

RF Test Report

For

Applicant Name:

TECNO MOBILE LIMITED

Address:

EUT Name:

Brand Name:

Model Number:

FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET FOTAN NT HONGKONG Laptop Computer TECNO **T15RA** Series Model Number: Refer to Section 2

Issued By

Company Name:

BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Address:

Report Number: BTF230918R00304 **Test Standards:** 47 CFR Part 15E

Test Conclusion: FCC ID: Test Date: Date of Issue:

Pass 2ADYY-T15RA 2023-08-25 to 2023-09-21 2023-09-22

Prepared By:

Date:

Approved By:

Date:

Note: All the test results in this report only related to the testing samples. Which can be duplicated completely for the legal use with approval of applicant; it shall not be reproduced except in full without the written approval of BTF Testing Lab (Shenzhen) Co., Ltd., All the objections should be raised within thirty days from the date of issue. To validate the report, you can contact us.

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

2023-09-22

Page 1 of 192

Revision History			
Version	Issue Date	Revisions Content	
R_V0	2023-09-22	Original	

Note: Once the revision has been made, then previous versions reports are invalid.

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 2 of 192BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Table of Contents

1	INTR	DDUCTION	. 5
	1.1	Identification of Testing Laboratory	
	1.2	Identification of the Responsible Testing Location	
	1.3	Announcement	
2	PRO	DUCT INFORMATION	
	2.1	Application Information	
	2.2 2.3	Manufacturer Information	
	2.3	General Description of Equipment under Test (EUT)	
	2.5	Technical Information	
3	SUM	IARY OF TEST RESULTS	. 7
	3.1	Test Standards	
	3.2	Uncertainty of Test	
	3.3	Summary of Test Result	
4	TEST	CONFIGURATION	. 8
	4.1	Test Equipment List	. 8
	4.2	Test Auxiliary Equipment	
	4.3 4.4	Test Modes	
_		Table of Parameters of Text Software Setting	
5		UATION RESULTS (EVALUATION)	
	5.1	Antenna requirement	
		5.1.1 Conclusion:	
6		O SPECTRUM MATTER TEST RESULTS (RF)	
	6.1	Conducted Emission at AC power line	
		6.1.1 E.U.T. Operation:	
		6.1.2 Test Setup Diagram:6.1.3 Test Data:	
	6.2	Duty Cycle	
	0.2	6.2.1 E.U.T. Operation:	
		6.2.2 Test Data:	
	6.3	Maximum conducted output power	21
		6.3.1 E.U.T. Operation:	22
		6.3.2 Test Data:	
	6.4	Power spectral density	
		6.4.1 E.U.T. Operation:	
	C F	6.4.2 Test Data:	
	6.5	Emission bandwidth and occupied bandwidth	
		6.5.2 Test Data:	
	6.6	Band edge emissions (Radiated)	
		6.6.1 E.U.T. Operation:	
		6.6.2 Test Setup Diagram:	29
		6.6.3 Test Data:	
	6.7	Undesirable emission limits (below 1GHz)	
		6.7.1 E.U.T. Operation:	
		6.7.2 Test Setup Diagram:	
			10

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 3 of 192BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Test Report Number: BTF230918R00304

6.8	Unde	sirable emission limits (above 1GHz)	42
	6.8.1	E.U.T. Operation:	
	6.8.2	Test Data:	44
			-

1 Introduction

1.1 Identification of Testing Laboratory

Company Name:	BTF Testing Lab (Shenzhen) Co., Ltd.		
Address:	F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China		
Phone Number:	+86-0755-23146130		
Fax Number:	+86-0755-23146130		

1.2 Identification of the Responsible Testing Location

Company Name:	BTF Testing Lab (Shenzhen) Co., Ltd.	
Address:	F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China	
Phone Number:	+86-0755-23146130	
Fax Number:	+86-0755-23146130	
FCC Registration Number:	518915	
Designation Number:	CN1330	

1.3 Announcement

(1) The test report reference to the report template version v0.

(2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.

(3) The test report is invalid if there is any evidence and/or falsification.

(4) This document may not be altered or revised in any way unless done so by BTF and all revisions are duly noted in the revisions section.

(5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.

(6) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

2 **Product Information**

2.1 Application Information

Company Name:	TECNO MOBILE LIMITED
Address:	FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET FOTAN NT HONGKONG

2.2 Manufacturer Information

Company Name:	TECNO MOBILE LIMITED
Address:	FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET FOTAN NT HONGKONG

2.3 Factory Information

Company Name:	GUANGXI SHANCHAUN TECHNOLOGY CO LTD
Address:	The Second Floor of Plant C01, Plant C02, Plant C03 and Plant D03 Guangxi Sannuo Smart Industrial Park, No.3, Gaoke Road, Beihai Industrial Park, BEIHAI, 536000 Guangxi, P.R.China

2.4 General Description of Equipment under Test (EUT)

EUT Name:	Laptop Computer
Test Model Number:	T15RA
Series Model Number:	N/A
Software Version:	Win 11 home
Hardware Version:	N156EAL01_MB_V11

2.5 Technical Information

	Li-ion Battery: 156
	Rated Voltage: 11.55V
Power Supply:	Rated Capacity: 6060mAh/70Wh
	Typical Capacity: 6160mAh/71.14Wh
	Limited Charge Voltage: 13.2V
	Band 1: 5180-5250 MHz
	Band 2: 5250-5320 MHz
Operation Frequency:	Band 3: 5500-5700 MHz
	Band 4: 5745-5825 MHz
Number of Channels:	Refer to Section 4.4
Medulation Turney	IEEE 802.11a/n/ac/ax: OFDM/OFDMA
Modulation Type:	(BPSK/QPSK/16QAM/64QAM/256QAM/1024QAM)
Antenna Type:	PIFA Antenna
MIAN Antenna Gain [#] :	4.29dBi
AUX Antenna Gain	4.33dBi

Note:

#: The antenna gain provided by the applicant, and the laboratory will not be responsible for the accumulated calculation results which covers the information provided by the applicant.

3 Summary of Test Results

3.1 Test Standards

The tests were performed according to following standards: 47 CFR Part 15E: Unlicensed National Information Infrastructure Devices

3.2 Uncertainty of Test

Item	Measurement Uncertainty	
Conducted Emission (150 kHz-30 MHz)	±2.64dB	
The following measurement uncertainty levels have been estimated for tests performed on the EUT as		
specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately		
the 95% confidence level using a coverage factor of k=2.		

Item	Standard	Requirement	Result
Antenna requirement	47 CFR Part 15E	Part 15.203	Pass
Conducted Emission at AC power line	47 CFR Part 15E	47 CFR Part 15.207(a)	Pass
Maximum conducted output power	47 CFR Part 15E	47 CFR Part 15.407(a)(1)(i) 47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(2) 47 CFR Part 15.407(a)(3)(i)	Pass
Power spectral density	47 CFR Part 15E	47 CFR Part 15.407(a)(1)(i) 47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(2) 47 CFR Part 15.407(a)(3)(i)	Pass
Emission bandwidth and occupied bandwidth	47 CFR Part 15E	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use. 47 CFR Part 15.407(e)	Pass
Channel Availability Check Time	47 CFR Part 15E	47 CFR Part 15.407(h)(2)(ii)	Pass
U-NII Detection Bandwidth	47 CFR Part 15E	47 CFR Part 15.407(h)(2)	Pass
Statistical Performance Check	47 CFR Part 15E	KDB 935210 D02, Clause 5.1 Table 2	Pass
Channel Move Time, Channel Closing Transmission Time	47 CFR Part 15E	47 CFR Part 15.407(h)(2)(iii)	Pass
Non-Occupancy Period Test	47 CFR Part 15E	47 CFR Part 15.407(h)(2)(iv)	Pass
DFS Detection Thresholds	47 CFR Part 15E	KDB 905462 D02, Clause 5.2 Table 3	Pass
Band edge emissions (Radiated)	47 CFR Part 15E	47 CFR Part 15.407(b)(1) 47 CFR Part 15.407(b)(2) 47 CFR Part 15.407(b)(4) 47 CFR Part 15.407(b)(10)	Pass
Undesirable emission limits (below 1GHz)	47 CFR Part 15E	47 CFR Part 15.407(b)(9)	Pass
Undesirable emission limits (above 1GHz)	47 CFR Part 15E	47 CFR Part 15.407(b)(1) 47 CFR Part 15.407(b)(2) 47 CFR Part 15.407(b)(4) 47 CFR Part 15.407(b)(10)	Pass

3.3 Summary of Test Result

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

Test Configuration 4

4.1 **Test Equipment List**

Conducted Emission at AC power line								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
Pulse Limiter	SCHWARZBECK	VTSD 9561-F	00953	2022-11-24	2023-11-23			
Coaxial Switcher	SCHWARZBECK	CX210	CX210	2022-11-24	2023-11-23			
V-LISN	SCHWARZBECK	NSLK 8127	01073	2022-11-24	2023-11-23			
LISN	AFJ	LS16/110VAC	16010020076	2023-02-23	2024-02-22			
EMI Receiver	ROHDE&SCHWA RZ	ESCI3	101422	2022-11-24	2023-11-23			

Duty Cycle					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
RFTest software	/	V1.00	/	/	/
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23

Maximum conducted output power							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
RFTest software	/	V1.00	/	/	/		
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23		
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23		
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23		
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23		
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23		
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23		

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 8 of 19BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Power spectral density							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
RFTest software	/	V1.00	/	/	/		
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23		
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23		
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23		
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23		
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23		
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23		

Emission bandwidth and occupied bandwidth								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
RFTest software	/	V1.00	/	/	/			
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23			
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23			
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23			
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23			
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23			
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23			

Channel Availability Check Time								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
RFTest software	/	V1.00	/	/	/			
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23			
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23			
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23			
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23			
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23			

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 9 of 19BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

COMMNUNICATION

TESTER

MXA Signal Analyzer

2022-11-24

2022-11-24

2023-11-23

2023-11-23

MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23
U-NII Detection Bandy	width				
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
RFTest software	/	V1.00	/	/	/
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23
WIDEBAND RADIO					

CMW500

N9020A

161997

MY50410020

Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
RFTest software	/	V1.00	/	/	/
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23

Channel Move Time, Channel Closing Transmission Time							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
RFTest software	/	V1.00	/	/	/		
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23		
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23		
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23		
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23		

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 10 of 19BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Rohde & Schwarz

KEYSIGHT

Page 10 of 192

Test Report Number: BTF230918R00304

WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23

Non-Occupancy Period Test								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
RFTest software	/	V1.00	/	/	/			
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23			
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23			
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23			
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23			
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23			
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23			

DFS Detection Thresholds							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
RFTest software	/	V1.00	/	/	/		
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23		
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23		
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23		
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23		
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23		
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23		

Band edge emissions (Radiated)								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	2023-03-24	2024-03-23			
Preamplifier	SCHWARZBECK	BBV9744	00246	2022-11-24	2023-11-23			
RE Cable	REBES Talent	UF1-SMASMAM-1 0m	21101566	2022-11-24	2023-11-23			
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2022-11-24	2023-11-23			
RE Cable	REBES Talent	UF1-SMASMAM-1 m	21101568	2022-11-24	2023-11-23			

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 11 of 19BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Test Report Number: BTF230918R00304

BES Talent BES Talent SKET WARZBECK	UF2-NMNM-1m UF2-NMNM-2.5m PCI-GPIB	21101576 21101573 /	2022-11-24 2022-11-24 /	2023-11-23 2023-11-23
SKET		21101573 /	2022-11-24	2023-11-23
	PCI-GPIB	/	/	,
WAR7BECK			,	/
	BBHA9170	01157	2021-11-28	2023-11-27
DE&SCHWA RZ	ESCI7	101032	2022-11-24	2023-11-23
DE&SCHWA RZ	FSQ40	100010	2022-11-24	2023-11-23
SKET	PCI-GPIB	/	/	/
WARZBECK	BBV9718D	00008	2023-03-24	2024-03-23
WARZBECK	BBHA9120D	2597	2022-05-22	2024-05-21
Frad	FA-03A2 RE+	/	/	/
SKET	PCI-GPIB	/	/	/
WARZBECK	VULB 9168	01328	2021-11-28	2023-11-27
	RZ DE&SCHWA RZ SKET WARZBECK WARZBECK Frad SKET	RZESCI7DE&SCHWA RZFSQ40SKETPCI-GPIBWARZBECKBBV9718DWARZBECKBBHA9120DFradFA-03A2 RE+SKETPCI-GPIB	RZ ESCI7 101032 DE&SCHWA RZ FSQ40 100010 SKET PCI-GPIB / WARZBECK BBV9718D 00008 WARZBECK BBHA9120D 2597 Frad FA-03A2 RE+ / SKET PCI-GPIB /	RZ ESCI7 101032 2022-11-24 DE&SCHWA RZ FSQ40 100010 2022-11-24 SKET PCI-GPIB / / WARZBECK BBV9718D 00008 2023-03-24 WARZBECK BBHA9120D 2597 2022-05-22 Frad FA-03A2 RE+ / / SKET PCI-GPIB / /

Undesirable emission	· · · · · · · · · · · · · · · · · · ·				
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	2023-03-24	2024-03-23
Preamplifier	SCHWARZBECK	BBV9744	00246	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF1-SMASMAM-1 0m	21101566	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF1-SMASMAM-1 m	21101568	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF2-NMNM-1m	21101576	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF2-NMNM-2.5m	21101573	2022-11-24	2023-11-23
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/
Horn Antenna	SCHWARZBECK	BBHA9170	01157	2021-11-28	2023-11-27
EMI TEST RECEIVER	ROHDE&SCHWA RZ	ESCI7	101032	2022-11-24	2023-11-23
SIGNAL ANALYZER	ROHDE&SCHWA RZ	FSQ40	100010	2022-11-24	2023-11-23
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/
Broadband Preamplilifier	SCHWARZBECK	BBV9718D	00008	2023-03-24	2024-03-23
Horn Antenna	SCHWARZBECK	BBHA9120D	2597	2022-05-22	2024-05-21
EZ_EMC	Frad	FA-03A2 RE+	/	/	/
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/
Log periodic antenna	SCHWARZBECK	VULB 9168	01328	2021-11-28	2023-11-27

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 12 of 19BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Undesirable emission limits (above 1GHz)							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	2023-03-24	2024-03-23		
Preamplifier	SCHWARZBECK	BBV9744	00246	2022-11-24	2023-11-23		
RE Cable	REBES Talent	UF1-SMASMAM-1 0m	21101566	2022-11-24	2023-11-23		
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2022-11-24	2023-11-23		
RE Cable	REBES Talent	UF1-SMASMAM-1 m	21101568	2022-11-24	2023-11-23		
RE Cable	REBES Talent	UF2-NMNM-1m	21101576	2022-11-24	2023-11-23		
RE Cable	REBES Talent	UF2-NMNM-2.5m	21101573	2022-11-24	2023-11-23		
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/		
Horn Antenna	SCHWARZBECK	BBHA9170	01157	2021-11-28	2023-11-27		
EMI TEST RECEIVER	ROHDE&SCHWA RZ	ESCI7	101032	2022-11-24	2023-11-23		
SIGNAL ANALYZER	ROHDE&SCHWA RZ	FSQ40	100010	2022-11-24	2023-11-23		
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/		
Broadband Preamplilifier	SCHWARZBECK	BBV9718D	00008	2023-03-24	2024-03-23		
Horn Antenna	SCHWARZBECK	BBHA9120D	2597	2022-05-22	2024-05-21		
EZ_EMC	Frad	FA-03A2 RE+	/	/	/		
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/		
Log periodic antenna	SCHWARZBECK	VULB 9168	01328	2021-11-28	2023-11-27		

4.2 Test Auxiliary Equipment

The EUT was tested as an independent device.

4.3 Test Modes

Temperature:	25.0 °C	
Humidity:	56 % RH	
Atmospheric Pressure:	1010 mbar	

Engineering mode:	Keep the EUT in continuous transmitting by select channel and modulations(The value of duty cycle is 95.70%)
-------------------	--

The sample was placed (0.8m below 1GHz, 1.5m above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. For the full battery state and The output power to the maximum state.

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Test Mode	Description
Mode 1	802.11a
Mode 2	802.11n20
Mode 3	802.11n40
Mode 4	802.11ac20
Mode 5	802.11ac40
Mode 6	802.11ac80
Mode 7	802.11ax20
Mode 8	802.11ax40
Mode 9	802.11ax80
Mode 10	802.11ax160

Note:

(1) The measurements are performed at the highest, lowest available channels.

(2) The EUT use new battery.

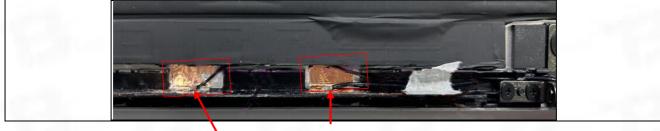
(3) Record the worst case of each test item in this report.

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. Page 14 of 192

Test		*#9646633#*								
program										
Mada				Test	Freque	ncy (MH	lz)			
Mode		NCB: 20MHz								
000 44 -	5180	5240	5260	5320	5500	5700	5745	5825		
802.11a	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz		
000 44.	5180	5240	5260	5320	5500	5700	5745	5825		
802.11n	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz		
000 11	5180	5240	5260	5320	5500	5700	5745	5825		
802.11ac	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz		
000 44	5180	5240	5260	5320	5500	5700	5745	5825		
802.11ax	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz		
		NCB: 40MHz								
000 11-	5190	5230	5270	5310	5510	5670	5755	5795		
802.11n	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz		
000 44	5190	5230	5270	5310	5510	5670	5755	5795		
802.11ac	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz		
000 11 av	5190	5230	5270	5310	5510	5670	5755	5795		
802.11ax	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz		
					NCB: 80	MHz				
000 44	5210	5290	5530	5610	5775					
802.11ac	MHz	MHz	MHz	MHz	MHz					
000 44	5210	5290	5530	5610	5775					
802.11ax	MHz	MHz	MHz	MHz	MHz					
					CB: 16	0MHz				
000.44	5250	5570								_
802.11ax	MHz	MHz								

4.4 Table of Parameters of Text Software Setting

During testing, Channel and Power Controlling Software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.


5 Evaluation Results (Evaluation)

5.1 Antenna requirement

Test Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

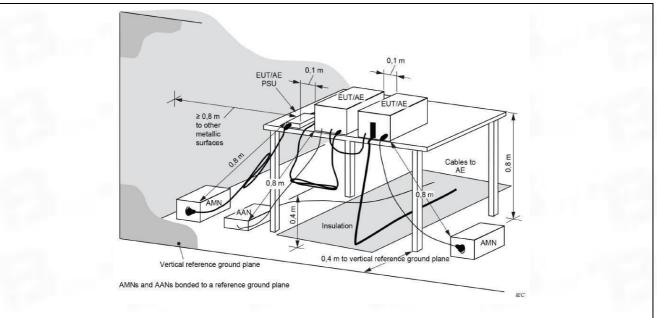
5.1.1 Conclusion:

AUX ANT

MAIN ANT

Total or partial reproduction of this document without permission of the Laboratory is not allowed. Page 16 of 192 BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

6 Radio Spectrum Matter Test Results (RF)

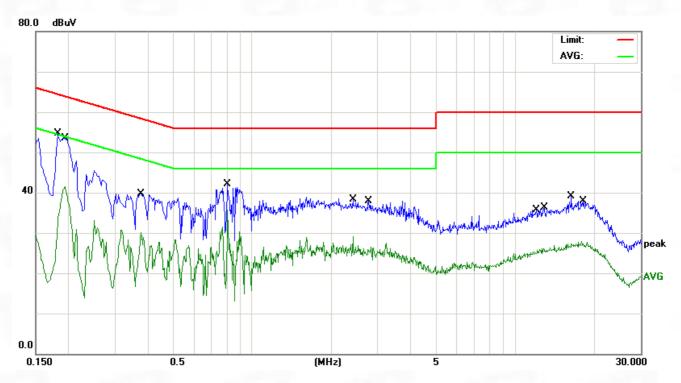

6.1 Conducted Emission at AC power line

Test Requirement:	47 CFR Part 15.207(a)		
Test Method:	Refer to ANSI C63.10-2013 section conducted emissions from unlicen		thod for ac power-line
	Frequency of emission (MHz)	Conducted limit (dB Quasi-peak	µV) Average
Test Limit:	0.15-0.5	66 to 56*	56 to 46*
Test Limit.	0.5-5	56	46
	5-30	60	50
	*Decreases with the logarithm of t	he frequency.	

6.1.1 E.U.T. Operation:

Operating Environment:		
Temperature:	25.5 °C	
Humidity:	50.6 %	
Atmospheric Pressure:	1010 mbar	

6.1.2 Test Setup Diagram:



Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

6.1.3 Test Data:

Line: Line / Band: U-NII 1 / BW: 20 / CH: L

		_	Reading	Correct	Measure-		-	
No.	Mk.	Freq.	Level	Factor	ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	*	0.1819	44.18	10.45	54.63	64.39	-9.76	QP
2		0.1940	31.10	10.45	41.55	53.86	-12.31	AVG
3		0.3780	29.25	10.49	39.74	58.32	-18.58	QP
4		0.3791	18.83	10.49	29.32	48.30	-18.98	AVG
5		0.8059	31.60	10.54	42.14	56.00	-13.86	QР
6		0.8100	20.36	10.54	30.90	46.00	-15.10	AVG
7		2.4180	18.47	10.71	29.18	46.00	-16.82	AVG
8		2.7700	27.23	10.72	37.95	56.00	-18.05	QP
9		12.1459	14.74	10.99	25.73	50.00	-24.27	AVG
10		12.9020	25.18	11.04	36.22	60.00	-23.78	QP
11		16.3740	27.87	11.16	39.03	60.00	-20.97	QP
12		17.8740	16.69	11.11	27.80	50.00	-22.20	AVG

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. Page 18 of 192

		Limit: — AVG: —
	Wether with the stranger of th	MANA MANA MANA PE

Line: Neutral / Band: U-NII 1 / BW: 20 / CH: L

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	*	0.1900	44.00	10.45	54.45	64.03	-9.58	QP
2		0.1900	31.44	10.45	41.89	54.03	-12.14	AVG
3		0.2540	21.99	10.46	32.45	51.62	-19.17	AVG
4		0.2740	33.50	10.47	43.97	60.99	-17.02	QP
5		0.8059	25.05	10.54	35.59	46.00	-10.41	AVG
6		0.8180	31.58	10.54	42.12	56.00	-13.88	QP
7		1.6140	17.63	10.65	28.28	46.00	-17.72	AVG
8		2.0579	26.23	10.71	36.94	56.00	-19.06	QP
9		3.2220	17.16	10.72	27.88	46.00	-18.12	AVG
10		3.6660	24.26	10.73	34.99	56.00	-21.01	QP
11		18.4220	21.10	11.10	32.20	60.00	-27.80	QP
12		19.9460	11.07	11.05	22.12	50.00	-27.88	AVG

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 19 of 19BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

6.2 Duty Cycle

Test Requirement:	All measurements are to be performed with the EUT transmitting at 100% duty cycle at its maximum power control level; however, if 100% duty cycle cannot be achieved, measurements of duty cycle, x, and maximum-power transmission duration, T, are required for each tested mode of operation.
Test Method:	ANSI C63.10-2013 section 12.2 (b)
Test Limit:	No limits, only for report use.
Procedure:	 i) Set the center frequency of the instrument to the center frequency of the transmission. ii) Set RBW >= EBW if possible; otherwise, set RBW to the largest available value. iii) Set VBW >= RBW. iv) Set detector = peak. v) The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T, where T is defined in item a1) of 12.2, and the number of sweep points across duration T exceeds 100.

6.2.1 E.U.T. Operation:

Operating Environment:			
Temperature:	25.5 °C		
Humidity:	50.6 %		
Atmospheric Pressure:	1010 mbar	100 million (1990)	

6.2.2 Test Result: (Meet requirements)

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 20 of 192BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

6.3 Maximum conducted output power

	47 CFR Part 15.407(a)(1)(i)
	47 CFR Part 15.407(a)(1)(ii)
Test Requirement:	47 CFR Part 15.407(a)(1)(iii)
	47 CFR Part 15.407(a)(1)(iv)
	47 CFR Part 15.407(a)(2)
Test Marthaut	47 CFR Part 15.407(a)(3)(i)
Test Method:	ANSI C63.10-2013, section 12.3
	For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).
	For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power.
Test Limit:	For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the
	same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
	For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi.
	If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 21 of 19BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

	For the band 5.725-5.850 GHz, the maximum conducted output power over the
	frequency band of operation shall not exceed 1 W. If transmitting antennas of directional gain greater than 6 dBi are used, the
	maximum conducted output power shall be reduced by the amount in dB that the
	directional gain of the antenna exceeds 6 dBi.
	However, fixed point-to-point U-NII devices operating in this band may employ
	transmitting antennas with directional gain greater than 6 dBi without any
	corresponding reduction in transmitter conducted power. Fixed, point-to-point
	operations exclude the use of point-to-multipoint systems, omnidirectional
	applications, and multiple collocated transmitters transmitting the same
	information. The operator of the U-NII device, or if the equipment is professionally
	installed, the installer, is responsible for ensuring that systems employing high gain
	directional antennas are used exclusively for fixed, point-to-point operations.
	Method SA-1
	a) Set span to encompass the entire 26 dB EBW or 99% OBW of the signal.
	b) Set RBW = 1 MHz.
	 c) Set VBW >= 3 MHz. d) Number of points in sweep >= [2 x span / RBW]. (This gives bin-to-bin spacing
	<= RBW / 2, so
	that narrowband signals are not lost between frequency bins.)
	e) Sweep time = auto.
	f) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample
	detector mode.
	g) If transmit duty cycle < 98%, use a video trigger with the trigger level set to
	enable triggering
	only on full power pulses. The transmitter shall operate at maximum power control
D	level for the
Procedure:	entire duration of every sweep. If the EUT transmits continuously (i.e., with no OFF
	intervals) or $2 + 0.00\%$ and if each transmission is optimally at the maximum power
	at duty cycle $>=$ 98%, and if each transmission is entirely at the maximum power control level,
	then the trigger shall be set to "free run."
	h) Trace average at least 100 traces in power averaging (rms) mode.
	i) Compute power by integrating the spectrum across the 26 dB EBW or 99% OBW
	of the signal
	using the instrument's band power measurement function, with band limits set
	equal to the
	EBW or OBW band edges. If the instrument does not have a band power function,
	then sum the
	spectrum levels (in power units) at 1 MHz intervals extending across the 26 dB
	EBW or 99%
	OBW of the spectrum.
631 FUT Operation	·

6.3.1 E.U.T. Operation:

Operating Environment:				
Temperature:	25.5 °C			
Humidity:	50.6 %			
Atmospheric Pressure:	1010 mbar			

6.3.2 Test Data:

Please Refer to Appendix for Details.

6.4 Power spectral density

•	
	47 CFR Part 15.407(a)(1)(i)
	47 CFR Part 15.407(a)(1)(ii)
Test Requirement:	47 CFR Part 15.407(a)(1)(iii)
rest requirement.	47 CFR Part 15.407(a)(1)(iv)
	47 CFR Part 15.407(a)(2)
	47 CFR Part 15.407(a)(3)(i)
Test Method:	ANSI C63.10-2013, section 12.5
	For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	For an indoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band.
	Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi.
Test Limit:	Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
	For client devices in the 5.15-5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band.
	If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band.
	If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	For the band 5.725-5.850 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 23 of 19BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 23 of 192

	conducted power.
	Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
	a) Create an average power spectrum for the EUT operating mode being tested by
	following the instructions in 12.3.2 for measuring maximum conducted output power using a spectrum
	analyzer or EMI receiver; that is, select the appropriate test method (SA-1, SA-2, SA-3, or their
	respective alternatives) and apply it up to, but not including, the step labeled, "Compute
	power" (This procedure is required even if the maximum conducted output power
	 measurement was performed using the power meter method PM.) b) Use the peak search function on the instrument to find the peak of the spectrum. c) Make the following adjustments to the peak value of the spectrum, if applicable: 1) If method SA-2 or SA-2A was used, then add [10 log (1 / D)], where D is the duty
	cycle, to the peak of the spectrum.2) If method SA-3A was used and the linear mode was used in step h) of 12.3.2.7, add
Procedure:	1 dB to the final result to compensate for the difference between linear averaging and
	power averaging.
	 d) The result is the PPSD. e) The procedure in item a) through item c) requires the use of 1 MHz resolution bandwidth to
	satisfy the 1 MHz measurement bandwidth specified by some regulatory authorities. This
	requirement also permits use of resolution bandwidths less than 1 MHz "provided that the
	measured power is integrated to show the total power over the measurement bandwidth" (i.e.,
	1 MHz). If measurements are performed using a reduced resolution bandwidth and integrated
	over 1 MHz bandwidth, the following adjustments to the procedures apply: 1) Set RBW $>= 1 / T$, where T is defined in 12.2 a).
	 2) Set VBW >= [3 x RBW]. 3) Care shall be taken such that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle.

6.4.1 E.U.T. Operation:

Operating Environment:		
Temperature:	25.5 °C	
Humidity:	50.6 %	
Atmospheric Pressure:	1010 mbar	

6.4.2 Test Data:

Please Refer to Appendix for Details.

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 24 of 19BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 24 of 192

6.5 Emission bandwidth and occupied bandwidth

	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use.
Test Requirement:	
	U-NII 3, U-NII 4: 47 CFR Part 15.407(e)
Test Method:	ANSI C63.10-2013, section 6.9.3 & 12.4
	KDB 789033 D02, Clause C.2
	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use.
Test Limit:	U-NII 3, U-NII 4: Within the 5.725-5.850 GHz and 5.850-5.895 GHz bands, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.
Procedure:	 Immunit of user and the end of the

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 25 of 192BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

99.5% of the
total is reached; that frequency is recorded as the upper frequency. The 99%
power bandwidth is
the difference between these two frequencies.
h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument
display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may
be reported in addition to the plot(s).
6 dB emission bandwidth:
a) Set RBW = 100 kHz.
b) Set the video bandwidth (VBW) ≥ 3 >= RBW.
c) Detector = Peak.
d) Trace mode = max hold.
e) Sweep = auto couple.
f) Allow the trace to stabilize.
g) Measure the maximum width of the emission that is constrained by the
frequencies associated with the two outermost amplitude points (upper and lower
frequencies) that are attenuated by 6 dB relative to the maximum level measured
in the fundamental emission.

6.5.1 E.U.T. Operation:

Operating Environment:				
Temperature:	25.5 °C			
Humidity:	50.6 %			
Atmospheric Pressure:	1010 mbar			

6.5.2 Test Data:

Please Refer to Appendix for Details.

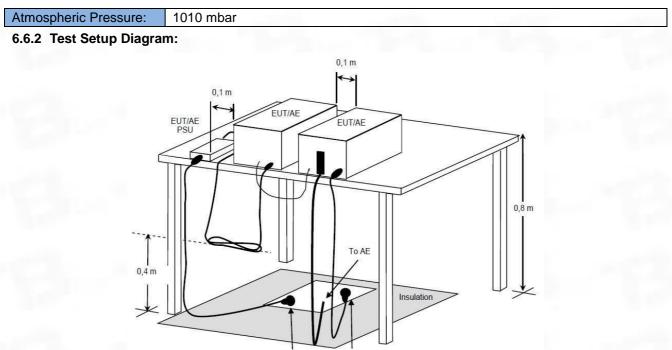
6.6 Band edge emissions (Radiated)

	47 CFR Part 15.407(b)						
Test Requirement:		47 CFR Part 15.407(b)(2)					
lest Requirement.	47 CFR Part 15.407(b)	47 CFR Part 15.407(b)(4)					
		47 CFR Part 15.407(b)(10)					
Test Method:		ANSI C63.10-2013, section 12.7.4, 12.7.5, 12.7.6					
		ting in the 5.15-5.25 GF		ssions outside of the			
		nall not exceed an e.i.r.					
	For transmitters operat 5.15-5.35 GHz band sl	ting in the 5.25-5.35 GH nall not exceed an e.i.r.					
	For transmitters operate All emissions shall be l						
		e increasing linearly to					
		and from 25 MHz above					
		.6 dBm/MHz at 5 MHz					
	from 5 MHz above or b		creasing inearry				
	dBm/MHz at the band		N 41 I	011-			
	MHz	MHz	MHz	GHz			
	0.090-0.110	16.42-16.423	399.9-410	4.5-5.15			
	¹ 0.495-0.505	16.69475-16.69525		5.35-5.46			
	2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75			
	4.125-4.128	25.5-25.67	1300-1427	8.025-8.5			
	4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2			
	4.20725-4.20775	73-74.6	1645.5-1646. 5	9.3-9.5			
	6.215-6.218	74.8-75.2	1660-1710	10.6-12.7			
	6.26775-6.26825	108-121.94	1718.8-1722.	13.25-13.4			
Toot Limite			2				
Test Limit:	6.31175-6.31225	123-138	2200-2300	14.47-14.5			
	8.291-8.294	149.9-150.05	2310-2390	15.35-16.2			
	8.362-8.366	156.52475-156.525	2483.5-2500	17.7-21.4			
		25					
	8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12			
	8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0			
	12.29-12.293	167.72-173.2	3332-3339	31.2-31.8			
	12.51975-12.52025	240-285	3345.8-3358	36.43-36.5			
	12.57675-12.57725	322-335.4	3600-4400	$\binom{2}{2}$			
	13.36-13.41						
	¹ Until February 1, 1999	9, this restricted band sl	hall be 0.490-0.5	510 MHz.			
	² Above 38.6						
		nissions appearing with					
	exceed the limits show						
		the limits in § 15.209sh					
		entation employing a CI					
	1000 MHz, compliance	with the emission limit	s in § 15.209sha	all be demonstrated			
	based on the average						
	15.35apply to these mo						
	Except as provided ele	ewhere in this subpart,	the emissions f	rom an intentional			
		ewnere in this subpart,					

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 27 of 19BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China Page 27 of 192

Test Report Number: BTF230918R00304

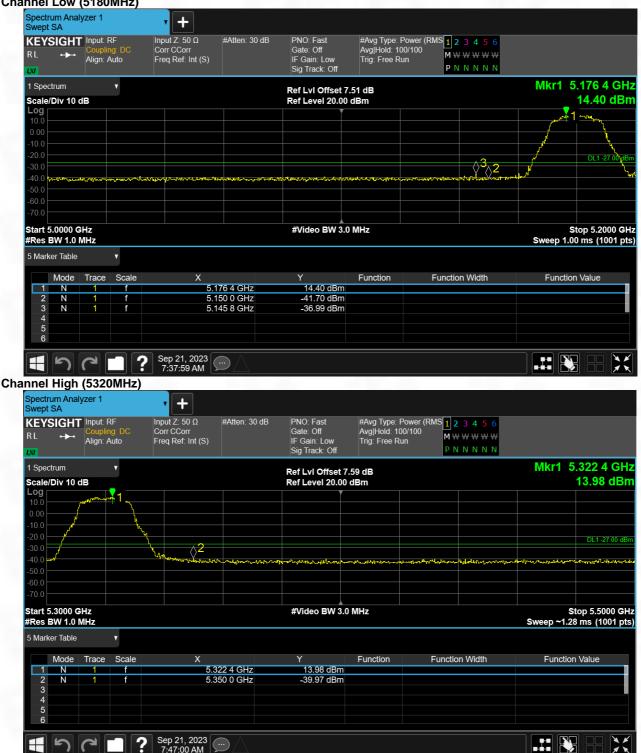
	radiator shall not excee	d the field strength levels spec	cified in the following table:
	Frequency (MHz)	Field strength	Measurement
		(microvolts/meter)	distance
		(morevene, motor)	(meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705		
		24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
	Above 1GHz:		
	above the ground at a 3 degrees to determine th b. The EUT was set 3 m was mounted on the top c. The antenna height is	EUT was placed on the top of meter fully-anechoic chamber he position of the highest radia neters away from the interference of a variable-height antenna s varied from one meter to fou	r. The table was rotated 360 tion. nce-receiving antenna, which tower. r meters above the ground to
Procedure:	polarizations of the anter d. For each suspected e the antenna was tuned of below 30MHz, the an was turned from 0 degre e. The test-receiver sys Bandwidth with Maximu f. If the emission level o specified, then testing c reported. Otherwise the	n value of the field strength. Be enna are set to make the meas emission, the EUT was arrang to heights from 1 meter to 4 m tenna was tuned to heights 1 ees to 360 degrees to find the tem was set to Peak Detect Fi im Hold Mode. f the EUT in peak mode was ould be stopped and the peak emissions that did not have 1 ing peak or average method a	surement. ed to its worst case and then neters (for the test frequency meter) and the rotatable table maximum reading. unction and Specified 10dB lower than the limit values of the EUT would be 0dB margin would be
Plocedule.		west channel, the middle cha	nnel the Highest channel
		rements are performed in X, Y	
	Transmitting mode, and	found the X axis positioning v ures until all frequencies meas	which it is the worst case.
		Cable Loss+ Antenna Factor-	
		40GHz, the disturbance above	
	points marked on above	e plots are the highest emissio	ns could be found when
		oints had been displayed. The	
		ator which are attenuated mor	
	need not be reported.		
		ion for fraguancias above 10	Hz the field strength limite
		ion, for frequencies above 1G	
		mits. However, the peak field	
		m permitted average limits spe	
		of modulation. For the emission	
		only the peak measurement is	
		ve 18GHz were very low and t	
		ound when testing, so only the	e above harmonics had been
	displayed.		
661 EUT Operatio	displayed.	ound when testing, so only the	e above harmonics had beer


6.6.1 E.U.T. Operation:

Operating Environment:			
Temperature:	25.5 °C		
Humidity:	50.6 %		

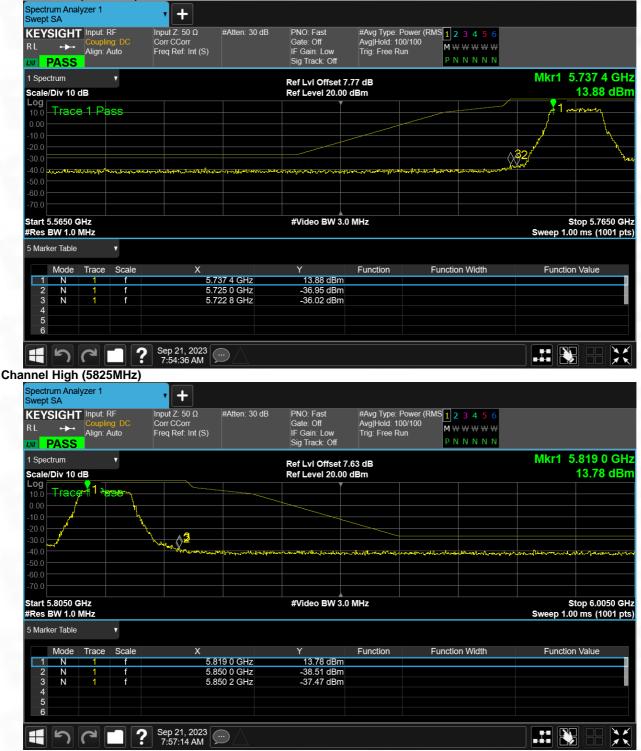
Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 28 of 19BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 28 of 192


To power supply

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 29 of 192BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

6.6.3 Test Data:



Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

Channel Low (5745MHz)

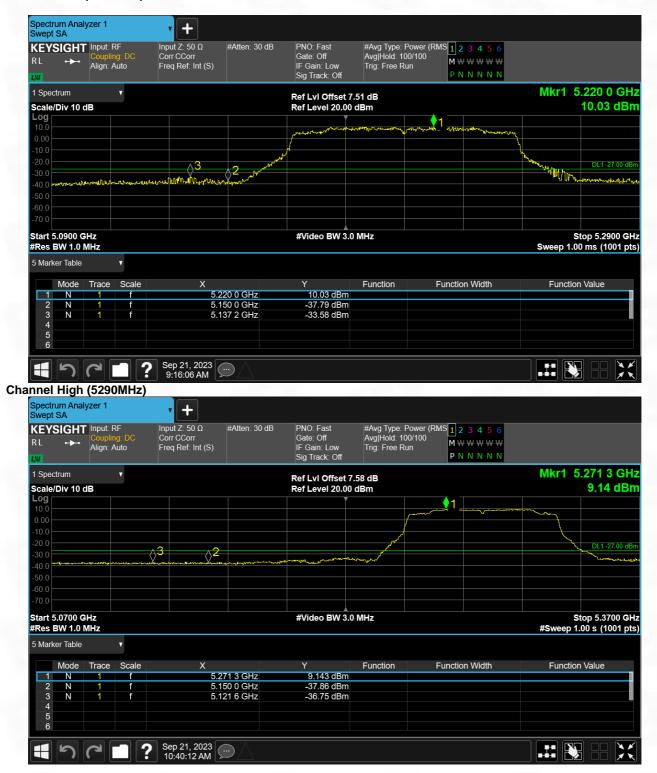
Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

40MHzIEEE 802.11n/ac/ax Channel Low (5190MHz)

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

Channel Low (5755MHz)

Channel High (5795MHz)

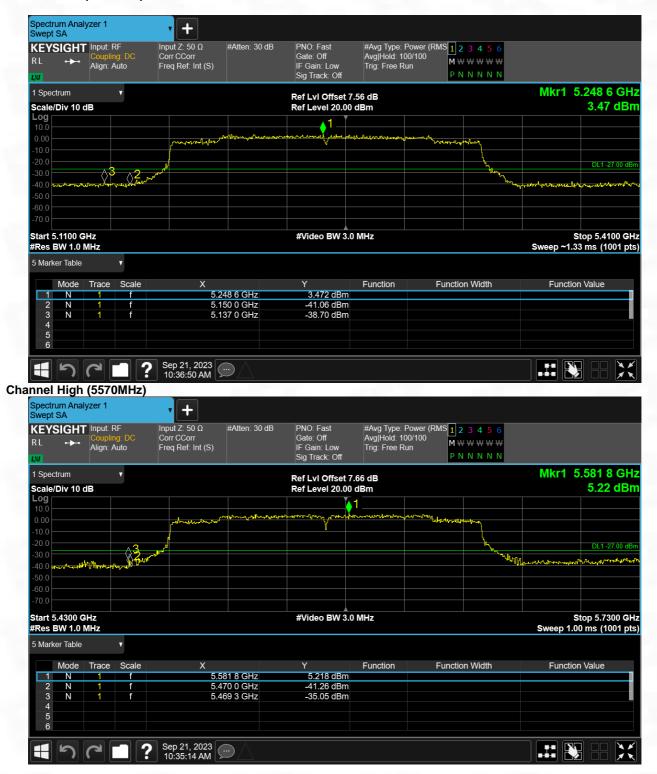


Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

Page 33 of 192

80MHzIEEE 802.11ac/ax Channel Low (5210MHz)

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.



Channel Low (5775MHz)

160MHzIEEE 802.11ax Channel Low (5250MHz)

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

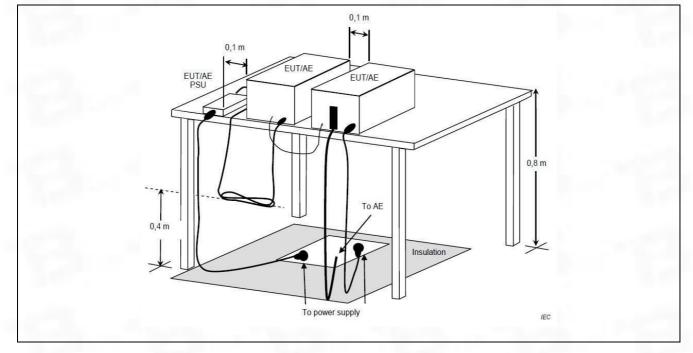
Undesirable emission limits (below 1GHz) 6.7

Test Requirement:	47 CFR Part 15.407(b)(9)					
Test Method:	ANSI C63.10-2013, section 12.7.4, 12.7.5, 12.7.6					
	Unwanted emissions below limits set forth in § 15.209.	1 GHz must comply with the	general field strength			
	Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table: Frequency (MHz) Field strength Measurement					
Test Limit:		(microvolts/meter)	distance (meters)			
	0.009-0.490	2400/F(kHz)	300			
	0.490-1.705	24000/F(kHz)	30			
	1.705-30.0	30	30			
	30-88	100 **	3			
	88-216	150 **	3			
	216-960	200 **	3			
	Above 960 Below 1GHz:	500	3			
Procedure:	above the ground at a 3 me degrees to determine the pr b. The EUT was set 3 or 10 which was mounted on the c. The antenna height is va determine the maximum va polarizations of the antenna d. For each suspected emiss the antenna was tuned to h of below 30MHz, the antenna was turned from 0 degrees e. The test-receiver system Bandwidth with Maximum H f. If the emission level of the specified, then testing could reported. Otherwise the em re-tested one by one using data sheet. g. Test the EUT in the lower h. The radiation measurem Transmitting mode, and four i. Repeat above procedures Remark: 1. Level= Read Level+ Cab 2. Scan from 9kHz to 30MH points marked on above plot testing, so only above point emissions from the radiator need not be reported. 3. The disturbance below 1	T was placed on the top of a peter semi-anechoic chamber. osition of the highest radiation meters away from the interfet top of a variable-height anten- ried from one meter to four m lue of the field strength. Both a are set to make the measure ssion, the EUT was arranged eights from 1 meter to 4 meter ha was tuned to heights 1 met to 360 degrees to find the ma- was set to Peak Detect Fund- fold Mode. e EUT in peak mode was 10d d be stopped and the peak va- issions that did not have 10dl quasi-peak method as specifies the channel, the middle channel ents are performed in X, Y, Z and the X axis positioning which is until all frequencies measure shad been displayed. The ar- which are attenuated more the GHz was very low and the has testing, so only the above har	The table was rotated 360 h. erence-receiving antenna, ina tower. eters above the ground to horizontal and vertical ement. to its worst case and then ers (for the test frequency ter) and the rotatable table aximum reading. etion and Specified B lower than the limit lues of the EUT would be B margin would be ied and then reported in a el, the Highest channel. axis positioning for ch it is the worst case. ed was complete. eamp Factor MHz was very low. The could be found when mplitude of spurious han 20dB below the limit rmonics were the highest			

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 37 of 19BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

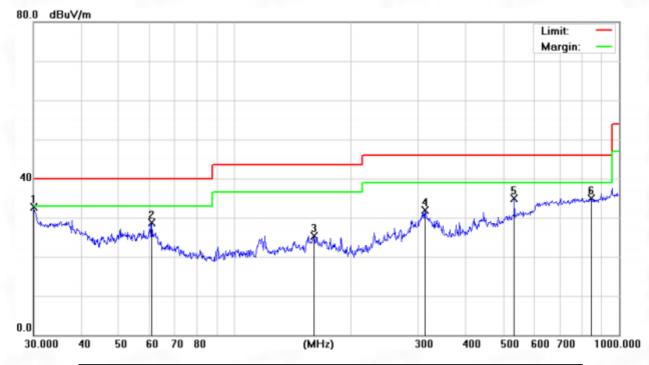
B

a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360
degrees to determine the position of the highest radiation.
b. The EUT was set 3 meters away from the interference-receiving antenna, which
was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to
determine the maximum value of the field strength. Both horizontal and vertical
polarizations of the antenna are set to make the measurement.
d. For each suspected emission, the EUT was arranged to its worst case and then
the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table
was turned from 0 degrees to 360 degrees to find the maximum reading.
e. The test-receiver system was set to Peak Detect Function and Specified
Bandwidth with Maximum Hold Mode.
f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be
reported. Otherwise the emissions that did not have 10dB margin would be
re-tested one by one using peak or average method as specified and then reported
in a data sheet.
g. Test the EUT in the lowest channel, the middle channel, the Highest channel.
h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
i. Repeat above procedures until all frequencies measured was complete.
Remark:
1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The
points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious
emissions from the radiator which are attenuated more than 20dB below the limit
need not be reported.
3. As shown in this section, for frequencies above 1GHz, the field strength limits
are based on average limits. However, the peak field strength of any emission shall
not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower
than the average limit, only the peak measurement is shown in the report.
4. The disturbance above 18GHz were very low and the harmonics were the
highest point could be found when testing, so only the above harmonics had been
displayed.


6.7.1 E.U.T. Operation:

Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 38 of 19BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China


6.7.2 Test Setup Diagram:

6.7.3 Test Data:

Note: All the mode have been tested, and only the worst case mode are in the report Polarization: Horizontal / Band: U-NII 1 / BW: 20 / CH: L

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	*	30.0000	49.30	-16.61	32.69	40.00	-7.31	QP
2		60.9176	45.30	-16.69	28.61	40.00	-11.39	QP
3		160.9088	42.28	-16.94	25.34	43.50	-18.16	QP
4	;	312.1792	49.01	-17.07	31.94	46.00	-14.06	QP
5	!	533.8320	52.01	-17.08	34.93	46.00	-11.07	QP
6	8	848.0562	50.16	-15.28	34.88	46.00	-11.12	QP

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. Page 40 of 192

			Limit: — Margin: —
			f
a white a start when the start when	Just have been and	n Ray way when when	
0 40 50 60 70 80	(MHz)	300 400 500	600 700 1000.0

Polarization: Vertical / Band: U-NII 1 / BW: 20 / CH: L 80.0 dBuV/m

		-	Reading	Correct	Measure-	Limit	Over	
No.	MK.	Freq.	Level	Factor	ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	*	36.5092	50.30	-16.54	33.76	40.00	-6.24	QP
2	!	42.3022	50.16	-16.52	33.64	40.00	-6.36	QP
3		119.8556	44.88	-16.83	28.05	43.50	-15.45	QP
4		312.1794	52.01	-17.07	34.94	46.00	-11.06	QP
5		734.4913	50.83	-16.14	34.69	46.00	-11.31	QP
6		1000.000	50.44	-13.88	36.56	54.00	-17.44	QP

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 41 of 19BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 41 of 192

6.8 Undesirable emission limits (above 1GHz)

ole endesirable		•					
	47 CFR Part 15.407(b)						
Test Requirement:	47 CFR Part 15.407(b)(2)						
rest ivequirement.	47 CFR Part 15.407(b)	47 CFR Part 15.407(b)(4)					
	47 CFR Part 15.407(b)	(10)					
Test Method:		ANSI C63.10-2013, section 12.7.4, 12.7.5, 12.7.6					
		ting in the 5.15-5.25 GH		ssions outside of the			
		nall not exceed an e.i.r.					
	For transmitters operat						
		nall not exceed an e.i.r.					
	For transmitters operat						
	All emissions shall be l	imited to a level of -27	dBm/MHz at 75	MHz or more above			
	or below the band edge	e increasing linearly to	10 dBm/MHz at	25 MHz above or			
	below the band edge, a	and from 25 MHz above	e or below the ba	and edge increasing			
		.6 dBm/MHz at 5 MHz a					
	from 5 MHz above or b						
	dBm/MHz at the band						
	MHz	MHz	MHz	GHz			
	0.090-0.110	16.42-16.423	399.9-410	4.5-5.15			
	¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46			
	2.1735-2.1905		960-1240	7.25-7.75			
		16.80425-16.80475					
	4.125-4.128	25.5-25.67	1300-1427	8.025-8.5			
	4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2			
	4.20725-4.20775	73-74.6	1645.5-1646. 5	9.3-9.5			
	6.215-6.218	74.8-75.2	5 1660-1710	10.6-12.7			
	6.26775-6.26825	108-121.94	1718.8-1722.	13.25-13.4			
	0.20775-0.20825	108-121.94	2	13.20-13.4			
	6 21175 6 21225	100 100	2200-2300	11 17 11 5			
Test Limit:	6.31175-6.31225	123-138		14.47-14.5			
	8.291-8.294	149.9-150.05	2310-2390	15.35-16.2			
	8.362-8.366	156.52475-156.525 25	2483.5-2500	17.7-21.4			
	8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12			
	8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0			
	12.29-12.293	167.72-173.2	3332-3339	31.2-31.8			
	12.51975-12.52025	240-285	3345.8-3358	36.43-36.5			
	12.57675-12.57725	322-335.4					
		322-335.4	3600-4400	(²)			
	13.36-13.41						
	¹ Until February 1, 1999 ² Above 38.6), this restricted band sl	hall be 0.490-0.5	510 MHz.			
		nissions appearing with					
	exceed the limits show	n in § 15.209. At freque	encies equal to c	or less than 1000			
		the limits in § 15.209sh					
	· · ·	entation employing a CI		5			
		with the emission limit					
	based on the average						
	15.35apply to these me						
	Except as provided els	ewhere in this subpart,	the emissions f	rom an intentional			
		ed the field strength lev					
	Frequency (MHz)	Field strength		Measurement			
		rieiu strength		weasurement			

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 42 of 19BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Test Report Number: BTF230918R00304

		(microvolts/meter)	distance
			(meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
		200 **	
	216-960		3
	Above 960 Above 1GHz:	500	3
Procedure:	 above the ground at a degrees to determine b. The EUT was set 3 was mounted on the t c. The antenna height determine the maximu polarizations of the art d. For each suspected the antenna was tune of below 30MHz, the a was turned from 0 dege. The test-receiver sy Bandwidth with Maxim f. If the emission level specified, then testing reported. Otherwise th re-tested one by one of in a data sheet. g. Test the EUT in the h. The radiation meass Transmitting mode, art i. Repeat above proce Remark: 1. Level= Read Level-2. Scan from 18GHz to points marked on above emissions from the raneed not be reported. 3. As shown in this sea are based on average not exceed the maximud B under any condition than the average limit 4. The disturbance above procests and the average limit 4. The disturbance above procests and the average limit 4. The disturbance above procests and the average limit 4. The disturbance above procests and the average limit 4. The disturbance above procests and the average limit 4. The disturbance above procests and the average limit 4. The disturbance above procests and the average limit 4. The disturbance above procests and the average limit above procests and the average limit 4. The disturbance above procests and the average limit 4. The disturbance above procests and the average limit 4. The disturbance above procests and the average limit above procests are based on average limit above procests and the average limit above procests and the average limit above procests and the average limit above procests	of the EUT in peak mode was 10 could be stopped and the peak ne emissions that did not have 10 using peak or average method as lowest channel, the middle chan urements are performed in X, Y, nd found the X axis positioning w edures until all frequencies measu + Cable Loss+ Antenna Factor- F o 40GHz, the disturbance above ve plots are the highest emission points had been displayed. The diator which are attenuated more	 The table was rotated 360 ion. ce-receiving antenna, which ower. meters above the ground to the horizontal and vertical urement. ad to its worst case and then evers (for the test frequency neter) and the rotatable table maximum reading. nction and Specified DdB lower than the limit values of the EUT would be odB margin would be a specified and then reported and, the Highest channel. Z axis positioning for hich it is the worst case. ared was complete. Preamp Factor 18GHz was very low. The as could be found when amplitude of spurious e than 20dB below the limit Az, the field strength limits trength of any emission shall cified above by more than 20 ns whose peak level is lower shown in the report.

6.8.1 E.U.T. Operation:

Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 43 of 19BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 43 of 192

6.8.2 Test Data:

Note: All the mode have been tested, and only the worst case mode are in the report

Freq. (MHz)	Low channel: 5180MHz								
	Ant.Pol	Emission L	_evel(dBuV)	Limit 3m(dBuV/m)		Over(dB)			
	H/V	PK	AV	PK	AV	PK	AV		
10360	V	60.91	39.84	74	54	-13.09	-14.16		
15540	V	59.69	40.90	74	54	-14.31	-13.10		
10360	Н	58.38	40.12	74	54	-15.62	-13.88		
15540	Н	59.83	40.83	74	54	-14.17	-13.17		

Freq. (MHz)	Low channel: 5180MHz							
	Ant.Pol	Emission Level(dBuV)		Limit 3m(dBuV/m)		Over(dB)		
	H/V	PK	AV	PK	AV	PK	AV	
10360	V	58.91	41.65	74	54	-15.09	-12.35	
15540	V	59.20	40.30	74	54	-14.80	-13.70	
10360	Н	59.66	39.79	74	54	-14.34	-14.21	
15540	Н	58.10	39.10	74	54	-15.90	-14.90	

Freq. (MHz)	Low channel: 5180MHz							
	Ant.Pol	Emission Level(dBuV)		Limit 3m(dBuV/m)		Over(dB)		
	H/V	PK	AV	PK	AV	PK	AV	
10360	V	60.11	41.80	74	54	-13.89	-12.20	
15540	V	58.60	40.48	74	54	-15.40	-13.52	
10360	Н	59.76	39.30	74	54	-14.24	-14.70	
15540	Н	59.10	40.10	74	54	-14.90	-13.90	

Freq. (MHz)	Low channel: 5180MHz								
	Ant.Pol	Emission Level(dBuV)		Limit 3m(dBuV/m)		Over(dB)			
	H/V	PK	AV	PK	AV	PK	AV		
10360	V	58.85	41.87	74	54	-15.15	-12.13		
15540	V	59.13	39.87	74	54	-14.87	-14.13		
10360	Н	59.85	39.31	74	54	-14.15	-14.69		
15540	Н	58.87	39.87	74	54	-15.13	-14.13		

Note:

1. All emissions not reported were more than 20dB below the specified limit or in the noise floor.

2. Freq. = Emission frequency in MHz

Reading level $(dB\mu V) = Receiver reading$

Corr. Factor (dB) = Attenuation factor + Cable loss

Level $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)

Limit (dBµV) = Limit stated in standard

Margin (dB) = Level (dB μ V) – Limits (dB μ V)

3. Data of measurement within this frequency range shown "--" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. Page 44 of 192