

RF Test Report

For

Applicant Name: TECNO MOBILE LIMITED

Address: FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25

SHAN MEI STREET FOTAN NT HONGKONG

EUT Name: Laptop Computer

Brand Name: TECNO Model Number: T15AA

Series Model Number: Refer to Section 2

Issued By

Company Name: BTF Testing Lab (Shenzhen) Co., Ltd.

Address: F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou

Community, Songgang Street, Bao'an District, Shenzhen, China

Report Number: BTF230918R00504 Test Standards: 47 CFR Part 15E

Test Conclusion: Pass

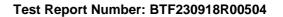
FCC ID: 2ADYY-T15AA

Test Date: 2023-08-25 to 2023-09-18

Date of Issue: 2023-09-19

Prepared By:

Chris Liu / Project Eng

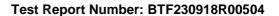

Date: 2023-09-19

Approved By:

Ryan.CJ / EMC Manager

Date: 2023-09-19

Note: All the test results in this report only related to the testing samples. Which can be duplicated completely for the legal use with approval of applicant; it shall not be reproduced except in full without the written approval of BTF Testing Lab (Shenzhen) Co., Ltd., All the objections should be raised within thirty days from the date of issue. To validate the report, you can contact us.



Revision History			
Version	Issue Date	Revisions Content	
R_V0	2023-09-19	Original	
Note: Once the re	evision has been made, then pre	vious versions reports are invalid.	

Table of Contents

1	INTE	RODUCTION	5
	1.1	Identification of Testing Laboratory	5
	1.2	Identification of the Responsible Testing Location	
	1.3	Announcement	
2	PRO	DUCT INFORMATION	6
	2.1	Application Information	6
	2.2	Manufacturer Information	6
	2.3	Factory Information	6
	2.4	General Description of Equipment under Test (EUT)	
	2.5	Technical Information	
3		IMARY OF TEST RESULTS	
	3.1	Test Standards	
	3.2 3.3	Uncertainty of TestSummary of Test Result	
4		T CONFIGURATION	
4			
	4.1 4.2	Test Equipment List Test Auxiliary Equipment	8
	4.3	Test Modes	
	4.4	Table of Parameters of Text Software Setting	
5	EVA	LUATION RESULTS (EVALUATION)	
	5.1	Antenna requirement	
		5.1.1 Conclusion:	
6	RAD	DIO SPECTRUM MATTER TEST RESULTS (RF)	17
	6.1	Conducted Emission at AC power line	
	0.1	6.1.1 E.U.T. Operation:	
		6.1.2 Test Setup Diagram:	
		6.1.3 Test Data:	
	6.2	Duty Cycle	20
		6.2.1 E.U.T. Operation:	
		6.2.2 Test Data:	
	6.3	Maximum conducted output power	
		6.3.1 E.U.T. Operation:	
		6.3.2 Test Data:	
	6.4	Power spectral density	
		6.4.1 E.U.T. Operation: 6.4.2 Test Data:	
	6.5	6.4.2 Test Data: Emission bandwidth and occupied bandwidth	
	6.5	6.5.1 E.U.T. Operation:	
		6.5.2 Test Data:	
	6.6	Band edge emissions (Radiated)	
		6.6.1 E.U.T. Operation:	
		6.6.2 Test Setup Diagram:	
		6.6.3 Test Data:	
	6.7	Undesirable emission limits (below 1GHz)	37
		6.7.1 E.U.T. Operation:	
		6.7.2 Test Setup Diagram:	
		6.7.3 Test Data:	40

6.8	Unde	sirable emission limits (above 1GHz)	. 42
	6.8.1	E.U.T. Operation:	. 43
		Test Data:	
APPENDIX			. 45

Test Report Number: BTF230918R00504

1 Introduction

1.1 Identification of Testing Laboratory

Company Name: BTF Testing Lab (Shenzhen) Co., Ltd.		
	F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China	
Phone Number:	+86-0755-23146130	
Fax Number:	+86-0755-23146130	

1.2 Identification of the Responsible Testing Location

Company Name:	BTF Testing Lab (Shenzhen) Co., Ltd.
Address:	F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China
Phone Number:	+86-0755-23146130
Fax Number:	+86-0755-23146130
FCC Registration Number:	518915
Designation Number:	CN1330

1.3 Announcement

- (1) The test report reference to the report template version v0.
- (2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.
- (3) The test report is invalid if there is any evidence and/or falsification.
- (4) This document may not be altered or revised in any way unless done so by BTF and all revisions are duly noted in the revisions section.
- (5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- (6) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

Test Report Number: BTF230918R00504

2 Product Information

2.1 Application Information

Company Name:	TECNO MOBILE LIMITED
Address:	FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET FOTAN NT HONGKONG

2.2 Manufacturer Information

Company Name:	TECNO MOBILE LIMITED
Address:	FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI
	STREET FOTAN NT HONGKONG

2.3 Factory Information

Company Name:	GUANGXI SHANCHAUN TECHNOLOGY CO LTD
Address:	The Second Floor of Plant C01, Plant C02, Plant C03 and Plant D03 Guangxi Sannuo Smart Industrial Park, No.3, Gaoke Road, Beihai Industrial Park, BEIHAI, 536000 Guangxi, P.R.China

2.4 General Description of Equipment under Test (EUT)

EUT Name:	Laptop Computer
Test Model Number:	T15AA
Series Model Number:	N/A
Software Version:	Win 11 home
Hardware Version:	N156EAL01_MB_V11

2.5 Technical Information

	Li-ion Battery: 156
	Rated Voltage: 11.55V
Power Supply:	Rated Capacity: 6060mAh/70Wh
	Typical Capacity: 6160mAh/71.14Wh
	Limited Charge Voltage: 13.2V
	Band 1: 5180-5250 MHz
Operation Fraguency:	Band 2: 5250-5320 MHz
Operation Frequency:	Band 3: 5500-5700 MHz
	Band 4: 5745-5825 MHz
Number of Channels:	Refer to Section 4.4
Madulatian Tunas	IEEE 802.11a/n/ac/ax: OFDM/OFDMA
Modulation Type:	(BPSK/QPSK/16QAM/64QAM/256QAM/1024QAM)
Antenna Type:	PIFA Antenna
MIAN Antenna Gain#:	4.29dBi
AUX Antenna Gain	4.33dBi

Note:

#: The antenna gain provided by the applicant, and the laboratory will not be responsible for the accumulated calculation results which covers the information provided by the applicant.

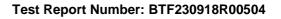
Test Report Number: BTF230918R00504

3 Summary of Test Results

3.1 Test Standards

The tests were performed according to following standards:

47 CFR Part 15E: Unlicensed National Information Infrastructure Devices

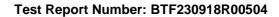

3.2 Uncertainty of Test

Item	Measurement Uncertainty
Conducted Emission (150 kHz-30 MHz)	±2.64dB

The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.3 Summary of Test Result

Item	Standard	Requirement	Result
Antenna requirement	47 CFR Part 15E	Part 15.203	Pass
Conducted Emission at AC power line	47 CFR Part 15E	47 CFR Part 15.207(a)	Pass
Maximum conducted output power	47 CFR Part 15E	47 CFR Part 15.407(a)(1)(i) 47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(2) 47 CFR Part 15.407(a)(3)(i)	Pass
Power spectral density	47 CFR Part 15E	47 CFR Part 15.407(a)(1)(i) 47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(2) 47 CFR Part 15.407(a)(3)(i)	Pass
Emission bandwidth and occupied bandwidth	47 CFR Part 15E	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use. 47 CFR Part 15.407(e)	Pass
Channel Availability Check Time	47 CFR Part 15E	47 CFR Part 15.407(h)(2)(ii)	Pass
U-NII Detection Bandwidth	47 CFR Part 15E	47 CFR Part 15.407(h)(2)	Pass
Statistical Performance Check	47 CFR Part 15E	KDB 935210 D02, Clause 5.1 Table 2	Pass
Channel Move Time, Channel Closing Transmission Time	47 CFR Part 15E	47 CFR Part 15.407(h)(2)(iii)	Pass
Non-Occupancy Period Test	47 CFR Part 15E	47 CFR Part 15.407(h)(2)(iv)	Pass
DFS Detection Thresholds	47 CFR Part 15E	KDB 905462 D02, Clause 5.2 Table 3	Pass
Band edge emissions (Radiated)	47 CFR Part 15E	47 CFR Part 15.407(b)(1) 47 CFR Part 15.407(b)(2) 47 CFR Part 15.407(b)(4) 47 CFR Part 15.407(b)(10)	Pass
Undesirable emission limits (below 1GHz)	47 CFR Part 15E	47 CFR Part 15.407(b)(9)	Pass
Undesirable emission limits (above 1GHz)	47 CFR Part 15E	47 CFR Part 15.407(b)(1) 47 CFR Part 15.407(b)(2) 47 CFR Part 15.407(b)(4) 47 CFR Part 15.407(b)(10)	Pass

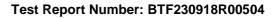

Test Configuration

Test Equipment List

Conducted Emission at AC power line								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
Pulse Limiter	SCHWARZBECK	VTSD 9561-F	00953	2022-11-24	2023-11-23			
Coaxial Switcher	SCHWARZBECK	CX210	CX210	2022-11-24	2023-11-23			
V-LISN	SCHWARZBECK	NSLK 8127	01073	2022-11-24	2023-11-23			
LISN	AFJ	LS16/110VAC	16010020076	2023-02-23	2024-02-22			
EMI Receiver	ROHDE&SCHWA RZ	ESCI3	101422	2022-11-24	2023-11-23			

Duty Cycle					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
RFTest software	/	V1.00	1	/	/
RF Control Unit	Techy	TR1029-1	1	2022-11-24	2023-11-23
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23

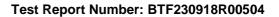
Maximum conducted output power							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
RFTest software	/	V1.00	/	/	/		
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23		
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23		
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23		
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23		
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23		
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23		



Power spectral density							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
RFTest software	/	V1.00	/	/	/		
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23		
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23		
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23		
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23		
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23		
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23		

Emission bandwidth and occupied bandwidth								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
RFTest software	/	V1.00	/	/	/			
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23			
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23			
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23			
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23			
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23			
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23			

Channel Availability Check Time							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
RFTest software	/	V1.00	/	/	/		
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23		
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23		
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23		
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23		
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23		

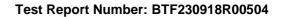


MXA Signal Analyzer KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23
------------------------------	--------	------------	------------	------------

U-NII Detection Bandwidth								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
RFTest software	/	V1.00	/	/	/			
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23			
RF Sensor Unit	Techy	TR1029-2	1	2022-11-24	2023-11-23			
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23			
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23			
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23			
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23			

Statistical Performance Check							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
RFTest software	/	V1.00	1	/	/		
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23		
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23		
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23		
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23		
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23		
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23		

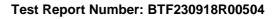
Channel Move Time, Channel Closing Transmission Time								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
RFTest software	/	V1.00	/	/	/			
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23			
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23			
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23			
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23			

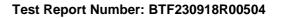


WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23

Non-Occupancy Period Test								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
RFTest software	/	V1.00	/	/	/			
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23			
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23			
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23			
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23			
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23			
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23			

DFS Detection Thresh	DFS Detection Thresholds										
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date						
RFTest software	/	V1.00	/	/	/						
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23						
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23						
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23						
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23						
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23						
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23						


Band edge emissions (Radiated)											
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date						
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	2023-03-24	2024-03-23						
Preamplifier	SCHWARZBECK	BBV9744	00246	2022-11-24	2023-11-23						
RE Cable	REBES Talent	UF1-SMASMAM-1 0m	21101566	2022-11-24	2023-11-23						
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2022-11-24	2023-11-23						
RE Cable	REBES Talent	UF1-SMASMAM-1 m	21101568	2022-11-24	2023-11-23						


RE Cable	REBES Talent	UF2-NMNM-1m	21101576	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF2-NMNM-2.5m	21101573	2022-11-24	2023-11-23
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	/	/
Horn Antenna	SCHWARZBECK	BBHA9170	01157	2021-11-28	2023-11-27
EMI TEST RECEIVER	ROHDE&SCHWA RZ	ESCI7	101032	2022-11-24	2023-11-23
SIGNAL ANALYZER	ROHDE&SCHWA RZ	FSQ40	100010	2022-11-24	2023-11-23
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	/	/
Broadband Preamplilifier	SCHWARZBECK	BBV9718D	00008	2023-03-24	2024-03-23
Horn Antenna	SCHWARZBECK	BBHA9120D	2597	2022-05-22	2024-05-21
EZ_EMC	Frad	FA-03A2 RE+	/	/	/
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	/	/
Log periodic antenna	SCHWARZBECK	VULB 9168	01328	2021-11-28	2023-11-27

Undesirable emission limits (below 1GHz)									
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date				
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	2023-03-24	2024-03-23				
Preamplifier	SCHWARZBECK	BBV9744	00246	2022-11-24	2023-11-23				
RE Cable	REBES Talent	UF1-SMASMAM-1 0m	21101566	2022-11-24	2023-11-23				
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2022-11-24	2023-11-23				
RE Cable	REBES Talent	UF1-SMASMAM-1 m	21101568	2022-11-24	2023-11-23				
RE Cable	REBES Talent	UF2-NMNM-1m	21101576	2022-11-24	2023-11-23				
RE Cable	REBES Talent	UF2-NMNM-2.5m	21101573	2022-11-24	2023-11-23				
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	/	/				
Horn Antenna	SCHWARZBECK	BBHA9170	01157	2021-11-28	2023-11-27				
EMI TEST RECEIVER	ROHDE&SCHWA RZ	ESCI7	101032	2022-11-24	2023-11-23				
SIGNAL ANALYZER	ROHDE&SCHWA RZ	FSQ40	100010	2022-11-24	2023-11-23				
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	/	/				
Broadband Preamplilifier	SCHWARZBECK	BBV9718D	80000	2023-03-24	2024-03-23				
Horn Antenna	SCHWARZBECK	BBHA9120D	2597	2022-05-22	2024-05-21				
EZ_EMC	Frad	FA-03A2 RE+	/	/	/				
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	/	/				
Log periodic antenna	SCHWARZBECK	VULB 9168	01328	2021-11-28	2023-11-27				

Undesirable emission	limits (above 1GH	lz)			
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	2023-03-24	2024-03-23
Preamplifier	SCHWARZBECK	BBV9744	00246	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF1-SMASMAM-1 0m	21101566	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF1-SMASMAM-1 m	21101568	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF2-NMNM-1m	21101576	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF2-NMNM-2.5m	21101573	2022-11-24	2023-11-23
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/
Horn Antenna	SCHWARZBECK	BBHA9170	01157	2021-11-28	2023-11-27
EMI TEST RECEIVER	ROHDE&SCHWA RZ	ESCI7	101032	2022-11-24	2023-11-23
SIGNAL ANALYZER	ROHDE&SCHWA RZ	FSQ40	100010	2022-11-24	2023-11-23
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/
Broadband Preamplilifier	SCHWARZBECK	BBV9718D	00008	2023-03-24	2024-03-23
Horn Antenna	SCHWARZBECK	BBHA9120D	2597	2022-05-22	2024-05-21
EZ_EMC	Frad	FA-03A2 RE+	/	/	/
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	/	/
Log periodic antenna	SCHWARZBECK	VULB 9168	01328	2021-11-28	2023-11-27

4.2 Test Auxiliary Equipment

The EUT was tested as an independent device.

4.3 Test Modes

Operating Environment:	
Temperature:	25.0 °C
Humidity:	56 % RH
Atmospheric Pressure:	1010 mbar
Test Mode:	
Engineering mode:	Keep the EUT in continuous transmitting by select channel and modulations (The value of duty cycle 95.70%)

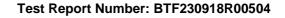
The sample was placed (0.8m below 1GHz, 1.5m above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. For the full battery state and The output power to the maximum state.

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Test Mode	Description
Mode 1	802.11a
Mode 2	802.11n20
Mode 3	802.11n40
Mode 4	802.11ac20
Mode 5	802.11ac40
Mode 6	802.11ac80
Mode 7	802.11ax20
Mode 8	802.11ax40
Mode 9	802.11ax80
Mode 10	802.11ax160

Note:

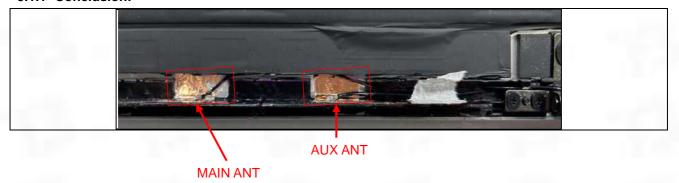
- (1) The measurements are performed at the highest, lowest available channels.
- (2) The EUT use new battery.
- (3) Record the worst case of each test item in this report.

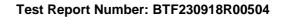


4.4 Table of Parameters of Text Software Setting

Test program		*#9646633#*									
Mada				Test	Freque	ncy (MH	z)				
Mode					NCB: 20)MHz					
802.11a	5180	5240	5260	5320	5500	5700	5745	5825		П	
002.11a	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz			
802.11n	5180	5240	5260	5320	5500	5700	5745	5825			
6UZ.1111	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz			
802.11ac	5180	5240	5260	5320	5500	5700	5745	5825			
002.11ac	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz			
902 11ov	5180	5240	5260	5320	5500	5700	5745	5825		П	
802.11ax	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz			
					NCB: 40)MHz					
000 115	5190	5230	5270	5310	5510	5670	5755	5795			
802.11n	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz			
000 1100	5190	5230	5270	5310	5510	5670	5755	5795			
802.11ac	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz			
000 11ov	5190	5230	5270	5310	5510	5670	5755	5795			
802.11ax	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz			
					NCB: 80	MHz					
000 1100	5210	5290	5530	5610	5775						
802.11ac	MHz	MHz	MHz	MHz	MHz						
902 11ov	5210	5290	5530	5610	5775						Т
802.11ax	MHz	MHz	MHz	MHz	MHz						
				١	ICB: 16	0MHz		·			
902 11ov	5250	5570									
802.11ax	MHz	MHz									

During testing, Channel and Power Controlling Software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.


5 Evaluation Results (Evaluation)

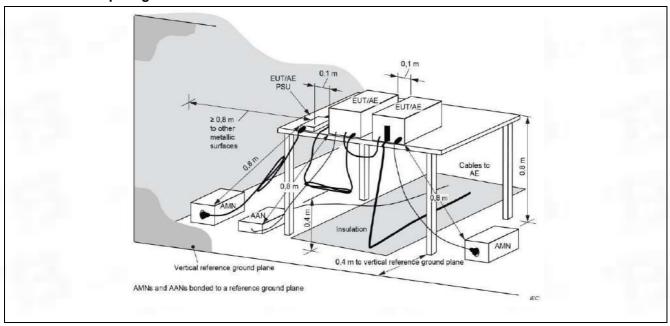

5.1 Antenna requirement

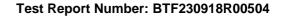
Test Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

5.1.1 Conclusion:

6 Radio Spectrum Matter Test Results (RF)

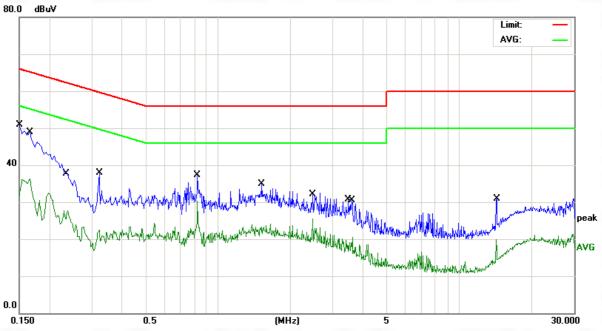

6.1 Conducted Emission at AC power line

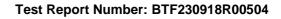

Test Requirement:	47 CFR Part 15.207(a)						
Test Method:	Refer to ANSI C63.10-2013 section 6.2, standard test method for ac por conducted emissions from unlicensed wireless devices						
	Frequency of emission (MHz)	Conducted limit (dBµV) Quasi-peak	Average				
Test Limit:	0.15-0.5	66 to 56*	56 to 46*				
rest Limit.	0.5-5	56	46				
	5-30	60	50				
	*Decreases with the logarithm of the frequency.						

6.1.1 E.U.T. Operation:

Operating Environment:			
Temperature:	25.5 °C		
Humidity:	50.6 %		
Atmospheric Pressure:	1010 mbar		

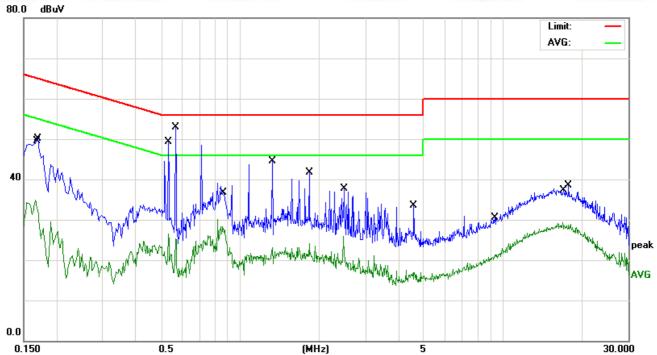
6.1.2 Test Setup Diagram:



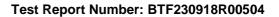


6.1.3 Test Data:

Line: Line / Band: U-NII 1 / BW: 20 / CH: L

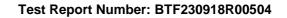


Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
	0.1516	39.51	10.45	49.96	65.91	-15.95	QP
	0.1660	25.82	10.45	36.27	55.15	-18.88	AVG
	0.2380	17.31	10.46	27.77	52.16	-24.39	AVG
	0.3220	27.40	10.48	37.88	59.65	-21.77	QP
	0.8260	26.72	10.54	37.26	56.00	-18.74	QP
*	0.8260	19.83	10.54	30.37	46.00	-15.63	AVG
	1.5260	24.29	10.63	34.92	56.00	-21.08	QP
	2.4739	14.81	10.71	25.52	46.00	-20.48	AVG
	3.4900	20.07	10.72	30.79	56.00	-25.21	QP
	3.6220	9.87	10.73	20.60	46.00	-25.40	AVG
	14.2300	8.73	11.14	19.87	50.00	-30.13	AVG
	14.3100	19.78	11.15	30.93	60.00	-29.07	QP
	Mk. *	MHz 0.1516 0.1660 0.2380 0.3220 0.8260 * 0.8260 1.5260 2.4739 3.4900 3.6220 14.2300	Mk. Freq. Level MHz dBuV 0.1516 39.51 0.1660 25.82 0.2380 17.31 0.3220 27.40 0.8260 26.72 * 0.8260 19.83 1.5260 24.29 2.4739 14.81 3.4900 20.07 3.6220 9.87 14.2300 8.73	Mk. Freq. Level Factor MHz dBuV dB 0.1516 39.51 10.45 0.1660 25.82 10.45 0.2380 17.31 10.46 0.3220 27.40 10.48 0.8260 26.72 10.54 * 0.8260 19.83 10.54 1.5260 24.29 10.63 2.4739 14.81 10.71 3.4900 20.07 10.72 3.6220 9.87 10.73 14.2300 8.73 11.14	Mk. Freq. Level Factor ment MHz dBuV dB dBuV 0.1516 39.51 10.45 49.96 0.1660 25.82 10.45 36.27 0.2380 17.31 10.46 27.77 0.3220 27.40 10.48 37.88 0.8260 26.72 10.54 37.26 * 0.8260 19.83 10.54 30.37 1.5260 24.29 10.63 34.92 2.4739 14.81 10.71 25.52 3.4900 20.07 10.72 30.79 3.6220 9.87 10.73 20.60 14.2300 8.73 11.14 19.87	Mk. Freq. Level Factor ment Limit MHz dBuV dB dBuV dBuV 0.1516 39.51 10.45 49.96 65.91 0.1660 25.82 10.45 36.27 55.15 0.2380 17.31 10.46 27.77 52.16 0.3220 27.40 10.48 37.88 59.65 0.8260 26.72 10.54 37.26 56.00 * 0.8260 19.83 10.54 30.37 46.00 1.5260 24.29 10.63 34.92 56.00 2.4739 14.81 10.71 25.52 46.00 3.4900 20.07 10.72 30.79 56.00 3.6220 9.87 10.73 20.60 46.00 14.2300 8.73 11.14 19.87 50.00	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV dBuV dB 0.1516 39.51 10.45 49.96 65.91 -15.95 0.1660 25.82 10.45 36.27 55.15 -18.88 0.2380 17.31 10.46 27.77 52.16 -24.39 0.3220 27.40 10.48 37.88 59.65 -21.77 0.8260 26.72 10.54 37.26 56.00 -18.74 * 0.8260 19.83 10.54 30.37 46.00 -15.63 1.5260 24.29 10.63 34.92 56.00 -21.08 2.4739 14.81 10.71 25.52 46.00 -20.48 3.4900 20.07 10.72 30.79 56.00 -25.21 3.6220 9.87 10.73 20.60 46.00 -25.40 14.2300 8.73 11.14 19.87 <td< td=""></td<>



Line: Neutral / Band: U-NII 1 / BW: 20 / CH: L

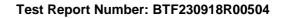
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.1660	24.43	10.45	34.88	55.15	-20.27	AVG
2		0.1700	39.71	10.45	50.16	64.96	-14.80	QP
3		0.5340	15.96	10.52	26.48	46.00	-19.52	AVG
4	*	0.5700	42.29	10.52	52.81	56.00	-3.19	QP
5		0.8580	17.72	10.54	28.26	46.00	-17.74	AVG
6		1.3260	33.98	10.60	44.58	56.00	-11.42	QP
7		1.8300	31.07	10.68	41.75	56.00	-14.25	QP
8		2.4700	15.25	10.71	25.96	46.00	-20.04	AVG
9		4.5739	22.85	10.74	33.59	56.00	-22.41	QP
10		9.3139	10.49	10.82	21.31	50.00	-28.69	AVG
11		16.8460	18.06	11.14	29.20	50.00	-20.80	AVG
12		17.8140	27.36	11.12	38.48	60.00	-21.52	QP


6.2 Duty Cycle

Test Requirement:	All measurements are to be performed with the EUT transmitting at 100% duty cycle at its maximum power control level; however, if 100% duty cycle cannot be achieved, measurements of duty cycle, x, and maximum-power transmission duration, T, are required for each tested mode of operation.
Test Method:	ANSI C63.10-2013 section 12.2 (b)
Test Limit:	No limits, only for report use.
Procedure:	 i) Set the center frequency of the instrument to the center frequency of the transmission. ii) Set RBW >= EBW if possible; otherwise, set RBW to the largest available value. iii) Set VBW >= RBW. iv) Set detector = peak. v) The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T, where T is defined in item a1) of 12.2, and the number of sweep points across duration T exceeds 100.

6.2.1 E.U.T. Operation:

Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar


6.2.2 Test Result: (Meet requirements)

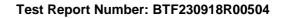
6.3 Maximum conducted output power

0.5 Waxiiiluiii Coild	lucted output power
	47 CFR Part 15.407(a)(1)(i)
	47 CFR Part 15.407(a)(1)(ii)
Total Day Survey	47 CFR Part 15.407(a)(1)(iii)
Test Requirement:	47 CFR Part 15.407(a)(1)(iv)
	47 CFR Part 15.407(a)(2)
	47 CFR Part 15.407(a)(3)(i)
Test Method:	ANSI C63.10-2013, section 12.3
	For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum
	conducted output power over the frequency band of operation shall not exceed 1
	W provided the maximum antenna gain does not exceed 6 dBi.
	If transmitting antennas of directional gain greater than 6 dBi are used, the
	maximum conducted output power shall be reduced by the amount in dB that the
	directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any
	elevation angle above 30 degrees as measured from the horizon must not exceed
	125 mW (21 dBm).
	For an indoor access point operating in the band 5.15-5.25 GHz, the maximum
	conducted output power over the frequency band of operation shall not exceed 1
	W provided the maximum antenna gain does not exceed 6 dBi.
	If transmitting antennas of directional gain greater than 6 dBi are used, the
	maximum conducted output power shall be reduced by the amount in dB that the
	directional gain of the antenna exceeds 6 dBi.
	For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the
	maximum conducted output power over the frequency band of operation shall not
	exceed 1 W.
	Fixed point-to-point U-NII devices may employ antennas with directional gain up to
	23 dBi without any corresponding reduction in the maximum conducted output
	power.
Test Limit:	For fixed point-to-point transmitters that employ a directional antenna gain greater
root Eirme	than 23 dBi, a 1 dB reduction in maximum conducted output power is required for
	each 1 dB of antenna gain in excess of 23 dBi.
	Fixed, point-to-point operations exclude the use of point-to-multipoint systems,
	omnidirectional applications, and multiple collocated transmitters transmitting the
	same information. The operator of the U-NII device, or if the equipment is
	professionally installed, the installer, is responsible for ensuring that systems
	employing high gain directional antennas are used exclusively for fixed,
	point-to-point operations.
	For client devices in the 5.15.5.25 CHz hand, the maximum conducted cuttout
	For client devices in the 5.15-5.25 GHz band, the maximum conducted output
	power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi.
	If transmitting antennas of directional gain greater than 6 dBi are used, the
	maximum conducted output power shall be reduced by the amount in dB that the
	directional gain of the antenna exceeds 6 dBi.
	and on one of the antenna exceeded of abi.
	For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output
	power over the frequency bands of operation shall not exceed the lesser of 250
	mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz.
	If transmitting antennas of directional gain greater than 6 dBi are used, the
	maximum conducted output power shall be reduced by the amount in dB that the
	directional gain of the antenna exceeds 6 dBi.
	and share gain of the antenna exceeded o abi.

	For the band 5.725-5.850 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W.
	If transmitting antennas of directional gain greater than 6 dBi are used, the
	maximum conducted output power shall be reduced by the amount in dB that the
	directional gain of the antenna exceeds 6 dBi.
	However, fixed point-to-point U-NII devices operating in this band may employ
	transmitting antennas with directional gain greater than 6 dBi without any
	corresponding reduction in transmitter conducted power. Fixed, point-to-point
	operations exclude the use of point-to-multipoint systems, omnidirectional
	applications, and multiple collocated transmitters transmitting the same
	information. The operator of the U-NII device, or if the equipment is professionally
	installed, the installer, is responsible for ensuring that systems employing high gain
	directional antennas are used exclusively for fixed, point-to-point operations.
	Method SA-1
	a) Set span to encompass the entire 26 dB EBW or 99% OBW of the signal.
	b) Set RBW = 1 MHz.
	c) Set VBW >= 3 MHz.
	d) Number of points in sweep >= [2 x span / RBW]. (This gives bin-to-bin spacing
	<= RBW / 2, so
	that narrowband signals are not lost between frequency bins.)
	e) Sweep time = auto.
	f) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample
	detector mode.
	g) If transmit duty cycle < 98%, use a video trigger with the trigger level set to
	enable triggering
	only on full power pulses. The transmitter shall operate at maximum power control level for the
Procedure:	entire duration of every sweep. If the EUT transmits continuously (i.e., with no OFF
Flocedule.	intervals) or
	at duty cycle >= 98%, and if each transmission is entirely at the maximum power
	control level,
	then the trigger shall be set to "free run."
	h) Trace average at least 100 traces in power averaging (rms) mode.
	i) Compute power by integrating the spectrum across the 26 dB EBW or 99% OBW
	of the signal
	using the instrument's band power measurement function, with band limits set
	equal to the
	EBW or OBW band edges. If the instrument does not have a band power function,
	then sum the
	spectrum levels (in power units) at 1 MHz intervals extending across the 26 dB
	EBW or 99%
	OBW of the spectrum.

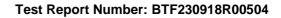
6.3.1 E.U.T. Operation:

Operating Environment:			
Temperature:	25.5 °C		
Humidity:	50.6 %		
Atmospheric Pressure:	1010 mbar		


6.3.2 Test Data:

Please Refer to Appendix for Details.

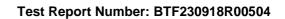
6.4 Power spectral	density
Test Requirement:	47 CFR Part 15.407(a)(1)(i) 47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(2) 47 CFR Part 15.407(a)(3)(i)
Test Method:	ANSI C63.10-2013, section 12.5
	For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	For an indoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band.
	Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the
Test Limit:	same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
	For client devices in the 5.15-5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	For the band 5.725-5.850 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter


	conducted power.
	Fixed, point-to-point operations exclude the use of point-to-multipoint systems,
	omnidirectional applications, and multiple collocated transmitters transmitting the
	same information. The operator of the U-NII device, or if the equipment is
	professionally installed, the installer, is responsible for ensuring that systems
	employing high gain directional antennas are used exclusively for fixed,
	point-to-point operations.
	a) Create an average power spectrum for the EUT operating mode being tested by
	following the
	instructions in 12.3.2 for measuring maximum conducted output power using a
	spectrum
	analyzer or EMI receiver; that is, select the appropriate test method (SA-1, SA-2,
	SA-3, or their
	respective alternatives) and apply it up to, but not including, the step labeled,
	"Compute
	power" (This procedure is required even if the maximum conducted output
	· · · · · · · · · · · · · · · · · · ·
	power
	measurement was performed using the power meter method PM.)
	b) Use the peak search function on the instrument to find the peak of the spectrum.
	c) Make the following adjustments to the peak value of the spectrum, if applicable:
	1) If method SA-2 or SA-2A was used, then add [10 log (1 / D)], where D is the duty
	cycle, to the peak of the spectrum.
	2) If method SA-3A was used and the linear mode was used in step h) of 12.3.2.7,
	add
B	1 dB to the final result to compensate for the difference between linear averaging
Procedure:	and
	power averaging.
	d) The result is the PPSD.
	e) The procedure in item a) through item c) requires the use of 1 MHz resolution
	bandwidth to
	satisfy the 1 MHz measurement bandwidth specified by some regulatory
	authorities. This
	requirement also permits use of resolution bandwidths less than 1 MHz "provided
	that the
	measured power is integrated to show the total power over the measurement
	bandwidth" (i.e.,
	1 MHz). If measurements are performed using a reduced resolution bandwidth and
	integrated
	over 1 MHz bandwidth, the following adjustments to the procedures apply:
	1) Set RBW >= 1 / T, where T is defined in 12.2 a).
	2) Set VBW >= [3 x RBW].
	3) Care shall be taken such that the measurements are performed during a period
	of continuous transmission or are corrected upward for duty cycle.

6.4.1 E.U.T. Operation:

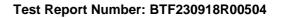
Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar

6.4.2 Test Data:


Please Refer to Appendix for Details.

6.5 Emission bandwidth and occupied bandwidth

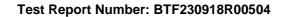
Toot Doguiron anti-	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use.
Test Requirement:	U-NII 3, U-NII 4: 47 CFR Part 15.407(e)
T () ()	ANSI C63.10-2013, section 6.9.3 & 12.4
Test Method:	KDB 789033 D02, Clause C.2
	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use.
Test Limit:	U-NII 3, U-NII 4: Within the 5.725-5.850 GHz and 5.850-5.895 GHz bands, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.
Procedure:	minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz. Emission bandwidth: a) Set RBW = approximately 1% of the emission bandwidth. b) Set the VBW > RBW. c) Detector = peak. d) Trace mode = max hold. e) Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the instrument. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%. Occupied bandwidth: a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW. b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement. c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2. d) Step a) through step c) might require iteration to adjust within the specified range. e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used. f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth. g) If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached;


99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is the difference between these two frequencies. h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s). 6 dB emission bandwidth: a) Set RBW = 100 kHz. b) Set the video bandwidth (VBW) ≥ 3 >= RBW. c) Detector = Peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

6.5.1 E.U.T. Operation:

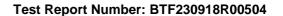
Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar

6.5.2 Test Data:


Please Refer to Appendix for Details.

6.6 Band edge emissions (Radiated)

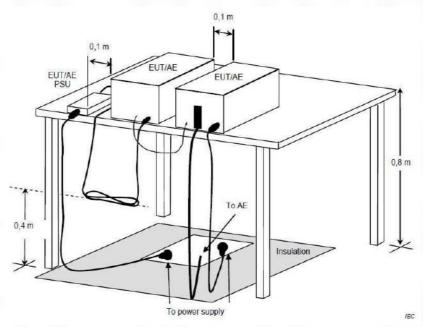
exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated based on the average value of the measured emissions. The provisions in § 15.35apply to these measurements.		47 CFR Part 15.407(b)	0(1)				
## A CFR Part 15.407(b)(10) Test Method: ANSI C63.10-2013, section 12.7.4, 12.7.5, 12.7.6 For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of th 5.15-5.35 GHz band shall not exceed an e.i.r.p. of ~27 dBm/MHz. For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of th 5.15-5.35 GHz band shall not exceed an e.i.r.p. of ~27 dBm/MHz. For transmitters operating solely in the 5.725-5.850 GHz band: All emissions shall be limited to a level of ~27 dBm/MHz at 75 MHz or more abov or below the band edge, and from 25 MHz above or below the band edge, and from 25 MHz above or below the band edge, and from 56 MHz above or below the band edge, and from 56 MHz above or below the band edge, and from 56 MHz above or below the band edge, and from 56 MHz above or below the band edge. MHz MHz 0.090-0.110 16.42-16.423 399.9410 4.5-5.15 4.125-4.128 2.5-25.67 130-4172 4.125-4.128 2.5-25.67 130-4172 4.20725-4.20775 73-74.6 1645.5-1646, 9.3-9.5 6.215-6.218 74.8-75.2 1664.5-1646, 9.3-9.5 6.215-6.218 74.8-75.2 1664.5-1646, 9.3-9.5 6.215-6.218 74.8-75.2 1664.5-1646, 9.3-9.5 6.215-6.218 74.8-75.2 1664.5-1646, 9.3-9.5 6.215-6.218 74.8-75.2 1664.5-1646, 9.3-9.5 6.215-6.218 74.8-75.2 1664.5-1646, 9.3-9.5 8.291-8.294 149.9-150.05 2310-2390 14.47-14.5 8.291-8.294 149.9-150.05 2310-2390 15.35-16.2 8.36625-8.38675 156.7-156.9 2690-290 20.01-23.12 8.37625-8.38675 156.7-156.9 2690-290 20.01-23.12 8.37625-8.38675 156.7-156.9 2690-290 20.01-23.12 12.59175-12.57725 322-335.4 3600-4400 (r) 1000 MHz, compliance with the limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated based on the average value of the measured emissions. The provisions in § 15.35apply to these measurements.	Took Dominion onto	47 CFR Part 15.407(b)	47 CFR Part 15.407(b)(2)				
Ar CFR Part 15.407(b)(10)	rest Requirement:	47 CFR Part 15.407(b)	47 CFR Part 15.407(b)(4)				
ANSI C63.10-2013, section 12.7.4, 12.7.5, 12.7.6		` '	` '				
For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of th 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz. For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of th 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz. For transmitters operating solely in the 5.725-5.850 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 25 MHz above or below the band edge, and from 5 MHz above or below the band edge, and from 5 MHz above or below the band edge. MHz MHz MHz MHz MHz MHz 0.090-0.110 16.42-16.423 399.9-410 4.5-5.15 10.495-0.505 16.89475-16.69325 608-614 5.35-5.46 2.1735-2.1905 16.89475-16.69325 608-614 5.35-5.46 2.1735-2.1905 16.89475-16.69325 4.17725-4.17775 37-37-4.6 16.45-5.1645-5.164, 93-9.5 6.215-6.218 74.8-75.2 1660-1710 10.6-12.7 6.26775-6.26825 108-121.94 1718.8-1722 13.25-13.4 2 6.31175-6.31225 123-138 2200-2300 14.47-14.5 8.291-8.294 149.9-150.05 2310-2390 15.35-16.2 8.362-8.366 156.52475-156.525 2483.5-2500 17.7-21.4 25 8.37625-8.38675 156.7-156.9 2690-2900 22.01-23.12 8.41425-8.41475 162.0125-167.17 3260-3267 23.6-23.0 12.5175-12.52025 240-285 3348-3358 312-31.8 12.5175-12.52025 240-285 3348-3358 312-31.8 13.6-13.41 1 Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. 2 Above 38.6 The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the limits in § 15.209shall be demonstrated based on the average value of the measured emissions. The provisions in	Test Method:		•	.7.6			
5.15-5.35 GHz band shall not exceed an e.i.r.p. of ~27 dBm/MHz. For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of th 5.15-5.35 GHz band shall not exceed an e.i.r.p. of ~27 dBm/MHz. For transmitters operating solely in the 5.725-5.850 GHz band: All emissions shall be limited to a level of ~27 dBm/MHz at 75 MHz or more abov or below the band edge, and from 25 MHz above or below the band edge, and from 25 MHz above or below the band edge, and from 25 MHz above or below the band edge, and from 5 MHz above or below the band edge, and from 5 MHz above or below the band edge, and from 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 127 dBm/MHz at the band edge. MHz MHz MHz MHz MHz 0.090-0.110 16.42-16.423 399.9-410 4.55-15 10.495-0.505 16.89475-16.69525 608-614 5.35-5.46 2.1735-2.1905 16.80425-16.80475 960-1240 7.25-7.75 4.125-4.127 8.025-8.5 4.17725-4.17775 37-5-38.25 1435-1626.5 9.0-9.2 4.20725-4.20775 73-74.6 1645.5-1646 9.3-9.5 6.215-6.218 74.8-75.2 1660-1710 10.6-12.7 6.26775-6.26825 108-121.94 1718.8-1722 13.25-13.4 2 6.31175-6.31225 123-138 200-2300 14.47-14.5 8.291-8.294 149.9-150.05 2310-2390 15.35-16.2 8.37625-8.38675 156.7-156.9 2690-2900 2.01-23.12 8.37625-8.38675 156.7-173.2 3332-3339 312.51975-12.52025 240-285 3345.8-3358 304-3-36.5 12.59175-12.52025 240-285 3345.8-3358 36.43-36.5 12.51975-12.52025 240-285 3345.8-3358 36.43-36.5 100 MHz. Above 38.6 The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz. compliance with the limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the limits in § 15.209shall be demonstrated based on the average value of the measured emissions. The provisions in § 15.35apply to these measurements.	1000 1110 1110 11				ssions outside of the		
5.15-5.35 GHz band shall not exceed an e.i.r.p. of ~27 dBm/MHz. For transmitters operating solely in the 5.725-5.850 GHz band: All emissions shall be limited to a level of ~27 dBm/MHz at 75 MHz or more abov or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge, and from 5 MHz above or below the band edge, and from 5 MHz above or below the band edge, and from 5 MHz above or below the band edge, and from 5 MHz above or below the band edge, and from 5 MHz above or below the band edge, and from 5 MHz above or below the band edge, and from 5 MHz above or below the band edge, and from 5 MHz above or below the band edge, and from 5 MHz above or below the band edge, and from 5 MHz above or below the band edge, and from 5 MHz above or below the band edge, and from 5 MHz above or below the band edge, and from 5 MHz above or below the band edge, and from 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at 76 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at 76 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at 76 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at 76 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at 76 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at 76 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at 76 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at 76 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at 76 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at 76 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at 76 MHz above or below the band edge and 1725-173. 2 332-335. 4 360-250 dBm/Mz above 38 dBm/MHz at 76 mHz above or below the band edge		5.15-5.35 GHz band sl	nall not exceed an e.i.r.	p. of −27 dBm/M	1Hz.		
All emissions shall be limited to a level of ~27 dBm/MHz at 75 MHz or more abox or below the band edge, and from 25 MHz above or below the band edge, and from 25 MHz above or below the band edge, and from 25 MHz above or below the band edge, and from 5 MHz above or below the band edge. Band above or below the band edge. Band above or below the band edge. Band above or below the							
All emissions shall be limited to a level of ~27 dBm/MHz at 75 MHz or more abox or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge, and from 25 MHz above or below the band edge, and from 5 MHz above or below the band edge. The from 5 MHz above or below the band edge. The from 5 MHz above or below the band edge. The from 5 MHz above or below the band edge. The from 5 MHz above o		For transmitters operate	ting solely in the 5.725-	5.850 GHz band	d:		
below the band edge, and from 26 MHz above or below the band edge increasin linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge. MHz MHz MHz GHz 0.090-0.110 16.42-16.423 399.9-410 4.5-5.15 10.495-0.505 16.69475-16.69525 608-614 5.35-5.46 2.1735-2.1905 16.80425-16.80475 960-1240 7.25-7.75 4.125-4.128 25.5-25.67 1300-1427 8.025-8.5 4.17725-4.17775 37.5-38.25 1435-1626.5 9.0-9.2 4.20725-4.20775 73-74.6 1645.5-1646. 9.3-9.5 6.215-6.218 74.8-75.2 1660-1710 10.6-12.7 6.26775-6.26825 108-121.94 1718.8-1722. 13.25-13.4 2 6.31175-6.31225 123-138 2200-2300 14.47-14.5 8.291-8.294 149.9-150.05 2310-2390 15.35-16.2 8.362-8.366 156.52475-156.525 2483.5-2500 17.7-21.4 25 8.37625-8.38675 156.7-156.9 2690-2900 22.01-23.12 8.41425-8.41475 162.0125-167.17 3260-3267 23.6-24.0 12.29-12.293 167.72-173.2 3332-3339 31.2-31.8 12.51975-12.52025 240-285 3345.8-3358 36.43-36.5 12.57675-12.57725 322-335.4 3600-4400 (°) 1 Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. 2 Above 38.6 The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated based on the average value of the measured emissions. The provisions in § 15.35apply to these measurements.							
linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge. MHz 0.090-0.110 16.42-16.423 399.9-410 4.5-5.15 10.495-0.505 16.69475-16.69525 608-614 5.35-5.46 2.1735-2.1905 16.80425-16.80475 960-1240 7.25-7.75 4.125-4.128 25.5-25.67 1300-1427 8.025-8.5 4.1775-4.17775 37.5-38.25 1435-1626.5 9.0-9.2 4.20725-4.20775 73-74.6 1645.5-1646. 9.3-9.5 6.215-6.218 74.8-75.2 1660-1710 10.6-12.7 6.26775-6.26825 108-121.94 1718.8-1722. 13.25-13.4 2 Test Limit: 6.31175-6.31225 123-138 2200-2300 14.47-14.5 8.291-8.294 149.9-150.05 2310-2390 15.35-16.2 8.362-8.366 156.52475-156.525 2483.5-2500 17.7-21.4 25 8.37625-8.38675 156.7-156.9 2690-2900 22.01-23.12 8.41425-8.41475 12.29-12.293 16.772-173.2 3332-3333 31.2-31.8 12.51975-12.52025 240-285 3345.8-3358 36.43-36.5 12.57675-12.57725 322-335.4 3600-4400 (°) 13.36-13.41 1 Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. 2 Above 38.6 The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated based on the average value of the measured emissions. The provisions in § 15.35apply to these measurements.		or below the band edg	e increasing linearly to	10 dBm/MHz at	25 MHz above or		
from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge. MHz MHz 0.090-0.110 16.42-16.423 399.9-410 4.5-5.15 10.495-0.505 16.69475-16.69525 608-614 5.35-5.46 2.1735-2.1905 16.80475-16.69525 608-614 5.35-5.46 2.1735-2.1905 16.80425-16.80475 960-1240 7.25-7.75 4.125-4.128 25.5-25.67 1300-1427 8.025-8.5 4.17725-4.17775 37.5-38.25 1435-1626.5 9.0-9.2 4.20725-4.20775 73-74.6 1645.5-1646 9.3-9.5 6.215-6.218 74.8-75.2 1660-1710 10.6-12.7 6.26775-6.26825 108-121.94 1718.8-1722. 13.25-13.4 2 6.31175-6.31225 123-138 2200-2300 14.47-14.5 8.291-8.294 149.9-150.05 2310-2390 15.35-16.2 8.362-8.366 156.52475-156.525 2483.5-2500 17.7-21.4 25 8.37625-8.38675 156.7-156.9 2690-2900 22.01-23.12 8.41425-8.41475 162.0125-167.17 3260-3267 23.6-24.0 12.29-12.293 167.72-173.2 3332-3339 31.2-31.8 12.51975-12.52025 240-285 3345.8-3358 36.43-36.5 12.57675-12.57725 322-335.4 3600-4400 (²) 10.ttill February 1, 1999, this restricted band shall be 0.490-0.510 MHz. 2Above 38.6 The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz emission support and							
### Company of the band edge. MHz							
MHz MHz 0.090-0.110 16.42-16.423 399.9-410 4.5-5.15 16.495-0.505 16.69475-16.69525 608-614 5.35-5.46 2.1735-2.1905 16.80425-16.80475 960-1240 7.25-7.75 4.125-4.128 25.5-25.67 1300-1427 8.025-8.5 4.17725-4.17775 37.5-38.25 1435-1626.5 9.0-9.2 4.20725-4.20775 73-74.6 1645.5-1646 9.3-9.5 5 6.215-6.218 74.8-75.2 1660-1710 10.6-12.7 6.26775-6.26825 108-121.94 1718.8-1722 13.25-13.4 2 16.31175-6.31225 123-138 2200-2300 14.47-14.5 8.291-8.294 149.9-150.05 2310-2390 15.35-16.2 8.291-8.294 149.9-150.05 2310-2390 15.35-16.2 8.37625-8.38675 156.7-156.9 2690-2900 22.01-23.12 8.41425-8.41475 162.0125-167.17 3260-3267 23.6-24.0 12.29-12.293 167.72-173.2 3332-3339 31.2-31.8 12.51975-12.52025 240-285 3345.8-3358 36.43-36.5 12.57675-12.57725 322-335.4 3600-4400 (°) 1.36-13.41 1 1 Tebruary 1, 1999, this restricted band shall be 0.490-0.510 MHz. 2 Above 38.6 The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated based on the average value of the measured emissions. The provisions in § 15.35apply to these measurements.			•	creasing linearly	to a level of 27		
Test Limit: 0.090-0.110		dBm/MHz at the band	edge.				
Test Limit: 10.495-0.505		MHz	MHz	MHz	GHz		
2.1735-2.1905		0.090-0.110	16.42-16.423	399.9-410	4.5-5.15		
### Test Limit: 4.125-4.128		¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46		
### Test Limit: 4.125-4.128		2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75		
### A 1,17725-4.17775 37.5-38.25 1435-1626.5 9.0-9.2 ### 4.20725-4.20775 73-74.6 1645.5-1646. 9.3-9.5 ### 6.215-6.218 74.8-75.2 1660-1710 10.6-12.7 ### 6.26775-6.26825 108-121.94 1718.8-1722. 13.25-13.4 ### 2200-2300 14.47-14.5 ### 8.291-8.294 149.9-150.05 2310-2390 15.35-16.2 ### 8.362-8.366 156.52475-156.525 2483.5-2500 17.7-21.4 ### 25							
### Test Limit: 4.20725-4.20775							
Test Limit: 6.215-6.218							
Test Limit: 6.215-6.218 74.8-75.2 1660-1710 10.6-12.7 6.26775-6.26825 108-121.94 1718.8-1722. 13.25-13.4 2 6.31175-6.31225 123-138 2200-2300 14.47-14.5 8.291-8.294 149.9-150.05 2310-2390 15.35-16.2 8.362-8.366 156.52475-156.525 2483.5-2500 17.7-21.4 25 8.37625-8.38675 156.7-156.9 2690-2900 22.01-23.12 8.41425-8.41475 162.0125-167.17 3260-3267 23.6-24.0 12.29-12.293 167.72-173.2 3332-3339 31.2-31.8 12.51975-12.52025 240-285 3345.8-3358 36.43-36.5 12.57675-12.57725 322-335.4 3600-4400 (²) 1 Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. 2 Above 38.6 The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated based on the average value of the measured emissions. The provisions in § 15.35apply to these measurements.		4.20120 4.20110	70 74.0		0.0 0.0		
Test Limit: 6.26775-6.26825 108-121.94 1718.8-1722. 13.25-13.4 2 6.31175-6.31225 123-138 2200-2300 14.47-14.5 8.291-8.294 149.9-150.05 2310-2390 15.35-16.2 8.362-8.366 156.52475-156.525 2483.5-2500 17.7-21.4 25 8.37625-8.38675 156.7-156.9 2690-2900 22.01-23.12 8.41425-8.41475 162.0125-167.17 3260-3267 23.6-24.0 12.29-12.293 167.72-173.2 3332-3339 31.2-31.8 12.51975-12.52025 240-285 3345.8-3358 36.43-36.5 12.57675-12.57725 322-335.4 3600-4400 (²) 13.36-13.41 1 Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. 2 Above 38.6 The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated based on the average value of the measured emissions. The provisions in § 15.35apply to these measurements.		6 215-6 218	74 8-75 2	-	10 6-12 7		
6.31175-6.31225 123-138 2200-2300 14.47-14.5 8.291-8.294 149.9-150.05 2310-2390 15.35-16.2 8.362-8.366 156.52475-156.525 2483.5-2500 17.7-21.4 25 8.37625-8.38675 156.7-156.9 2690-2900 22.01-23.12 8.41425-8.41475 162.0125-167.17 3260-3267 23.6-24.0 12.29-12.293 167.72-173.2 3332-3339 31.2-31.8 12.51975-12.52025 240-285 3345.8-3358 36.43-36.5 12.57675-12.57725 322-335.4 3600-4400 (²) 13.36-13.41 1 Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. 2 Above 38.6 The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated based on the average value of the measured emissions. The provisions in § 15.35apply to these measurements.				1718.8-1722.			
8.291-8.294 149.9-150.05 2310-2390 15.35-16.2 8.362-8.366 156.52475-156.525 2483.5-2500 17.7-21.4 25 8.37625-8.38675 156.7-156.9 2690-2900 22.01-23.12 8.41425-8.41475 162.0125-167.17 3260-3267 23.6-24.0 12.29-12.293 167.72-173.2 3332-3339 31.2-31.8 12.51975-12.52025 240-285 3345.8-3358 36.43-36.5 12.57675-12.57725 322-335.4 3600-4400 (²) 13.36-13.41 1 Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. 2 Above 38.6 The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated based on the average value of the measured emissions. The provisions in § 15.35apply to these measurements.	Test Limit:	6 31175-6 31225	123-138	_	14 47-14 5		
8.362-8.366							
8.37625-8.38675 156.7-156.9 2690-2900 22.01-23.12 8.41425-8.41475 162.0125-167.17 3260-3267 23.6-24.0 12.29-12.293 167.72-173.2 3332-3339 31.2-31.8 12.51975-12.52025 240-285 3345.8-3358 36.43-36.5 12.57675-12.57725 322-335.4 3600-4400 (²) 13.36-13.41 1 Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. 2 Above 38.6 The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated based on the average value of the measured emissions. The provisions in § 15.35apply to these measurements.							
8.37625-8.38675 156.7-156.9 2690-2900 22.01-23.12 8.41425-8.41475 162.0125-167.17 3260-3267 23.6-24.0 12.29-12.293 167.72-173.2 3332-3339 31.2-31.8 12.51975-12.52025 240-285 3345.8-3358 36.43-36.5 12.57675-12.57725 322-335.4 3600-4400 (²) 13.36-13.41 1 Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. 2 Above 38.6 The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated based on the average value of the measured emissions. The provisions in § 15.35apply to these measurements.		0.002 0.000		2 100.0 2000	=		
8.41425-8.41475 162.0125-167.17 3260-3267 23.6-24.0 12.29-12.293 167.72-173.2 3332-3339 31.2-31.8 12.51975-12.52025 240-285 3345.8-3358 36.43-36.5 12.57675-12.57725 322-335.4 3600-4400 (²) 13.36-13.41 1 Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. 2 Above 38.6 The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated based on the average value of the measured emissions. The provisions in § 15.35apply to these measurements.		8 37625-8 38675		2690-2900	22 01-23 12		
12.29-12.293 167.72-173.2 3332-3339 31.2-31.8 12.51975-12.52025 240-285 3345.8-3358 36.43-36.5 12.57675-12.57725 322-335.4 3600-4400 (²) 13.36-13.41 1 Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. 2 Above 38.6 The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated based on the average value of the measured emissions. The provisions in § 15.35apply to these measurements.							
12.51975-12.52025 240-285 3345.8-3358 36.43-36.5 12.57675-12.57725 322-335.4 3600-4400 (²) 13.36-13.41 ¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ² Above 38.6 The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated based on the average value of the measured emissions. The provisions in § 15.35apply to these measurements.							
12.57675-12.57725 322-335.4 3600-4400 (²) 13.36-13.41 ¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ² Above 38.6 The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated based on the average value of the measured emissions. The provisions in § 15.35apply to these measurements.							
² Above 38.6 The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated based on the average value of the measured emissions. The provisions in § 15.35apply to these measurements.		12.57675-12.57725 322-335.4 3600-4400 (²)					
The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated based on the average value of the measured emissions. The provisions in § 15.35apply to these measurements.		¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.					
exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated based on the average value of the measured emissions. The provisions in § 15.35apply to these measurements.		² Above 38.6					
15.35apply to these measurements.		MHz, compliance with the limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated					
Except as provided elsewhere in this subpart, the emissions from an intentional		Except as provided els	ewhere in this subpart	the emissions for	rom an intentional		

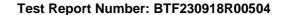


	radiator shall not exceed th	e field strength levels specified	in the following table:
	Frequency (MHz)	Field strength	Measurement
		(microvolts/meter)	distance
		((meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
	Above 1GHz:	000	- U
Procedure:	above the ground at a 3 medegrees to determine the pb. The EUT was set 3 meter was mounted on the top of c. The antenna height is varied determine the maximum varied polarizations of the antenna d. For each suspected emisting the antenna was tuned to hof below 30MHz, the antenna was turned from 0 degrees e. The test-receiver system Bandwidth with Maximum Handwidth with Handwidth w	T was placed on the top of a rote of fully-anechoic chamber. The osition of the highest radiation. The osition of the highest radiation are saway from the interference-real variable-height antenna tower ried from one meter to four metallue of the field strength. Both he are set to make the measurement is sion, the EUT was arranged to eights from 1 meter to 4 meters has a was tuned to heights 1 meter to 360 degrees to find the maxification was set to Peak Detect Function Hold Mode. The EUT in peak mode was 10dB at the stopped and the peak value of the X axis positioning which is until all frequencies measured of the Loss+ Antenna Factor- Pread SHz, the disturbance above 180 at are the highest emissions constant the highest emissions constant the highest emissions which are attenuated more that the peak measurement is shown as the peak measurement is shown as GHz were very low and the highest emissions when testing, so only the above 180 and the highest emissions when testing, so only the above 180 and the highest emissions when testing, so only the above 180 and the highest emissions when testing, so only the above 180 and the highest emissions when testing, so only the above 180 and the highest emissions when testing, so only the above 180 and the highest emissions when testing, so only the above 180 and the highest emissions when testing, so only the above 180 and the highest emissions when testing, so only the above 180 and the highest emissions when testing, so only the above 180 and the highest emissions when testing, so only the above 180 and 18	e table was rotated 360 eceiving antenna, which r. ers above the ground to orizontal and vertical nent. its worst case and then is (for the test frequency r) and the rotatable table mum reading. on and Specified lower than the limit es of the EUT would be margin would be ecified and then reported the Highest channel. its positioning for it is the worst case. was complete. Imp Factor GHz was very low. The ould be found when olitude of spurious in 20dB below the limit the field strength limits of the field strength limits of the speak level is lower of in the report. In monics were the

6.6.1 E.U.T. Operation:

Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %

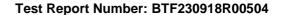


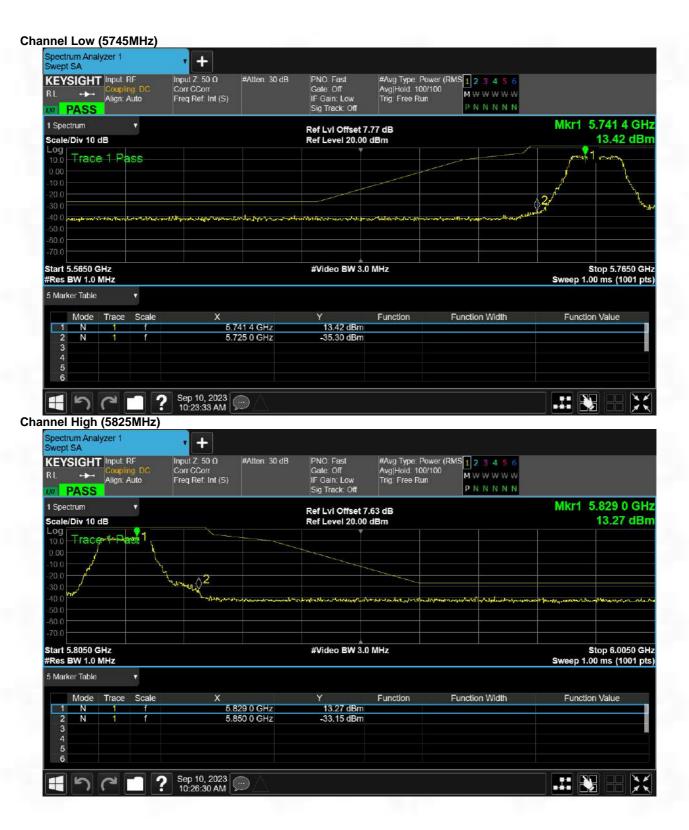


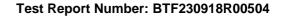
Atmospheric Pressure:

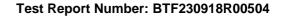
1010 mbar


6.6.2 Test Setup Diagram:



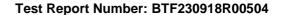



6.6.3 Test Data: 20MHz(IEEE 802.11a)

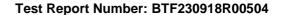


Channel Low (5755MHz)

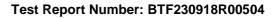
Channel High (5795MHz)



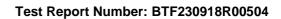
80MHzIEEE 802.11ac/ax Channel Low (5210MHz)




Channel Low (5775MHz)

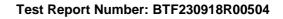


160MHzIEEE 802.11ax Channel Low (5250MHz)

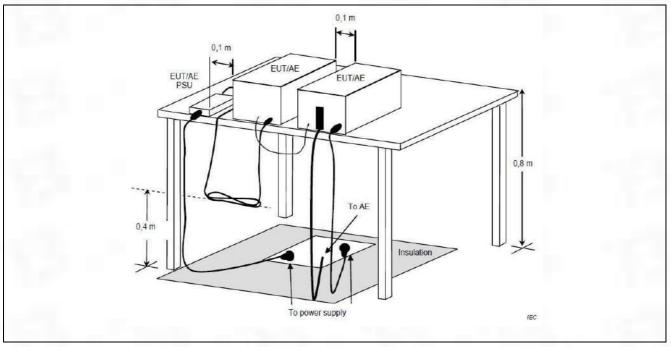


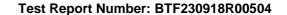
6.7 Undesirable emission limits (below 1GHz)

Test Requirement:	47 CFR Part 15.407(b)	` '			
Test Method:	ANSI C63.10-2013, section 12.7.4, 12.7.5, 12.7.6				
Test Limit:	limits set forth in § 15.2 Except as provided els	elow 1 GHz must comply with to 209. ewhere in this subpart, the emised the field strength levels specified strength (microvolts/meter) 2400/F(kHz)	ssions from an intentional		
	0.490-1.705 1.705-30.0 30-88 88-216 216-960 Above 960	24000/F(kHz) 30 100 ** 150 ** 200 **	30 30 3 3 3 3 3		
Procedure:	Below 1GHz: a. For below 1GHz, the above the ground at a degrees to determine to b. The EUT was set 3 cwhich was mounted on c. The antenna height determine the maximum polarizations of the antenna was tuned of below 30MHz, the and was turned from 0 degree. The test-receiver system Bandwidth with Maximum f. If the emission level of specified, then testing reported. Otherwise the re-tested one by one undata sheet. g. Test the EUT in the Information measurement. Transmitting mode, and information in Repeat above proceed Remark: 1. Level= Read Level+ 2. Scan from 9kHz to 3 points marked on above testing, so only above emissions from the radineed not be reported. 3. The disturbance belocation in the set of the state of the s	e EUT was placed on the top of 3 meter semi-anechoic chamber the position of the highest radiator 10 meters away from the interpretation of a variable-height and its varied from one meter to four mover value of the field strength. Because emission, the EUT was arranged to heights from 1 meter to 4 movers to 360 degrees to find the stem was set to Peak Detect Fulum Hold Mode. The field meter to 4 movers to 360 degrees to find the stem was set to Peak Detect Fulum Hold Mode. The field meter to 4 movers are performed in X, Y, do found the X axis positioning was a cable Loss+ Antenna Factor-field Loss+ are the highest emission points had been displayed. The liator which are attenuated more than the testing, so only the above from the testing that th	er. The table was rotated 360 tion. In the table was rotated 360 tion. In the table was rotated 360 tion. In the table receiving antenna, tenna tower. In meters above the ground to oth horizontal and vertical surement. In the test frequency meter) and the rotatable table maximum reading. In the table table maximum reading. In the table table maximum reading. In the Highest channel to the test frequency meter and the reported in a table table maximum reading. In the Highest channel. In a table table table table table table maximum reading. In the Highest channel. In a table ta		

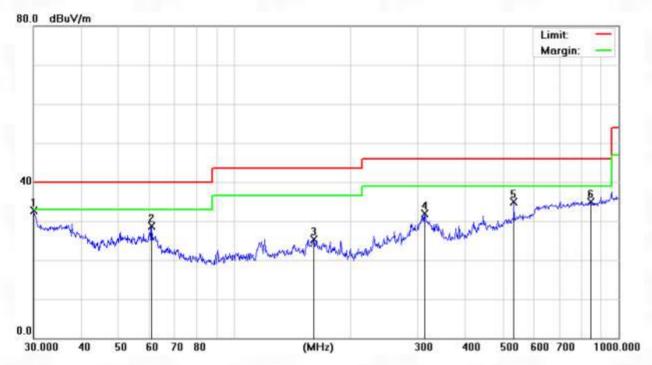


- a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- i. Repeat above procedures until all frequencies measured was complete. Remark:
- 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
- 2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.
- 4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

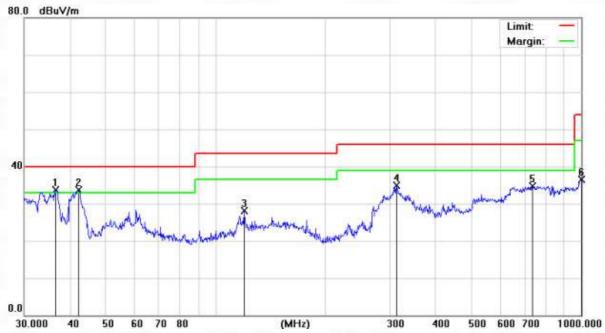

6.7.1 E.U.T. Operation:

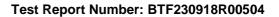

Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar

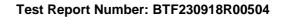
6.7.2 Test Setup Diagram:



6.7.3 Test Data:


Note: All the mode have been tested, and only the worst case mode are in the report Polarization: Horizontal / Band: U-NII 1 / BW: 20 / CH: L


No.	Mk	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	*	30.0000	49.30	-16.61	32.69	40.00	-7.31	QP
2		60.9176	45.30	-16.69	28.61	40.00	-11.39	QP
3		160.9088	42.28	-16.94	25.34	43.50	-18.16	QP
4	1	312.1792	49.01	-17.07	31.94	46.00	-14.06	QP
5	1	533.8320	52.01	-17.08	34.93	46.00	-11.07	QP
6		848.0562	50.16	-15.28	34.88	46.00	-11.12	QP


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	*	36.5092	50.30	-16.54	33.76	40.00	-6.24	QP
2	!	42.3022	50.16	-16.52	33.64	40.00	-6.36	QP
3		119.8556	44.88	-16.83	28.05	43.50	-15.45	QP
4	5	312.1794	52.01	-17.07	34.94	46.00	-11.06	QP
5		734.4913	50.83	-16.14	34.69	46.00	-11.31	QP
6		1000.000	50.44	-13.88	36.56	54.00	-17.44	QP

6.8 Undesirable emission limits (above 1GHz)

	47 CFR Part 15.407(b)			
Test Requirement:	47 CFR Part 15.407(b))(2)		
rest Requirement.	47 CFR Part 15.407(b))(4)		
	47 CFR Part 15.407(b))(10)		
Test Method:		ection 12.7.4, 12.7.5, 12		
		ting in the 5.15-5.25 GH		
		hall not exceed an e.i.r.		
		ting in the 5.25-5.35 GH		
	5.15-5.35 GHz band sl	hall not exceed an e.i.r.	p. of −27 dBm/N	1Hz.
	For transmitters opera-	ting solely in the 5.725-	5 850 GHz hand	Į.
		limited to a level of −27		
		e increasing linearly to		
		and from 25 MHz above		
		.6 dBm/MHz at 5 MHz		
		pelow the band edge inc		
	dBm/MHz at the band			
	MHz	МНz	MHz	GHz
	0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
	¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
	2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
	4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
	4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
	4.20725-4.20775	73-74.6	1645.5-1646.	9.3-9.5
			5	
	6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
	6.26775-6.26825	108-121.94	1718.8-1722.	13.25-13.4
			2	
Test Limit:	6.31175-6.31225	123-138	2200-2300	14.47-14.5
Test Littil.	8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
	8.362-8.366	156.52475-156.525 25	2483.5-2500	17.7-21.4
	8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
	8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
	12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
	12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
	12.57675-12.57725	322-335.4	3600-4400	(²)
	13.36-13.41			1
	10.0050	0. (1.) (.)	-111 - 0 400 0 4	-40 MII
	² Above 38.6	9, this restricted band s	naii be 0.490-0.5	510 MHZ.
	Above 36.6			
	The field strength of er	missions appearing with	in these frequer	ncy hands shall not
		n in § 15.209. At freque		
		the limits in § 15.209sh		
		entation employing a CI		
		e with the emission limit		
		value of the measured		
	15.35apply to these m			,
	Except as provided els	sewhere in this subpart,	the emissions for	rom an intentional
		ed the field strength lev		
	Frequency (MHz)	Field strength		Measurement

		(microvolts/meter)	distance
			(meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
	Above 1GHz:	500	3
	a. For above 1GHz, the above the ground at degrees to determine b. The EUT was set 3 was mounted on the c. The antenna height determine the maxim polarizations of the ad. For each suspected the antenna was tune of below 30MHz, the was turned from 0 dee. The test-receiver so Bandwidth with Maximus above the set of the	the EUT was placed on the top of a 3 meter fully-anechoic chamber of the position of the highest radia 3 meters away from the interferent top of a variable-height antennant is varied from one meter to four four value of the field strength. But the meaning of the EUT was arranged to heights from 1 meter to 4 mantenna was tuned to heights 1 mantenna was set to Peak Detect Formum Hold Mode.	er. The table was rotated 360 tion. Ince-receiving antenna, which tower. It meters above the ground to both horizontal and vertical surement. It worst case and then neters (for the test frequency meter) and the rotatable table maximum reading. Incurrent was rotated 360 and surement. It worst case and then neters (for the test frequency meter) and the rotatable table maximum reading. Incurrent was rotated 360 and surement which was r
Procedure:	specified, then testing reported. Otherwise to re-tested one by one in a data sheet.	g could be stopped and the peak the emissions that did not have 1 using peak or average method a e lowest channel, the middle cha	values of the EUT would be 0dB margin would be as specified and then reported
		surements are performed in X, Y	
		and found the X axis positioning v	
		edures until all frequencies meas	
	Remark:	edures unui ali frequericies frieas	sured was complete.
		L. Cabla Lagar Antonna Factor	Drooms Footor
		I+ Cable Loss+ Antenna Factor-	
		to 40GHz, the disturbance above	
		ove plots are the highest emissio	
		e points had been displayed. The	
		adiator which are attenuated mor	e than 2008 below the limit
	are based on averag not exceed the maxir dB under any condition	ection, for frequencies above 1G e limits. However, the peak field snum permitted average limits spen of modulation. For the emission	strength of any emission shall ecified above by more than 20 ons whose peak level is lower

6.8.1 E.U.T. Operation:

Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar

than the average limit, only the peak measurement is shown in the report.

4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been

displayed.

Test Report Number: BTF230918R00504

6.8.2 Test Data:

Note: All the mode have been tested, and only the worst case mode are in the report

	Гиа <i>а</i> ;	Low channel: 5180MHz									
	Freq. (MHz)	Ant.Pol	Emission L	_evel(dBuV)	Limit 3m	(dBuV/m)	Ove	r(dB)			
	(IVIHZ)	H/V	PK	AV	PK	AV	PK	AV			
ĺ	10360	V	59.11	41.03	74	54	-14.89	-12.97			
	15540	V	58.94	39.25	74	54	-15.06	-14.75			
	10360	Н	58.38	39.43	74	54	-15.62	-14.57			
	15540	Н	58.92	39.92	74	54	-15.08	-14.08			

Гиол	Low channel: 5180MHz									
Freq.	Ant.Pol	Emission L	_evel(dBuV)	Limit 3m	(dBuV/m)	Ove	r(dB)			
(MHz)	H/V	PK	AV	PK	AV	PK	AV			
10360	V	60.46	40.18	74	54	-13.54	-13.82			
15540	V	58.54	40.55	74	54	-15.46	-13.45			
10360	Н	59.69	40.63	74	54	-14.31	-13.37			
15540	Н	59.10	40.10	74	54	-14.90	-13.90			

_		Low channel: 5180MHz									
Freq.	Ant.Pol	Emission I	_evel(dBuV)	Limit 3m	(dBuV/m)	Ove	r(dB)				
(MHz)	H/V	PK	AV	PK	AV	PK	AV				
10360	V	58.56	40.71	74	54	-15.44	-13.29				
15540	V	59.38	39.45	74	54	-14.62	-14.55				
10360	Н	58.07	40.36	74	54	-15.93	-13.64				
15540	Н	59.55	40.55	74	54	-14.45	-13.45				

Freq.		Low channel: 5180MHz									
	Ant.Pol	Emission L	_evel(dBuV)	Limit 3m	(dBuV/m)	Ove	r(dB)				
(MHz)	H/V	PK	AV	PK	AV	PK	AV				
10360	V	60.12	39.75	74	54	-13.88	-14.25				
15540	V	58.86	39.82	74	54	-15.14	-14.18				
10360	Н	59.09	40.78	74	54	-14.91	-13.22				
15540	Н	58.37	39.37	74	54	-15.63	-14.63				

Note

- 1. All emissions not reported were more than 20dB below the specified limit or in the noise floor.
- 2. Freq. = Emission frequency in MHz

Reading level (dBµV) = Receiver reading

Corr. Factor (dB) = Attenuation factor + Cable loss

Level $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)

Limit (dBµV) = Limit stated in standard

Margin (dB) = Level (dB μ V) – Limits (dB μ V)

3. Data of measurement within this frequency range shown "--" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Appendix

1. Bandwidth

1.1 OBW

1.1.1 Test Result

-26dB Bandwidth

Mode	Frequency (MHz)	Antenna	-26 dB Bandwidth (MHz)	Limit -26 dB Bandwidth (MHz)	Verdict
а	5180	Ant1	22.846	0.5	Pass
а	5240	Ant1	23.404	0.5	Pass
a	5260	Ant1	23.366	0.5	Pass
a	5320	Ant1	23.488	0.5	Pass
a	5500	Ant1	23.254	0.5	Pass
а	5700	Ant1	23.032	0.5	Pass
n20	5180	Ant1	22.819	0.5	Pass
n20	5240	Ant1	23.332	0.5	Pass
n20	5260	Ant1	23.003	0.5	Pass
n20	5320	Ant1	23.228	0.5	Pass
n20	5500	Ant1	23.731	0.5	Pass
n20	5700	Ant1	23.05	0.5	Pass
n40	5190	Ant1	41.664	0.5	Pass
n40	5230	Ant1	42.011	0.5	Pass
n40	5270	Ant1	42.903	0.5	Pass
n40	5310	Ant1	42.279	0.5	Pass
n40	5510	Ant1	41.645	0.5	Pass
n40	5670	Ant1	43.101	0.5	Pass
ac20	5180	Ant1	23.58	0.5	Pass
ac20	5240	Ant1	23.081	0.5	Pass
ac20	5260	Ant1	22.871	0.5	Pass
ac20	5320	Ant1	22.585	0.5	Pass
ac20	5500	Ant1	22.743	0.5	Pass
ac20	5700	Ant1	23.026	0.5	Pass
ac40	5190	Ant1	41.69	0.5	Pass
ac40	5230	Ant1	43.241	0.5	Pass
ac40	5270	Ant1	42.056	0.5	Pass
ac40	5310	Ant1	41.689	0.5	Pass
ac40	5510	Ant1	42.934	0.5	Pass
ac40	5670	Ant1	42.474	0.5	Pass
ac80	5210	Ant1	83.214	0.5	Pass
ac80	5290	Ant1	83.807	0.5	Pass
ac80	5530	Ant1	84.403	0.5	Pass
ac80	5610	Ant1	81.543	0.5	Pass
ax160	5250	Ant1	161.409	0.5	Pass
ax160	5570	Ant1	160.626	0.5	Pass
ax20	5180	Ant1	22.302	0.5	Pass
ax20	5240	Ant1	22.428	0.5	Pass
ax20	5260	Ant1	22.325	0.5	Pass
ax20	5320	Ant1	22.677	0.5	Pass
ax20	5500	Ant1	22.717	0.5	Pass
ax20	5700	Ant1	22.698	0.5	Pass
ax40	5190	Ant1	43.358	0.5	Pass
ax40	5230	Ant1	41.661	0.5	Pass
ax40	5270	Ant1	41.516	0.5	Pass
ax40	5310	Ant1	42.767	0.5	Pass
ax40	5510	Ant1	42.764	0.5	Pass

Total or partial reproduction of this document without permission of the Laboratory is not allowed. Page 46 of 26 BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 46 of 264

ax40	5670	Ant1	41.324	0.5	Pass
ax80	5210	Ant1	80.613	0.5	Pass
ax80	5290	Ant1	80.492	0.5	Pass
ax80	5530	Ant1	81.173	0.5	Pass
ax80	5610	Ant1	82.971	0.5	Pass

-6dB Bandwidth

Mode	Frequency (MHz)	Antenna	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
а	5745	Ant1	16.324	0.5	Pass
а	5825	Ant1	16.316	0.5	Pass
n20	5745	Ant1	17.535	0.5	Pass
n20	5825	Ant1	17.287	0.5	Pass
n40	5755	Ant1	36.315	0.5	Pass
n40	5795	Ant1	36.311	0.5	Pass
ac20	5745	Ant1	17.562	0.5	Pass
ac20	5825	Ant1	17.518	0.5	Pass
ac40	5755	Ant1	36.307	0.5	Pass
ac40	5795	Ant1	36.305	0.5	Pass
ac80	5775	Ant1	75.067	0.5	Pass
ax20	5745	Ant1	18.45	0.5	Pass
ax20	5825	Ant1	18.294	0.5	Pass
ax40	5755	Ant1	37.658	0.5	Pass
ax40	5795	Ant1	37.81	0.5	Pass
ax80	5775	Ant1	73.832	0.5	Pass

1.1.2 Test Graph





