

tion & Test

W5E1

Subgitoo Certification (159)

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

For Question, Please Contact with WSCT www.wsct-cert.com

TEST REPORT

FCC ID: 2ADYY-T16RA Product: Laptop Computer Model No.: T16RA Trade Mark: TECNO Report No.: WSCT-A2LA-R&E240300010A-BT Issued Date: 03 April 2024

Issued for:

TECNO MOBILE LIMITED FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET FOTAN NT HONGKONG

Issued By:

World Standardization Certification & Testing Group(Shenzhen) Co.,Ltd. Building A-B, Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL: +86-755-26996192

FAX: +86-755-86376605

Note: The results contained in this report pertain only to the tested sample. This report shall not be reproduced, except in full, without written approval of World Standardization Certification & Testing Group(Shenzhen) Co., Ltd. This report must not be used by the client to claim product certification, approval, or any agency of the U.S. Government.

世标检测认证股份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China p(Shenzhen) Co. Ltd TEL:86-755-26996192 26992306 FAX:86-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

Page 1 of 74

lember of the WSCT INC

WSET

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

For Question, Please Contact with WSCT

www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240300010A-BT

TABLE OF CONTENTS

/	WISH	AWSET	WISTO	AVI-19
1.	Test Certification			
2.	Test Result Summary	X		
3.	EUT Description	ATTEN A		
4.	Genera Information			
	4.1. TEST ENVIRONMENT AND MODE			
1	4.2. DESCRIPTION OF SUPPORT UNITS	AVESTER	WISTT	
5.	Facilities and Accreditations			
1	5.1. Facilities		<u> </u>	
ET	5.2. ACCREDITATIONS	N757	7	
	5.3. MEASUREMENT UNCERTAINTY			9
	5.4. MEASUREMENT INSTRUMENTS		<u> </u>	10
6.	Test Results and Measurement	Data	(THE A	
/	6.1. ANTENNA REQUIREMENT			
	6.2. CONDUCTED EMISSION			
THE	6.3. CONDUCTED OUTPUT POWER	100		
	6.4. 20DB OCCUPY BANDWIDTH			
	6.5. CARRIER FREQUENCIES SEPARATION			
	6.6. HOPPING CHANNEL NUMBER	AND	(ALT)	
1	6.7. DWELL TIME			
X	6.8. PSEUDORANDOM FREQUENCY HOPPING SEQ	~		
-	6.9. CONDUCTED BAND EDGE MEASUREMENT	Ch. Annual Charles	Annual Annual	
er s	6.10. CONDUCTED SPURIOUS EMISSION MEASURE			1
	6.11. RADIATED SPURIOUS EMISSION MEASUREME	NT	×	

世际检测认证股份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China a(Shenzhen) Co. Its

For Question,

Report No.: WSCT-A2LA-R&E240300010A-BT

1. Test Ce	rtification Please Contact with WGCT www.wsct-cert.com
Product:	Laptop Computer
Model No.:	T16RA
Additional Model:	TECNO TITE TITE
Applicant:	TECNO MOBILE LIMITED
Address:	FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET FOTAN NT HONGKONG
Manufacturer:	TECNO MOBILE LIMITED
Address:	FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET FOTAN NT HONGKONG
Date of Test:	22 February 2024 to 02 April 2024
Applicable Standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247

The above equipment has been tested by World Standardization Certification & Testing Group(Shenzhen)Co., Ltd. and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Tested By

(Wang Xiang)

Xiar

Checked By: orun (Mo Peiyun)

Approved By:

ation & Test

(Liu Fuxin)

Date:

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX:86-755-86376605 E-mail: Fengbing.Wang@wscl-cerl.com Http://www.wscl-cerl.com 世标检测认证股份 Matter Certines roup (Shenzhen) Co., Ltd. a Certification & Tost

Member of the WSCT INC

Http://

a & Tesi

WSF

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

For Question, Please Contact with WSCT

www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240300010A-BT

2. Test Result Summary

	KULTER KULTER	TA AVERTA	AUGAN	(TITE)
7	Requirement	CFR 47 Section	Result	A. M. L. B. Million
	Antenna Requirement	§15.203/§15.247 (c)	PASS	
8	AC Power Line Conducted Emission	§15.207	PASS	\checkmark
/	Conducted Peak Output Power	§15.247 (b)(1) §2.1046	PASS	WEIT
	20dB Occupied Bandwidth	§15.247 (a)(1) §2.1049	PASS	
	Carrier Frequencies Separation	§15.247 (a)(1)	PASS	$\mathbf{\mathbf{\nabla}}$
	Hopping Channel Number	§15.247 (a)(1)	PASS	TETT
7	Dwell Time	§15.247 (a)(1)	PASS	
	Radiated Emission	§15.205/§15.209 §2.1053, §2.1057	PASS	
	Band Edge	§15.247(d) §2.1051, §2.1057	PASS	\mathbf{X}
				TATA N

Note:

ation & Tes

WSE

S DUOM * PT

oup (Shenz

Contine

Zatic

1. PASS: Test item meets the requirement.

- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

#保检測认证数份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China p(Shenzhen) Co. Ltd TEL:86-755-26998192 26992306 FAX:86-755-88376805 E-mail: Fengbing Wang@wsci-cert.com Http://www.wsci-cert.com

21

Contration & Test

WSET

Souon * PT

dizatio

oup (Shenzh

60

For Question, Please Contact with WSCT

Report No.: WSCT-A2LA-R&E240300010A-BT

EUT Description 3.

	3. EUT Descripti	on	www.wsct-cert.com
	Product Name:	Laptop Computer WSCT WSCT	1399
/	Model :	T16RA	
	Trade Mark:	TECNO	
	Operation Frequency:	2402MHz~2480MHz	
	Channel Separation:	1MHz	
2	Number of Channel:	79	1101
	Modulation Type:	GFSK, π/4-DQPSK, 8-DPSK	
7	Modulation Technology:	FHSS WISTER WIST	
	Antenna Type:	Integral Antenna	$ \times$
	Antenna Gain:	2.40dBi	1174
1	Rechargeable Li-Polymer Battery:	Model: 528282-3S1P Rated Voltage: 11.61V Rated Capacity: 6460mAh/75Wh Typical Capacity: 6550mAh/76.04Wh	
	Adapter:	Limited Charge Voltage: 13.35V Adapter: TCW-A61S-65W Input: 100-240V~50/60Hz 1.5A Max Output:PD:5V=3A 9V=3A 12V=3A 15V=3A	
/	\sim	20V3.25A PPS:3.3-11V5A Max	
	Remark:	N/A.	

1.51

1/5 E

Contration & Test

AND STORE CONTRACTOR

WSET

dization

X

Croup (Shenzh

60

670

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

Certificate #5768.01

75

1.

Please Contact with WSCT www.wsct-cert.com

251

Report No.: WSCT-A2LA-R&E240300010A-BT

Operation Frequency each of channel for GFSK, $\pi/4$ -DQPSK, 8DPSK

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
<	ANGET	· ··· ·	Anstar		Austri	N	ATTAN
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		-
Remark: Channel 0, 39 &78 have been tested for GFSK, π/4-DQPSK, 8DPSK							
modulatio	n mode.		ATTACA	S	ATTINA		ATTACA

世际检测认证数份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China p(Shenzhen) Co.lta TEL:86/755-26996192 26992306 FAX-66-755-86376605 E-mail: Fengbing Wang@wsci-cert.com Hilp:www.wsci-cert.com

619

12.5

12.1

Page 6 of 74

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

Please Contact with WSCT

www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240300010A-BT

4. Genera Information

4.1. Test environment and mode

Operating Environment:

Temperature:	25.0 °C
Humidity:	56 % RH
Atmospheric Pressure:	1010 mbar

Test Mode:

Engineering mode:

Keep the EUT in continuous transmitting by select channel and modulations with Fully-charged battery

The sample was placed 0.8m & 1.5m for the measurement below & above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

4.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
Adapter	Adapter1		1	ADAPTER

Note:

M * P

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended

use.

S

3. For conducted measurements (Output Power, 20dB Occupied Bandwidth, Carrier Frequencies Separation, Hopping Channel Number, Dwell Time, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

> 新认证教授 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX-66-755-86376605 E-mail: Fengbing Wang@wsci-cert.com Http://www.wsci-cert.com

For Question, Please Contact with WSCT

www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240300010A-BT

5. Facilities and Accreditations

5.1. Facilities

ation & Tea

W/5/

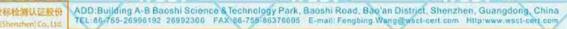
MOM * P

S

All measurement facilities used to collect the measurement data are located at Building A-B, Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China of the World Standardization Certification & Testing Group(Shenzhen) CO., LTD

The sites are constructed in conformance with the requirements of ANSI C63.4 and CISPR Publication 32. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

5.2.ACCREDITATIONS CNAS - Registration Number: L3732


China National Accreditation Service for Conformity Assessment, The test firm Registration Number: L3732

FCC - Designation Number: CN1303

World Standardization Certification & Testing Group(Shenzhen) CO., LTD. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Designation Number: CN1303.

A2LA - Certificate Number: 5768.01

The EMC Laboratory has been accredited by the American Association for Laboratory Accreditation (A2LA).Certification Number: 5768.01

Page 8 of 74

ation & Tes

WSET

S PLOM * PT

up (Shenz

Contin

Zatio

Certificate #5768.01

For Question, Please Contact with WSCT www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240300010A-BT

5.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

	00111100			
	No.	Item	MU	
	X	Conducted Emission Test	±3.2dB	-
	2	RF power, conducted	±0.16dB	>
	3	Spurious emissions, conducted	±0.21dB	623
1	4	All emissions, radiated(<1GHz)	±4.7dB	LACI.
	5	All emissions, radiated(>1GHz)	±4.7dB	
P	6	Temperature ////////////////////////////////////	±0.5°C	
	7 🗙	Humidity	±2.0%	>

Page 9 of 74

WSLT[®]

Contineation & Tes

WSE

3 DUOM * PT

Zatio

oup (Shenzk

60

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

Certificate #5768.01 For

Please Contact with WSCT www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240300010A-BT

5.4. MEASUREMENT INSTRUMENTS

5.4. MEASUREMENT INSTRUMENTS					\wedge	www.ws	ct-cert.com
	NAME OF EQUIPMENT	MANUFACTURER	MODEL	SERIAL NUMBER	Calibration Date	Calibration Due.	डनरे
	Test software	<	EZ-EMC	CON-03A		X	
3	Test software		MTS8310	ATTA	- /	ATA	
	EMI Test Receiver	R&S	ESCI	100005	11/05/2023	11/04/2024	/
	LISN	AFJ	LS16	16010222119	11/05/2023	11/04/2024	X
	LISN(EUT)	Mestec	AN3016	04/10040	11/05/2023	11/04/2024	SET
	Universal Radio Communication Tester	R&S	CMU 200	1100.0008.02	11/05/2023	11/04/2024	
ý	Coaxial cable	Megalon	LMR400	N/A	11/05/2023	11/04/2024	
	GPIB cable	Megalon	GPIB	N/A	11/05/2023	11/04/2024	\checkmark
	Spectrum Analyzer	R&S	FSU	100114	11/05/2023	11/04/2024	\wedge
	Pre Amplifier	H.P.	HP8447E	2945A02715	11/05/2023	11/04/2024	SET
/	Pre-Amplifier	CDSI	PAP-1G18-38	\sim	11/05/2023	11/04/2024	
1	Bi-log Antenna	SUNOL Sciences	JB3	A021907	11/05/2023	11/04/2024	
Ż	9*6*6 Anechoic		ISET	Austri	11/05/2023	11/04/2024	
	Horn Antenna	COMPLIANCE ENGINEERING	CE18000	-	11/05/2023	11/04/2024	\times
	Horn Antenna	SCHWARZBECK	BBHA9120D	9120D-631	11/05/2023	11/04/2024	
	Cable	TIME MICROWAVE	LMR-400	N-TYPE04	11/05/2023	11/04/2024	619.0
	System-Controller	ccs	N/A	N/A	N.C.R	N.C.R	
	Turn Table	CCS	N/A	N/A	N.C.R	N.C.R	
1	Antenna Tower	CCS	N/A	N/A	N.C.R	N.C.R	1
	RF cable	Murata	MXHQ87WA300 0	-	11/05/2023	11/04/2024	Х
	Loop Antenna	EMCO	6502	00042960	11/05/2023	11/04/2024	15Ch
1	Horn Antenna	SCHWARZBECK	BBHA 9170	1123	11/05/2023	11/04/2024	
5	Power meter	Anritsu	ML2487A	6K00003613	11/05/2023	11/04/2024	
3	Power sensor	Anritsu	MX248XD	ANSIET	11/05/2023	11/04/2024	
	Spectrum Analyzer	Keysight	N9010B	MY60241089	11/05/2023	11/04/2024	\checkmark
	~						\wedge

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.

For Question, Please Contact with WSCT

www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240300010A-BT

6. Test Results and Measurement Data

6.1. Antenna requirement

Standard requirement: FCC Part15 C

FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

on & Te

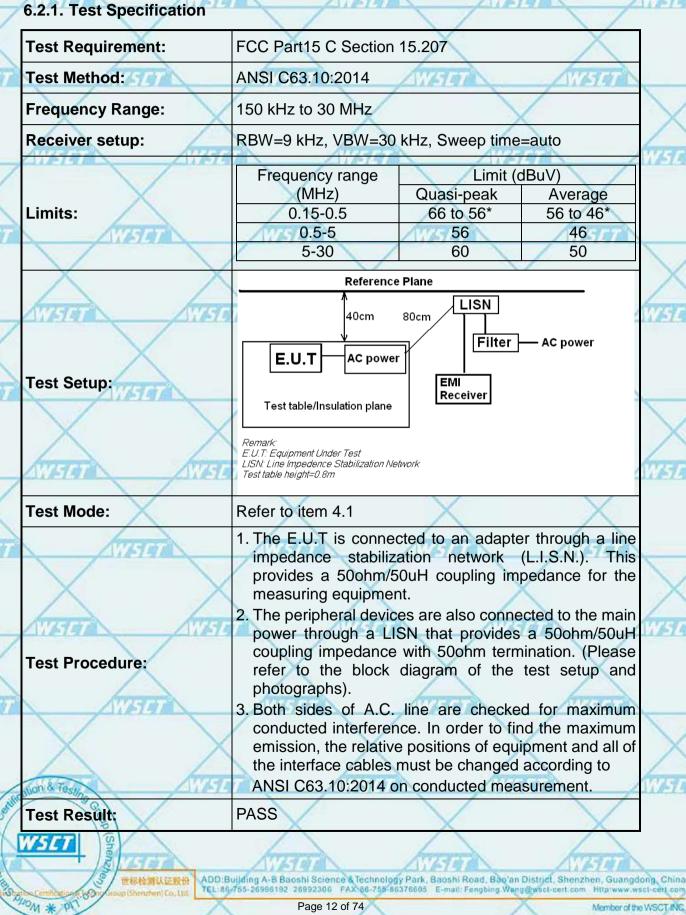
MOM * P

S

The Bluetooth antenna is a Integral Antenna. it meets the standards, and the best case gain of the antenna is 2.40dBi.

LECIN

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd. ilac-MRA



For Question, Please Contact with WSCT www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240300010A-BT

6.2. **Conducted Emission**

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

For Question, Please Contact with WSCT

www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240300010A-BT

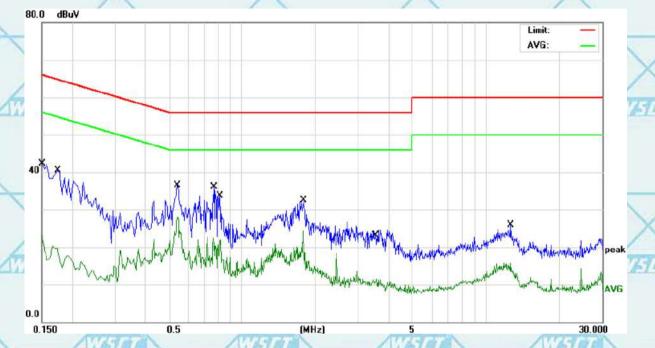
6.2.2. Test data

6-11

W51

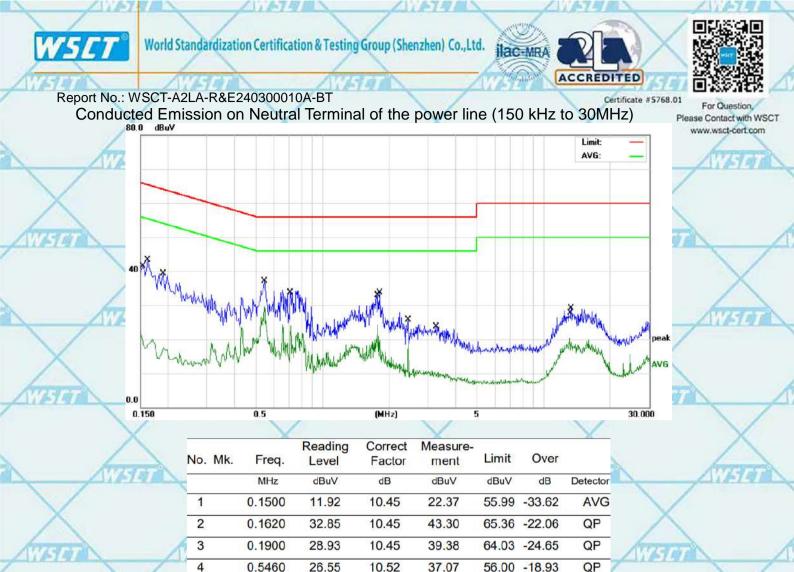
ation & Te

WSE


S DUOM * PT

up (Shenz

Certifit


7 Ati

Please refer to following diagram for individual Adapter1 (the worst case) Conducted Emission on Line Terminal of the power line (150 kHz to 30MHz)

-/	1 20 1 40 1				X 1 1 20	1 44 600		1 1 1 100	1.00
	No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	
	1	0.1500	31.83	10.45	42.28	65.99	-23.71	QP	
	2	0.1500	12.69	10.45	23.14	55.99	-32.85	AVG	/
	3	0.1749	29.94	10.45	40.39	64.72	-24.33	QP	1
1	4	0.5420	26.07	10.52	36.59	56.00	-19.41	QP	74
/	5 *	0.5460	17.66	10.52	28.18	46.00	- <mark>17.8</mark> 2	AVG	
	6	0.7660	25.57	10.54	36. <mark>11</mark>	56.00	-19.89	QP	
2	7	0.8139	11.27	10.5 <mark>4</mark>	21.81	46.00	-24.19	AVG	
	8	1.7740	13.72	10.67	24.39	46.00	-21.61	AVG	
	9	1.7860	21.76	10.68	32.44	56.00	-23.56	QP	\langle
	10	3.5620	0.83	10.73	11.56	46.00	-34.44	AVG	
1	11	<mark>12.694</mark> 0	14.77	11.03	25.80	60.00	-34.20	QP	19
	12	12.6940	4.64	11.03	15.67	50.00	-34.33	AVG	
		1	1	1	1		1		

#标检测认证数份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China (Shenzhen) Co. Lts. TEL:86,755-26996192 26992306 FAX:66-755-86376605 E-mail: Fengbing Wang@wsci-cert.com Http://www.wsci-cert.com/

Note1:

Confi

PHOM * PM

Freq. = Emission frequency in MHz Reading level ($dB\mu V$) = Receiver reading

5

6

7

8

9

10 11

12

Corr. Factor (dB) = Antenna factor + Cable loss

Measurement $(dB\mu V) = Reading \, level \, (dB\mu V) + Corr. Factor (dB)$

Limit (dB μ V) = Limit stated in standard

Margin (dB) = Measurement (dB μ V) – Limits (dB μ V)

0.5460

0.7180

1.7740

1.8100

2.4380

3,2500

13.1100

13.3140

18.99

13.29

13.54

22.92

8.08

13.05

9.16

18.01

10.52

10.53

10.67

10.68

10.71

10.72

11.06

11.08

29.51

23.82

24.21

33.60

18.79

23.77

20.22

29.09

46.00 -16.49

46.00 -22.18

46.00 -21.79

56.00 -22.40

46.00 -27.21

56.00 -32.23

50.00 -29.78

60.00 -30.91

AVG

AVG

AVG

QP

AVG QP

AVG

OP

Member of the WSCT INC

Q.P. =Quasi-Peak AVG =average

(Shen

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

新认证表价 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86/765-26998192 26992306 FAX 86-755-86376805 E-mail: Fengbing Wang@wsci-cert.com Http://www.wsci-cert.com

12-11

6.7.

Contration & Test

WSET

Souon * PT

dizatio

oup (Shenz)

69

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

For Question, Please Contact with WSCT

www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240300010A-BT

6.3. Conducted Output Power

6.3.1. Test Specification

	Test Requirement:	FCC Part15 C Section 15.247 (b)(3)	
100	Test Method:	ANSI C63.10:2014	
	Limit:	Section 15.247 (b) The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.	
	Test Setup:	Spectrum Analyzer	
7	Test Mode:	Transmitting mode with modulation	
	Test Procedure:	Use the following spectrum analyzer settings: Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW > the 20 dB bandwidth of the emission being measured VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission.	
	Test Result:	PASS	1

世际检测认证数份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao an District, Shenzhen, Guangdong, China a(Shenzhen) Co.lts. TEL:86-755-26996192_26992306_FAX-66-755-86376605_E-mail: Fengbing Wang@wsci-cert.com_Http://www.wsci-cert.com_

15

111

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

Please Contact with WSCT www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240300010A-BT

6.3.2. Test Data

GFSK mode				
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result	
Lowest	9.98	20.97	PASS	
Middle	10.98	20.97	PASS	
Highest	11.26	20.97	PASS	

Pi/4DQPSK mode				
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result	
Lowest	8.63	20.97	PASS	
Middle	8.69	20.97	PASS	
Highest	8.4	20.97	PASS	
ATATA	ANA AN	141 A	14	

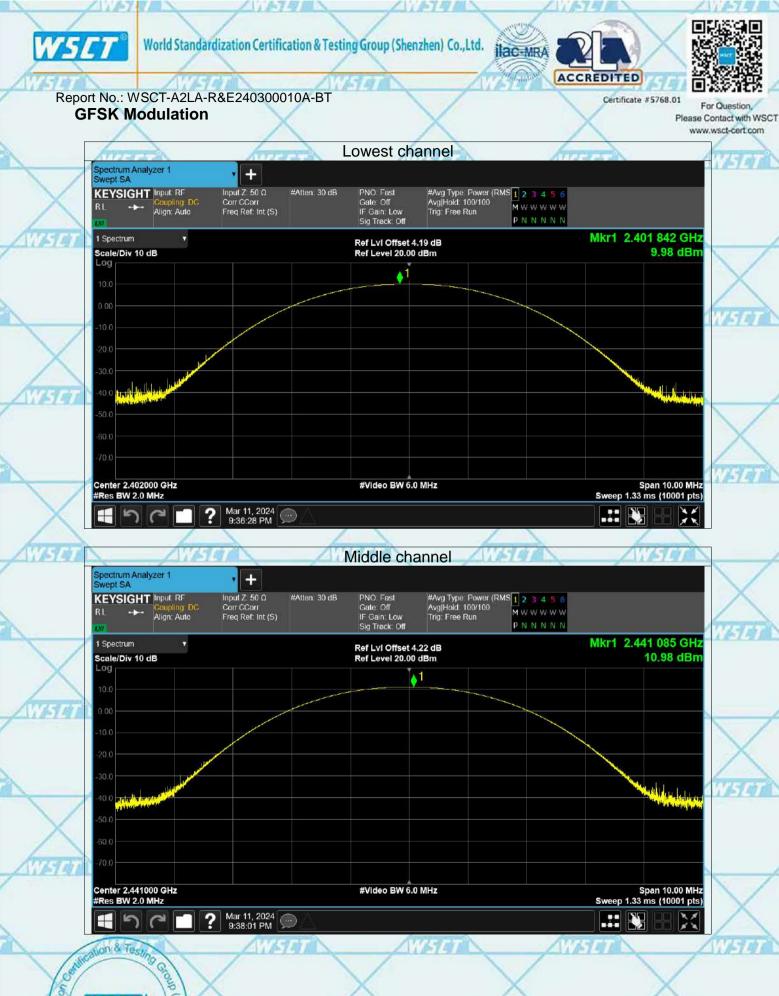
8DPSK mode				
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result	
Lowest	8.52	20.97	PASS	
Middle	8.79	20.97	PASS	
Highest	8.48	20.97	PASS	

Test plots as follows:

oup (Shenzk

69

1.14


Contincation & Test

WSET

S DUOM * PT

zatio

世际检测认证股份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China ntStandan Co. Ivi

Page 17 of 74

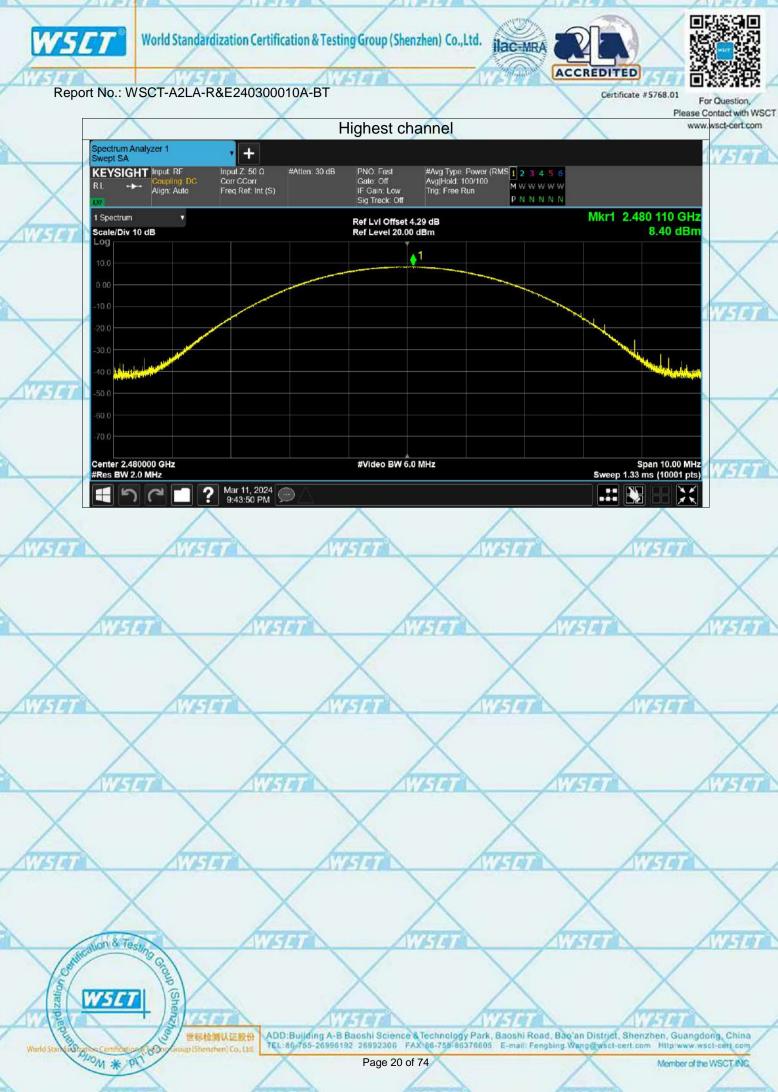

(Shenz)

60

Zah

WSE

Sound * DI



世标检测认证数份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China n(Shenzhen) Co. tr. TEL:86/765-26998192 26992306 FAX:86-755-86376605 E-mail: Fengbing Wang@wscl-cert.com Http://www.wscl-cert.com

Page 19 of 74

Duon * PT

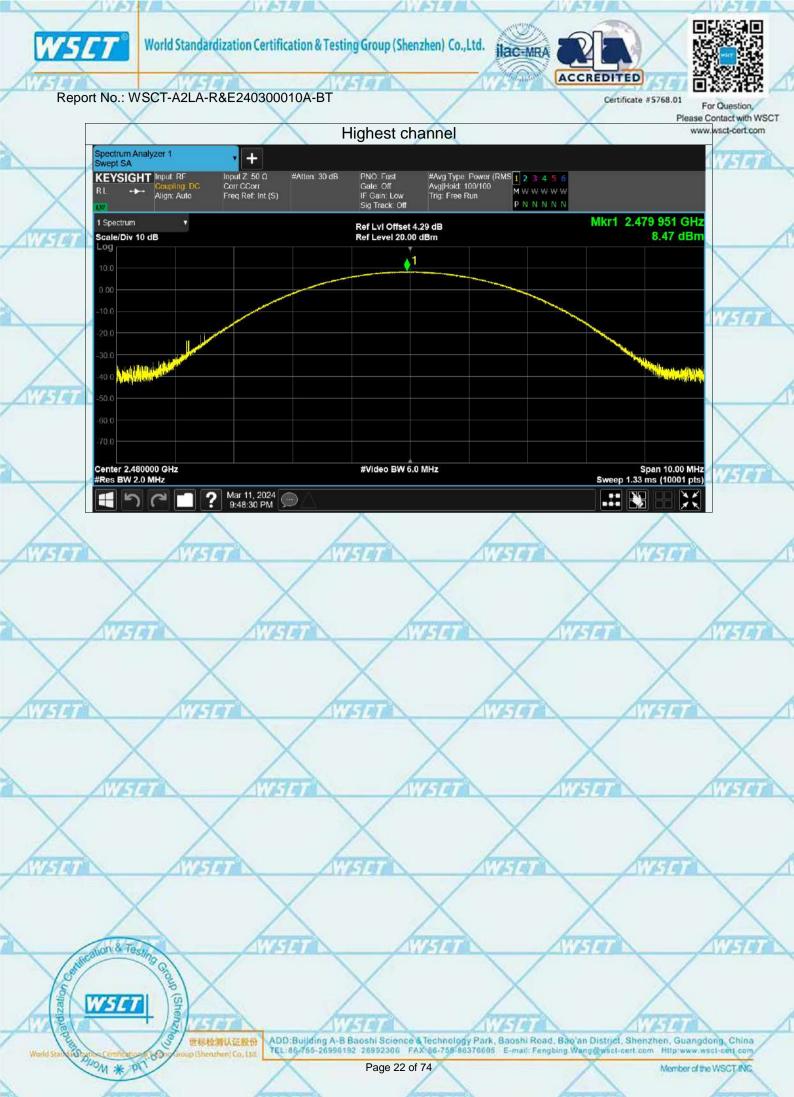
60

Zah

世际检测认证股份

60

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd. ilac-MRA



Certificate #5768.01 For Question,

Report No.: WSCT-A2LA-R&E240300010A-BT **8DPSK Modulation**

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao an District, Shenzhen, Guangdong, China TEL:86/755-26996192 26992306 FAX:86-755-86376605 E-mail: Fengbing Wang@wsci-cert.com Http://www.wsci-cert.com Page 21 of 74

2-11

Contincation & Test

WSET

S PHOM * PT

zatio

oup (Shenzi

60

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

Certificate #5768.01 For Question,

Please Contact with WSCT www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240300010A-BT

6.4. 20dB Occupy Bandwidth

6.4.1. Test Specification

	Test Requirement:	FCC Part15 C Section 15.247 (a)(1)	
	Test Method:	ANSI C63.10:2014	
	Limit:	N/A	5
7	Test Setup:	Spectrum Analyzer EUT	ws
	Test Mode:	Transmitting mode with modulation	
	Test Procedure:	 The testing follows ANSI C63.10:2014 Measurement Guidelines. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Use the following spectrum analyzer settings for 20dB Bandwidth measurement. Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel; 1%≤ RBW ≤5% of the 20 dB bandwidth; VBW≥3RBW; Sweep = auto; Detector function = peak; Trace = max hold. Measure and record the results in the test report. 	
	Test Result:	PASS	1
	XX	XXX	

世际检测认证数份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao an District, Shenzhen, Guangdong, China a(Shenzhen) Co.lts. TEL:86-755-26996192_26992306_FAX-66-755-86376605_E-mail: Fengbing Wang@wsci-cert.com_Http://www.wsci-cert.com_

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.

www.wsct-cert.com

Certificate #5768.01 For Question, Please Contact with WSCT

Report No.: WSCT-A2LA-R&E240300010A-BT

6.4.2. Test data

-20dB Occupy Bandwidth (width (MHz	.)
	Test channel	GFSK	π/4-DQPSK	8DPSK	Conclusion
	Lowest	0.95	1.5	1.469	PASS
	Middle	0.95	1.51	1.468	PASS
1	Highest	0.944	1.508	1.521	PASS
		~ ~	A		~

Test plots as follows:

1/5 E

Contincation & Test

WSET

3 DUOM * PT

dizatio

Youp (Shenzh

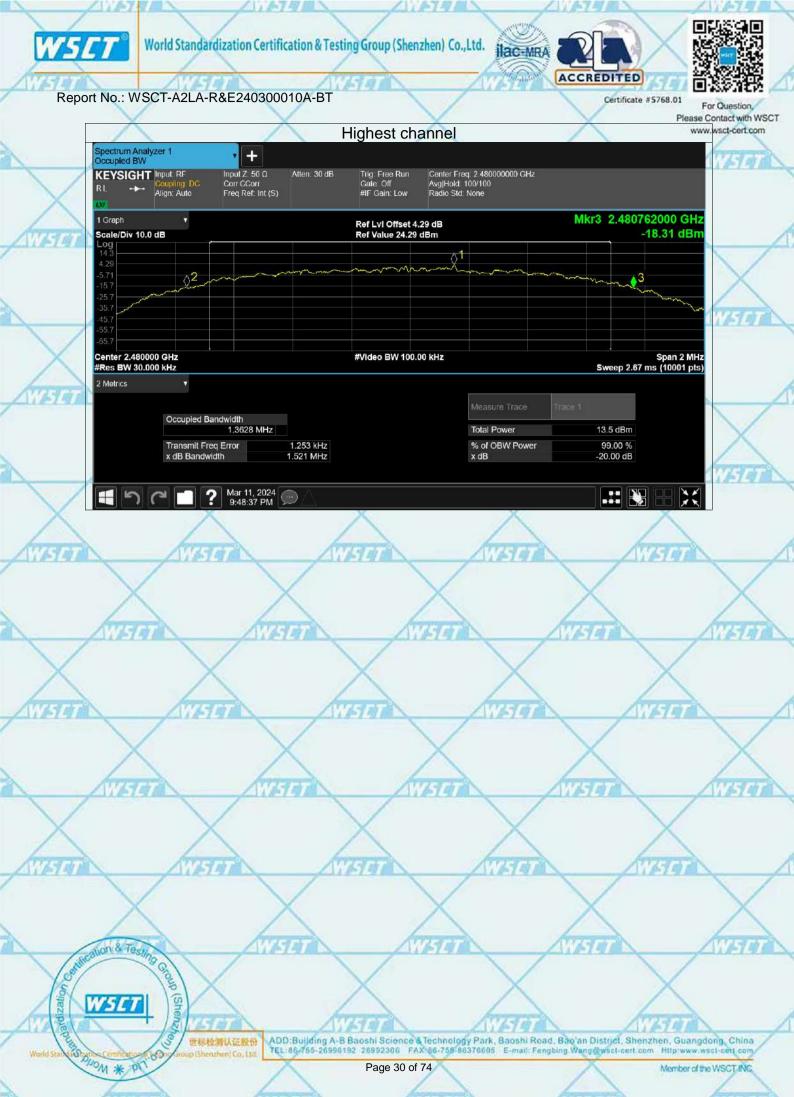
60

11.1

671

1.1

 $\alpha_{\rm S}$



1.11

Contincation & Test

WSET

S DUOM * PT

zatio

oup (Shenz)

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

For Question, Please Contact with WSCT

www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240300010A-BT

6.5. Carrier Frequencies Separation

6.5.1. Test Specification

Test Requirement: FCC Part15 C Section 15.247 (a)(1) Test Method: ANSI C63.10:2014 Limit: Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater. Test Setup: Image: Spectrum Analyzer Spectrum Analyzer Eur Test Mode: Hopping mode 1 The testing follows ANSI C63.10:2014 Measurement Guidelines. 2 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. 3 Set to the maximum power setting and enable the EUT transmit continuously. 4 Enable the EUT hopping function. 5 Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW is set to approximately 30% of the channel spacing, adjust as necessary to best identify the center of each individual channel; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. 6 Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Record the value in report.			
Limit: Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater. Test Setup: Image: Spectrum Analyzer Eur Test Mode: Hopping mode Image: Spectrum Analyzer Test Mode: Hopping mode Image: Spectrum Analyzer Test Mode: Image: Spectrum Analyzer Eur Test Mode: Hopping mode Image: Spectrum Analyzer Image: Spectrum Analyzer Eur Eur Test Mode: Hopping mode Image: Spectrum Analyzer Image: Spectrum Analyzer Eur Eur Test Mode: Hopping mode Image: Spectrum Analyzer Image: Spectrum Analyzer Eur Eur Image: Spectrum Analyzer Eur Eur Test Procedure: Image: Spectrum Analyzer Eur Image: Spectrum Analyzer Image: Spectrum Analyzer Eur Image: Spectrum Analyzer Eur Eur Image: Spectrum Analyzer Image: Spectrum Analyzer Eur Image: Spectrum Analyzer Image: Spectrum Analyzer Image: Spectrum Analyzer	Test Requirement:	FCC Part15 C Section 15.247 (a)(1)	
Limit: 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater. Test Setup: Image: Spectrum Analyzer Test Mode: Hopping mode 1. The testing follows ANSI C63.10:2014 Measurement Guidelines. 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. 3. Set to the maximum power setting and enable the EUT transmit continuously. 4. Enable the EUT hopping function. 5. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW is set to approximately 30% of the channel spacing, adjust as necessary to best identify the center of each individual channel; VBW>2RBW; Sweep = auto; Detector function = peak; Trace = max hold. 6. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Record the	Test Method: ANSI C63.10:2014		
Spectrum Analyzer EUT Test Mode: Hopping mode 1. The testing follows ANSI C63.10:2014 Measurement Guidelines. 1. The testing follows ANSI C63.10:2014 Measurement Guidelines. 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. 3. Set to the maximum power setting and enable the EUT transmit continuously. 4. Enable the EUT hopping function. 5. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW is set to approximately 30% of the channel spacing, adjust as necessary to best identify the center of each individual channel; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. 6. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Record the	Limit:	2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping	
1. The testing follows ANSI C63.10:2014 Measurement Guidelines. 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. 3. Set to the maximum power setting and enable the EUT transmit continuously. 4. Enable the EUT hopping function. 5. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW is set to approximately 30% of the channel spacing, adjust as necessary to best identify the center of each individual channel; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. 6. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Record the	Test Setup:	Spectrum Analyzer EUT	
 Guidelines. 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. 3. Set to the maximum power setting and enable the EUT transmit continuously. 4. Enable the EUT hopping function. 5. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW is set to approximately 30% of the channel spacing, adjust as necessary to best identify the center of each individual channel; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. 6. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Record the 	Test Mode:	Hopping mode	
	Test Procedure:	 Guidelines. 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. 3. Set to the maximum power setting and enable the EUT transmit continuously. 4. Enable the EUT hopping function. 5. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW is set to approximately 30% of the channel spacing, adjust as necessary to best identify the center of each individual channel; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. 6. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Record the 	
Test Result: PASS	Test Result:	PASS	

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

11-3

Please Contact with WSCT www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240300010A-BT

6.5.2. Test data

Contration & Test

WSET

S DUOM * PT

dizatio

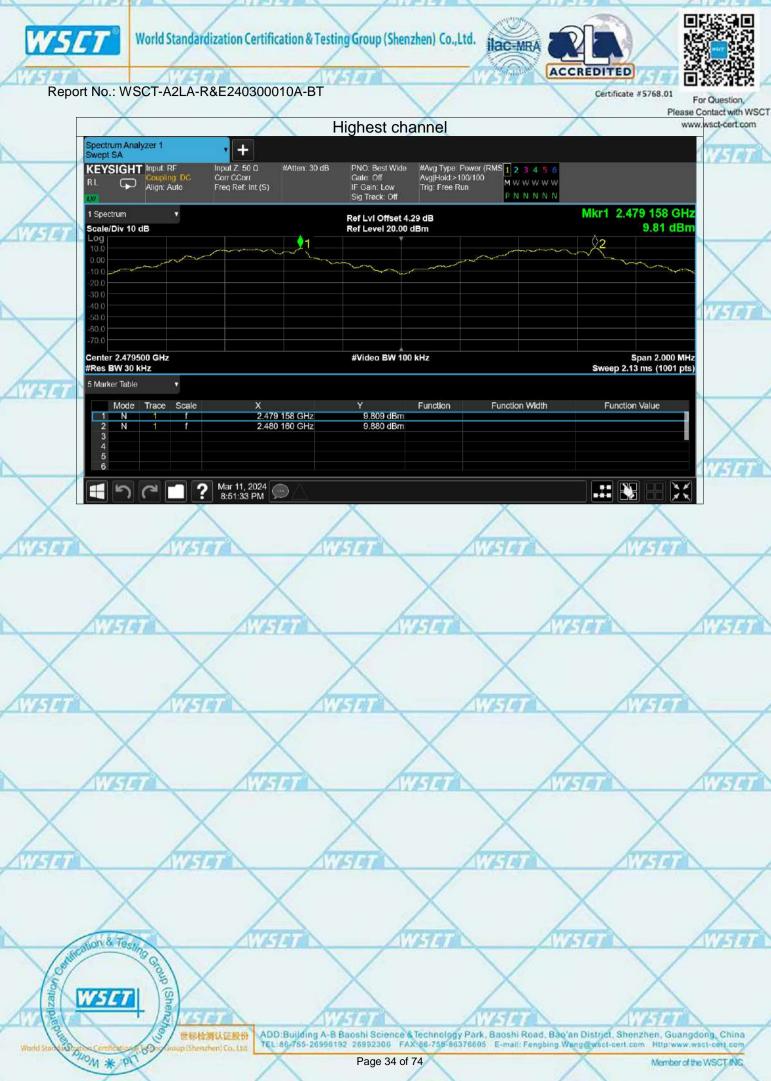
oup (Shenzk

60

	GFSK mode				
Test channel	Carrier Frequencies Separation (MHz)	Limit (MHz)	Result		
Lowest	0.998	2/3*20dB BW	PASS		
Middle	1.002	2/3*20dB BW	PASS		
Highest	1.002	2/3*20dB BW	PASS		
Middle	1.002	2/3*20dB BW	PASS		

Pi/4 DQPSK mode			
Test channel	Carrier Frequencies Separation (MHz)	Limit (MHz)	Result
Lowest	1.008	2/3*20dB BW	PASS
Middle	0.984	2/3*20dB BW	PASS
Highest	0.96	2/3*20dB BW	PASS

8DPSK mode				
Test channel	Carrier Frequencies Separation (MHz)	Limit (MHz)	Result	
Lowest	1.154	2/3*20dB BW	PASS	
Middle	0.994	2/3*20dB BW	PASS	
Highest	1.148	2/3*20dB BW	PASS	



世标检测认证股份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China n(Shenzhen) Co. Its TEL:86/755-26996192 26992300 FAX-86-755-86376605 E-mail: Fengbing Wang@wsci-cert.com Http://www.wsci-cert.com

Page 33 of 74

S DUOM * PT

69

世际检测认证数份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China ntShenzhen Fo. tw

Proud * PT

Page 35 of 74

zatio

S DUOM * PT

69

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd. ilac-MRA

Certificate #5768.01


5.91 dBm

**

For Question, Please Contact with WSCT www.wsct-cert.com

Page 36 of 74

世标检测认证数份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China n(Shenzhen) Co. Ivr. TEL:86/755-26998192 26992306 FAX:66-759-86376605 E-mail: Fengbing Wang@wsct-cert.com Http://www.wsct-cert.com

Page 37 of 74

POLIOM * PT

69

Report No.: WSCT-A2LA-R&E240300010A-BT

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd. ilac-MRA



Certificate #5768.01

5.39 dBm

**

For Question, Please Contact with WSCT www.wsct-cert.com

zatio

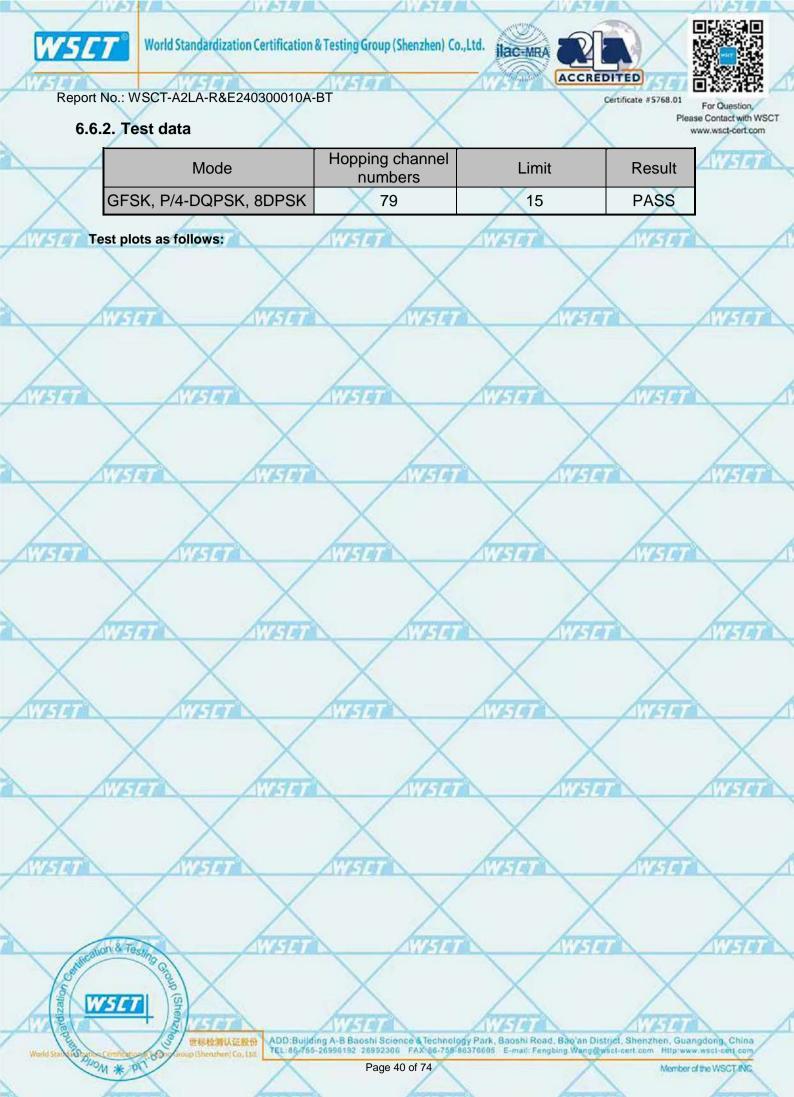
World Standardization Certification & Testing Group (Shenzhen) Co., Ltd. ilac-MRA

For Question, Please Contact with WSCT www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240300010A-BT

Hopping Channel Number 6.6.

6.6.1. Test Specification


Test Requirement:	FCC Part15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.10:2014	1
Limit:	Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.	2
Test Setup:	Spectrum Analyzer	
Test Mode:	Hopping mode	1
Test Procedure:	 The testing follows ANSI C63.10:2014 Measurement Guidelines. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = the frequency band of operation; set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. The number of hopping frequency used is defined as the number of total channel. Record the measurement data in report. 	
Test Result:	PASS	9
ATTICK ATTICK		600

Contincation & Test

WSE1

zatio

zatio

3 DUOM * PT

69

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd. ilac-MRA

Certificate #5768.01

3.88 dBm

∆2

X

For Question, Please Contact with WSCT www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240300010A-BT 8DPSK Spectrum Analyzer 1 Swept SA + Input Z: 50 Ω Corr CCorr #Atten: 30 dB PNO: Fast Gate: Off #Avg Type: Power (RMS 1 2 3 4 5 6 Avg[Hold:>100/100 KEYSIGHT Input: RF MWWWWW 9 Align: Auto IF Gain: Low Sig Track: Off Trig: Free Run PNNNN 1 Spectrum Mkr1 2,401 753 5 GHz Ref LvI Offset 4.19 dB Ref Level 20.00 dBm T Scale/Div 10 dB manyanaparan Stop 2.48350 GHz Sweep 8.00 ms (1001 pts) #Video BW 300 kHz Start 2.40000 GHz #Res BW 100 kHz 5 Marker Table Function Value Scale Function Function Width Mode Trace X Y 2.401 753 5 GHz 2.480 410 5 GHz 3.875 dBm 4.926 dBm N 2 4 5 6 Mar 11, 2024 9:16:33 PM E ? (\cdots) Contration & Test toup. (Shenz) W5E

1.11

Contration & Test

WSE1

3 DUOM * PT

dizatio

oup (Shenzh

60

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

For Question, Please Contact with WSCT

www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240300010A-BT

6.7. Dwell Time

6.7.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2014
Limit:	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Hopping mode
Test Procedure:	 The testing follows ANSI C63.10:2014 Measurement Guidelines. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel; VBW≥RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold. Measure and record the results in the test report.
Test Result:	PASS
AUGRA AD	WERT WERT

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

Certificate #5768.01

For Question, Please Contact with WSCT www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240300010A-BT

6.7.2. Test Data

Mode	Frequency (MHz)	Pulse Time (ms)	Total Dwell Time (ms)	Burst Count	Period Time (ms)	Limit (ms)	Verdict
1-DH1	2402	0.381	120.015	315	31600	400	Pass
1-DH1	2441	0.381	120.396	316	31600	400	Pass
1-DH1	2480	0.381	120.777	317	31600	400	Pass
1-DH3	2402	1.637	258.646	158	31600	400	Pass
1-DH3	2441	1.637	252.098	154	31600	400	Pass
1-DH3	2480	1.637	270.105	165	31600	400	Pass
1-DH5	2402	2.885	302.925	105	31600	400	Pass
1-DH5	2441	2.885	308.695	107	31600	400	Pass
1-DH5	2480	2.885	311.58	108	31600	400	Pass

Note: 1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels.

For DH1, With channel hopping rate (1600 / 2 / 79) in Occupancy Time Limit (0.4×79) (s), Hops Over Occupancy Time comes to $(1600 / 2 / 79) \times (0.4 \times 79) = 320$ hops

For DH3, With channel hopping rate (1600 / 4 / 79) in Occupancy Time Limit (0.4×79) (s), Hops Over Occupancy Time comes to $(1600 / 4 / 79) \times (0.4 \times 79) = 160$ hops

For DH5, With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4 x 79) (s), Hops Over Occupancy Time comes to (1600 / 6 / 79) x (0.4 x 79) = 106.67 hops

2. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

Test plots as follows:

Contration & Tes

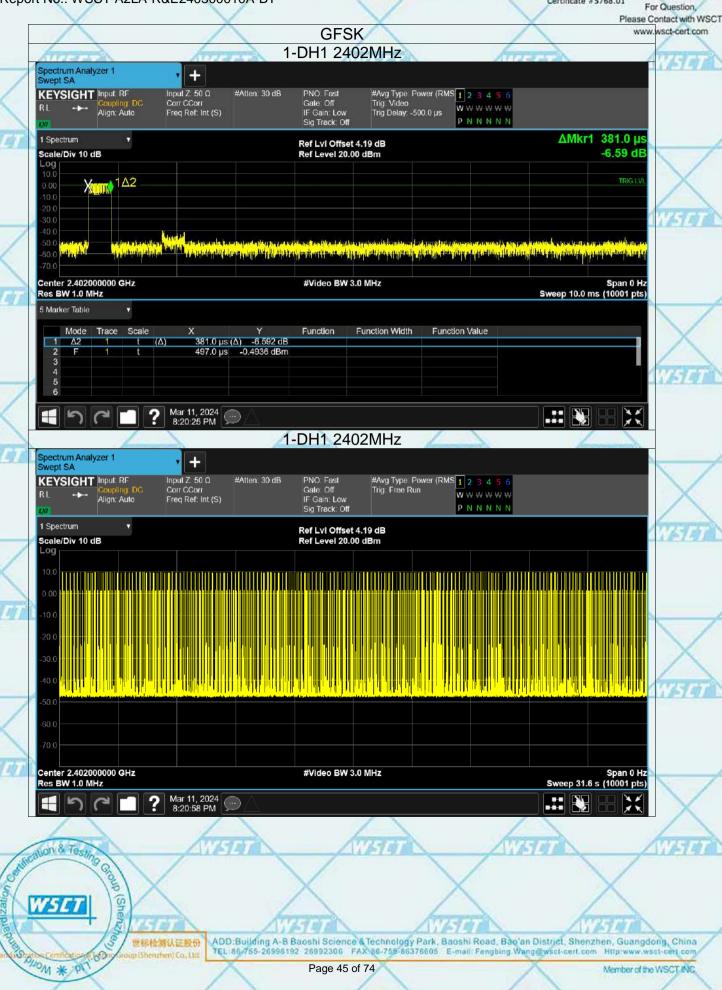
Zati

WSE1

MOM * PIT

up (Shen

标检测认证数份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86/755-26996192 26992306 FAX:86-755-86376605 E-mail: Fengbing Wang@wsct-cert.com Http://www.wsct-cert.com



Zah

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd. ilac-MRA

Report No.: WSCT-A2LA-R&E240300010A-BT

WSE

S DUOM * PT

Zah

OUP

69

(Shenz)

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.

Certificate #5768.01

For Question Please Contact with WSCT

Report No.: WSCT-A2LA-R&E240300010A-BT

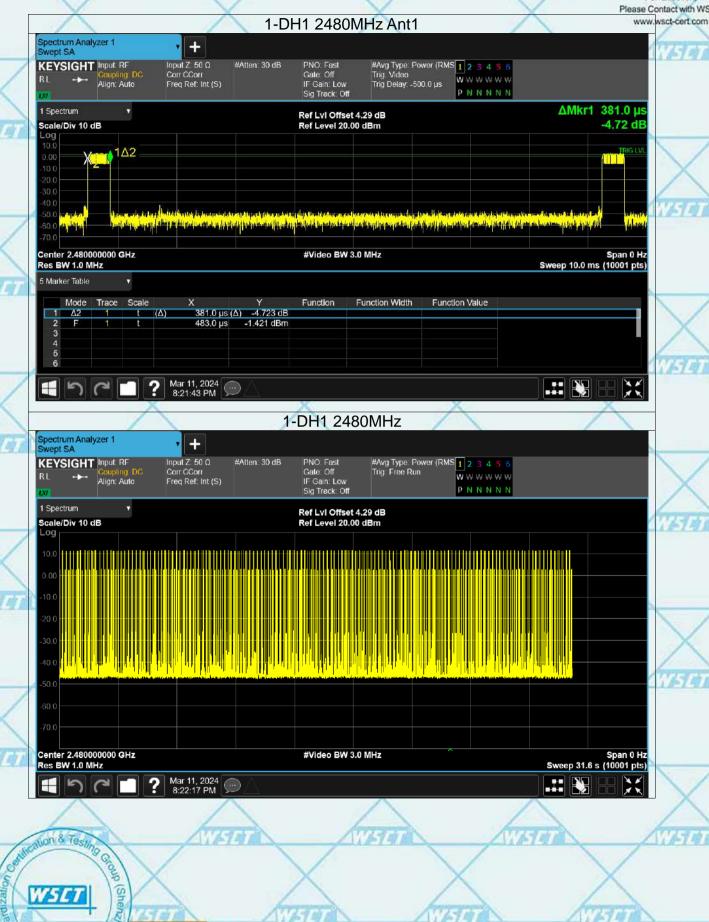
世际检算认证教的 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao an District, Shenzhen, Guangdong, China alShenzhen Co.lts.

Zah

193 DUOM * PT

69

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd. ilac-MRA



Certificate #5768.01

For Question, Please Contact with WSCT

Report No.: WSCT-A2LA-R&E240300010A-BT

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao an District, Shenzhen, Guangdong, China TEL:85/755-26996192 26992306 FAX:86-755-86376605 E-mail: Fengbing Wang@wsci-cert.com Http://www.wsci-cert.com 世际检测认证最份

Page 47 of 74

WSE

193 DUOM * PT

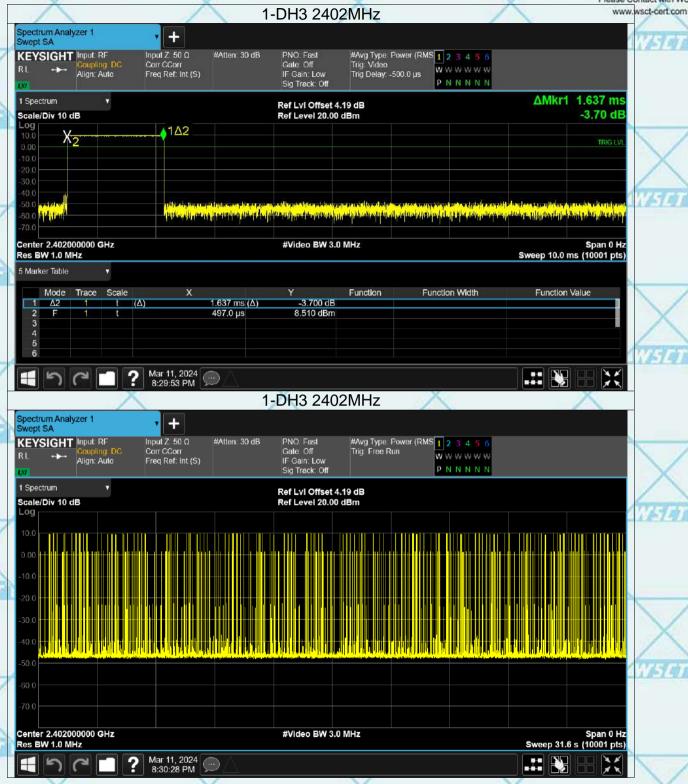
Zah

OUP

69

(Shenz)

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.



Certificate #5768.01

For Question Please Contact with WSCT

Report No.: WSCT-A2LA-R&E240300010A-BT

世标检测认证数价 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao an District, Shenzhen, Guangdong, China

Page 48 of 74

WSE

193 DUOM * PT

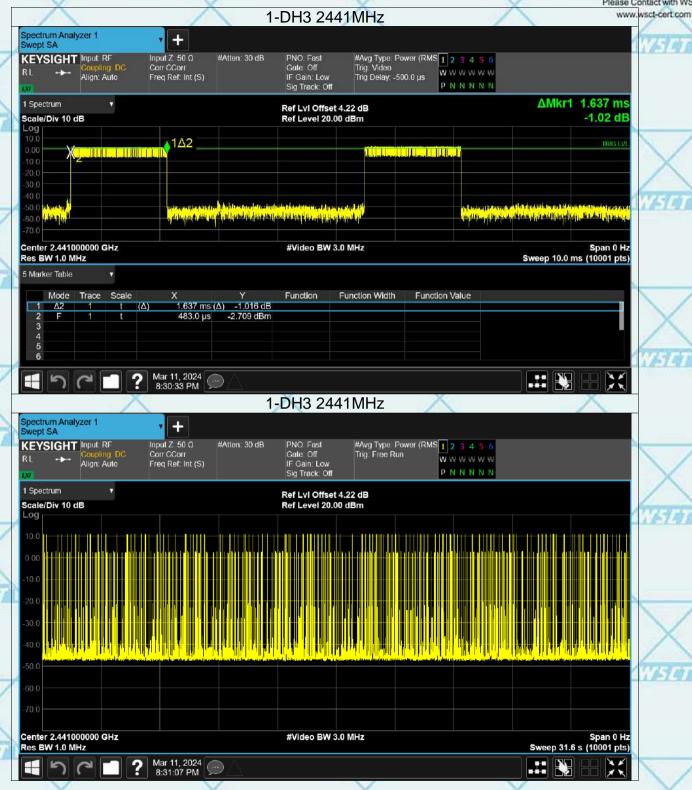
Zah

OUP

69

(Shenz)

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.



Certificate #5768.01

For Question Please Contact with WSCT

Report No.: WSCT-A2LA-R&E240300010A-BT

世标检测认证数价 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao an District, Shenzhen, Guangdong, China

WSE

BS BHOM * PT

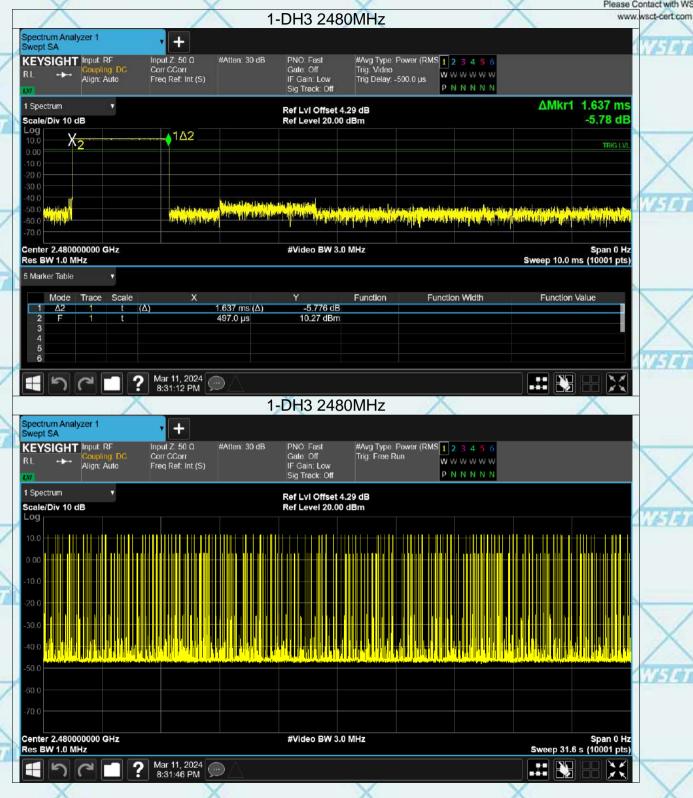
Zah

oup.

69

(Shenz)

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.



Certificate #5768.01

For Question Please Contact with WSCT

Report No.: WSCT-A2LA-R&E240300010A-BT

世际检测认证数份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China a(Shenzhen) Co. Ita

WSE

193 DUOM * PT

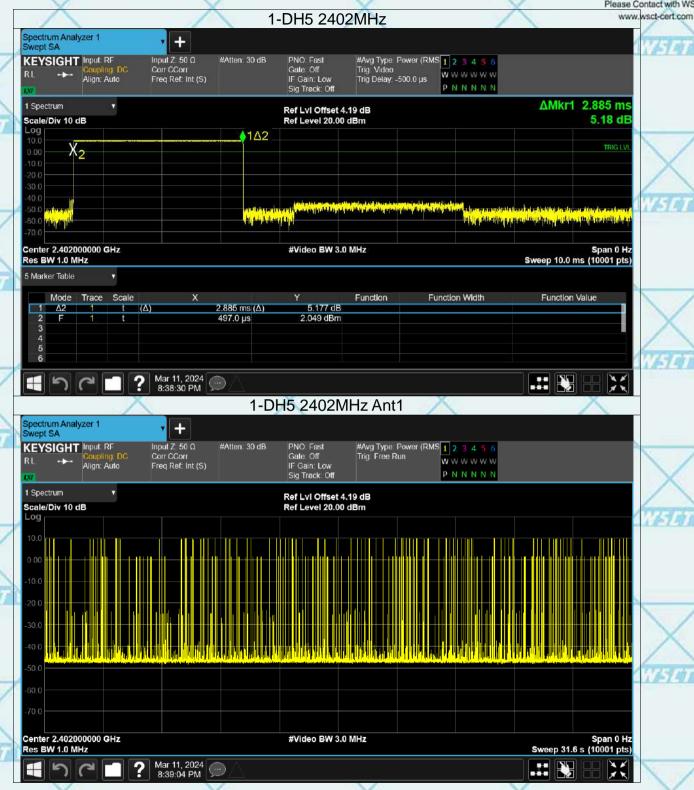
Zah

OUP

69

(Shenz)

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.



Certificate #5768.01

For Question, Please Contact with WSCT

Report No.: WSCT-A2LA-R&E240300010A-BT

世标检测认证数价 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao an District, Shenzhen, Guangdong, China

Page 51 of 74

WSE

BS BHOM * PT

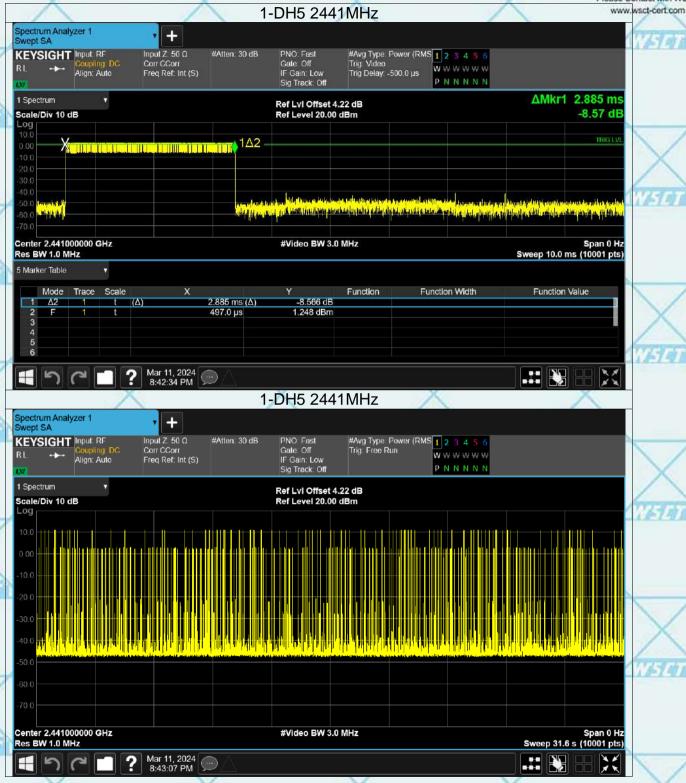
Zah

OUP

69

(Shenz)

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.



Certificate #5768.01

For Question, Please Contact with WSCT

Report No.: WSCT-A2LA-R&E240300010A-BT

世际检测认证数价 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China a(Shenzhen) Co. Ita

WSE

BS BHOM * PT

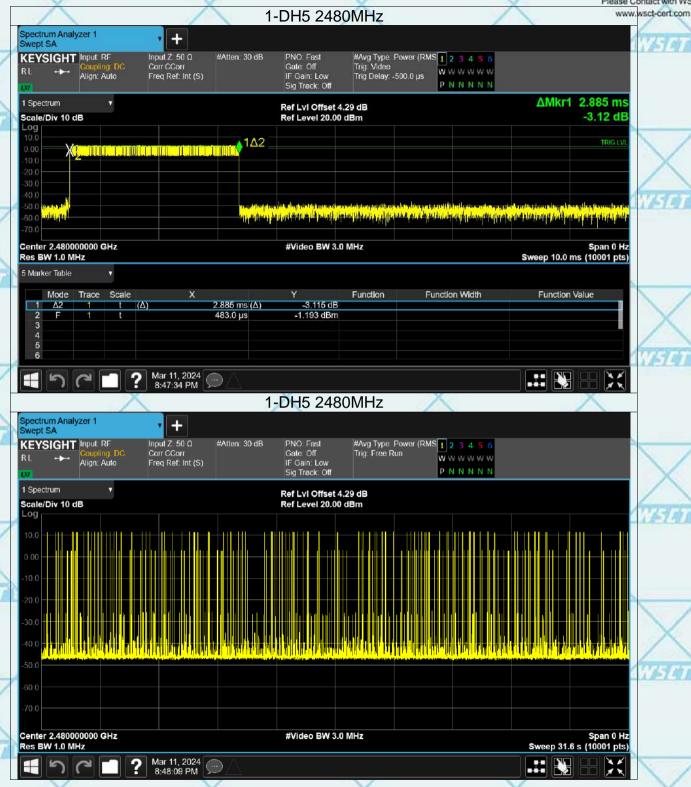
Zah

oup.

69

(Shenz)

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.



Certificate #5768.01

For Question, Please Contact with WSCT

Report No.: WSCT-A2LA-R&E240300010A-BT

世际检测认证数的 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China

Page 53 of 74

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.

Please Contact with WSCT www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240300010A-BT

6.8. **Pseudorandom Frequency Hopping Sequence**

Test Requirement:

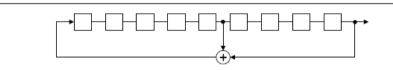
ion & Te

MOM * P

ŝ

FCC Part15 C Section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.


Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first one of 9 consecutive ones; i.e. the shift register is initialized with nine ones. • Number of shift register stages: 9

• Length of pseudo-random sequence: $2^9 - 1 = 511$ bits

Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

	0	2	4	6	62	64	78	1	73 75	5 77 👖	
/											
1											
1					1	1 8					

Each frequency used equally on the average by each transmitter. The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

協調认証数份
ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China
atten/ Co. Ltd
TEL:86-755-26996192 26992306 FAX:66-755-86376605 E-mail: Fengbing Wang@wsci-cert.com Http://www.wsci-cert.com

1710

1.11

Contincation & Test

WSE1

S DUOM * PT

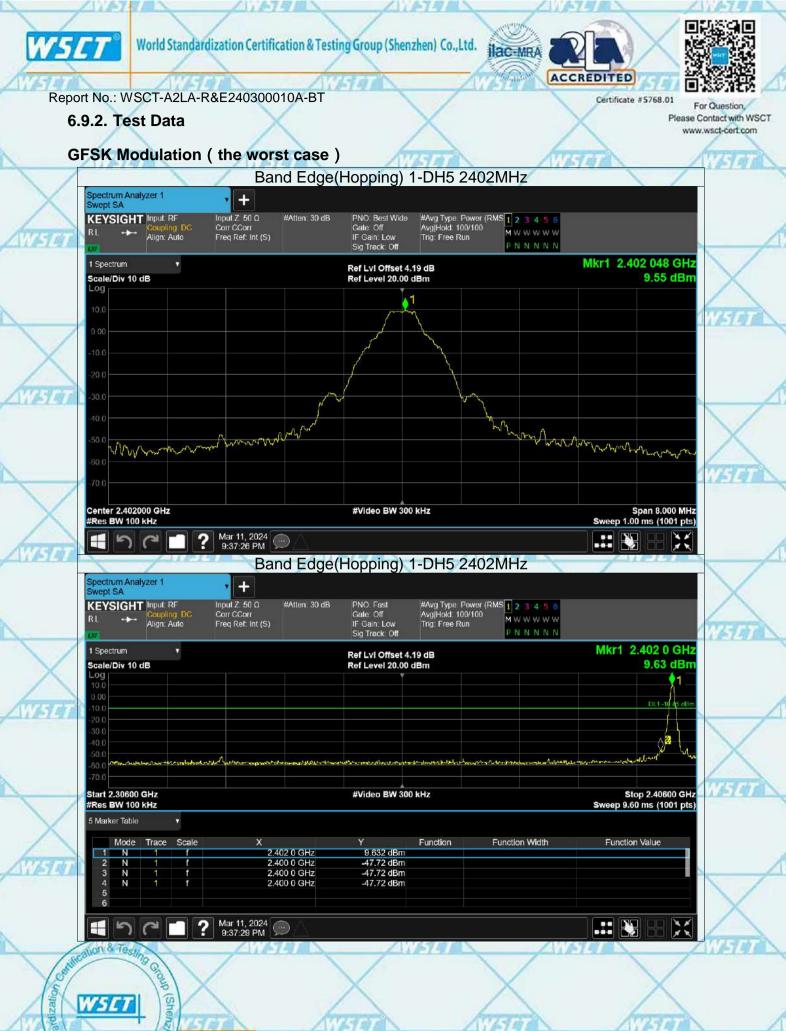
Zatio

oup (Shenz)

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

For Question, Please Contact with WSCT

www.wsct-cert.com


Member of the WSCT INC

Report No.: WSCT-A2LA-R&E240300010A-BT

6.9. Conducted Band Edge Measurement

6.9.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	ANSI C63.10:2014
Limit:	In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fal in the restricted bands must also comply with the radiated emission limits.
Test Setup:	Spectrum Analyzer
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The testing follows the guidelines in Band-edge Compliance of RF Conducted Emissions of ANSI C63.10:2014 Measurement Guidelines. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz (≥1% span=10MHz), VBW = 300 kHz (≥RBW). Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.
	 Enable hopping function of the EUT and then repeat step 2 and 3. Measure and record the results in the test report.

世标检测认证数份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an Distriet, Shenzhen, Guangdong, China n(Shenzhen) Co. Ivr. TEL:86/765-26996192 26992300 FAX-66-755-86376605 E-mail: Fengbing.Wong@wsci-cert.com Http://www.wsci-cert.com

Page 56 of 74

S DUOM * PT

69

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd. ilac-MRA

marganer

-N.

MWWWWW

PNNNN

Certificate #5768.01

Mkr1 2.480 008 GHz

Span 8.000 MHz Sweep 1.00 ms (1001 pts)

XX

10.69 dBm

For Question, Please Contact with WSCT www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240300010A-BT Band Edge(Hopping) 1-DH5 2480MHz Spectrum Analyzer 1 + wept SA Input Z: 50 Ω Corr CCorr #Atten: 30 dB PNO: Best Wide Gate: Off #Avg Type Power (RMS 1 2 3 4 5 6 Avg[Hold: 100/100 KEYSIGHT Input: RF IF Gain: Low Sig Track: Off Freq Ref: Int (S) Trig: Free Run 1 Spectrum 7 Ref LvI Offset 4.29 dB Scale/Div 10 dB Ref Level 20.00 dBm 1 0.00 Ad WAR MANNA Mary Mariner Center 2.480000 GHz #Res BW 100 kHz #Video BW 300 kHz Mar 11, 2024 9:40:26 PM ? E Band Edge(Hopping) 1-DH5 2480MHz Spectrum Analyzer 1 Swept SA + PNO: Fast Gate: Off Input Z: 50 Q #Atten: 30 dB KEYSIGHT Input: RF

Mar 11, 2024 9:40:29 PM ?

世际检测认证最份

 (\cdots)

contration & Test

WSE

S DUOM * PT

Zah

5

OUP

69

(Shenz)

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao an District, Shenzhen, Guangdong, China TEL:85/755-26996192 26992306 FAX:86-755-86376605 E-mail: Fengbing Wang@wsci-cert.com Http://www.wsci-cert.com

Page 57 of 74

Member of the WSCT INC

24

12-11

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd. ilac-MRA

NSC

Certificate #5768.01

For Question, Please Contact with WSCT www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240300010A-BT

Conducted Spurious Emission Measurement 6.10.

6.10.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	ANSI C63.10:2014
Limit:	In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The testing follows the guidelines in Spurious RF Conducted Emissions of ANSI C63.10:2014 Measurement Guidelines The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW. Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
Test Result:	PASS

oup (Shenz) S PHOM * PT

Contincation & Test

WSET

Zatio

WSET

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:85-755-26996192 26992306 FAX:86-755-86376605 E-mail: Fengbing Wang@wsci-cert.com Http://www.wsci-cert.com 世际检测认证股份

12.0

世际检测认证数份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China n(Shenzhen) Co. Itr. TEL:86/755-26996192 26992306 FAX-66-755-86376605 E-mail: Fengbing Wong@wsct-cert.com Http://www.wsct-cert.com

Member of the WSCT INC

BB NOW * PT

69

Salification & Test

WSE

193 DUOM * PT

Zah

OUP

60

(Shenz)

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.

Certificate #5768.01

For Question, Please Contact with WSCT

Report No.: WSCT-A2LA-R&E240300010A-BT

世际检测认证数份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China a(Shenzhen) Co. Its. TEL:86/765-26996192_26992306_FAX-86-755-86376605_E-mail: Fengbing Wang@wsci-cert.com_Http://www.wsci-cert.com

Salification & Test

WSE

193 DUOM * PT

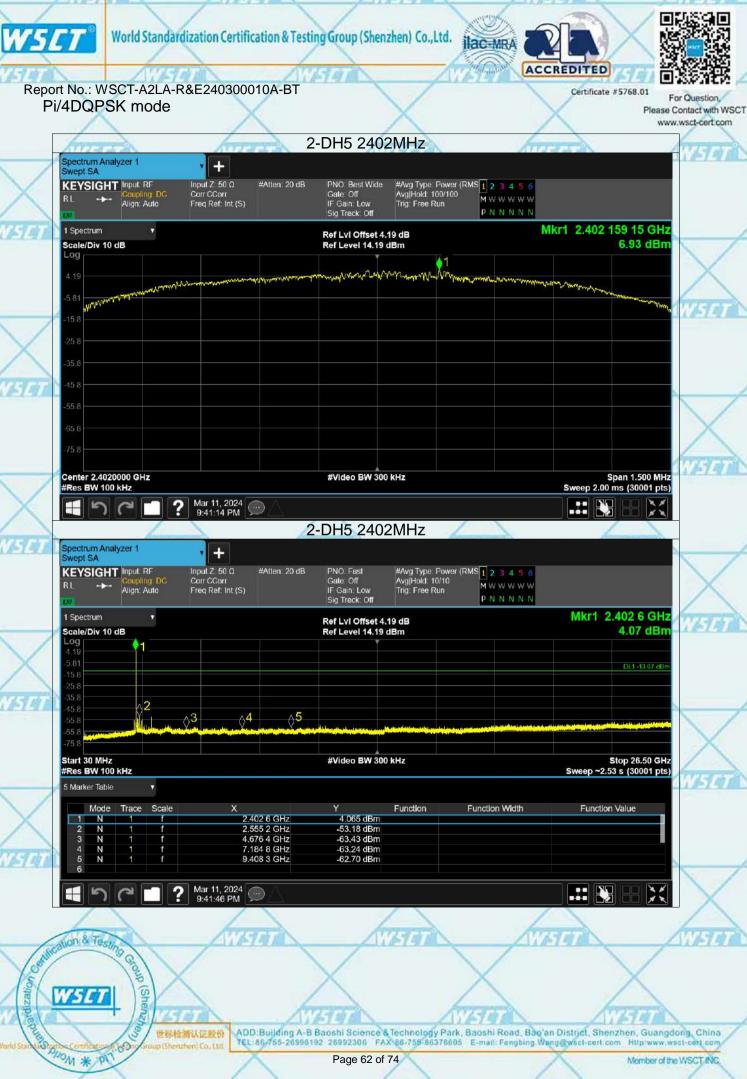
Zah

OUP

60

(Shenz)

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.


Certificate #5768.01

For Question, Please Contact with WSCT

Report No.: WSCT-A2LA-R&E240300010A-BT

世际检测认证数份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China n(Shenzhen) Co. Itr. TEL:86/755-26996192_26992300_FAX-66-755-86376605_E-mail: Fengbing Wong@wsci-cert.com_Http://www.wsci-cert.com

Page 62 of 74

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd. ilac-MRA

MWWWWW

PNNNN

Certificate #5768.01

Mkr1 2,440 996 90 GHz

6.96 dBm

For Question, Please Contact with WSCT www.wsct-cert.com

Mar 11, 2024 9:43:07 PM ? \bigcirc

1 5

Salification & Test

WSE

S DUOM * PT

Zah

OUP

60

(Shenz)

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:85-755-26996192 26992306 FAX:86-755-86376605 E-mail: Fengbing Wang@wsci-cert.com Http://www.wsci-cert.com 世际检测认证股份

Member of the WSCT INC

**

Salification & Test

WSE

DUOM * PT

Zah

OUP

69

(Shenz)

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.

Certificate #5768.01

For Question, Please Contact with WSCT

Report No.: WSCT-A2LA-R&E240300010A-BT

世际检测认证数份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China n(Shenzhen) Co. Itr. TEL:86/755-26996192 26992306 FAX-66-755-86376605 E-mail: Fengbing Wong@wsct-cert.com Http://www.wsct-cert.com

Sentication & Test

WSE

BS BHOM * PT

Zah

OUP

69

(Shenz)

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.

Certificate #5768.01

For Question, Please Contact with WSCT

Report No.: WSCT-A2LA-R&E240300010A-BT 8DPSK mode

世际检测认证数份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China n(Shenzhen) Co. Itr. TEL:86/755-26996192 26992306 FAX-66-755-86376605 E-mail: Fengbing Wong@wsct-cert.com Http://www.wsct-cert.com

Salification & Test

WSE

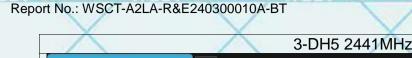
BS BHOM * PT

Zah

OUP

69

(Shenz)


World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.



Certificate #5768.01

Please Contact with WSCT www.wsct-cert.com

世际检测认证股份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China n(Shenzhen) Co. Itr. TEL:86/755-26996192 26992306 FAX-86-755-88376605 E-mail: Fengbing Wang@wsci-cert.com Http://www.wsci-cert.com

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd. ilac-MRA

Certificate #5768.01

6.61 dBm

Marcu

**

5.46 dBm

Stop 26.50 GHz

**

man

For Question, Please Contact with WSCT www.wsct-cert.com

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:85-755-26996192 26992306 FAX:86-755-86376605 E-mail: Fengbing Wang@wsci-cert.com Http://www.wsci-cert.com 世际检测认证股份

Page 67 of 74

(Shenz)

69

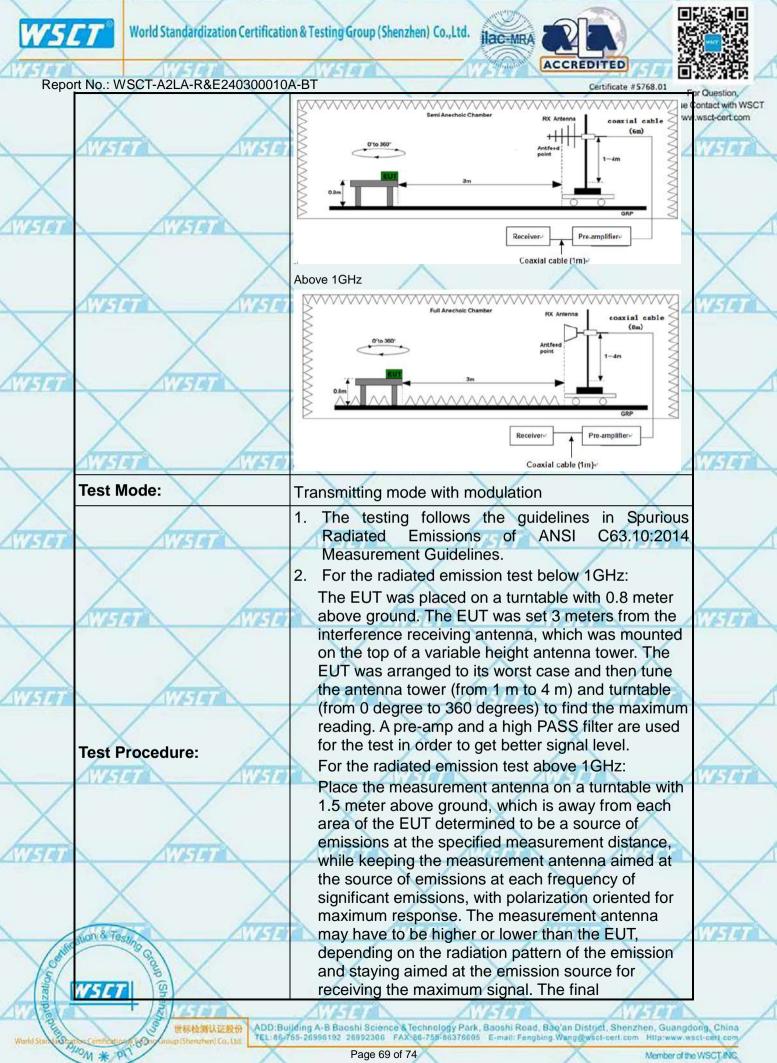
Zah

WSE

DUOM * PT

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

Certificate #5768.01

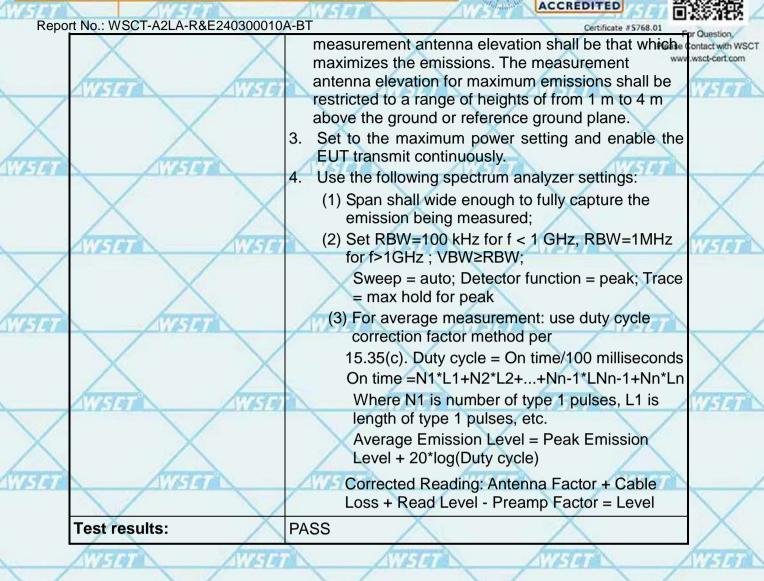

⁰¹ For Question, Please Contact with WSCT www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240300010A-BT

6.11. Radiated Spurious Emission Measurement

6.11.1. Test Specification

			1/		1	/
Test Requirement:	FCC Part15	C Section	15.209)	$\langle \rangle$
Test Method:	ANSI C63.10	0:2014	AVETA		110	TATA
Frequency Range:	9 kHz to 25	GHz		1	/	
Measurement Distance	: 3 m	X		X		X
Antenna Polarization:	Horizontal &	Vertical		ATT	17	111.514
	Frequency	Detector	RBW	VBW	Remar	·k
X	9kHz- 150kHz	Quasi-peak	200Hz	1kHz	Quasi-peak	
Receiver Setup:	150kHz- 30MHz	Quasi-peak	9kHz	30kHz	Quasi-peak	Value
Receiver Getup.	30MHz-1GHz	Quasi-peak	100KHz	300KHz	Quasi-peak	Value
	Above 1GHz	Peak	1MHz	3MHz	Peak Va	
\land	Above IGHZ	Peak	1MHz	10Hz	Average V	'alue
AVEST AV	Frequer	icy//5/	Field Stre		Measurem	/ / / / / /
	0.009-0.	490	(microvolts) 2400/F(H		Distance (m 300	eters)
X	0.490-1.		24000/F(,	30	
	1.705-3		30		30	
ATATA	30-88		100		3	
Limit:	88-21		150 200	1	3	
	Above 9		500	1	3	
AVERA AV	732	Anna	4	here	-	607.92
	Frequency	Field	Strength	Measure Distan		ector
	Frequency	(microv	volts/meter)	(meter		30101
\sim	Above 1GH	,	500	3		rage
(TETER	Above TGH	2	5000	3	Pe	eak
	For radiated emi	ssions below 3	30MHz	1	1	
X	X					
	D	istance = 3m			Computer	
AWSET	1510					
		1) г	Pre -	Amplifier	
Test setup:	EUT					
		⊐ Turn table				
					eceiver	
\sim	\checkmark	Ground	Plane			
\wedge		Citound .	, naic	1	1	
CAT & TR	30MHz to 1GHz	ATTA		100		111.90
allori a resting				-		Purce
a Gran	X		X		5	
			/\		/	1
A BUSIN	AVISION		AVATA	2	1875	IT \
calion & Testing Graph CTSCT Store Continues (Source Continues of Con	ADD:Building A-B Baoshi Scie TEL:86-765-26996192 2699230	FAX-86-756-863	Park, Baoshi R 76605 E-mail: F	oad, Bao'an D engbing Wang	listrict, Shenzher Swisct-cert.com H	, Guangdong, China
WOM * P		68 of 74		>		fember of the WSCT INC
				/		


ion & Te

1751

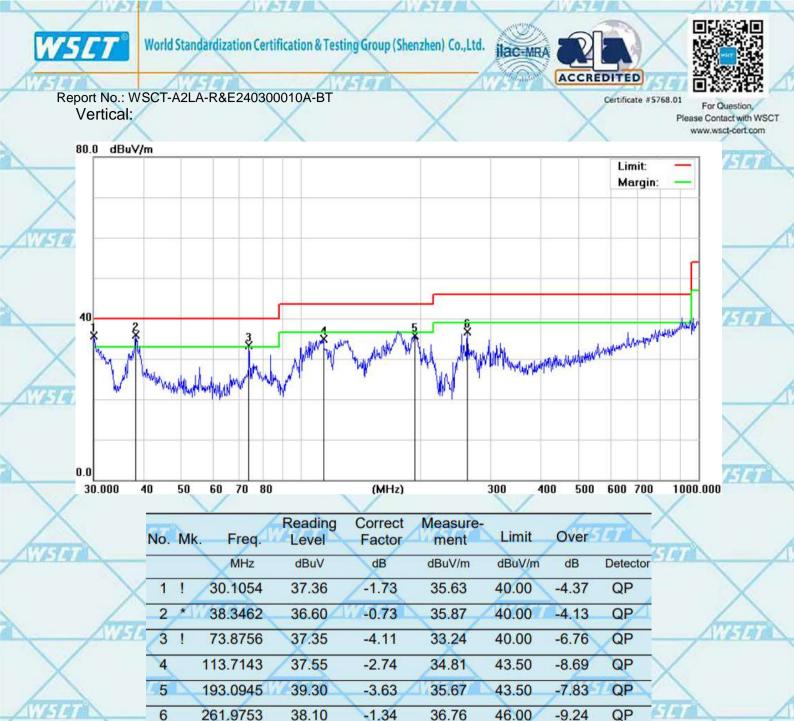
M * P

(She

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

检测认证数份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86/755-26996192 26992306 FAX-86-755-86376605 E-mail: Fengbing Wang@wsci-cert.com Http://www.wsci-cert.com/

Member of the WSCT INC


ation & Tea

W5L

PHOM * PH

up (Shen

Certifit

Note1:

mon & Te

PHOM * P

up (She

Costifit

Freq. = Emission frequency in MHz Reading level $(dB\mu V)$ = Receiver reading Corr. Factor (dB) = Antenna factor + Cable loss - Amplifier factor. Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)Limit $(dB\mu V)$ = Limit stated in standard Margin (dB) = Measurement $(dB\mu V)$ – Limits $(dB\mu V)$ e 150 kHz to 30MHz.

> 林治病认证数份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86/765-26996192 26992306 FAX:86-755-86376605 E-mail: Fengbing Wang@wsci-cert.com Http://www.wsci-cert.com

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd. ilac-MRA

Certificate #5768.01

For Question, Please Contact with WSCT www.wsct-cert.com

1150

Report No.: WSCT-A2LA-R&E240300010A-BT

Above 1GHz

GF	SK	_	ATTACA	k	UJJJA	k	177A	
1	Frag			Low cha	nnel: 2402	2MHz		
-	Freq. (MHz)	Ant.Pol	Emission L	_evel(dBuV)	Limit 3m	(dBuV/m)	Ove	r(dB)
		H/V	PK	AV	PK	AV	PK	AV
-	4804	V	60.33	41.74	74	54	-13.67	-12.26
	7206	V	60.00	40.17	74	54	-14.00	-13.83
	4804	Н	58.91	39.14	74	54	-15.09	-14.86
	7206	Н	59.33	40.33	74	54	-14.67	-13.67

		the part of the same same in the			A.1	A DECEMBER OF THE OWNER	
Frag			Middle ch	annel: 244	41MHz		
Freq. (MHz)	Ant.Pol	Emission L	_evel(dBuV)	Limit 3m	(dBuV/m)	Over(dB)	
	H/V	PK	AV	PK	AV	PK	AV
4882	V	60.38	40.50	74	54	-13.62	-13.50
7323	V	58.80	39.94	74	54	-15.20	-14.06
4882	Н	58.19	40.65	74	54	-15.81	-13.35
7323	Н	59.45	40.45	74	54	-14.55	-13.55

and the second state of th		a state of the sta		a second a second se						
Frog	High channel: 2480MHz									
Freq. (MHz)	Ant.Pol	Emission I	_evel(dBuV)	Limit 3m	(dBuV/m)	Over(dB)				
	H/V	PK	AV	PK	AV	PK	AV			
4960	V	59.84	39.10	74 🏒	54	-14.16	-14.90			
7440	V	58.78	40.78	74	54	-15.22	-13.22			
4960	Н	58.75	40.85	74	54	-15.25	-13.15			
7440	Н	58.60	39.60	74	54	-15.40	-14.40			

Note:

Contration & Tes

W5E

Zati

З.

The emission levels of other frequencies are very lower than the limit and not show in test report. 1.

2. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.

Data of measurement shown "----"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

Measurements were conducted in all three modulation (GFSK, Pi/4 DQPSK, 8DPSK), and the worst case Mode (GFSK) was submitted only.

B

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-785-26998192 26992306 FAX:86-755-86376605 E-mail: Fengbing Wang@wsci-cert.com Http:www.wsci-cert.com 世际检测认证最份

Certificate #5768.01 Fo

For Question, Please Contact with WSCT www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240300010A-BT Restricted Bands Requirements

Test result	for GFSK M	ode (the w	vorst case)	11133		hura	AL T	
Frequency	Reading	Correct Factor	Emission Level	Limit	Margin	Polar	Detector	7
(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	H/V		$\langle \rangle$
k	Anna	0	Low Cha	nnel	Kura	À	An.	
2387	61.65	-8.94	52.71	74	-21.29	H	РК	57.00
2387	45.12	-8.94	36.18	54	-17.82	н	AV	
2387	64.22	-8.94	55.28	74	-18.72	V	PK	
2387	44.27	-8.94	35.33	54	-18.67	V.75	AV	
2390	68.37	-8.73	59.64	74	-14.36	н	PK	/
2390	49.76	-8.73	41.03	54	-12.97	н	AV	1
2390	65.65	-8.73	56.92	74	-17.08	V	PK	177
2390	51.24	-8.73	42.51	54	-11.49	V	AV	
X		X	High Cha	nnel 📈		X		
2483.5	67.55	-8.17	59.38	74	-14.62	н	PK	
2483.5	47.31	-8.17	39.14	54	-14.86	ALE	AV	- /
2483.5	67.93	-8.17	59.76	74	-14.24	V	PK	/
2483.5	47.97	-8.17	39.80	54	-14.20	V	AV	

Note: Freq. = Emission frequency in MHz Reading level (dB μ V) = Receiver reading Corr. Factor (dB) = Attenuation factor + Cable loss Level (dB μ V) = Reading level (dB μ V) + Corr. Factor (dB) Limit (dB μ V) = Limit stated in standard Margin (dB) = Level (dB μ V) – Limits (dB μ V)

Contration & Test

WSE7

S DHOM * PT

Zatio

OUD

(Shenz

60

*****END OF REPORT*****

世际检测认证数价 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China a(Shenzhen) Co. Ita