Detector RBW VBW Remark	
W5 CT	W5 CT	9kHz- 150kHz Quasi-peak 200Hz 1kHz Quasi-peak Value	
	Receiver Setup:	150kHz- Quasi-peak 9kHz 30kHz Quasi-peak Value 30MHz	$ egthinspace{-1mm}$
		30MHz-1GHz Quasi-peak 100KHz 300KHz Quasi-peak Value	
		Above 1GHz Peak 1MHz 3MHz Peak Value	\triangle
	WSCT WSCI	Peak 1MHz 10Hz Average Value	WSCT°
		Field Changels Management	
X	X	Frequency Field Strength Measurement (microvolts/meter) Distance (meters)	
		0.009-0.490 2400/F(KHz) 300	
W5CT°	W5CT*	0.490-1.705 24000/F(KHz) 30	
		1.705-30 30 30	$\overline{}$
	\vee	30-88 100 3	X
		88-216 150 3	
	Limit: WS E1	216-960 200 3	W5CT
	WEIGH	Above 960 500 3	W-15/
		Field Strength Measurement	
ALL COMPANY	71/2/22	(microvolts/meter) Distance Detector	
W5CT°	WSET	(meters)	
		Above 1GHz 500 3 Average 5000 3 Peak	
		For radiated emissions below 30MHz	$/ \setminus$
	WSET WSET	To Tadiated Chiladions Below Solvin 2	WSET"
\sim		Distance = 3m Computer	
		Pre -Amplifier	
W5CT°	Test setup: W5 CT		
	X	EUT Turn table	X

WSCT

WELT

WELT

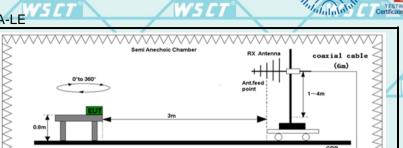
30MHz to 1GHz

4W5C7

DD: Building A-B,Baoli'an Industrial Park,No.58 and 60,Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City Guangdong Province, Chi EL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http::www.wsct-cert.com 深圳世标检测认证股份有限公司 ** 內八

nber of the WSCT Group (WSCT SA)

Page 31 of 41


WSCT

Ground Plane

Report No.: WSCT-ANAB-R&E240800039A-LE

Coaxial cable (1m)

Above 1GHz

Full Anechoic Chamber

RX Antenna

Coax ia1 cable

(8m)

O'to 360°

Antifeed

Pre-amplifier

Coaxial cable (1m)

1. For the radiated emission test below 1GHz:

The EUT was placed on a turntable with 0.1 meter above ground. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high PASS filter are used for the test in order to get better signal level. For the radiated emission test above 1GHz: Place the measurement antenna on a turntable with 1.5 meter above ground, which is away from each

area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement

antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 nvs 77 above the ground or reference ground plane.

DD: Building A-B,Baoll'an Industrial Park,No.58 and 60,Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, Chin.
EL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.com

15 E

深圳世标检测认证股份有限公司 ** P11

WSCT

Page 32 of 41

VSCT WSCT

Member of the WSCT Group (WSCT SA)

Test Procedure:

ATORY AT-3951

World Standardization Certification & Testing Group (Shenzhen) Co., ltd.

Repo	rt No.: WSCT-ANAB-R&E240800039	A-I F			Certificat	ite Number : A
	X	2. Corrected Read Le	l Reading: Anten vel - Preamp Fa	ctor = Level		\rangle
	WSET WSET		urement below 1 JT measured by		L - MI N	W5
WSET	WSET	lower that level will measure	an the applicable be reported. Other ment will be reported.	limit, the pea nerwise, the e eated using th	k emission mission	
	X	(1) Span	ollowing spectrui shall wide enoug sion being measu	gh to fully cap		\geq
	WSCT WSCT	(2) Set R	BW=100 kHz for	r f < 1 GHz; V	BW ≥RBW;	W5.
WSET	WSET	max h (3) Set R	p = auto; Detect hold; BW = 1 MHz, VE eak measuremen	BW= 3MHz fo		
			age measureme		Hz, when	
		duty cycl	le is no less than	n 98 percent. \	VBW ≥ 1/T,	
	WS CT WS CT		ty cycle is less th			W5
X		transmitt	num transmissio er is on and is tr ontrol level for the	ansmitting at	its maximum	
WSET	Test mode: W5	Refer to sec	tion 4.1 for detai	ils	WSET	
	Test results:	PASS				/
	Note: Frog - Emission fraguency in MU					

Note: Freq. = Emission frequency in MHz Reading level (dB μ V) = Receiver reading Corr. Factor (dB) = Attenuation factor + Cable loss Level $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)Limit (dBµV) = Limit stated in standard Margin (dB) = Level (dBµV) – Limits (dBµV)

W5 CT WS ET WS CT W5 C1

Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China.

ADD: Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Avenue, TEL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605

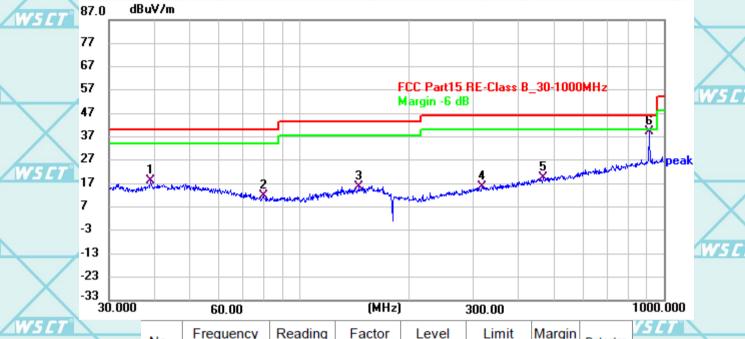
深圳世标检测认证股份有限公司

W5C1

Page 33 of 41

W5 C1

Report No.: WSCT-ANAB-R&E240800039A-LE


W5CT

6.7.2. Test Data(Worst case)

Please refer to following diagram for individual

Below 1GHz

The worst mode is BLE Low Channel Horizontal:

W5 ET®	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
	1	39.0758	37.14	-19.14	18.00	40.00	-22.00	QP
WSCI	2	79.5558	35.64	-23.92	11.72	40.00	-28.28	QP
	3	146.2452	35.53	-19.68	15.85	43.50	-27.65	QP
X	4	316.8666	35.28	-19.69	15.59	46.00	-30.41	QP
	5	466.2121	35.60	-16.10	19.50	46.00	-26.50	QP
W5CT"	6 *	910.4645	49.16	-9.85	39.31	46.00	-6.69	QP

W5C1 NSCI WS CI

ADD: Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Avenue, FAX: 0086-755-86376605

深圳世标检测认证股份有限公司

Report No.: WSCT-ANAB-R&E240800039A-LE

-33 30.000 1000.000 (MHz) 60.00 300.00 Reading Factor Level Frequency Limit Margin Detector No (MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) 42.8246 39.55 -18.84 -19.29 QΡ 20.71 40.00 40.00 71.8320 35.25 -22.55 12.70 -27.30 QΡ 148.8319 35.90 -19.44 16.46 43.50 -27.04 QΡ 4 275.7606 35.95 -21.16 14.79 46.00 -31.21 QP 5 523.1764 35.88 -15.01 20.87 46.00 -25.13 QP 904.4980 36.65 -9.85 26.80 46.00 -19.20 QΡ

Note1:

W5 CT

7 -3 -13

-23

NSET

Freq. = Emission frequency in MHz

Reading level (dBµV) = Receiver reading

Corr. Factor (dB) = Antenna factor + Cable loss - Amplifier factor.

Measurement ($dB\mu V$) = Reading level ($dB\mu V$) + Corr. Factor (dB)

Limit (dBµV) = Limit stated in standard

Margin (dB) = Measurement (dB μ V) - Limits (dB μ V)

W5CI

深圳世标检测认证股份有限公司

ADD: Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Avenue

Page 35 of 41

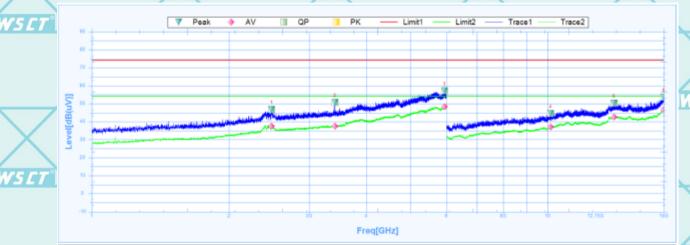
W5 CT

Report No.: WSCT-ANAB-R&E240800039A-LE

W5CT[®]

Above 1GHz

Note 1: The marked spikes near 2400 MHz with circle should be ignored because they are Fundamental


signal. 5 The spurious above 18G is noise only, do not show on the report.

Low channel: 2402MHz

Horizontal:

W5 CT

W5 C1

	Suspu	Susputed Data List										
	NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict	
	1	2481.8750	46.69	27.54	19.15	74	-27.31	102.5	Horizontal	PK	Pass	
•	1	2481.8750	37.61	27.54	10.07	54	-16.39	102.5	Horizontal	AV	Pass	
-	2	3416.2500	50.72	28.45	22.27	74	-23.28	326.1	Horizontal	PK	Pass	
	2	3416.2500	37.53	28.45	9.08	54	-16.47	326.1	Horizontal	AV	Pass	
	3	5944.3750	57.19	32.71	24.48	74	-16.81	100.2	Horizontal	PK	Pass	
	3	5944.3750	48.31	32.71	15.6	54	-5.69	100.2	Horizontal	AV	Pass	
	4	10158.0000	44.66	12.84	31.82	74	-29.34	359.9	Horizontal	PK	Pass	
7	4	10158.0000	36.99	12.84	24.15	54	-17.01	359.9	Horizontal	AV	Pass	
	5	13987.5000	50.33	19.09	31.24	74	-23.67	359.9	Horizontal	PK	Pass	
	5	13987.5000	42.64	19.09	23.55	54	-11.36	359.9	Horizontal	AV	Pass	
	6	17992.5000	53.61	23.88	29.73	74	-20.39	319.5	Horizontal	PK	Pass	
Ĩ,	6	17992.5000	46.81	23.88	22.93	54	-7.19	319.5	Horizontal	AV	Pass	

ws	CT WS	CT° W	S C T	YS CT WS CT	1
W5CT	W5 CT	W5CT	W5CT	WSET	
					7

WSET WSET WSET WSET

ADD: Building A-B,Baoli'an Industrial Park,No.58 and 60,Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, Chini TEL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.com

※ 深圳世标检测认证股份有限公司 World Standard Stan

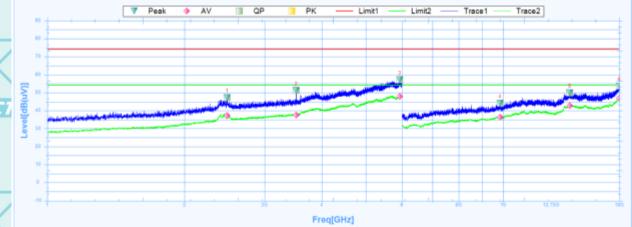
W5 C1

186-755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com

SET WSET WS

WSCT

W5ET



Report No.: WSCT-ANAB-R&E240800039A-LE

W5 CT

W5CT

Vertical:

W5 CI

W5 C

W5 E

1	Suspu	ited Data Lis	st								
7	NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict
	1	2478.7500	47.28	27.53	19.75	74	-26.72	345.6	Vertical	PK	Pass
	1	2478.7500	37.33	27.53	9.8	54	-16.67	345.6	Vertical	AV	Pass
	2	3518.7500	51.13	28.54	22.59	74	-22.87	258	Vertical	PK	Pass
	2	3518.7500	37.61	28.54	9.07	54	-16.39	258	Vertical	AV	Pass
/	3	5934.3750	57.08	32.7	24.38	74	-16.92	359.5	Vertical	PK	Pass
	3	5934.3750	47.99	32.7	15.29	54	-6.01	359.5	Vertical	AV	Pass
1	4	9850.5000	44.19	12.03	32.16	74	-29.81	360.1	Vertical	PK	Pass
7	4	9850.5000	36.45	12.03	24.42	54	-17.55	360.1	Vertical	AV	Pass
	5	14010.0000	49.77	19.12	30.65	74	-24.23	0.6	Vertical	PK	Pass
	5	14010.0000	42.79	19.12	23.67	54	-11.21	0.6	Vertical	AV	Pass
	6	17994.0000	53.7	23.89	29.81	74	-20.3	219.3	Vertical	PK	Pass
	6	17994.0000	47.06	23.89	23.17	54	-6.94	219.3	Vertical	AV	Pass

W5 C7

WSE

W5 E7

W5 C1

W5 C

W5 C1

W5 C1

W5 ET

W5C1

W5ET

W5CT

WS CT

W5 E1

W5CT

深圳世标检测认证股份有限公司

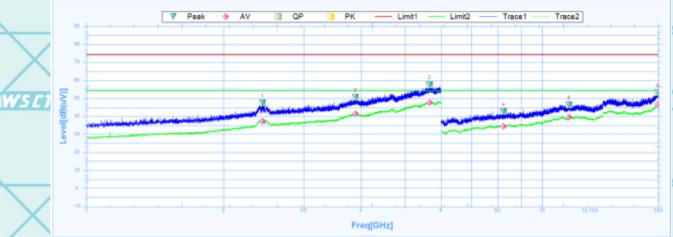
ADD: Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Avenue, TEL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605

WS CT

Page 37 of 41

W5CT W5CT

W5 ET


Report No.: WSCT-ANAB-R&E240800039A-LE

Middle channel: 2440MHz

Horizontal:

W5CT

W5CT

W5 C1

W5 C1

W5 E1

W5 E

Y	Suspu	ited Data Lis	st									
	NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict	
	1	2435.0000	47.48	27.38	20.1	74	-26.52	134.8	Horizontal	PK	Pass	
	1	2435.0000	37.24	27.38	9.86	54	-16.76	134.8	Horizontal	AV	Pass	
	2	3898.1250	50.56	29.46	21.1	74	-23.44	142	Horizontal	PK	Pass	4
	2	3898.1250	41.48	29.46	12.02	54	-12.52	142	Horizontal	AV	Pass	
	3	5663.1250	57.49	32.26	25.23	74	-16.51	32	Horizontal	PK	Pass	
	3	5663.1250	47.77	32.26	15.51	54	-6.23	32	Horizontal	AV	Pass	
J	4	8235.0000	42.54	8.84	33.7	74	-31.46	335.2	Horizontal	PK	Pass	
	4	8235.0000	34.4	8.84	25.56	54	-19.6	335.2	Horizontal	AV	Pass	-
	5	11466.0000	46.31	16.03	30.28	74	-27.69	111.7	Horizontal	PK	Pass	
	5	11466.0000	39.47	16.03	23.44	54	-14.53	111.7	Horizontal	AV	Pass	
	6	17968.5000	53.26	23.71	29.55	74	-20.74	13.4	Horizontal	PK	Pass	
	6	17968.5000	46.65	23.71	22.94	54	-7.35	13.4	Horizontal	AV	Pass	
	200		-									

WSCT WSCT WSCT WSCT

WSCT WSCT WSCT WSCT WSCT

WSET WSET WSET WSET

WSCT WSCT WSCT

ADD: Building A-B,Baoil'an Industrial Park,No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China.

深圳世标检测认证股份有限公司
World Standard ration Certification & Testing Group (Shenzhen) Co., L

L: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http: www.wsct-cert.co

W5CT

Member of the WSCT Group (WSCT SA)

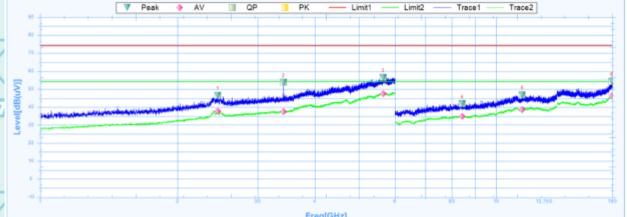
Page 38 of 41

WSET WSET

W5C1

W5CT

W5 C


Report No.: WSCT-ANAB-R&E240800039A-LE

W5 CT

W5CT

TESTING LABORATORY Certificate Number : AT-3951

Vertical:

Freq[GHz]

W5 C

1	Suspu	ited Data Lis	st								
7	NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict
	1	2449.3750	46.57	27.43	19.14	74	-27.43	143.3	Vertical	PK	Pass
	1	2449.3750	37.62	27.43	10.19	54	-16.38	143.3	Vertical	AV	Pass
	2	3416.2500	53.94	28.45	25.49	74	-20.06	167.2	Vertical	PK	Pass
	2	3416.2500	37.4	28.45	8.95	54	-16.6	167.2	Vertical	AV	Pass
	3	5650.6250	56.46	32.24	24.22	74	-17.54	0.1	Vertical	PK	Pass
	3	5650.6250	47.55	32.24	15.31	54	-6.45	0.1	Vertical	AV	Pass
1	4	8422.5000	41.98	9.12	32.86	74	-32.02	309	Vertical	PK	Pass
Ţ	4	8422.5000	34.9	9.12	25.78	54	-19.1	309	Vertical	AV	Pass
Ц	5	11415.0000	46.86	15.9	30.96	74	-27.14	287.4	Vertical	PK	Pass
	5	11415.0000	38.7	15.9	22.8	54	-15.3	287.4	Vertical	AV	Pass
	6	17950.5000	54.3	23.58	30.72	74	-19.7	212.1	Vertical	PK	Pass
	6	17950.5000	46.41	23.58	22.83	54	-7.59	212.1	Vertical	AV	Pass

W5C

W5 C1

W5 E7

W5 CI

W5 C

W5 C1

W5 CT

WS ET

W5C1

W5 ET

W5C1

WS ET

W5CT

WS CT

W5 E1

ation& Testin W5CT

深圳世标检测认证股份有限公司

ADD: Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Avenue, TEL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605

Page 39 of 41

W5CT

WS CT

W5CT

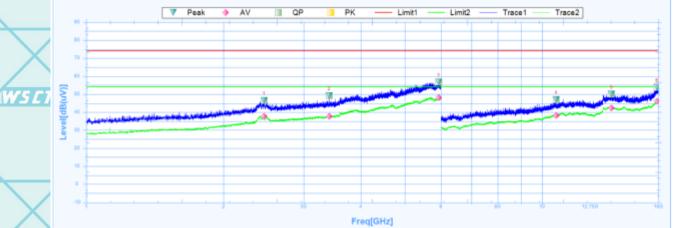
W5ET

W5 CI

W5 CT

W5 CI

Report No.: WSCT-ANAB-R&E240800039A-LE


High channel: 2480MHz

Horizontal:

W5[T]

W5 CT

W5 E

W5 E

Y	Susput	ted Data Lis	st								
	NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict
	1	2453.7500	46.64	27.44	19.2	74	-27.36	52.2	Horizontal	PK	Pass
	1	2453.7500	37.62	27.44	10.18	54	-16.38	52.2	Horizontal	AV	Pass
	2	3411.2500	49.24	28.45	20.79	74	-24.76	207.7	Horizontal	PK	Pass
	2	3411.2500	37.81	28.45	9.36	54	-16.19	207.7	Horizontal	AV	Pass
	3	5930.0000	56.81	32.69	24.12	74	-17.19	-0.1	Horizontal	PK	Pass
	3	5930.0000	48.02	32.69	15.33	54	-5.98	-0.1	Horizontal	AV	Pass
Ţ	4	10735.5000	47.1	14.66	32.44	74	-26.9	25.6	Horizontal	PK	Pass
_	4	10735.5000	38.22	14.66	23.56	54	-15.78	25.6	Horizontal	AV	Pass
	5	14206.5000	50.04	18.91	31.13	74	-23.96	111.7	Horizontal	PK	Pass
	5	14206.5000	42.37	18.91	23.46	54	-11.63	111.7	Horizontal	AV	Pass
	6	17877.0000	53.8	23.12	30.68	74	-20.2	71	Horizontal	PK	Pass
	6	17877.0000	46.07	23.12	22.95	54	-7.93	71	Horizontal	AV	Pass
7	4 5 5 6	10735.5000 14208.5000 14208.5000 17877.0000	38.22 50.04 42.37 53.8	14.66 18.91 18.91 23.12	23.56 31.13 23.46 30.68	54 74 54 74	-15.78 -23.96 -11.63 -20.2	25.6 111.7 111.7 71	Horizontal Horizontal Horizontal	AV PK AV PK	P P

W5 CI W5 E7 W5 C W5C1 W5 CT

> W5C1 WS ET WS CT W5 E1

Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China. ADD: Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Avenue, FAX: 0086-755-86376605

深圳世标检测认证股份有限公司

Page 40 of 41

W5CT W5CT

W5C1

Report No.: WSCT-ANAB-R&E240800039A-LE

W5 CT

Vertical:

▼ Peak Trace2

Freq[GHz]

WS E

W5 E

1	Suspu	ited Data Lis	st								
7	NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict
1	1	2453.1250	47.84	27.44	20.4	74	-26.16	359.6	Vertical	PK	Pass
1	1	2453.1250	37.29	27.44	9.85	54	-16.71	359.6	Vertical	AV	Pass
2	2	3776.2500	49.19	29.16	20.03	74	-24.81	217.2	Vertical	PK	Pass
- 2	2	3776.2500	40.31	29.16	11.15	54	-13.69	217.2	Vertical	AV	Pass
/ 3	3	5700.6250	57.69	32.32	25.37	74	-16.31	322.4	Vertical	PK	Pass
3	3	5700.6250	47.62	32.32	15.3	54	-6.38	322.4	Vertical	AV	Pass
4	4	9031.5000	42.54	9.86	32.68	74	-31.46	354.5	Vertical	PK	Pass
9	4	9031.5000	35.3	9.86	25.44	54	-18.7	354.5	Vertical	AV	Pass
4	5	11971.5000	47.11	16.75	30.36	74	-26.89	124.8	Vertical	PK	Pass
	5	11971.5000	39.41	16.75	22.66	54	-14.59	124.8	Vertical	AV	Pass
(В	17986.5000	54.21	23.83	30.38	74	-19.79	160.7	Vertical	PK	Pass
(В	17986.5000	46.93	23.83	23.1	54	-7.07	160.7	Vertical	AV	Pass

Note:

- 1. All emissions not reported were more than 20dB below the specified limit or in the noise floor.
- Emission Level= Reading Level+Probe Factor +Cable Loss.

Data of measurement within this frequency range shown "--" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

W5 C

*****END OF REPORT****

W5CI

NS CI

WS CI

深圳世标检测认证股份有限公司

ADD: Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Avenue FAX: 0086-755-86376605

Page 41 of 41

W5C1