

NSET



WSET



Please Contact with WSCT www.wsct-cert.com

**TEST REPORT** 

FCC ID: 2ADYY-T16MA **Product: Laptop Computer** Model No.: T16MA **Trade Mark: TECNO** Report No.: WSCT-A2LA-R&E240300013A-15B Issued Date: 16 April 2024

#### Issued for:

**TECNO MOBILE LIMITED** FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET FOTAN NT HONGKONG

#### Issued By:

World Standardization Certification & Testing Group(Shenzhen) Co., Ltd. Building A-B, Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL: +86-755-26996192 n & Te

FAX: +86-755-86376605

Note: The results contained in this report pertain only to the tested sample. This report shall not be reproduced, except in full, without written approval of World Standardization Certification & Testing Group(Shenzhen) Co., Ltd. This report must not be used by the client to claim product certification, approval, or any agency of the U.S. Government.



Member of the WSCT INC



NSE

Sentication & Test

WSET

DUOM \* PT

rdizatio

Group (Shenzy

.60

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.





For Question,

Please Contact with WSCT www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240300013A-15B

## TABLE OF CONTENTS

| /     | WEIGH WEIGH WEIGH AVEI                             |   |
|-------|----------------------------------------------------|---|
| /1.   | Test Certification                                 |   |
| 2.    | GENERAL DESCRIPTION OF EUT 4                       |   |
| 3.    | Test Result Summary                                |   |
|       | TEST METHODOLOGY                                   | 1 |
|       | 4.1. CONFIGURATION OF SYSTEM UNDER TEST            |   |
| 1     | 4.2. DESCRIPTION OF SUPPORT UNITS (CONDUCTED MODE) |   |
| 5.    | MEASUREMENT INSTRUMENTS                            |   |
| 6.    | Facilities and Accreditations 10                   |   |
|       | 6.1. FACILITIES                                    |   |
|       | 6.2. ACCREDITATIONS                                | Z |
|       | 6.3. MEASUREMENT UNCERTAINTY                       |   |
| 7.    | EMC EMISSION TEST                                  | 4 |
|       | 7.1. CONDUCTED EMISSION MEASUREMENT                |   |
| 1     | 7.2. RADIATED EMISSION MEASUREMENT                 |   |
| ALC L |                                                    |   |

世标检测认证数册 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China ap (Shenzhen) Co. Ltd TEL:86,755-26996192 26992306 FAX:86-755-86376605 E-mail: Fengbing.Wang@wsci-cert.com Http://www.wsci-cert.com

610

| H |                          | Ination Certification & Testing Group (Shenzhen) Co.,Ltd.                                  |
|---|--------------------------|--------------------------------------------------------------------------------------------|
|   | Product:                 | Laptop Computer                                                                            |
|   | Model No.:               | T16MA                                                                                      |
|   | Trade Mark:              | TECNO                                                                                      |
|   | Applicant:               | TECNO MOBILE LIMITED                                                                       |
|   | Address:                 | FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25<br>SHAN MEI STREET FOTAN NT HONGKONG |
|   | Manufacturer:            | TECNO MOBILE LIMITED                                                                       |
|   | Address:                 | FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25<br>SHAN MEI STREET FOTAN NT HONGKONG |
|   | Date of Test:            | 02 April 2024 to 16 April 2024                                                             |
|   | Applicable<br>Standards: | FCC CFR Title 47 Part 15 Subpart B                                                         |

The above equipment has been tested by World Standardization Certification & Testing Group(Shenzhen) Co., Ltd. and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

NSET Tested By: Chen Checked By: (Wang Xiang) (Chen Xu) on & Tes Approved By: Date: (Liu Fuxin) WSE ngation & Tes WSET NSET ADD:Building A-B-Baoshi Science & Technology Park, Baoshi Road,Baoan District, Shenzhen, Guangdong, China TEL:0086-755-26996192 26996053 FAX:0086-755-86376605 E-mail:fengbing.wang@wsci-cert.com Http://www.wsci-cert.com 世标检测认证股份 World Standardization Certification & Technology oup (Shenzhen) Co., Ltd. Member of the WSCT INC. Page 3 of 21



NSE

Sentication & Testin

Wolfallon Bandarowski

Group (Shenzh

60

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.





Report No.: WSCT-A2LA-R&E240300013A-15B

| 2. GENER                    |                                                                                                                    |                                                      | Certificate #5768.0             | Please Contact with WSCT<br>www.wsct-cert.com |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------|-----------------------------------------------|
| Equipment<br>Type:          | Laptop Com                                                                                                         | puter ///Sci                                         | WEIGH                           | AFT                                           |
| Test Model:                 | T16MA                                                                                                              | $\sim$                                               | $\vee$                          |                                               |
| Trade Mark                  | TECNO                                                                                                              |                                                      | $\wedge$                        |                                               |
| Operating<br>Voltage:       | Input: 100-24<br>Output:PD:5<br>15V3A<br>PPS:3.3-11V<br>Rechargeab<br>Rated Voltag<br>Rated Capad<br>Typical Capad | le Li-ion Battery: 528282-                           | A TATA                          |                                               |
| Remark:                     | N/A.                                                                                                               | $\times$ $\times$                                    | X                               | $\times$                                      |
| Configuration di            | fferences 🖊                                                                                                        |                                                      |                                 |                                               |
| Configuration/<br>Processor | Camera                                                                                                             | LCD                                                  | Touchpad                        | AVEIAN                                        |
| T16MA (i5)                  | CK2B2B                                                                                                             | P160NH41P-R4                                         | AMR13489-PCT1336U-8-24          | 0116                                          |
| T16MA (i7)                  | KANC792                                                                                                            | GY160WUXGM-N33-B                                     | SP1503T_V10                     |                                               |
|                             |                                                                                                                    | configurations have been<br>main test model reported | h tested, and the T16MA (i7) ha | is the                                        |

世标检测认证股份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China p(Shenzhen)Co.Ltta







For Question, Please Contact with WSCT

www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240300013A-15B

## 3. Test Result Summary

|   | AULTER AULT        | TTA ATTACK     | AULSTRICK / | WISTER N |
|---|--------------------|----------------|-------------|----------|
| 7 | Requirement        | CFR 47 Section | Result      |          |
|   | CONDUCTED EMISSION | §15.107        | PASS        |          |
| 2 | RADIATED EMISSION  | §15.109        | PASS        | -/       |

185

Note:

1.11

Controlion & Test

WSET

S PHOM \* PT

Zatio

IOUP.

60

(Shenz

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

世标检测认证数份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China n(Shenzhen) [o. ltr. TEL:86/755-26996192 26992306 FAX 86-755-86376605 E-mail: Fengbing.Wang@wsci-cert.com Http://www.wsci-cert.com







For Question, Please Contact with WSCT

www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240300013A-15B

# 4. TEST METHODOLOGY

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

| Pretest Mode | Description                                 |     |
|--------------|---------------------------------------------|-----|
| Mode 1       | Video Recording                             |     |
| Model 2      | Video Playing                               | /   |
| Mode 3       | Transferring with USB Disk (the worst case) |     |
| Mode 4       | TF Card Playing                             | -   |
|              |                                             | 176 |

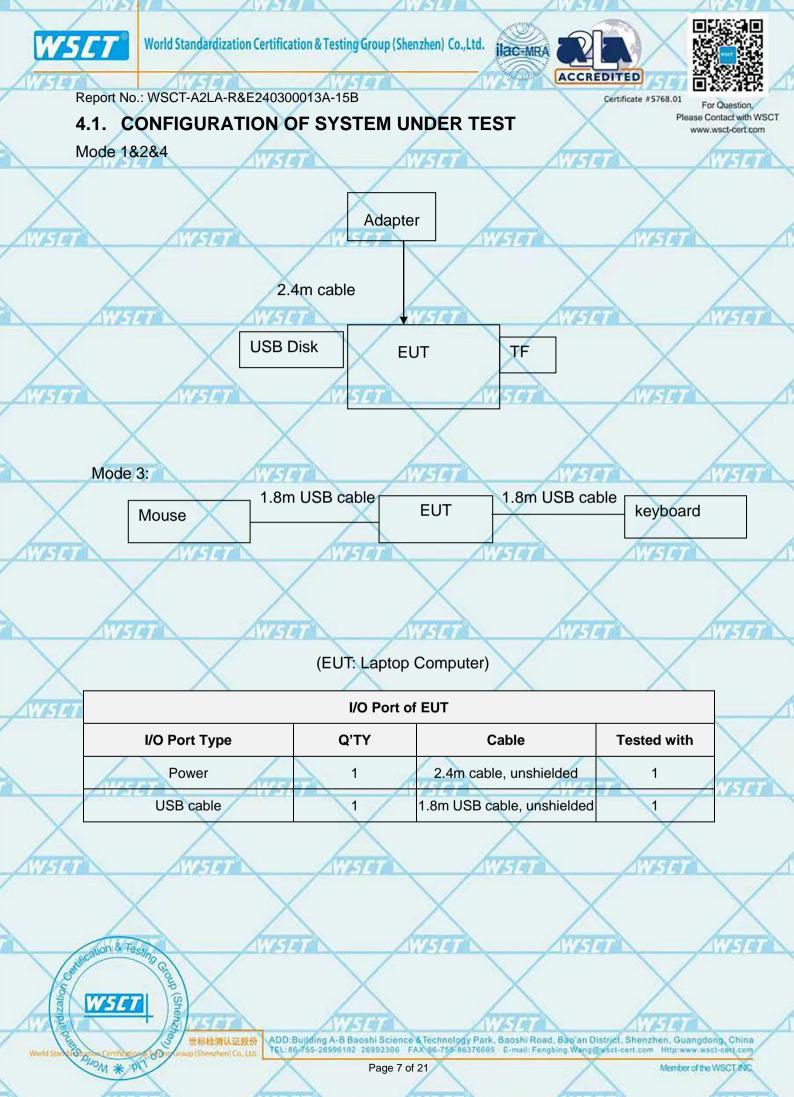


110

Contration & Test

Zahi

WSE7


SPHOM \* PT



up (Sher

60

世标检测认证数份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China p(Shenzhen) Co.tta TEL:86/755-26996192 26992306 FAX 86-755-86376605 E-mail: Fengbing.Wang@wscl-cert.com Http://www.wscl-cert.com







For Question, Please Contact with WSCT

www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240300013A-15B

## 4.2. DESCRIPTION OF SUPPORT UNITS (CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

| o. Note |
|---------|
|         |
| /       |
| /       |
|         |
|         |
|         |
|         |

#### Note:

ation & Tes

WSET

PHOM \* PT

up (She)

Contifict

Zati

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in <sup>r</sup>Length<sub>1</sub>
  - column.

世标检测认证数份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China p[Stenzhen] Co.ltd. TEL:86-755-26996192 26992308 FAX 86-755-86376605 E-mail: Fengbing.Wang@wsci-cert.com Http://www.wsci-cert.com/







Please Contact with WSCT

www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240300013A-15B

2

NSE

Sentication & Test

WSET

Souon \* PT

rdizatio

Group (Shenzy

60

# 5. MEASUREMENT INSTRUMENTS

|   |                    |              |             |             |                    | /                   |              |
|---|--------------------|--------------|-------------|-------------|--------------------|---------------------|--------------|
|   | Kind of Equipment  | Manufacturer | Type No.    | Serial No.  | Last<br>Calibrated | Calibrated<br>until | ET           |
| 1 | Test software      |              | EZ-EMC      | CON-03A     |                    | ×                   |              |
|   | ESCI Test Receiver | R&S          | ESCI        | 100005      | 11/05/2023         | 11/04/2024          |              |
| ( | LISN 4454          | AFJ          | 567 LS16    | 16010222119 | 11/05/2023         | 11/04/2024          |              |
|   | LISN(EUT)          | Mastic       | AN3016      | 04/10040    | 11/05/2023         | 11/04/2024          | /            |
|   | pre-amplifier      | CDSI         | PAP-1G18-38 | -           | 11/05/2023         | 11/04/2024          | $\backslash$ |
|   | System Controller  | W CT 7       | SC100 577   | A - /       | 11/05/2023         | 11/04/2024          | ET           |
|   | Bi-log Antenna     | Chase        | CBL6111C    | 2576        | 11/05/2023         | 11/04/2024          |              |
|   | Spectrum analyzer  | R&S          | FSU26       | 200409      | 11/05/2023         | 11/04/2024          |              |
| ( | Horn Antenna       | SCHWARZBECK  | 9120D       | 1141        | 11/05/2023         | 11/04/2024          |              |
|   | Bi-log Antenna     | SCHWARZBECK  | VULB9168    | 01488       | 11/05/2023         | 11/04/2024          | /            |
|   | Pre Amplifier      | H.R.         | HP8447E     | 2945A02715  | 11/05/2023         | 11/04/2024          | X            |
|   | 9*6*6 Anechoic     | ATT          | Auster      | - /         | 11/05/2023         | 11/04/2024          | 741          |
|   |                    |              |             |             |                    |                     |              |

世标检测认证股份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China p(Shenzhen)Co.Ltit

610







For Question, Please Contact with WSCT

www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240300013A-15B

## 6. Facilities and Accreditations

## 6.1. Facilities

All measurement facilities used to collect the measurement data are located at Building A-B, Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China of the World Standardization Certification & Testing Group(Shenzhen) CO., LTD

The sites are constructed in conformance with the requirements of ANSI C63.4 and CISPR Publication 32. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

## 6.2. ACCREDITATIONS

#### **CNAS - Registration Number: L3732**

China National Accreditation Service for Conformity Assessment, The test firm Registration Number: L3732

#### FCC - Designation Number: CN1303

World Standardization Certification & Testing Group(Shenzhen) CO., LTD. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Designation Number: CN1303.

### A2LA - Certificate Number: 5768.01

tion & Tes

W5E

PHOM \* P

S

60

The EMC Laboratory has been accredited by the American Association for Laboratory Accreditation (A2LA).Certification Number: 5768.01

世标检测认证股份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China (Shenzhen) Co. Lta



15E

Contration & Test

WSET

S PHOM \* PT

Zatio

oup (Shenz

60

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.





Report No.: WSCT-A2LA-R&E240300013A-15B

### 6.3. Measurement Uncertainty

Please Contact with WSCT www.wsct-cert.com d uncertainty U is based

The reported uncertainty of measurement  $y \pm U$ , where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

| 1 | No. | Item                                             | MU      |    |
|---|-----|--------------------------------------------------|---------|----|
| 7 | Y   | Conducted Emission Test                          | ±3.2dB  |    |
|   | 2   | RF power, conducted                              | ±0.16dB | X  |
|   | 3   | Spurious emissions, conducted                    | ±0.21dB | 11 |
| 1 | 4   | All emissions, radiated(<1GHz)                   | ±4.7dB  |    |
| 1 | 5   | All emissions, radiated(>1GHz)                   | ±4.7dB  |    |
| 7 | 6   | Temperature //////////////////////////////////// | ±0.5°C  |    |
|   | 7   | Humidity                                         | ±2.0%   | X  |



 $(S_{i})$ 







For Question

Please Contact with WSCT www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240300013A-15B

### 7. EMC EMISSION TEST

# 7.1. CONDUCTED EMISSION MEASUREMENT

## 7.1.1. POWER LINE CONDUCTED EMISSION LIMITS

|                 |            | The self and selfs |            |           | JIT J WE also and |
|-----------------|------------|--------------------|------------|-----------|-------------------|
| FREQUENCY (MHz) | Class A    | (dBuV)             | Class B    | Standard  |                   |
|                 | Quasi-peak | Average            | Quasi-peak | Average   | Stanuaru          |
| 0.15 -0.5       | 79.00      | 66.00              | 66 - 56 *  | 56 - 46 * | FCC               |
| 0.50 -5.0       | 73.00      | 60.00              | 56.00      | 46.00     | FCC               |
| 5.0 -30.0       | 73.00      | 60.00              | 60.00      | 50.00     | FCC               |

#### Note:

mon & Tes

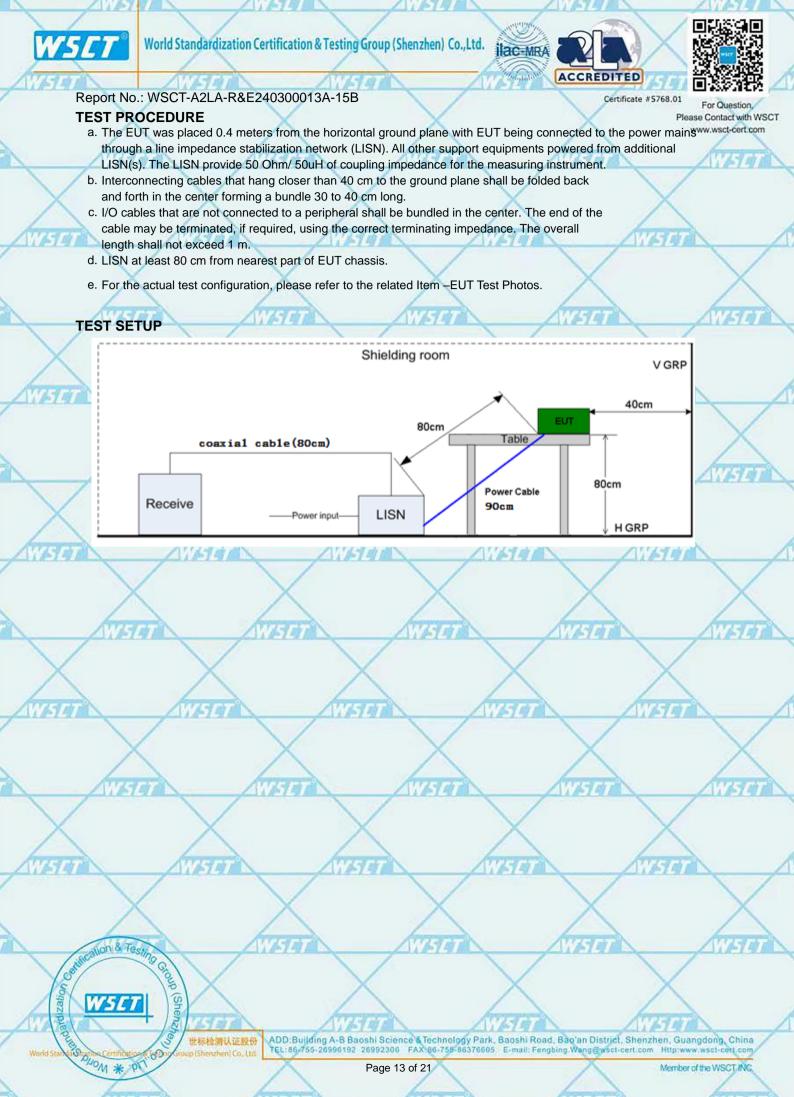
WSE7

PLOM \* PT

up (Sher

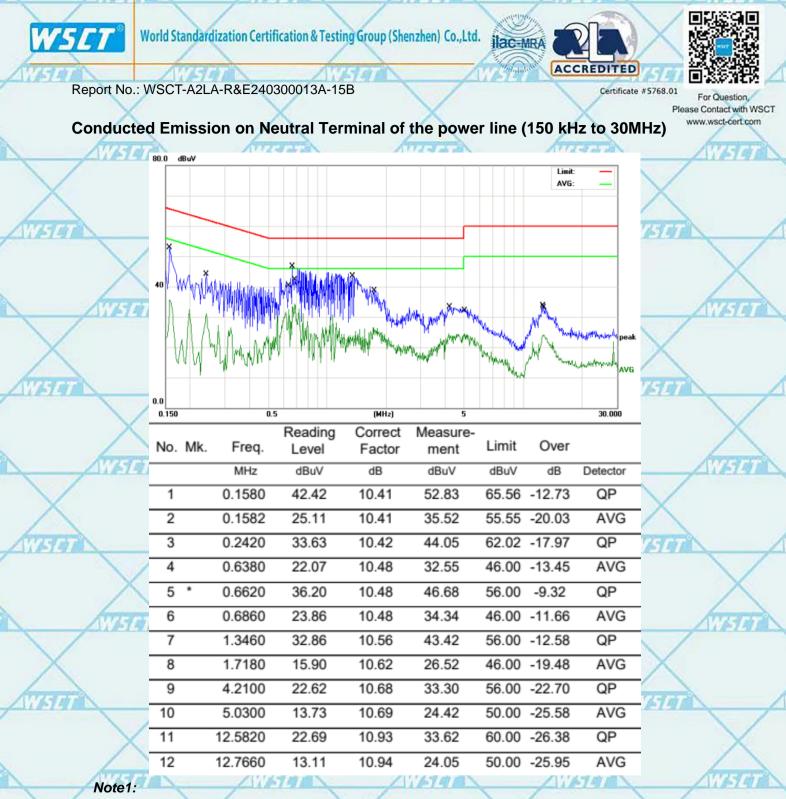
60

Cot


Zahi

- (1) The tighter limit applies at the band edges.
  - (2) The limit of " \* " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

| The following | table is | the | setting | of | the receiver |  |
|---------------|----------|-----|---------|----|--------------|--|
| The following |          | uio | Sound   | U. |              |  |


| Receiver Parameters | Setting  |   |
|---------------------|----------|---|
| Attenuation         | 10 dB    |   |
| Start Frequency     | 0.15 MHz | _ |
| Stop Frequency      | 30 MHz   | 1 |
| IF Bandwidth        | 9 kHz    | 1 |
|                     |          | / |





| 1110                    |               |              |                   | Pie              |                   |                   | PIARS                                  | - alesta              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ū                             | inesae                               |
|-------------------------|---------------|--------------|-------------------|------------------|-------------------|-------------------|----------------------------------------|-----------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------------------|
| <u>YSET</u>             | W             | orld St      | tandar            | dization Certifi | ication & Testin  | ng Group (She     | enzhen) Co.,Ltd.                       | I. ilac M             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\times$                      |                                      |
| ITA                     |               | 1            | 175               | The second       | AV.               | Sar               | /                                      | Wind grade            | ACC         | REDITED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | VSCT E                        |                                      |
| Report N                | No.: W        | VSCT         | Γ-A2L             | A-R&E2403        | 300013A-15        | ,B                |                                        |                       |             | Certificate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               | For Question,                        |
| 7.1.2                   | 2. Te         | est F        | ₹esu              | lts /            | $\langle \rangle$ |                   | $\wedge$                               |                       | 1           | $\langle \rangle$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                               | e Contact with W<br>ww.wsct-cert.com |
| Temp                    | perati        | ure          | 20                | °C F             | Relative H        | lumidity          | 48%                                    |                       | ATT         | 740                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | ATTA A                               |
| Press                   |               |              |                   |                  | Test Mode         |                   | Adapter:                               | Mode 3                | 3(the wo    | orst case                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               |                                      |
|                         |               |              | X                 |                  |                   | $\times$          |                                        | X                     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | X                             |                                      |
| TT                      | ona           | ucte         | €d Er             | nission c        | on Line 1         | erminal o         | of the pov                             | ver line              | ) (150 k    | Hz to 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | )MHz)                         |                                      |
| 1                       | 1             | 80.0         | dBu¥              |                  |                   |                   |                                        |                       | Limit:      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               | $\mathbf{\nabla}$                    |
|                         | X             |              |                   |                  |                   |                   |                                        |                       | AVG:        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               | X                                    |
| 1                       | 567           |              | -                 |                  |                   |                   |                                        |                       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               | AVISIO                               |
| /                       |               |              | Å_                |                  |                   |                   |                                        |                       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | /                             |                                      |
| X                       |               | $\mathbb{V}$ | 1                 |                  | ×                 | 41 1              |                                        |                       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | X                             |                                      |
| TAT                     |               | 40           | NW                | Mandulla         |                   |                   | ×                                      |                       | Ň           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ISIA                          |                                      |
|                         |               | A            | <del>  </del> -   | b . Holdsmith.   | A Marco           | 1 1 m             | malyninghing                           | Month White Laborer W | AL          | . Anneat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | IC L'A MA                     |                                      |
|                         | X             | _ [Y         | 4                 | Allamatar        | ANTWAR            | Manuthan          | Luthy this mind of more                | Mr. Weller            | <u> Yrw</u> | AVG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | X                                    |
| ke                      | 133           |              | V                 | A A MANALL       | I Authore         |                   |                                        |                       | Vhy         | Under                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               | ATTA                                 |
|                         | -1-2          | 0.0          |                   |                  |                   |                   |                                        |                       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                             | CIE I T                              |
| $\langle$               |               | 0.150        | ٥                 | 0.5              | -                 | (MHz)             | 5                                      |                       |             | 30.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | X                             |                                      |
|                         |               | No.          | . Mk.             | Freq.            | Reading<br>Level  | Correct<br>Factor | Measure-<br>ment                       | Limit                 | Over        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               |                                      |
| III                     |               |              |                   | MHz              | dBuV              | dB                | dBuV                                   | dBuV                  | dB          | Detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 619 M                         |                                      |
|                         | X             | 1            | *                 | 0.1780           | 48.05             | 10.41             | 58.46                                  | 64.57                 | -6.11       | QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               | X                                    |
| 6                       |               | 2            |                   | 0.1780           | 27.91             | 10.41             | 38.32                                  | 54.57                 | -16.25      | AVG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                             | -                                    |
| Alle                    | <u>'5E)</u> - | 3            |                   | 0.6300           | 33.55             | 10.48             | 44.03                                  | 56.00                 | -11.97      | QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | /                             |                                      |
| $\times$                |               | 4            |                   | 0.6780           | 26.54             | 10.48             | 37.02                                  | 46.00                 | -8.98       | AVG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X                             |                                      |
|                         |               | 5            |                   | 1.0940           | 34.70             | 10.52             | 45.22                                  | 56.00                 | -10.78      | QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $ \leq $                      |                                      |
| SET                     | _             | 6            |                   | 1.7660           | 14.77             | 10.62             | 25.39                                  | 46.00                 | -20.61      | AVG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 75ET 1                        | 1                                    |
|                         | X             | 7            |                   | 1.8100           | 27.37             | 10.63             | 38.00                                  | 56.00                 | -18.00      | QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               | X                                    |
| 1                       |               | 8            |                   | 5.3100           | 24.91             | 10.70             | 35.61                                  |                       | -24.39      | QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               |                                      |
|                         | /5/CI         |              |                   | 5.4300           | 16.62             | 10.70             | 27.32                                  |                       | -22.68      | AVG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | AWSIA                                |
|                         |               | 10           |                   | 12.0860          | 19.97             | 10.90             | 30.87                                  |                       | -19.13      | AVG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\vee$                        |                                      |
|                         |               | 11           |                   | 12.3460          | 30.02             | 10.92             | 40.94                                  |                       | -19.06      | QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\wedge$                      |                                      |
| TH                      |               | 12           |                   | 28.7220          | 10.43             | 10.97             | 21.40                                  | 50.00                 | -28.60      | AVG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7517                          |                                      |
|                         |               |              |                   |                  |                   |                   | $\bigvee$                              |                       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               | V                                    |
| /                       | $\wedge$      |              |                   | /                | $\langle \rangle$ | - 1               | $\wedge$                               |                       | 1           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               | $\wedge$                             |
| ation &                 | Testin        | A            |                   | ATT              | 907               | 1                 | WSET                                   |                       | AVI         | SET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | ATTE                                 |
| Cotulic                 | 0             | Gio          |                   | /                |                   |                   |                                        |                       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                             |                                      |
| Sal TTA                 | al            | up (S)       | i /               |                  | -                 | $\times$          |                                        | X                     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | X                             |                                      |
| Stanta Office Certifice | 24            | lenzi        | 175               | FT               |                   | HAR               | 1                                      | (UETA)                |             | and the second sec | 17507                         |                                      |
| Star La Parto Certific  | President 1   | 03           | 世标检<br>roug [Sher | b新认证股份 AD<br>tel |                   |                   | e & Technology Pa<br>FAX 86-755-863760 |                       |             | n District, Shei<br>ing@wsct-cert.c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nzhen, Guang<br>om Http://www | dong, China<br>wsci-coti.com         |
| PHOM *                  | E PIT         | /            | Ange Contractory  | THE CALL OF THE  | X                 | Page 14 o         |                                        |                       |             | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                               | the WSCT INC                         |

Lucitezines of the state



Freq. = Emission frequency in MHz

Reading level  $(dB\mu V)$  = Receiver reading Corr. Factor (dB) = LISN factor + Cable loss

Measurement  $(dB\mu V) = Reading level (dB\mu V) + Corr. Factor (dB)$ 

Limit ( $dB\mu V$ ) = Limit stated in standard

Margin (dB) = Measurement (dB $\mu$ V) – Limits (dB $\mu$ V)

Q.P. =Quasi-Peak AVG =average

(Sher

Cettifit

7at

WSE

SPHOM \* PT

\* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

世标检测认证数份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China a(Shenzhen) Co. Ma







For Question

Please Contact with WSCT www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240300013A-15B

### 7.2. RADIATED EMISSION MEASUREMENT

### 7.2.1. Radiated Emission Limits

The field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

| Frequencies                              | Field Strength                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Measurement Distance       |
|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| (MHz)                                    | (micorvolts/meter)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (meters)                   |
| 0.009~0.490                              | 2400/F(KHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 300                        |
| 0.490~1.705                              | 24000/F(KHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 30                         |
| 1.705~30.0                               | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30                         |
| 30~88                                    | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                          |
| 88~216                                   | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                          |
| 216~960                                  | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | X 3 X                      |
| Above 960                                | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                          |
| (and and and and and and and and and and | And and and a second se | California Contraction (C) |

### LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

| FREQUENCY (MHz) | Limit (dBuV/m) (at 3M) |         |
|-----------------|------------------------|---------|
|                 | PEAK                   | AVERAGE |
| Above 1000      | 74                     | 54      |
|                 |                        |         |

Notes:

non & Tes

WSE7

PHOM \* PT

(She

68

(1) The limit for radiated test was performed according to FCC PART 15B.

(2) The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

| Spectrum Parameter                    | Setting                                         |  |
|---------------------------------------|-------------------------------------------------|--|
| Attenuation                           | Auto                                            |  |
| Start Frequency                       | 1000 MHz                                        |  |
| Stop Frequency                        | 10th carrier harmonic                           |  |
| RB / VB (emission in restricted band) | 1 MHz / 1 MHz for Peak, 1 MHz / 1Hz for Average |  |
|                                       |                                                 |  |

| Receiver Parameter     | Setting                          |
|------------------------|----------------------------------|
| Attenuation            | Auto                             |
| Start ~ Stop Frequency | 9kHz~150kHz / RB 200Hz for QP    |
| Start ~ Stop Frequency | 150kHz~30MHz / RB 9kHz for QP    |
| Start ~ Stop Frequency | 30MHz~1000MHz / RB 120kHz for QP |

世标检测认证股份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China 1(Shenzhen) Co. Lta





Report No.: WSCT-A2LA-R&E240300013A-15B

#### TEST PROCEDURE

ation & Tes

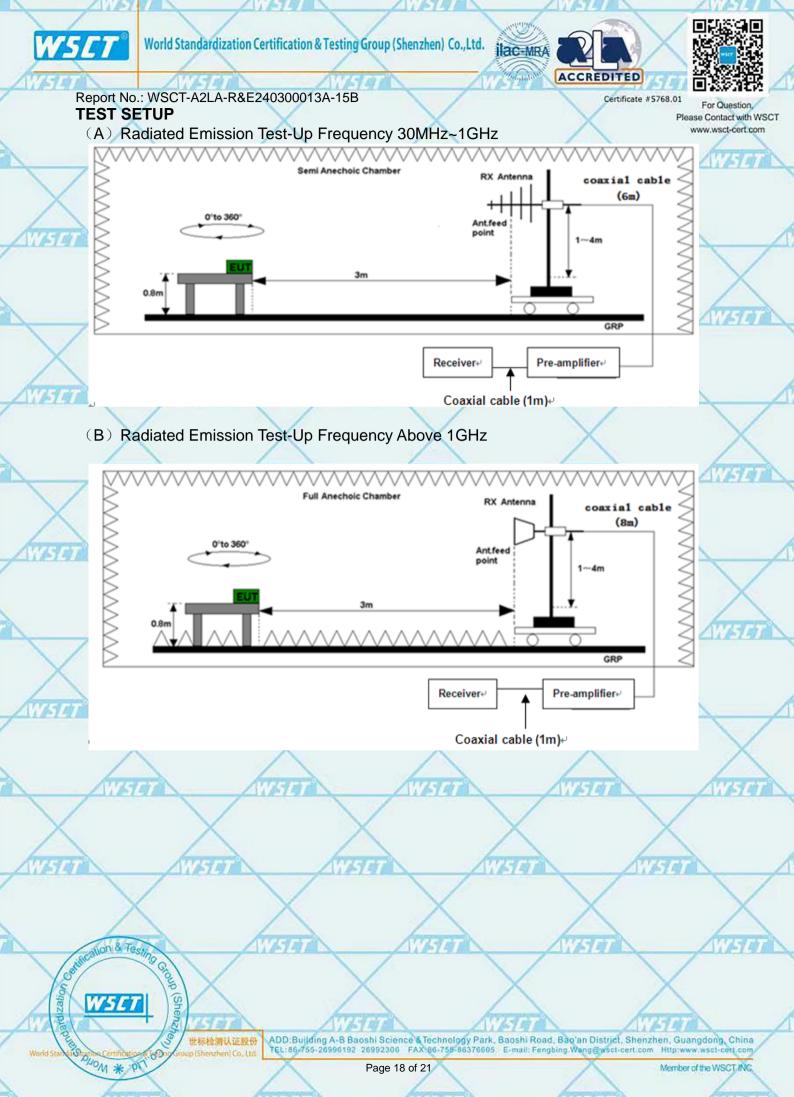
W5E

PHOM \* P

mp (She)

Col

Certificate #5768.01 For Question, Please Contact with WSCT


ACCREDITED

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For www.wsct-cert.com frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter open area test site. The table was rotated 360 degrees to determine the position of the highest radiation.
  c. The height of the equipment or of the substitution antenna shall be 0.8 m; the height of the test
- antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.

e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.

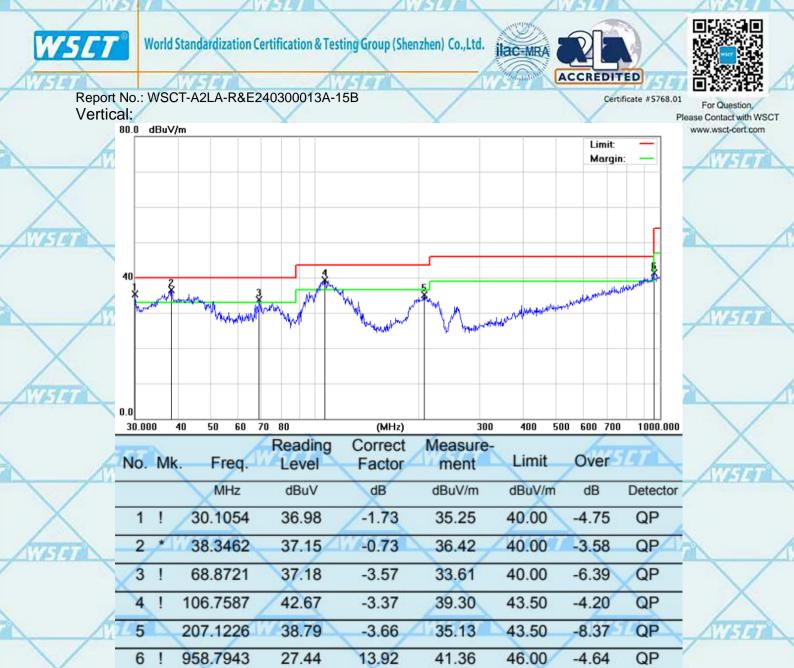
f. For the actual test configuration, please refer to the related Item -EUT Test Photos.

世际检测认证数份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China p(Shenzhen) Co. Ltd. TEL: 86-755-26996192 26992306 FAX 86-755-86376605 E-mail: Fengbing Wang@wsct-cert.com Http://www.wsct-cert.com





Member of the WSCT INC


Contration & Test

WSE

SPHOM \* PT

7at

up (Shen



#### Note:

ation & Tes

W5E7

PLOM \* PT

up (Sher

Contifict

7at

Freq. = Emission frequency in MHz Reading level  $(dB\mu V)$  = Receiver reading Corr. Factor (dB) = Antenna factor + Cable loss - Amplifier factor. Measurement  $(dB\mu V)$  = Reading level  $(dB\mu V)$  + Corr. Factor (dB)Limit  $(dB\mu V)$  = Limit stated in standard Margin (dB) = Measurement  $(dB\mu V)$  – Limits  $(dB\mu V)$ 

> 世标检测认证数价 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China n(Shenzhen) Co. Ita

> > Member of the WSCT INC







For Question

Please Contact with WSCT www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240300013A-15B **TEST RESULTS** Above 1GHz(1~26GHz) :( Adapter:Mode 3—worst case)

Emission Limit Over(dB) Freq. Ant. (MHz) Pol. Level(dBuV) 3m(dBuV/m) AV H/V ΡK AV ΡK AV ΡK 1747.56 V 60.44 41.76 74 54 -13.56 -12.24 2707.94 V 40.18 74 -13.82 58.75 54 -15.25 1670.52 Η 59.23 40.73 74 54 -14.77 -13.27 -14.07 2681.08 Н 59.93 40.93 74 54 -13.07

#### Remark:

1.11

Contration & Test

Zahi

WSE7

PLOM \* PT

up (Shen

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Freq. = Emission frequency in MHz

Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Over= Emission Level - Limit.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

## \*\*\*\*\*END OF REPORT\*\*\*\*\*

世际检测认证数份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China n(Shenzhen) [0.11] TEL:86-755-26996192 26992300 FAX 86-755-86376605 E-mail: Fengbing Wang@wsci-cert.com Http://www.wsci-cert.com