FCC Report

Application Purpose	: Original grant
Applicant Name:	: TECNO MOBILE LIMITED
FCC ID	: 2ADYY-T660
Equipment Type	: Mobile phone
Model Name	: T660
Report Number	: FCC17060493A-15B
Standard(S)	: FCC Part 15 Subpart B
Date Of Receipt	: June 08, 2017
Date Of Issue	: June 14, 2017
Test By	Dekun Liu
Reviewed By	(Dekun Liu) : <u>Sol</u> Qin
Authorized by	(Sol Qin) : Anichalling
Prepared by	 (MICHAI LING) QTC Certification & Testing Co., Ltd. 2nd Floor,Bl Building,Fengyeyuan Industrial Plant,, Liuxian 2st. Road, Xin'an Street, Bao'an District,,Shenzhen,518000 Registration Number: 588523

REPORT REVISE RECORD						
Report Version	Revise Time	Issued Date	Valid Version	Notes		
V1.0	/	June 14, 2017	Valid	Original Report		

Table of Contents	Page
1. GENERAL INFORMATION	4
2. TEST DESCRIPTION	6
2.1 MEASUREMENT UNCERTAINTY	6
2.2 DESCRIPTION OF TEST MODES	7
2.3 CONFIGURATION OF SYSTEM UNDER TEST	8
2.4 DESCRIPTION OF SUPPORT UNITS (CONDUCTED MODE)	9
3. SUMMARY OF TEST RESULTS	10
4. MEASUREMENT INSTRUMENTS	11
5. EMC EMISSION TEST	12
5.1 CONDUCTED EMISSION MEASUREMENT	12
5.1.1 POWER LINE CONDUCTED EMISSION LIMITS	12
5.1.2 TEST PROCEDURE	13
5.1.3 DEVIATION FROM TEST STANDARD	13
5.1.4 IEST SETUP 5.1.5 EUT OPERATING CONDITIONS	13
5.1.5 EUT OPERATING CONDITIONS	13
5.2 BADIATED EMISSION MEASUBEMENT	22
5.2.1 RADIATED EMISSION LIMITS	22
5.2.2 TEST PROCEDURE	23
5.2.3 DEVIATION FROM TEST STANDARD	23
5.2.4 TEST SETUP	24
5.2.5 EUT OPERATING CONDITIONS	24
5.2.5.1 TEST RESULTS (BETWEEN 30M – 1000 MHZ)	25
5.2.5.2 TEST RESULTS (1GHZ TO 6GHZ)	33
6. EUT TEST PHOTO	35
7. PHOTOGRAPHS OF EUT	39

1. GENERAL INFORMATION

Test Model	Т660
Applicant	TECNO MOBILE LIMITED
Address	ROOMS 05-15, 13A/F., SOUTH TOWER, WORLD FINANCE CENTRE, HARBOUR CITY, 17 CANTON ROAD, TSIM SHA TSUI, KOWLOON, HONG KONG
Manufacturer	SHENZHEN TECNO TECHNOLOGY CO.,LTD.
Address	1-4th Floor,3rd Building,Pacific Industrial Park,No.2088,Shenyan Road,Yantian District,Shenzhen,Guangdong,China
Equipment Type	Mobile phone
Brand Name	TECNO
Hardware version:	T660-V1.1
Software version:	T660-UL252A1-SAM-170518V1
Battery information:	Li-Polymer Battery : BL-11CT Voltage: 3.7V Capacity: 1100mAh Limited Charge Voltage: 4.2V
Adapter Information:	Adapter: A31-500500 Input: AC 100-240V 50/60Hz 0.2A Output: DC 5.0V 500mA
Data of receipt	June 08, 2017
Date of test	June 08, 2017 to June 13, 2017
Deviation	None
Condition of Test Sample	Normal

We hereby certify that:

The above equipment was tested by QTC Certification & Testing Co., Ltd.

2nd Floor,Bl Building,Fengyeyuan Industrial Plant,, Liuxian 2st. Road, Xin'an Street, Bao'an District,,Shenzhen,518000

Registration Number: 588523

The data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C 63.4:2014. The sample tested as described in this report is in compliance with the FCC Rules Part15 Subpart B.

The test results of this report relate only to the tested sample identified in this report.

2. TEST DESCRIPTION

2.1 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement y \pm U , where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of **k=2**, providing a level of confidence of approximately **95** % °

No.	Item	Uncertainty
1	Conducted Emission Test	+3.2dB
2	PE newer, conducted	
2		
3	Spurious emissions, conducted	±0.210B
4	All emissions, radiated(<1G)	±4.7dB
5	All emissions, radiated(>1G)	±4.7dB
6	Temperature	±0.5°C
7	Humidity	±2%

2.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description
Mode 1	Video Recording
Model 2	Video Playing
Mode 3	Exchange data with computer
Mode 4	FM

For Conducted Emission			
Final Test Mode	Test with Keyboard and Mouse		
Mode 1	Video Recording		
Model 2	Video Playing		
Mode 3	Exchange data with computer		
Mode 4	FM		

For Radiated Emission			
Final Test Mode	Test with Keyboard and Mouse		
Mode 1	Video Recording		
Model 2	Video Playing		
Mode 3	Exchange data with computer		
Mode 4	FM		

2.4 DESCRIPTION OF SUPPORT UNITS (CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ltem	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
1	Adapter	/	A31-500500	/	/
2	Keyboard	HP	SK-2880	435302-AA-	/
3	Mouse	DELL	MS111-1	/	/

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in $\[$ Length $\]$ column.

3. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

FCC Part15, Subpart B					
Standard Section	Test Item	Judgment	Remark		
15.107	CONDUCTED EMISSION	PASS			
15.109	RADIATED EMISSION	PASS			

NOTE:

(1)" N/A" denotes test is not applicable in this test report.

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last Calibrated	Calibrated until	
ESCI Test Receiver	R&S	ESCI	100005	08/19/2016	08/18/2017	
LISN	AFJ	LS16	16010222119	08/19/2016	08/18/2017	
LISN(EUT)	Mestec	AN3016	04/10040	08/19/2016	08/18/2017	
pre-amplifier	CDSI	PAP-1G18-38		08/19/2016	08/18/2017	
System Controller	СТ	SC100	-	08/19/2016	08/18/2017	
Bi-log Antenna	Chase	CBL6111C	2576	08/19/2016	08/18/2017	
Spectrum analyzer	R&S	FSU26	200409	08/19/2016	08/18/2017	
Horn Antenna	SCHWARZBECK	9120D	1141	08/19/2016	08/18/2017	
Bi-log Antenna	SCHWAREBECK	VULB9163	9163/340	08/19/2016	08/18/2017	
Pre Amplifier	H.P.	HP8447E	2945A02715	10/13/2016	10/12/2017	
9*6*6 Anechoic				08/21/2016	08/20/2017	

5. EMC EMISSION TEST

5.1 CONDUCTED EMISSION MEASUREMENT

5.1.1 POWER LINE CONDUCTED EMISSION Limits

nits (Frequency Range 150KHz-30MHz)

	Class A (dBuV)		Class B (dBuV)		Standard	
	Quasi-peak	Average	Quasi-peak	Average	Standard	
0.15 -0.5	79.00	66.00	66 - 56 *	56 - 46 *	FCC	
0.50 -5.0	73.00	60.00	56.00	46.00	FCC	
5.0 -30.0	73.00	60.00	60.00	50.00	FCC	

Note:

(1) The tighter limit applies at the band edges.

(2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

5.1.2 TEST PROCEDURE

- a. The EUT was placed 0.4 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

5.1.3 DEVIATION FROM TEST STANDARD

No deviation

5.1.4 TEST SETUP

Note: 1.Support units were connected to second LISN.

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

5.1.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

5.1.6 TEST RESULTS

EUT	Mobile phone	Model Name	Т660
Temperature	26 ℃	Relative Humidity	54%
Pressure	1010hPa	Phase	L
Test Date	June 09, 2017	Test Mode	Mode 1

EUT			Mob	ile p	hor	ne								Model Name					Т	T660				
Tempe	eratu	re	26 °	°C										Relative Humidity 54%										
Pressi	ure		1010	1010hPa					Phase N															
Test D	Date		June	e 09	, 20	17								Tes	st M	ode			Ν	/lod	e 1			
80.	0 dBu	N																						
																					Limit: AVG:			
40			Å.Å.	WM WM	nð√ ∧∿√	VIT. W	nillen VVV	munu Muhu	yhnaft hervyt	, ////// ///////	llun.		/////	wMha w~~~	nhul/th urrown	www.	and the second s	41Mmm arris	ungu ungu	1 ⁰⁰ 4	Annon Annon	and the second sec	A A A A A A A A A A A A A A A A A A A	peak
0.0																								AVG
0.	150			().5						(MH:	z)			Į	ō						3	30.00	0
N	lo. I	Mk.	Fre	eq.		Re Le	ad eve	ling el	g	Co Fa	act	ect tor	N	Mea me	sui ent	re-	Li	mit		0	ver			
			M	Ηz		d	Bu	V			dB			dB	uV		d	Bu∨		d	B	De	tec	tor
	1		0.17	700		3	1.1	13		11	.6	7		42.	80		64	.96) -	22	.16		QF	0
	2		0.17	700		2	3.1	13		11	.6	7		39.	80		54	.96) -	15.	.16		A۷	′G
	3		0.27	79		29	9.8	32		11	.1	0		40.	92		60	.88	3 -	19	.96		QF	>
	4		0.27	79		24	4.9	99		11	.1	0		36.	09		50	.88	3 -	14	.79		AV	'G
	5		0.33	379		3	1.5	55		10).9	9		42.	54		59	9.25	5 -	16.	.71		QF	>
	6	*	0.33	379		2	7.7	76		10).9	9		38.	75		49	9.25	5 -	10	.50		AV	'G
	7		0.37	780		2).2	23		10).9	1		31.	14		48	3.32	2 -	17	.18		AV	'G
	8		0.38	320		29	9.6	69		10).9	0		40	59		58	3.23	3 -	17	.64		QF)
	9		0.55	580		14	4.2	22		10).7	1		24	93		46	6.00) -	21.	.07		AV	'G
1	10		0.67	700		2	5.7	72		10).7	2		36.	44		56	6.00) -	19	.56		QF	0
1	11		1.56	620		3	1.2	22		10).6	3		41.	85		56	6.00) -	14.	.15		QF)
1	12		1.63	380		14	4.6	69		10).6	3		25.	32		46	6.00) -	20	.68		ΑV	'G
																	_							

Г

Temperature 26 °C Relative Humidity 54% Pressure 1010hPa Phase L Test Date June 09, 2017 Test Mode Mode 2 80. #6W Image: State	EUT	Mobile phone	Э		Model Na	me	T660	
Pressure 1010hPa Phase L Test Date June 09, 2017 Test Mode Mode 2 Beau description Beau description	Temperature	26 ℃			Relative H	lumidity	54%	
Test Date June 09, 2017 Test Mode Mode 2 B0.0 48uV Imit: VG: VG: VG: VG: VG: VG: VG: VG: VG: VG	Pressure	1010hPa			Phase		L	
B0.0 BUV Imit Imit Imit <td>Test Date</td> <td>June 09, 201</td> <td>7</td> <td></td> <td>Test Mode</td> <td>e</td> <td>Mode 2</td> <td></td>	Test Date	June 09, 201	7		Test Mode	e	Mode 2	
No. Reading Correct Measure- ment Limit Over MHz dBuV dB dBuV dB Detector 1 0.1580 43.02 11.79 54.81 65.56 -10.75 QP 2 0.1819 39.98 11.46 51.44 64.39 -12.95 QP 3 0.1860 25.93 11.10 37.33 54.21 -16.88 AVG 4 0.2580 37.51 11.12 48.63 61.49 -12.86 QP 5 0.3180 18.52 11.05 29.57 49.76 -20.19 AVG 6 0.3260 35.65 11.04 46.48 56.51 -10.03 QP 5 0.3180 18.52 10.93 50.45 57.89 -7.44 QP 8 0.4700 35.64 10.84 46.48 56.51 -10.03 QP 9 0.6100 15.66 10.78 26.44 46.00	80.0 dBuV							
0.0 0.5 (MHz) 5 30.000 No. Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV dB dBuV dB Detector 1 0.1580 43.02 11.79 54.81 65.56 -10.75 QP 2 0.1819 39.98 11.46 51.44 64.39 -12.95 QP 3 0.1860 25.93 11.40 37.33 54.21 -16.88 AVG 4 0.2580 37.51 11.12 48.63 61.49 -12.86 QP 5 0.3180 18.52 11.05 29.57 49.76 -20.19 AVG 6 0.3260 35.65 11.04 46.69 59.55 -12.86 QP 7 * 0.3980 39.52 10.93 50.45 57.89 -7.44 QP 8 0.4700 35.64 10.84 46.48 56.51	40		MMM Mulm M	Wagenerigeneren with				Limit:
No. Mk. Freq. Reading Level Correct Factor Measure- ment Limit Over 1 0.1580 43.02 11.79 54.81 65.56 -10.75 QP 2 0.1819 39.98 11.46 51.44 64.39 -12.95 QP 3 0.1860 25.93 11.40 37.33 54.21 -16.88 AVG 4 0.2580 37.51 11.12 48.63 61.49 -12.86 QP 5 0.3180 18.52 11.05 29.57 49.76 -20.19 AVG 6 0.3260 35.65 11.04 46.69 59.55 -12.86 QP 7 * 0.3980 39.52 10.93 50.45 57.89 -7.44 QP 8 0.4700 35.64 10.84 46.48 56.51 -10.03 QP 9 0.6100 15.66 10.78 26.44 46.00 -19.56 AVG <	0.0	0.5		(MHz)	5			30,000
No. Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV dBuV dB Detector 1 0.1580 43.02 11.79 54.81 65.56 -10.75 QP 2 0.1819 39.98 11.46 51.44 64.39 -12.95 QP 3 0.1860 25.93 11.40 37.33 54.21 -16.88 AVG 4 0.2580 37.51 11.12 48.63 61.49 -12.86 QP 5 0.3180 18.52 11.05 29.57 49.76 -20.19 AVG 6 0.3260 35.65 11.04 46.69 59.55 -12.86 QP 7 * 0.3980 39.52 10.93 50.45 57.89 -7.44 QP 8 0.4700 35.64 10.84 46.48 56.51 -10.03 QP 9 0.6100 15.66		0.0	Reading	Correct	Measure-			
MHz dBuV dB dBuV dBuV dB Detector 1 0.1580 43.02 11.79 54.81 65.56 -10.75 QP 2 0.1819 39.98 11.46 51.44 64.39 -12.95 QP 3 0.1860 25.93 11.40 37.33 54.21 -16.88 AVG 4 0.2580 37.51 11.12 48.63 61.49 -12.86 QP 5 0.3180 18.52 11.05 29.57 49.76 -20.19 AVG 6 0.3260 35.65 11.04 46.69 59.55 -12.86 QP 7 * 0.3980 39.52 10.93 50.45 57.89 -7.44 QP 8 0.4700 35.64 10.84 46.48 56.51 -10.03 QP 9 0.6100 15.66 10.78 26.44 46.00 -19.56 AVG 10 2.9020 16.6	No. M	k. Freq.	Level	Factor	ment	Limit	Over	
1 0.1580 43.02 11.79 54.81 65.56 -10.75 QP 2 0.1819 39.98 11.46 51.44 64.39 -12.95 QP 3 0.1860 25.93 11.40 37.33 54.21 -16.88 AVG 4 0.2580 37.51 11.12 48.63 61.49 -12.86 QP 5 0.3180 18.52 11.05 29.57 49.76 -20.19 AVG 6 0.3260 35.65 11.04 46.69 59.55 -12.86 QP 7 * 0.3980 39.52 10.93 50.45 57.89 -7.44 QP 8 0.4700 35.64 10.84 46.48 56.51 -10.03 QP 9 0.6100 15.66 10.78 26.44 46.00 -19.56 AVG 10 2.9020 16.68 10.57 27.25 46.00 -18.75 AVG 11 11.4180 18.09 10.59 28.68 50.00 -21.32 AVG <td></td> <td>MHz</td> <td>dBuV</td> <td>dB</td> <td>dBuV</td> <td>dBuV</td> <td>dB</td> <td>Detector</td>		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
2 0.1819 39.98 11.46 51.44 64.39 -12.95 QP 3 0.1860 25.93 11.40 37.33 54.21 -16.88 AVG 4 0.2580 37.51 11.12 48.63 61.49 -12.86 QP 5 0.3180 18.52 11.05 29.57 49.76 -20.19 AVG 6 0.3260 35.65 11.04 46.69 59.55 -12.86 QP 7 * 0.3980 39.52 10.93 50.45 57.89 -7.44 QP 8 0.4700 35.64 10.84 46.48 56.51 -10.03 QP 9 0.6100 15.66 10.78 26.44 46.00 -19.56 AVG 10 2.9020 16.68 10.57 27.25 46.00 -18.75 AVG 11 11.4180 18.09 10.59 28.68 50.00 -21.32 AVG 12 <	1	0.1580	43.02	11.79	54.81	65.56	-10.75	QP
3 0.1860 25.93 11.40 37.33 54.21 -16.88 AVG 4 0.2580 37.51 11.12 48.63 61.49 -12.86 QP 5 0.3180 18.52 11.05 29.57 49.76 -20.19 AVG 6 0.3260 35.65 11.04 46.69 59.55 -12.86 QP 7 * 0.3980 39.52 10.93 50.45 57.89 -7.44 QP 8 0.4700 35.64 10.84 46.48 56.51 -10.03 QP 9 0.6100 15.66 10.78 26.44 46.00 -19.56 AVG 10 2.9020 16.68 10.57 27.25 46.00 -18.75 AVG 11 11.4180 18.09 10.59 28.68 50.00 -21.32 AVG 12 13.6660 17.67 10.59 28.26 50.00 -21.74 AVG	2	0.1819	39.98	11.46	51.44	64.39	-12.95	QP
4 0.2580 37.51 11.12 48.63 61.49 -12.86 QP 5 0.3180 18.52 11.05 29.57 49.76 -20.19 AVG 6 0.3260 35.65 11.04 46.69 59.55 -12.86 QP 7 * 0.3980 39.52 10.93 50.45 57.89 -7.44 QP 8 0.4700 35.64 10.84 46.48 56.51 -10.03 QP 9 0.6100 15.66 10.78 26.44 46.00 -19.56 AVG 10 2.9020 16.68 10.57 27.25 46.00 -18.75 AVG 11 11.4180 18.09 10.59 28.68 50.00 -21.32 AVG 12 13.6660 17.67 10.59 28.26 50.00 -21.74 AVG	3	0.1860	25.93	11.40	37.33	54.21	-16.88	AVG
5 0.3180 18.52 11.05 29.57 49.76 -20.19 AVG 6 0.3260 35.65 11.04 46.69 59.55 -12.86 QP 7 * 0.3980 39.52 10.93 50.45 57.89 -7.44 QP 8 0.4700 35.64 10.84 46.48 56.51 -10.03 QP 9 0.6100 15.66 10.78 26.44 46.00 -19.56 AVG 10 2.9020 16.68 10.57 27.25 46.00 -18.75 AVG 11 11.4180 18.09 10.59 28.68 50.00 -21.32 AVG 12 13.6660 17.67 10.59 28.26 50.00 -21.74 AVG	4	0.2580	37.51	11.12	48.63	61.49	-12.86	QP
6 0.3260 35.65 11.04 46.69 59.55 -12.86 QP 7 * 0.3980 39.52 10.93 50.45 57.89 -7.44 QP 8 0.4700 35.64 10.84 46.48 56.51 -10.03 QP 9 0.6100 15.66 10.78 26.44 46.00 -19.56 AVG 10 2.9020 16.68 10.57 27.25 46.00 -18.75 AVG 11 11.4180 18.09 10.59 28.68 50.00 -21.32 AVG 12 13.6660 17.67 10.59 28.26 50.00 -21.74 AVG	5	0.3180	18.52	11.05	29.57	49.76	-20.19	AVG
7 * 0.3980 39.52 10.93 50.45 57.89 -7.44 QP 8 0.4700 35.64 10.84 46.48 56.51 -10.03 QP 9 0.6100 15.66 10.78 26.44 46.00 -19.56 AVG 10 2.9020 16.68 10.57 27.25 46.00 -18.75 AVG 11 11.4180 18.09 10.59 28.68 50.00 -21.32 AVG 12 13.6660 17.67 10.59 28.26 50.00 -21.74 AVG	6	0.3260	35.65	11.04	46.69	59.55	-12.86	QP
8 0.4700 35.64 10.84 46.48 56.51 -10.03 QP 9 0.6100 15.66 10.78 26.44 46.00 -19.56 AVG 10 2.9020 16.68 10.57 27.25 46.00 -18.75 AVG 11 11.4180 18.09 10.59 28.68 50.00 -21.32 AVG 12 13.6660 17.67 10.59 28.26 50.00 -21.74 AVG	7 *	0.3980	39.52	10.93	50.45	57.89	-7.44	QP
9 0.6100 15.66 10.78 26.44 46.00 -19.56 AVG 10 2.9020 16.68 10.57 27.25 46.00 -18.75 AVG 11 11.4180 18.09 10.59 28.68 50.00 -21.32 AVG 12 13.6660 17.67 10.59 28.26 50.00 -21.74 AVG	8	0.4700	35.64	10.84	46.48	56.51	-10.03	QP
10 2.9020 16.68 10.57 27.25 46.00 -18.75 AVG 11 11.4180 18.09 10.59 28.68 50.00 -21.32 AVG 12 13.6660 17.67 10.59 28.26 50.00 -21.74 AVG	9	0.6100	15.66	10.78	26.44	46.00	-19.56	AVG
1111.418018.0910.5928.6850.00-21.32AVG1213.666017.6710.5928.2650.00-21.74AVG	10	2.9020	16.68	10.57	27.25	46.00	-18.75	AVG
12 13.6660 17.67 10.59 28.26 50.00 -21.74 AVG	11	11.4180	18.09	10.59	28.68	50.00	-21.32	AVG
	12	13.6660	17.67	10.59	28.26	50.00	-21.74	AVG

5.2 RADIATED EMISSION MEASUREMENT

5.2.1 RADIATED EMISSION LIMITS (Frequency Range 9kHz-1000MHz)

The field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

Frequencies	Field Strength	Measurement Distance		
(MHz)	(micorvolts/meter)	(meters)		
0.009~0.490	2400/F(KHz)	300		
0.490~1.705	24000/F(KHz)	30		
1.705~30.0	30	30		
30~88	100	3		
88~216	150	3		
216~960	200	3		
Above 960	500	3		

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

	Limit (dBuV	//m) (at 3M)
	PEAK	AVERAGE
Above 1000	74	54

Notes:

(1) The limit for radiated test was performed according to FCC PART 15B.

(2) The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

Spectrum Parameter	Setting			
Attenuation	Auto			
Start Frequency	1000 MHz			
Stop Frequency	10th carrier harmonic			
RB / VB (emission in restricted	1 MHz / 1 MHz for Peak 1 MHz / 1 Hz for Average			
band)	T MINZ / T MINZ 101 FEAK, T MINZ / THZ 101 AVERAGE			

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

5.2.2 TEST PROCEDURE

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter open area test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos. Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

5.2.3 DEVIATION FROM TEST STANDARD

No deviation

5.2.5 EUT OPERATING CONDITIONS

Ground Plane

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

Coaxial Cable

5.2.5.1 TEST RESULTS (BETWEEN 30M - 1000 MHZ) EUT Mobile phone Model Name T660 Temperature **20** °C **Relative Humidity** 48% 1010 hPa Polarization : Horizontal Pressure Test Mode Mode 1 Test Date June 09, 2017 80.0 dBuV/m Limit1: 6 30 + 5 X -20 30.000 50 60 70 80 (MHz) 300 400 500 600 700 1000.000 40 Reading Correct Measure-No. Mk. Limit Over Freq. Level Factor ment MHz dBuV dB dBuV/m dBuV/m dB Detector * 31.0706 24.08 2.77 26.85 40.00 -13.15QP 1 29.37 2 70.3365 -7.8021.57 40.00 -18.43 QP QP 3 121.5486 24.61-2.2622.35 43.50 -21.15-25.66 227,6906 26.14 -5.80 20.34 46.00 QP 4 5 490,7447 25.50-0.8924.6146.00 -21.39QP 6 955,4381 22.49 32.00 46.00 -14.009.51 QP

Report No.: FCC17060493A-15B

5.2.5.2 TEST RESULTS (1GHZ TO 6GHZ)

EUT	Mobile phone	Model Name	T660
Temperature	20 °C	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 1
Test Date	June 09, 2017		

Freq.	Ant.	Emis	sion	Limi	t	Over(dB)		
(MHz)	Pol.	Level(dBuV)	3m(dBu)	3m(dBuV/m)			
	H/V	PK AV		PK	PK AV		AV	
1632.45	V	60.01	41.74	74	54	-13.99	-12.26	
2829.27	V	58.38	39.17	74	54	-15.62	-14.83	
1684.52	Н	59.75	39.02	74	54	-14.25	-14.98	
2831.6	Н	58.51	39.51	74	54	-15.49	-14.49	

Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	Mobile phone	Model Name	T660
Temperature	20 °C	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 2
Test Date	June 09, 2017		

Freq.	Ant.	Emis	ssion	Limi	t	Over(dB)		
(MHz)	Pol.	Level(dBuV)	3m(dBu)	V/m)			
	H/V	PK	AV	PK	PK AV		AV	
1583.35	V	58.47	39.24	74	54	-15.53	-14.76	
2641.52	V	59.81	39.37	74	54	-14.19	-14.63	
1628.42	Н	59.02	39.22	74	54	-14.98	-14.78	
2810.39	Н	58.49	58.49 39.49		54	-15.51	-14.51	

Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	Mobile	phone			Model Name	T660	T660	
Temperature	nperature 20 °C			F	Relative Humidity	48%	48%	
Pressure	1010 h	1010 hPa			Fest Mode	Mode 3	Mode 3	
Test Date	June C	June 09, 2017						
_	_		_	1		_		
Freq.	Ant.	Emi	ssion		Limit	Ove	Over(dB)	
(MHz)	Pol.	Level(dBuV)		3m(dBuV/m)				
	H/V	PK	AV	PK	ÂV	PK	AV	
1577.35	V	58.92	39.06	74	54	-15.08	-14.94	
2652.38	V	59.81	40.66	74	54	-14.19	-13.34	
1699.33	Н	60.00	40.41	74	54	-14.00	-13.59	
2739 42	Н	59.51	40.51	74	54	-14 49	-13 49	

Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	Mobile phone	Model Name	T660
Temperature	20 °C	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 4
Test Date	June 09, 2017		

Freq.	Ant.	Emission		Limit		Over(dB)	
(MHz)	Pol.	Level(dBuV)		3m(dBuV/m)			
	H/V	PK	AV	PK	AV	PK	AV
1577.35	V	58.92	39.06	74	54	-15.08	-14.94
2652.38	V	59.81	40.66	74	54	-14.19	-13.34
1699.33	Н	60.00	40.41	74	54	-14.00	-13.59
2739.42	Н	59.51	40.51	74	54	-14.49	-13.49

Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

Page 36 of 46

Report No.: FCC17060493A-15B

Page 37 of 46

RADIATED EMISSION TEST

RADIATED EMISSION TEST

7. PHOTOGRAPHS OF EUT Appearance photograph of EUT 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 4 · 6 Appearance photograph of EUT теспо 8 10 - 2 3 4 5 5 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 3 2 A 16 5 STAINLESS STEEL 6 7 8 INCH 1

Report No.: FCC17060493A-15B

Page 41 of 46

Report No.: FCC17060493A-15B

Page 44 of 46

Internal photograph of EUT

Internal photograph of EUT

Internal photograph of EUT

---END OF REPORT---