EMC TEST REPORT

Report No.: 18070041-FCC-E
Supersede Report No: N/A

Applicant	TECNO MOBILE LIMITED				
Product Name	Mobile phone				
Model No.	T632S				
Serial No.	N/A				
Test Standard	FCC Part 1	FCC Part 15 Subpart B Class B:2016, ANSI C63.4: 2014			
Test Date	January 12	January 12 to January 29, 2018			
Issue Date	January 30	January 30, 2018			
Test Result	Pass Fail				
Equipment complied with the specification					
Equipment did not comply with the specification					
mais.	He	David	Huang		
Evans He Test Engineer			Huang ked By		

This test report may be reproduced in full only

Test result presented in this test report is applicable to the tested sample only

Issued by:

SIEMIC (SHENZHEN-CHINA) LABORATORIES

Zone A, Floor 1, Building 2 Wan Ye Long Technology Park
South Side of Zhoushi Road, Bao' an District, Shenzhen, Guangdong China 518108
Phone: +86 0755 2601 4629801 Email: China@siemic.com.cn

Test Report	18070041-FCC-E
Page	2 of 25

Laboratories Introduction

SIEMIC, headquartered in the heart of Silicon Valley, with superior facilities in US and Asia, is one of the leading independent testing and certification facilities providing customers with one-stop shop services for Compliance Testing and Global Certifications.

In addition to testing and certification, SIEMIC provides initial design reviews and compliance management throughout a project. Our extensive experience with China, Asia Pacific, North America, European, and International compliance requirements, assures the fastest, most cost effective way to attain regulatory compliance for the global markets.

Accreditations for Conformity Assessment

	<u> </u>
Country/Region	Scope
USA	EMC, RF/Wireless, SAR, Telecom
Canada	EMC, RF/Wireless, SAR, Telecom
Taiwan	EMC, RF, Telecom, SAR, Safety
Hong Kong	RF/Wireless, SAR, Telecom
Australia	EMC, RF, Telecom, SAR, Safety
Korea	EMI, EMS, RF, SAR, Telecom, Safety
Japan	EMI, RF/Wireless, SAR, Telecom
Singapore	EMC, RF, SAR, Telecom
Europe	EMC, RF, SAR, Telecom, Safety

Test Report	18070041-FCC-E
Page	3 of 25

This page has been left blank intentionally.

Test Report	18070041-FCC-E
Page	4 of 25

CONTENTS

1.	REPORT REVISION HISTORY	5
2.	CUSTOMER INFORMATION	5
3.	TEST SITE INFORMATION	5
4.	EQUIPMENT UNDER TEST (EUT) INFORMATION	6
5.	TEST SUMMARY	8
6.	MEASUREMENTS, EXAMINATION AND DERIVED RESULTS	9
6.1	AC POWER LINE CONDUCTED EMISSIONS	9
6.2	RADIATED EMISSIONS	. 15
ANI	NEX A. TEST INSTRUMENT	. 20
INA	NEX C. TEST SETUP AND SUPPORTING EQUIPMENT	.21
INA	NEX D. USER MANUAL / BLOCK DIAGRAM / SCHEMATICS / PARTLIST	. 24
INA	NEX E. DECLARATION OF SIMILARITY	. 25

Test Report	18070041-FCC-E
Page	5 of 25

1. Report Revision History

Report No.	Report Version	Description	Issue Date
18070041-FCC-E	NONE	Original	January 30, 2018

2. Customer information

Applicant Name	TECNO MOBILE LIMITED	
Applicant Add	ROOMS 05-15, 13A/F., SOUTH TOWER, WORLD FINANCE CENTRE,	
	HARBOUR CITY, 17 CANTON ROAD, TSIM SHA TSUI, KOWLOON, HONG	
	KONG	
Manufacturer	SHENZHEN TECNO TECHNOLOGY CO.,LTD.	
Manufacturer Add	1-4th Floor,3rd Building,Pacific Industrial Park,No.2088,Shenyan Road,Yantian	
	District,Shenzhen,Guangdong,China	

3. Test site information

Lab performing tests	SIEMIC (Shenzhen-China) LABORATORIES	
	Zone A, Floor 1, Building 2 Wan Ye Long Technology Park	
Lab Address	South Side of Zhoushi Road, Bao' an District, Shenzhen, Guangdong China	
	518108	
FCC Test Site No.	535293	
IC Test Site No.	4842E-1	
Test Software of	Radiated Emission Program-To Shenzhen v2.0	
Radiated Emission		
Test Software of	EZ EMC(van lan 0244)	
Conducted Emission	EZ-EMC(ver.lcp-03A1)	

Test Report	18070041-FCC-E
Page	6 of 25

4. Equipment under Test (EUT) Information

Description of EUT:	Mobile phone

Main Model: T632S

Serial Model: N/A

GSM850: -0.2dBi PCS1900: 1.7dBi

Antenna Gain: UMTS-FDD Band V: -0.2dBi

UMTS-FDD Band II: 1.7dBi

Bluetooth: -2.7dBi

GSM: PIFA antenna Antenna Type:

BT: PCB antenna

Adapter:

Model: A31-500500

Input: AC100-240V~50/60Hz,0.2A

Output: DC 5.0V, 500mA

Input Power: Battery:

Model: BL-5CAT

Spec: 3.7V, 1150mAh, 4.255Wh

Voltage: 4.2V

Equipment Category: JBP

GSM / GPRS: GMSK

EGPRS: GMSK

Type of Modulation: UMTS-FDD: QPSK

Bluetooth: GFSK, π /4DQPSK, 8DPSK

GSM850 TX: 824.2 ~ 848.8 MHz; RX: 869.2 ~ 893.8 MHz

PCS1900 TX: 1850.2 ~ 1909.8 MHz; RX: 1930.2 ~ 1989.8 MHz

UMTS-FDD Band V TX: 826.4 ~ 846.6 MHz; RX: 871.4 ~ 891.6 MHz

RF Operating Frequency (ies): UMTS-FDD Band II TX:1852.4 ~ 1907.6 MHz:

RX: 1932.4 ~ 1987.6 MHz

Bluetooth: 2402-2480 MHz

Test Report	18070041-FCC-E
Page	7 of 25

GSM 850: 124CH

PCS1900: 299CH

Number of Channels: UMTS-FDD Band V: 102CH

UMTS-FDD Band II: 277CH

Bluetooth: 79CH

Port: USB Port, Earphone Port

Trade Name : TECNO

FCC ID: 2ADYY-T632S

GPRS Multi-slot class 8/10/11/12

Date EUT received: January 11, 2018

Test Date(s): January 12 to January 29, 2018

Test Report	18070041-FCC-E
Page	8 of 25

5. Test Summary

The product was tested in accordance with the following specifications.

All testing has been performed according to below product classification:

FCC Rules	Description of Test	Result	
§15.107; ANSI C63.4: 2014	AC Power Line Conducted Emissions	Compliance	
§15.109; ANSI C63.4: 2014	Radiated Emissions	Compliance	

Measurement Uncertainty

Parameter	Uncertainty	
AC Power Line Conducted Emissions	±3.11dB	
(150kHz~30MHz)		
Radiated Emission(30MHz~1GHz)	±5.12dB	
Radiated Emission(1GHz~6GHz)	±5.34dB	

Test Report	18070041-FCC-E
Page	9 of 25

6. Measurements, Examination And Derived Results

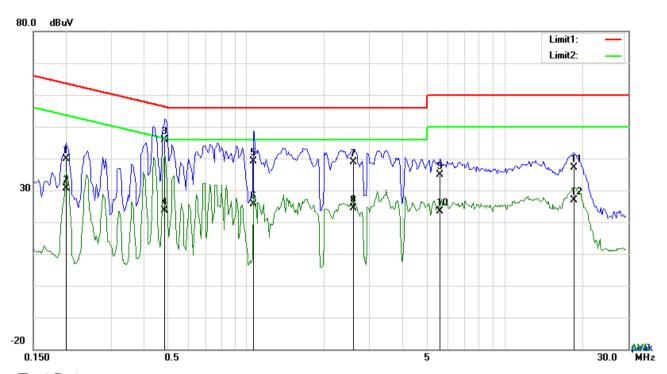
6.1 AC Power Line Conducted Emissions

Temperature	24 °C		
Relative Humidity	55%		
Atmospheric Pressure	1008mbar		
Test date :	January 13, 2018		
Tested By :	Evans He		

Requirement(s):

Spec	Item	Requirement Applicable					
47CFR§15.	For Low-power radio-frequency devices that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 [mu] H/50 ohms line impedance stabilization network (LISN). The lower limit applies at the boundary between the frequencies ranges.				(
107		Frequency ranges	Limit (
		(MHz)	QP	Average			
		0.15 ~ 0.5	66 – 56	56 – 46			
		0.5 ~ 5	56	46			
		5 ~ 30	60	50			
Test Setup	Setup Vertical Ground Reference Plane Horizontal Ground Reference Plane						
	Note: 1.Support units were connected to second LISN. 2.Both of LISNs (AMN) are 80cm from EUT and at least 80cm from other units and other metal planes support units.						
Procedure	 The EUT and supporting equipment were set up in accordance with the requirements the standard on top of a 1.5m x 1m x 0.8m high, non-metallic table. The power supply for the EUT was fed through a 50Ω /50mH EUT LISN, connected filtered mains. 						

Test Report	18070041-FCC-E
Page	10 of 25

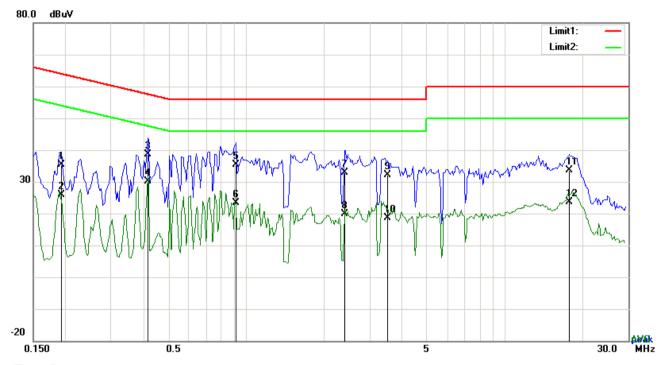

	3. The RF OUT of the EUT LISN was connected to the EMI test receiver via a low-loss				
	coaxial cable.				
	4. All other supporting equipment were powered separately from another main supply.				
	5. The EUT was switched on and allowed to warm up to its normal operating condition.				
	6. A scan was made on the NEUTRAL line (for AC mains) or Earth line (for DC power)				
	over the required frequency range using an EMI test receiver.				
	7. High peaks, relative to the limit line, The EMI test receiver was then tuned to the				
	selected frequencies and the necessary measurements made with a receiver bandwidth				
	setting of 10 kHz.				
	Step 7 was then repeated for the LIVE line (for AC mains) or DC line (for DC power).				
Remark					
Result	Pass Fail				

Test Data	Yes	□ _{N/A}
Test Plot	Yes (See below)	□ _{N/A}

Test Report	18070041-FCC-E
Page	11 of 25

Test Mode : USB Mode

Test Data

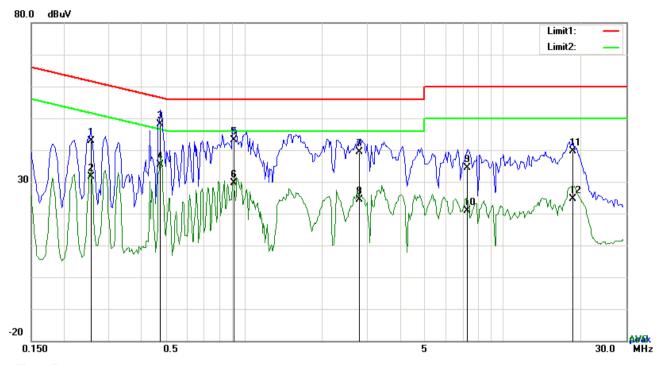

Phase Line Plot at 120Vac, 60Hz

No.	P/L	Frequency	Reading	Detector	Corrected	Result	Limit	Margin
		(MHz)	(dBuV)		(dB)	(dBuV)	(dBuV)	(dB)
1	L1	0.2007	29.93	QP	10.03	39.96	63.58	-23.62
2	L1	0.2007	20.58	AVG	10.03	30.61	53.58	-22.97
3	L1	0.4854	35.90	QP	10.03	45.93	56.25	-10.32
4	L1	0.4854	13.59	AVG	10.03	23.62	46.25	-22.63
5	L1	1.0704	29.19	QP	10.03	39.22	56.00	-16.78
6	L1	1.0704	15.49	AVG	10.03	25.52	46.00	-20.48
7	L1	2.5992	28.74	QP	10.05	38.79	56.00	-17.21
8	L1	2.5992	14.32	AVG	10.05	24.37	46.00	-21.63
9	L1	5.6013	24.85	QP	10.09	34.94	60.00	-25.06
10	L1	5.6013	13.32	AVG	10.09	23.41	50.00	-26.59
11	L1	18.4401	26.92	QP	10.28	37.20	60.00	-22.80
12	L1	18.4401	16.67	AVG	10.28	26.95	50.00	-23.05

Test Report	18070041-FCC-E
Page	12 of 25

Test Mode:	USB Mode

Test Data

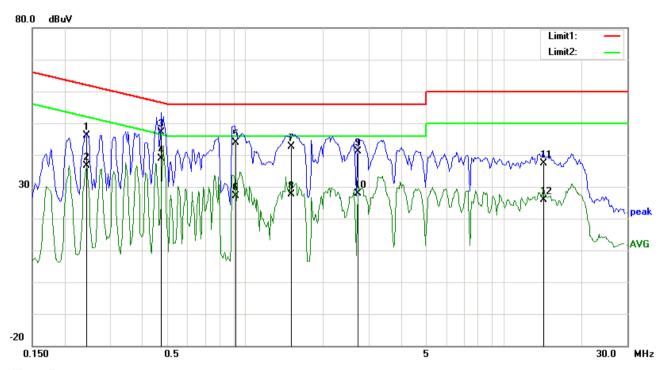

Phase Neutral Plot at 120Vac, 60Hz

No.	P/L	Frequency	Reading	Detector	Corrected	Result	Limit	Margin
		(MHz)	(dBuV)		(dB}	(dBuV)	(dBuV)	(dB)
1	N	0.1929	25.47	QP	10.03	35.50	63.91	-28.41
2	N	0.1929	15.79	AVG	10.03	25.82	53.91	-28.09
3	N	0.4152	28.65	QP	10.03	38.68	57.54	-18.86
4	N	0.4152	20.03	AVG	10.03	30.06	47.54	-17.48
5	N	0.9144	25.39	QP	10.03	35.42	56.00	-20.58
6	N	0.9144	13.34	AVG	10.03	23.37	46.00	-22.63
7	N	2.4081	22.72	QP	10.05	32.77	56.00	-23.23
8	N	2.4081	9.94	AVG	10.05	19.99	46.00	-26.01
9	N	3.5109	21.95	QP	10.06	32.01	56.00	-23.99
10	N	3.5109	8.62	AVG	10.06	18.68	46.00	-27.32
11	N	17.7576	23.37	QP	10.27	33.64	60.00	-26.36
12	N	17.7576	13.26	AVG	10.27	23.53	50.00	-26.47

Test Report	18070041-FCC-E
Page	13 of 25

Test Mode : USB Mode

Test Data


Phase Line Plot at 240Vac, 60Hz

No.	P/L	Frequency	Reading	Detector	Corrected	Result	Limit	Margin
		(MHz)	(dBuV)		(dB)	(dBuV)	(dBuV)	(dB)
1	L1	0.2553	32.90	QP	10.03	42.93	61.58	-18.65
2	L1	0.2553	21.62	AVG	10.03	31.65	51.58	-19.93
3	L1	0.4737	38.12	QP	10.03	48.15	56.45	-8.30
4	L1	0.4737	25.46	AVG	10.03	35.49	46.45	-10.96
5	L1	0.9105	33.05	QP	10.03	43.08	56.00	-12.92
6	L1	0.9105	19.55	AVG	10.03	29.58	46.00	-16.42
7	L1	2.7903	29.28	QP	10.05	39.33	56.00	-16.67
8	L1	2.7903	14.25	AVG	10.05	24.30	46.00	-21.70
9	L1	7.3134	24.31	QP	10.11	34.42	60.00	-25.58
10	L1	7.3134	10.75	AVG	10.11	20.86	50.00	-29.14
11	L1	18.6507	29.38	QP	10.28	39.66	60.00	-20.34
12	L1	18.6507	14.26	AVG	10.28	24.54	50.00	-25.46

Test Report	18070041-FCC-E
Page	14 of 25

Test Mode : USB Mode

Test Data

Phase Neutral Plot at 240Vac, 60Hz

No.	P/L	Frequency	Reading	Detector	Corrected	Result	Limit	Margin
		(MHz)	(dBuV)		(dB)	(dBuV)	(dBuV)	(dB)
1	N	0.2436	35.98	QP	10.03	46.01	61.97	-15.96
2	Ν	0.2436	26.53	AVG	10.03	36.56	51.97	-15.41
3	N	0.4737	37.04	QP	10.03	47.07	56.45	-9.38
4	N	0.4737	28.82	AVG	10.03	38.85	46.45	-7.60
5	N	0.9184	33.79	QP	10.03	43.82	56.00	-12.18
6	N	0.9184	17.17	AVG	10.03	27.20	46.00	-18.80
7	N	1.5072	32.60	QP	10.04	42.64	56.00	-13.36
8	N	1.5072	17.49	AVG	10.04	27.53	46.00	-18.47
9	Ν	2.7318	31.03	QP	10.05	41.08	56.00	-14.92
10	N	2.7318	17.76	AVG	10.05	27.81	46.00	-18.19
11	N	14.2320	27.21	QP	10.21	37.42	60.00	-22.58
12	N	14.2320	15.77	AVG	10.21	25.98	50.00	-24.02

Test Report	18070041-FCC-E
Page	15 of 25

6.2 Radiated Emissions

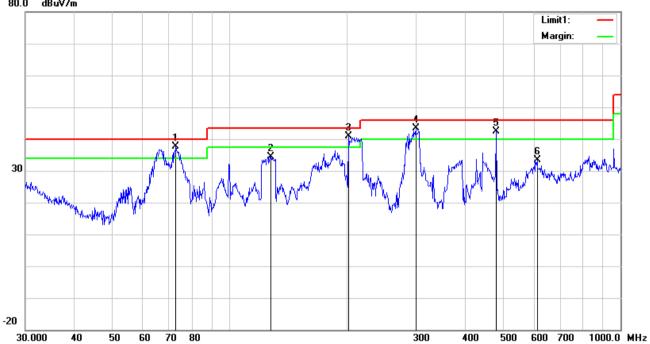
Temperature	25 °C
Relative Humidity	57%
Atmospheric Pressure	1016mbar
Test date :	January 17, 2018
Tested By :	Evans He

Requirement(s):

Spec	Item	Requirement Applicable					
47CFR§15.	a)	Except higher limit as specified else emissions from the low-power radio exceed the field strength levels spe the level of any unwanted emission the fundamental emission. The tigh edges	₹				
109(d)	,	Frequency range (MHz)	Field Strength (μV/m)				
		30 - 88	100				
		88 – 216	150				
		216 - 960	200				
		Above 960	500				
Test Setup	Ant. Tower Support Units Turn Table Ground Plane Test Receiver						
Procedure	 The EUT was switched on and allowed to warm up to its normal operating condition. The test was carried out at the selected frequency points obtained from the EUT characterization. Maximization of the emissions, was carried out by rotating the EUT, changing the antenna polarization, and adjusting the antenna height in the following manner: Vertical or horizontal polarization (whichever gave the higher emission level 						

Test Report	18070041-FCC-E
Page	16 of 25

			over a full rotation of the EUT) was chosen.
		b.	The EUT was then rotated to the direction that gave the maximum
			emission.
		C.	Finally, the antenna height was adjusted to the height that gave the maximum
			emission.
	3.	The reso	olution bandwidth and video bandwidth of test receiver/spectrum analyzer is
		120 kHz	for Quasiy Peak detection at frequency below 1GHz.
	4.	The reso	lution bandwidth of test receiver/spectrum analyzer is 1MHz and video
		bandwic	of the state of th
		1GHz.	
		The res	solution bandwidth of test receiver/spectrum analyzer is 1MHz and the video
		bandwi	dth with Peak detection for Average Measurement as below at frequency
		above	1GHz.
		■ 1 kH:	z (Duty cycle < 98%) □ 10 Hz (Duty cycle > 98%)
	5.	Steps 2	and 3 were repeated for the next frequency point, until all selected frequency
		points w	vere measured.
Remark			
Remark			
Result	Pas	SS	□ Fail
	ī		F
Test Data	Yes		N/A
Test Plot	Yes (Se	ee belov	v) N/A

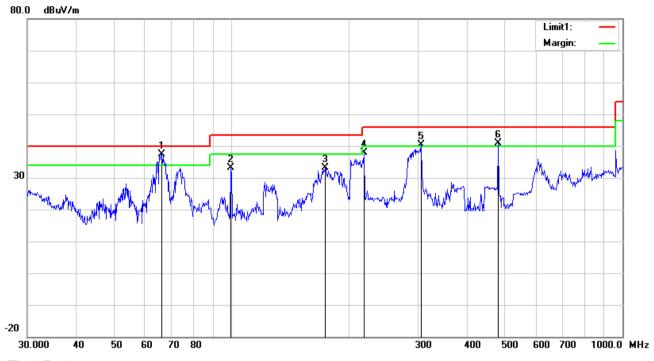


Test Report	18070041-FCC-E
Page	17 of 25

USB Mode Test Mode:

Below 1GHz

Test Data


Horizontal Polarity Plot @3m

No.	P/L	Frequency	Reading	Detector	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degree
		(MHz)	(dBuV/m)		(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/ m)	(dB)	(cm)	()
1	Н	72.8466	51.24	QP	7.74	22.39	0.97	37.56	40.00	-2.44	200	60
2	Н	127.6645	42.29	peak	13.40	22.38	1.19	34.50	43.50	-9.00	100	264
3	Н	201.3930	49.55	QP	12.08	22.38	1.54	40.79	43.50	-2.71	100	141
4	Н	299.3158	50.19	QP	13.57	22.29	1.79	43.26	46.00	-2.74	100	126
5	Н	480.5276	44.62	QP	17.31	21.85	2.31	42.39	46.00	-3.61	100	244
6	Н	612.0642	33.13	peak	19.23	21.55	2.52	33.33	46.00	-12.67	100	73

Test Report	18070041-FCC-E
Page	18 of 25

Below 1GHz

Test Data

Vertical Polarity Plot @3m

No.	P/L	Frequency	Reading	Detector	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degree
		(MHz)	(dBuV/m)		(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/ m)	(dB)	(cm)	()
1	٧	66.2662	51.17	QP	7.61	22.39	0.91	37.30	40.00	-2.70	100	217
2	٧	99.5281	44.08	peak	10.29	22.32	1.11	33.16	43.50	-10.34	100	131
3	٧	173.8135	42.59	peak	11.49	22.26	1.36	33.18	43.50	-10.32	100	214
4	V	218.3085	46.69	peak	11.84	22.35	1.60	37.78	46.00	-8.22	200	84
5	٧	305.6800	47.10	QP	13.72	22.27	1.82	40.37	46.00	-5.63	100	42
6	V	480.5276	43.03	QP	17.31	21.85	2.31	40.80	46.00	-5.20	100	121

Test Report	18070041-FCC-E
Page	19 of 25

Above 1GHz

Frequency	Read_level	A!	Height	Polarity	Level	Factors	Limit	Margin	Detector
(MHz)	(dBµV/m)	Azimuth	(cm)	(H/V)	(dBµV/m)	(dB)	(dBµV/m)	(dB)	(PK/AV)
1376.2	68.29	326	100	V	-19.6	48.69	74	-25.31	PK
2308.46	60.09	77	100	V	-13.71	46.38	74	-27.62	PK
3510.69	60.5	293	100	V	-12.58	47.92	74	-26.08	PK
1378.95	64.56	50	100	Н	-19.69	44.87	74	-29.13	PK
2313.44	61.35	297	100	Н	-14.89	46.46	74	-27.54	PK
3875.14	56.6	21	100	Н	-10.23	46.37	74	-27.63	PK

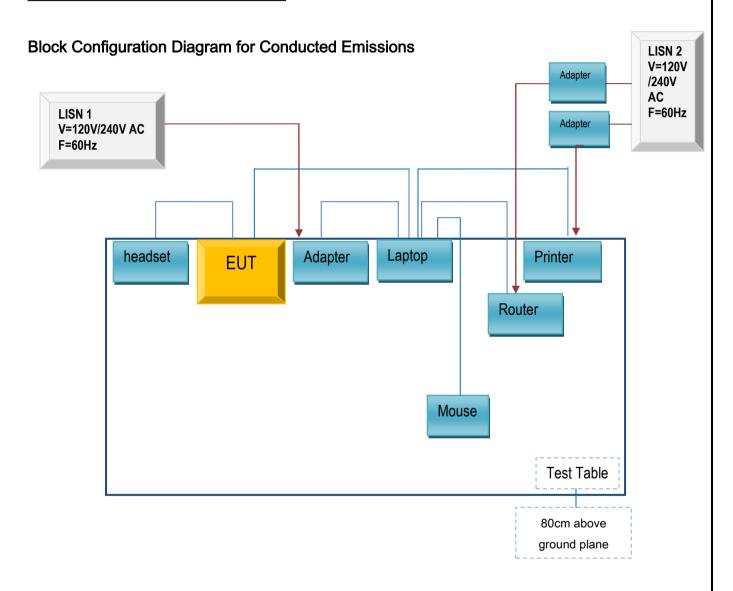
Note1: The highest frequency of the EUT is 2480 MHz, so the testing has been conformed to 5*2480MHz=12,400MHz.

Note 2: The frequency that above 3GHz is mainly from the environment noise.

Note3: The AV measurement performed, more than 20dB below limit so AV test data was not presented.

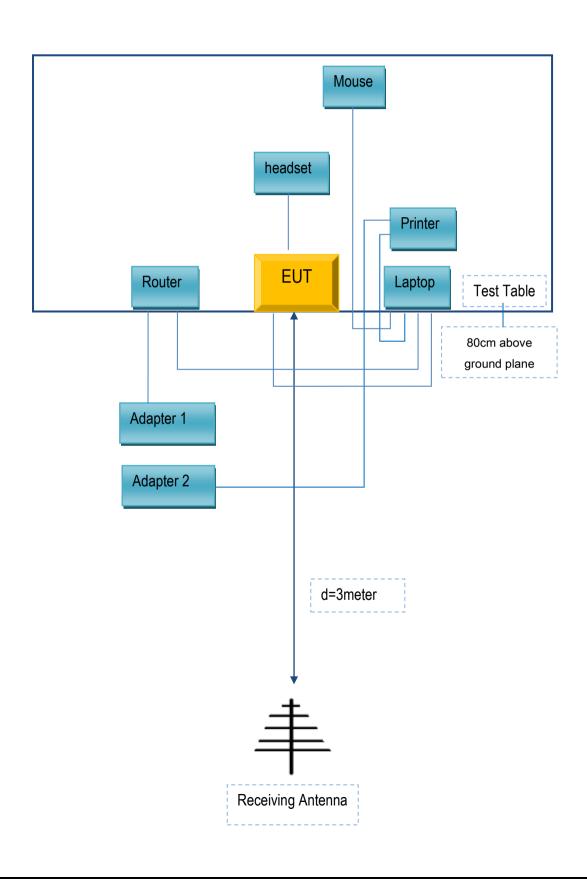
Test Report	18070041-FCC-E	
Page	20 of 25	

Annex A. TEST INSTRUMENT


Instrument	Model	Serial#	Cal Date	Cal Due	In use				
AC Line Conducted Emis	AC Line Conducted Emissions								
EMI test receiver	ESCS30	8471241027	09/15/2017	09/14/2018	<				
Line Impedance Stabilization Network	LI-125A	191106	09/23/2017	09/22/2018	(
Line Impedance Stabilization Network	LI-125A	191107	09/23/2017	09/22/2018	V				
ISN	ISN T800	34373	09/23/2017	09/22/2018					
Transient Limiter	LIT-153	531118	08/30/2017	08/29/2018	<u><</u>				
Radiated Emissions									
EMI test receiver	E SL6	100262	09/15/2017	09/14/2018	>				
OPT 010 AMPLIFIER (0.1-1300MHz)	8447E	2727A02430	08/30/2017	08/29/2018	V				
Microwave Preamplifier (1 ~ 26.5GHz)	8449B	3008A02402	03/23/2017	03/22/2018	V				
Bilog Antenna (30MHz~6GHz)	JB6	A110712	09/19/2017	09/18/2018	S				
Double Ridge Horn Antenna	AH-118	71259	09/22/2017	09/21/2018	Z.				

Test Report	18070041-FCC-E
Page	21 of 25

Annex C. TEST SETUP AND SUPPORTING EQUIPMENT


Annex C.ii. TEST SET UP BLOCK

Test Report	18070041-FCC-E
Page	22 of 25

Block Configuration Diagram for Radiated Emissions

Test Report	18070041-FCC-E
Page	23 of 25

Annex C. il. SUPPORTING EQUIPMENT DESCRIPTION

The following is a description of supporting equipment and details of cables used with the EUT.

Supporting Equipment:

Manufacturer	Equipment Description	Model	Serial No
Lenovo	Laptop	E40	LR-1EHRX
GOLDWEB	Router	R102	1202032094
Lenovo	AC Adapter	42T4416	21D9JU
HP	Printer	VCVRA-1003	CN36M19JWX
DELL	Mouse	E100	912NMTUT41481
BULL	Socket	GN-403	GN201203
SAMSUNG	headset	HS330	N/A

Supporting Cable:

Cable type	Shield Type	Ferrite Core	Length	Serial No
USB Cable	Un-shielding	No	2m	JX120051274
USB Cable	Un-shielding	No	2m	CBA3000AH0C1
RJ45 Cable	Un-shielding	No	2m	KX156327541
Router Power cable	Un-shielding	No	2m	13274630Z
Printer Power cable	Un-shielding	No	2m	127581031
Power Cable	Un-shielding	No	0.8m	GT211032

Test Report	18070041-FCC-E
Page	24 of 25

Annex D. User Manual / Block Diagram / Schematics / Partlist

Please see the attachment

Test Report	18070041-FCC-E
Page	25 of 25

Annex E. DECLARATION OF SIMILARITY

N/A