

RF Test Report

For

Applicant Name:

TECNO MOBILE LIMITED

Address:

EUT Name:

Brand Name:

Model Number:

FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET FOTAN NT HONGKONG Laptop TECNO T14TA Series Model Number: Refer to section 2

Issued By

Company Name:

Address:

BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Report Number: Test Standards:

BTF230612R00501 47 CFR Part 15.247

Test Conclusion: FCC ID: Test Date: Date of Issue:

Pass 2ADYY-T14TA 2023-03-10 to 2023-05-29 2023-06-14

Prepared By:

Date:

Approved By:

Date:

Chris Lin	
Chris Liu / Proj 2023-06-14	set Engineer
Fron CL/EM	
Ryan.CJ / EMC 2023-06-14	, wahaye

Note: All the test results in this report only related to the testing samples. Which can be duplicated completely for the legal use with approval of applicant; it shall not be reproduced except in full without the written approval of BTF Testing Lab (Shenzhen) Co., Ltd., All the objections should be raised within thirty days from the date of issue. To validate the report, you can contact us.

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

Page 1 of 57

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Revision History		
Version	Issue Date	Revisions Content
R_V0	2023-06-14	Original

Note: Once the revision has been made, then previous versions reports are invalid.

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 2 of 57BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Table of Contents

1	INTR	RODUCTION	5
	1.1	Identification of Testing Laboratory	
	1.2 1.3	Identification of the Responsible Testing Location	
2	PRO	DOUCT INFORMATION	6
	2.1	Application Information	6
	2.2	Manufacturer Information	
	2.3	Factory Information	
	2.4 2.5	General Description of Equipment under Test (EUT) Technical Information	6
3		IMARY OF TEST RESULTS	
	3.1	Test Standards	
	3.2	Uncertainty of Test	
	3.3	Summary of Test Result	7
4	TEST	T CONFIGURATION	8
	4.1	Test Equipment List	
	4.2	Test Auxiliary Equipment	
	4.3	Test Modes	
5	EVA	LUATION RESULTS (EVALUATION)	
	5.1	Antenna requirement	
		5.1.1 Conclusion:	
6	RAD	DIO SPECTRUM MATTER TEST RESULTS (RF)	
	6.1	Conducted Emission at AC power line	
		6.1.1 E.U.T. Operation:	
		6.1.2 Test Setup Diagram: 6.1.3 Test Data:	
	6.2	Occupied Bandwidth	
	0.2	6.2.1 E.U.T. Operation:	
		6.2.2 Test Setup Diagram:	
		6.2.3 Test Data:	
	6.3	Maximum Conducted Output Power	18
		6.3.1 E.U.T. Operation:	
		6.3.2 Test Setup Diagram:	
	C 4	6.3.3 Test Data:	
	6.4	Power Spectral Density	
		6.4.1 E.U.T. Operation:6.4.2 Test Setup Diagram:	
		6.4.3 Test Data:	
	6.5	Emissions in non-restricted frequency bands	
		6.5.1 E.U.T. Operation:	21
		6.5.2 Test Setup Diagram:	
		6.5.3 Test Data:	
	6.6	Band edge emissions (Radiated)	
		6.6.1 E.U.T. Operation:	
	6.7	Emissions in restricted frequency bands (below 1GHz)	
	0.7	6.7.1 E.U.T. Operation:	

	6.7.2	Test Data:	26
6.8	Emiss	sions in restricted frequency bands (above 1GHz)	
	6.8.1	E.U.T. Operation:	
		Test Data:	
APPENDIX	(

1 Introduction

1.1 Identification of Testing Laboratory

Company Name:	BTF Testing Lab (Shenzhen) Co., Ltd.
Address:	F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China
Phone Number:	+86-0755-23146130
Fax Number:	+86-0755-23146130

1.2 Identification of the Responsible Testing Location

Company Name:	BTF Testing Lab (Shenzhen) Co., Ltd.
Address:	F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China
Phone Number:	+86-0755-23146130
Fax Number:	+86-0755-23146130
FCC Registration Number:	518915
Designation Number:	CN1330

1.3 Announcement

(1) The test report reference to the report template version v0.

(2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.

(3) The test report is invalid if there is any evidence and/or falsification.

(4) This document may not be altered or revised in any way unless done so by BTF and all revisions are duly noted in the revisions section.

(5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.

(6) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

2 **Product Information**

2.1 Application Information

Company Name:	TECNO MOBILE LIMITED
Address:	FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET FOTAN NT HONGKONG

2.2 Manufacturer Information

Company Name:	TECNO MOBILE LIMITED
Address:	FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET FOTAN NT HONGKONG

2.3 Factory Information

Company Name:	GUANGXI SHANCHAUN TECHNOLOGY CO LTD	
Address:	2nd floor of building1 in zone 3、building2 in zone 3, 1st floor of building 2 in zone 4, Guangxi 3nod Smart Industrial Park, No. 3 Gaoke Road, Haicheng District, Beihai City, Guangxi Zhuang Autonomous Region	

2.4 General Description of Equipment under Test (EUT)

EUT Name:	Laptop		
Test Model Number:	T14TA		
Series Model Number:	N/A		

2.5 Technical Information

	Li-ion Battery: 528252-3S1P Rated Voltage: 11.61V
Power Supply:	Rated Capacity: 6460mAh/75Wh
	Limited Capacity: 6550mAh/76.04Wh
	Limited Charge Voltage: 13.35V
	Adapter1: TCW-A61S-65W
	Input: 100-240V~50/60Hz 1.5A Max
	Output: DP:5V 3A 9V 3A 12V 3A 15V 3A 20V 3.25A
Power Adaptor:	PPS: 3.3-11V 5A Max
Tower Adaptor.	Adapter2: ADT-65NS-D00
	Input: 100-240V~1.6A 50/60Hz
	Output: 5.0V 3.0A 15.0W or 9.0V 3.0A 27.0W or 12.0V 5.0A
	60.0W or 15.0V 4.33A 64.95W or 20.0V 3.25A 65.0W
Operation Frequency:	2402MHz to 2480MHz
Number of Channels:	40
Modulation Type:	GFSK
Antenna Type:	Integral Antenna
Antenna Gain [#] :	3.57 dBi

Note:

#: The antenna gain provided by the applicant, and the laboratory will not be responsible for the accumulated calculation results which covers the information provided by the applicant.

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

3 Summary of Test Results

3.1 Test Standards

The tests were performed according to following standards: 47 CFR Part 15.247: Operation within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz

3.2 Uncertainty of Test

Item	Measurement Uncertainty	
Conducted Emission (150 kHz-30 MHz)	±2.64dB	
The following measurement uncertainty levels have been estimated for tests performed on the EUT as		
specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty	ainty expressed at approximately	

3.3 Summary of Test Result

the 95% confidence level using a coverage factor of k=2.

Item	Standard	Requirement	Result
Antenna requirement	47 CFR Part 15.247	Part 15.203	Pass
Conducted Emission at AC power line	47 CFR Part 15.247	47 CFR 15.207(a)	Pass
Occupied Bandwidth	47 CFR Part 15.247	47 CFR 15.247(a)(2)	Pass
Maximum Conducted Output Power	47 CFR Part 15.247	47 CFR 15.247(b)(3)	Pass
Power Spectral Density	47 CFR Part 15.247	47 CFR 15.247(e)	Pass
Emissions in non-restricted frequency bands	47 CFR Part 15.247	47 CFR 15.247(d)	Pass
Band edge emissions (Radiated)	47 CFR Part 15.247	47 CFR 15.247(d)	Pass
Emissions in restricted frequency bands (below 1GHz)	47 CFR Part 15.247	47 CFR 15.247(d)	Pass
Emissions in restricted frequency bands (above 1GHz)	47 CFR Part 15.247	47 CFR 15.247(d)	Pass

Test Configuration 4

Test Equipment List 4.1

Conducted Emission at AC power line							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
Pulse Limiter	SCHWARZBECK	VTSD 9561-F	00953	2022-11-24	2023-11-23		
Coaxial Switcher	SCHWARZBECK	CX210	CX210	2022-11-24	2023-11-23		
V-LISN	SCHWARZBECK	NSLK 8127	01073	2022-11-24	2023-11-23		
LISN	AFJ	LS16/110VAC	16010020076	2023-02-23	2024-02-22		
EMI Receiver	ROHDE&SCHWA RZ	ESCI3	101422	2022-11-24	2023-11-23		

Occupied Bandwidth						
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
RFTest software	/	V1.00	/	/	/	
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23	
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23	
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23	
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23	
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23	
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23	

Maximum Conducted Output Power							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
RFTest software	/	V1.00	/	/	/		
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23		
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23		
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23		
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23		
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23		
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23		

Power Spectral Density							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
RFTest software	/	V1.00	/	/	/		

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 8 of 57

RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23

Emissions in non-restricted frequency bands							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
RFTest software	/	V1.00	/	/	/		
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23		
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23		
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23		
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23		
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23		
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23		

Band edge emissions	Band edge emissions (Radiated)							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	2023-03-24	2024-03-23			
Preamplifier	SCHWARZBECK	BBV9744	00246	2022-11-24	2023-11-23			
RE Cable	REBES Talent	UF1-SMASMAM-1 0m	21101566	2022-11-24	2023-11-23			
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2022-11-24	2023-11-23			
RE Cable	REBES Talent	UF1-SMASMAM-1 m	21101568	2022-11-24	2023-11-23			
RE Cable	REBES Talent	UF2-NMNM-1m	21101576	2022-11-24	2023-11-23			
RE Cable	REBES Talent	UF2-NMNM-2.5m	21101573	2022-11-24	2023-11-23			
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/			
Horn Antenna	SCHWARZBECK	BBHA9170	01157	2021-11-28	2023-11-27			
EMI TEST RECEIVER	ROHDE&SCHWA RZ	ESCI7	101032	2022-11-24	2023-11-23			
SIGNAL ANALYZER	ROHDE&SCHWA RZ	FSQ40	100010	2022-11-24	2023-11-23			

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 9 of 5BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 9 of 57

POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/
Broadband Preamplilifier	SCHWARZBECK	BBV9718D	00008	2023-03-24	2024-03-23
Horn Antenna	SCHWARZBECK	BBHA9120D	2597	2022-05-22	2024-05-21
EZ_EMC	Frad	FA-03A2 RE+	/	/	/
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/
Log periodic antenna	SCHWARZBECK	VULB 9168	01328	2021-11-28	2023-11-27

Emissions in restricted frequency bands (below 1GHz)						
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	2023-03-24	2024-03-23	
Preamplifier	SCHWARZBECK	BBV9744	00246	2022-11-24	2023-11-23	
RE Cable	REBES Talent	UF1-SMASMAM-1 0m	21101566	2022-11-24	2023-11-23	
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2022-11-24	2023-11-23	
RE Cable	REBES Talent	UF1-SMASMAM-1 m	21101568	2022-11-24	2023-11-23	
RE Cable	REBES Talent	UF2-NMNM-1m	21101576	2022-11-24	2023-11-23	
RE Cable	REBES Talent	UF2-NMNM-2.5m	21101573	2022-11-24	2023-11-23	
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/	
Horn Antenna	SCHWARZBECK	BBHA9170	01157	2021-11-28	2023-11-27	
EMI TEST RECEIVER	ROHDE&SCHWA RZ	ESCI7	101032	2022-11-24	2023-11-23	
SIGNAL ANALYZER	ROHDE&SCHWA RZ	FSQ40	100010	2022-11-24	2023-11-23	
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/	
Broadband Preamplilifier	SCHWARZBECK	BBV9718D	00008	2023-03-24	2024-03-23	
Horn Antenna	SCHWARZBECK	BBHA9120D	2597	2022-05-22	2024-05-21	
EZ_EMC	Frad	FA-03A2 RE+	/	/	/	
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/	
Log periodic antenna	SCHWARZBECK	VULB 9168	01328	2021-11-28	2023-11-27	

Emissions in restricted frequency bands (above 1GHz)							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	2023-03-24	2024-03-23		
Preamplifier	SCHWARZBECK	BBV9744	00246	2022-11-24	2023-11-23		
RE Cable	REBES Talent	UF1-SMASMAM-1 0m	21101566	2022-11-24	2023-11-23		
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2022-11-24	2023-11-23		
RE Cable	REBES Talent	UF1-SMASMAM-1 m	21101568	2022-11-24	2023-11-23		
RE Cable	REBES Talent	UF2-NMNM-1m	21101576	2022-11-24	2023-11-23		
RE Cable	REBES Talent	UF2-NMNM-2.5m	21101573	2022-11-24	2023-11-23		

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 10 of 5BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 10 of 57

POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/
Horn Antenna	SCHWARZBECK	BBHA9170	01157	2021-11-28	2023-11-27
EMI TEST RECEIVER	ROHDE&SCHWA RZ	ESCI7	101032	2022-11-24	2023-11-23
SIGNAL ANALYZER	ROHDE&SCHWA RZ	FSQ40	100010	2022-11-24	2023-11-23
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/
Broadband Preamplilifier	SCHWARZBECK	BBV9718D	00008	2023-03-24	2024-03-23
Horn Antenna	SCHWARZBECK	BBHA9120D	2597	2022-05-22	2024-05-21
EZ_EMC	Frad	FA-03A2 RE+	/	/	/
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	1
Log periodic antenna	SCHWARZBECK	VULB 9168	01328	2021-11-28	2023-11-27

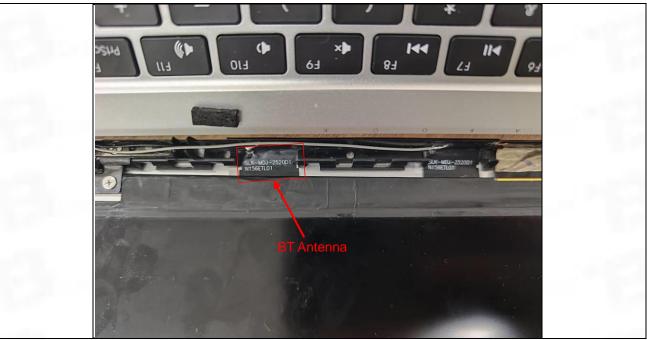
4.2 Test Auxiliary Equipment

The EUT was tested as an independent device.

4.3 Test Modes

Temperature:	25.0 °C
Humidity:	56 % RH
Atmospheric Pressure:	1010 mbar
Test Mode:	
Engineering mode:	Keep the EUT in continuous transmitting by select channel and modulations(The value of duty cycle is 90.56%) with Fully-charged battery.
	elow 1GHz, 1.5m above 1GHz) above the ground nents in both horizontal and vertical polarities were

plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.


5 Evaluation Results (Evaluation)

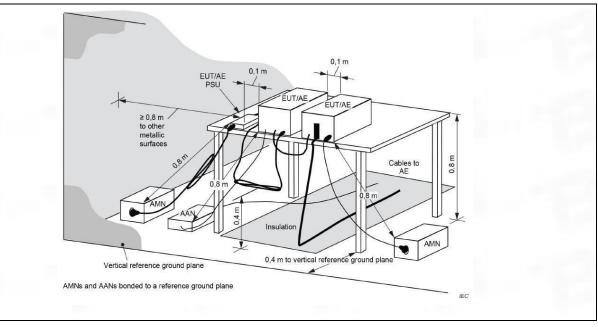
5.1 Antenna requirement

Test Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

5.1.1 Conclusion:

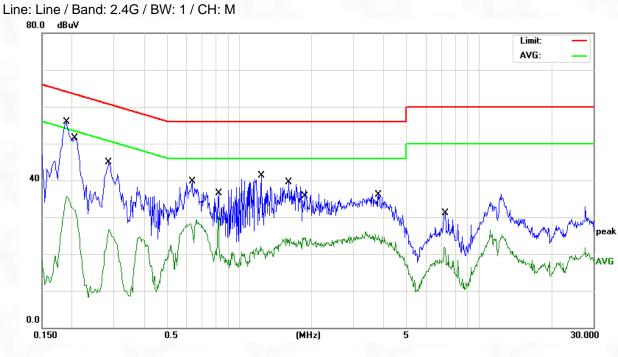
Radio Spectrum Matter Test Results (RF) 6


Conducted Emission at AC power line 6.1

Test Requirement:	Except as shown in paragraphs (b)and (c)of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN).		
Test Method:	Refer to ANSI C63.10-2013 section 6.2, standard test method for ac power-line conducted emissions from unlicensed wireless devices		
Frequency of emission (MHz) Conducted limit		Conducted limit (dE	βµV)
		Quasi-peak	Average
Test Limit:	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30	60	50
	*Decreases with the logarithm of t	he frequency.	

6.1.1 E.U.T. Operation:

Operating Environment:	
Temperature:	25.2 °C
Humidity:	50.5 %
Atmospheric Pressure:	1010 mbar


6.1.2 Test Setup Diagram:

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

6.1.3 Test Data:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	*	0.1900	45.46	10.45	55.91	64.03	-8.12	QP
2		0.1900	25.27	10.45	35.72	54.03	-18.31	AVG
3		0.2060	40.98	10.45	51.43	63.36	-11.93	QP
4		0.2860	16.13	10.47	26.60	50.64	-24.04	AVG
5		0.6340	29.21	10.53	39.74	56.00	-16.26	QP
6		0.8139	19.82	10.54	30.36	46.00	-15.64	AVG
7		1.2420	30.73	10.59	41.32	56.00	-14.68	QP
8		1.6100	28.83	10.65	39.48	56.00	-16.52	QP
9		1.8620	13.90	10.69	24.59	46.00	-21.41	AVG
10		3.8020	14.42	10.73	25.15	46.00	-20.85	AVG
11		7.1820	11.09	10.78	21.87	50.00	-28.13	AVG
12		7.2340	20.27	10.78	31.05	60.00	-28.95	QP

Total or partial reproduction of this document without permission of the Laboratory is not allowed.

Page 15 of 57

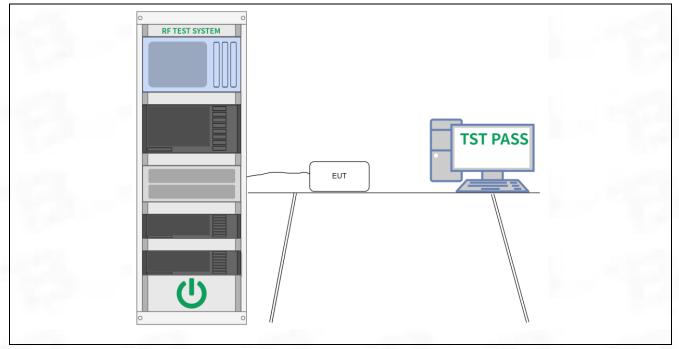
BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

				Limit: —
				AVG:
	<u> </u>			
X				
of M				
/~ /W	X III	X X		
1 Ma 10 Mar 19	An Marchally	a hard the second state of the second states	λ Mu .x	
		Malla an Inderkersdag .	The white is	provided and and
JII Ma		A & many many many many many many many many		What we all more p
7 ')		What want we are the second and a second	When the marked of the	think Y V
				Why A A Marina
	1 4 1		. VI	νψv
W' 1	N ^N			
150	0.5	(MHz)	5	30.000

Line: Neutral / Band: 2.4G / BW: 1 / CH: M

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBu∨	dB	Detector
1	*	0.1900	45.06	10.45	55.51	64.03	-8.52	QP
2		0.1980	26.62	10.45	37.07	53.69	-16.62	AVG
3		0.2860	18.74	10.47	29.21	50.64	-21.43	AVG
4		0.3860	27.18	10.49	37.67	58.15	-20.48	QP
5		0.8139	21.58	10.54	32.12	46.00	-13.88	AVG
6		1.1539	29.66	10.57	40.23	56.00	-15.77	QP
7		1.8140	30.27	10.68	40.95	56.00	-15.05	QP
8		1.8140	19.08	10.68	29.76	46.00	-16.24	AVG
9		3.7140	26.12	10.73	36.85	56.00	-19.15	QP
10		3.8180	14.38	10.73	25.11	46.00	-20.89	AVG
11		6.8900	14.28	10.77	25.05	50.00	-24.95	AVG
12		7.0100	23.12	10.78	33.90	60.00	-26.10	QP

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 16 of 5BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China


6.2 Occupied Bandwidth

Test Requirement:	Systems using digital modulation techniques may operate in the 902-928 MHz, and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.
Test Method:	DTS bandwidth
Test Limit:	Section (a)(2), Systems using digital modulation techniques may operate in the 902-928 MHz, and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.
Procedure:	 a) Set RBW = 100 kHz. b) Set the VBW >= [3 x RBW]. c) Detector = peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

6.2.1 E.U.T. Operation:

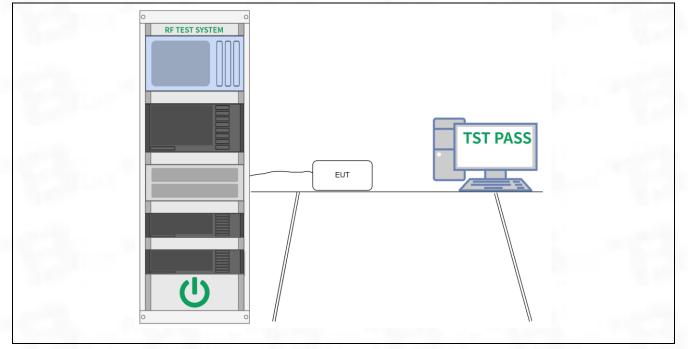
Operating Environment:	
Temperature:	25.8 °C
Humidity:	49.9 %
Atmospheric Pressure:	1010 mbar

6.2.2 Test Setup Diagram:

6.2.3 Test Data:

Please Refer to Appendix for Details.

6.3 Maximum Conducted Output Power


Test Requirement:	For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.
Test Method:	Maximum peak conducted output power
Test Limit:	For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.
Procedure:	ANSI C63.10-2013, section 11.9.1 Maximum peak conducted output power
6.3.1 E.U.T. Operation:	

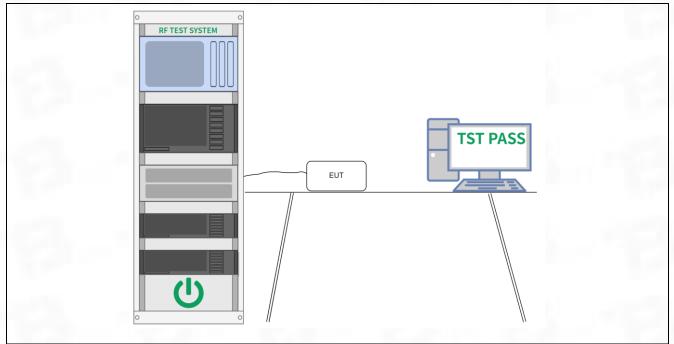
6.3.1 E.U.T. Operation:

Operating Environment:	
Temperature:	25.8 °C
Humidity:	49.9 %
Atmospheric Pressure:	1010 mbar

6.3.2 Test Setup Diagram:

6.3.3 Test Data:

Please Refer to Appendix for Details.


6.4 Power Spectral Density

Test Requirement:	For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.
Test Method:	Maximum power spectral density level in the fundamental emission
Test Limit:	For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

6.4.1 E.U.T. Operation:

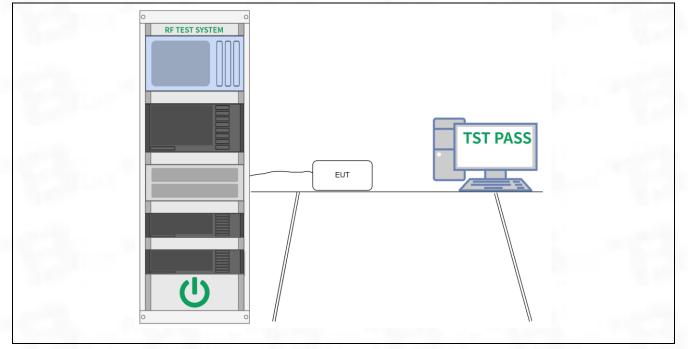
Operating Environment:	
Temperature:	25.8 °C
Humidity:	49.9 %
Atmospheric Pressure:	1010 mbar

6.4.2 Test Setup Diagram:

6.4.3 Test Data:

Please Refer to Appendix for Details.

6.5 Emissions in non-restricted frequency bands


Test Requirement:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Method:	Emissions in nonrestricted frequency bands
Test Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Procedure:	ANSI C63.10-2013 Section 11.11.1, Section 11.11.2, Section 11.11.3

6.5.1 E.U.T. Operation:

Operating Environment:				
Temperature:	25.8 °C			
Humidity:	49.9 %	1 (1) (1) (1)		
Atmospheric Pressure:	1010 mbar			

6.5.2 Test Setup Diagram:

6.5.3 Test Data:

Please Refer to Appendix for Details.

6.6 Band edge emissions (Radiated)

Test Requirement:		ssions which fall in the restrictemply with the radiated emission (c)).			
Test Method:	Radiated emissions test	Radiated emissions tests			
	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)		
	0.009-0.490	2400/F(kHz)	300		
	0.490-1.705	24000/F(kHz)	30		
	1.705-30.0	30	30		
	30-88	100 **	3		
Test Limit:	88-216	150 **	3		
	216-960	200 **	3		
	Above 960	500	3		
	radiators operating unde 54-72 MHz, 76-88 MHz,	paragraph (g), fundamental em er this section shall not be locate 174-216 MHz or 470-806 MHz. s permitted under other sections	ed in the frequency bands However, operation within		
Procedure:	ANSI C63.10-2013 sect	ion 6.6.4	and the second se		
6.6.1 E.U.T. Operation:					

Operating Environment:	
Temperature:	22.1 °C
Humidity:	46.3 %
Atmospheric Pressure:	1010 mbar

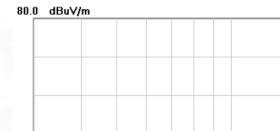
6.6.2 Test Data:

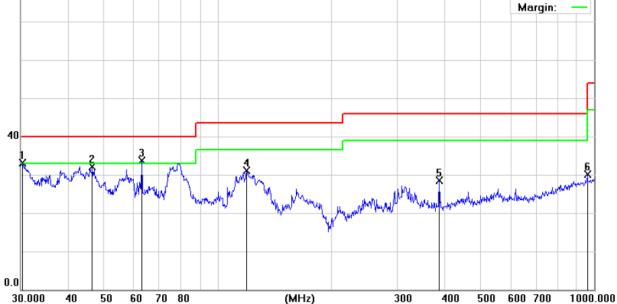
Test result for GFSK Mode (the worst case)

Frequency	Reading	Correct Factor	Emission Level	Limit	Margin	Polar	Detector
(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	H/V	
			Low Cha	nnel			
2390	64.82	-8.76	56.06	74	-17.94	Н	PK
2390	54.88	-8.76	46.12	54	-7.88	Н	AV
2390	62.36	-8.73	53.63	74	-20.37	V	PK
2390	56.66	-8.73	47.93	54	-6.07	V	AV
	High Channel						
2483.5	63.00	-8.76	54.24	74	-19.76	Η	PK
2483.5	53.52	-8.76	44.76	54	-9.24	Η	AV
2483.5	60.29	-8.73	51.56	74	-22.44	V	PK
2483.5	55.09	-8.73	46.36	54	-7.64	V	AV

6.7 Emissions in restricted frequency bands (below 1GHz)

Test Requirement:		issions which fall in the restricte mply with the radiated emission (c)).				
Test Method:	Radiated emissions test	Radiated emissions tests				
	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)			
	0.009-0.490	2400/F(kHz)	300			
	0.490-1.705	24000/F(kHz)	30			
	1.705-30.0	30	30			
	30-88	100 **	3			
Test Limit:	88-216	150 **	3			
	216-960	200 **	3			
	Above 960	500	3			
	radiators operating unde 54-72 MHz, 76-88 MHz,	** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241.				
Procedure:	ANSI C63.10-2013 sect	ion 6.6.4				
6.7.1 E.U.T. Operation	n:					


Operating Environment:	
Temperature:	22.1 °C
Humidity:	46.3 %
Atmospheric Pressure:	1010 mbar



Limit:

6.7.2 Test Data:

Note: All the mode have been tested, and only the worst case of 1M mode are in the report Polarization: Horizontal / Band: 2.4G / BW: 1 / CH: H

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	İ	30.3173	28.42	4.67	33.09	40.00	-6.91	QP
2		46.5030	35.11	-2.93	32.18	40.00	-7.82	QP
3	*	62.8708	40.18	-6.44	33.74	40.00	-6.26	QP
4		119.4361	33.79	-2.78	31.01	43.50	-12.49	QP
5		387.9920	29.70	-1.13	28.57	46.00	-17.43	QP
6		958.7943	23.58	6.57	30.15	46.00	-15.85	QP

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

Page 26 of 57

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

			Limit: — Margin: —
			Maryin.
	Mr. Martin	\$ 5	5
monor have been by the	There is well	with White and party was	Aldente adjument the watthe official
What we want the second	WWW WATT	V	
0.000 40 50 60 70 80	(MHz)	300 400 50	0 600 700 1000

Polarization: Vertical / Band: 2.4G / BW: 1 / CH: H

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		30.6379	26.53	4.54	31.07	40.00	-8.93	QP
2	*	61.5618	38.10	-6.34	31.76	40.00	-8.24	QP
3		118.1862	34.21	-2.65	31.56	43.50	-11.94	QP
4		308.9126	32.59	-2.14	30.45	46.00	-15.55	QP
5		387.9920	29.70	-1.13	28.57	46.00	-17.43	QP
6		958.7943	24.83	6.57	31.40	46.00	-14.60	QP

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 27 of 5BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

6.8 Emissions in restricted frequency bands (above 1GHz)

Test Requirement:		issions which fall in the restricter mply with the radiated emission (c)).				
Test Method:	Radiated emissions test	Radiated emissions tests				
	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)			
	0.009-0.490	2400/F(kHz)	300			
	0.490-1.705	24000/F(kHz)	30			
	1.705-30.0	30	30			
	30-88	100 **	3			
Test Limit:	88-216	150 **	3			
	216-960	200 **	3			
	Above 960	500	3			
	radiators operating unde 54-72 MHz, 76-88 MHz,	** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241.				
Procedure:	ANSI C63.10-2013 sect	ion 6.6.4				
6.8.1 E.U.T. Operation	1:					

Operating Environment:	
Temperature:	22.1 °C
Humidity:	46.3 %
Atmospheric Pressure:	1010 mbar

6.8.2 Test Data:

Free	Low channel: 2402MHz								
Freq.	Ant.Pol	Emission Level(dBuV)		Limit 3m(dBuV/m)		Over(dB)			
(MHz)	H/V	PK	AV	PK	AV	PK	AV		
4804	V	58.42	41.48	74	54	-15.58	-12.52		
7206	V	59.16	40.87	74	54	-14.84	-13.13		
4804	Н	59.12	39.20	74	54	-14.88	-14.80		
7206	Н	59.62	40.62	74	54	-14.38	-13.38		

Free	Middle channel: 2440MHz									
Freq.	Ant.Pol	Emission I	_evel(dBuV)	Limit 3m	(dBuV/m)	Ove	er(dB)			
(MHz)	H/V	PK	AV	PK	AV	PK	AV			
4880	V	58.07	39.54	74	54	-15.93	-14.46			
7320	V	58.21	40.62	74	54	-15.79	-13.38			
4880	Н	58.56	39.82	74	54	-15.44	-14.18			
7320	Н	58.75	39.75	74	54	-15.25	-14.25			

E.e.e.	High channel: 2480 MHz							
Freq. (MHz)	Ant.Pol	Emission L	_evel(dBuV)	Limit 3m	(dBuV/m)	Ove	r(dB)	
	H/V	PK	AV	PK	AV	PK	AV	
4960	V	60.12	41.46	74	54	-13.88	-12.54	
7440	V	58.32	40.68	74	54	-15.68	-13.32	
4960	Н	58.86	40.67	74	54	-15.14	-13.33	
7440	Н	59.74	40.74	74	54	-14.26	-13.26	

Note:

1. All emissions not reported were more than 20dB below the specified limit or in the noise floor.

2. Emission Level= Reading Level+Probe Factor +Cable Loss.

Data of measurement within this frequency range shown "--" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Appendix

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 30 of 57BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

1. Bandwidth

1.1 BW

1.1.1 Test Result

BLE 1M

Test channel	6dB Emission Bandwidth (kHz)				
Test channel	BT LE mode	Limit	Result		
Lowest	0.629	>500k			
Middle	0.628	>500k	PASS		
Highest	0.634	>500k			

BLE 2M

Test shannel	6dB Emission Bandwidth (kHz)				
Test channel	BT LE mode	Limit	Result		
Lowest	1.123	>500k			
Middle	1.119	>500k	PASS		
Highest	1.118	>500k			

1.1.2 Test Graph

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

	BLE	E 2M		
	Lowest	channel		
Spectrum Analyzer 1 Occupied BW				
KEYSIGHT Input: RF Input: Z: 50 Ω RL Coupling: DC Corr CCorr Align: Auto Freq Ref: Int (S)	Atten: 30 dB Trig: Free Gate: Off #IF Gain:	Avg Hold: 100/100	JOO GHZ	
1 Graph v Scale/Div 10.0 dB		fset 2.19 dB 22.19 dBm	Mkr3 2.4025	52000 GHz -7.06 dBm
Log 12.2 2.19 -7.81		A1	3	
-7.81 -17.8 -27.8 -37.8				
-57.8 -67.8				
Center 2.402000 GHz #Res BW 100.00 kHz	#Video BV	/ 300.00 kHz	Sweep 1.33	Span 2 MHz ms (10001 pts)
2 Metrics				
Occupied Bandwidth		Measure	Trace Trace 1	
1.8648 MHz		Total Pow		
Transmit Freq Error x dB Bandwidth	-9.207 kHz 1.123 MHz	% of OBV x dB	V Power 99.00 % -6.00 dB	
H つ C I ? Mar 23, 2023 8:14:05 PM	\bigcirc			
	Middle	channel	, <u> </u>	
Spectrum Analyzer 1				
KEYSIGHT Input: RF Input Z: 50 Ω RL Coupling: DC Corr CCorr Align: Auto Freq Ref: Int (S)	Atten: 30 dB Trig: Free Gate: Off #IF Gain: I	Avg Hold: 100/100	000 GHz	
1 Graph v Scale/Div 10.0 dB		fset 2.22 dB 22.22 dBm	Mkr3 2.4405	54000 GHz -9.12 dBm
			3	
-7.78 -17.8	hor war war war war war war war war war wa	The second second		
			frenche fanglige af game and and and and and and and a start a	•
-37.8 -47.8 -57.8				
-37.8 -47.8 -57.8 -67.8 -67.8 Center 2.440000 GHz	#Video BV	/ 300.00 kHz	Sweep 1.33	Span 2 MHz ms (10001 pts)
-37.8 -47.8 -57.8 -67.8	#Video BV	/ 300.00 kHz	Sweep 1.33	Span 2 MHz ms (10001 pts)
-37.8 -47.8 -57.8 -67.8 -67.8 Center 2.440000 GHz #Res BW 100.00 kHz 2 Metrics	#Video BV	/ 300.00 kHz		
-37.8 -47.8 -57.8 -57.8 -67.8 Center 2,440000 GHz #Res BW 100.00 kHz	#Video BV		Trace 1	
-37.8 -47.8 -57.8 -57.8 -67.8 -67.8 -57.8 -67.8 -7	-5.025 kHz 1.119 MHz	Measure	Trace 1 rer 4.42 dBm	

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 34 of 5BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

					Highest ch	nannel				
Spectr	rum Analy bied BW	yzer 1	• +							
KEY RL	SIGHT .≁·	Input: RF Coupling: DC Align: Auto	Input Ζ: 50 Ω Corr CCorr Freq Ref: Int (S)	Atten: 30 dB	Trig: Free Run Gate: Off #IF Gain: Low	Center Fre Avg Hold: Radio Std:				
	oh /Div 10.0	, dB			Ref Lvi Offset Ref Value 22.2			Mł	(r3 2.4805	51000 GHz -6.30 dBm
Log 12.3 2.29 -7.71			~2		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1	and the second s	3		
-17.7 -27.7 -37.7	<u></u>	men and the second s								~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-47.7 -57.7 -67.7										
	ا r 2.4800 BW 100.0				#Video BW 30	0.00 kHz			Sweep 1.33	↓ Span 2 MHz ms (10001 pts)
2 Metr	rics	v								
		Occupied B	andwidth				Measure Trace	Trace 1		
			1.8687 MHz				Total Power		5.52 dBm	
		Transmit Fre x dB Bandw		-7.361 kHz 1.118 MHz			% of OBW Power x dB		99.00 % -6.00 dB	
	5		Mar 23, 2023 8:17:25 PM							

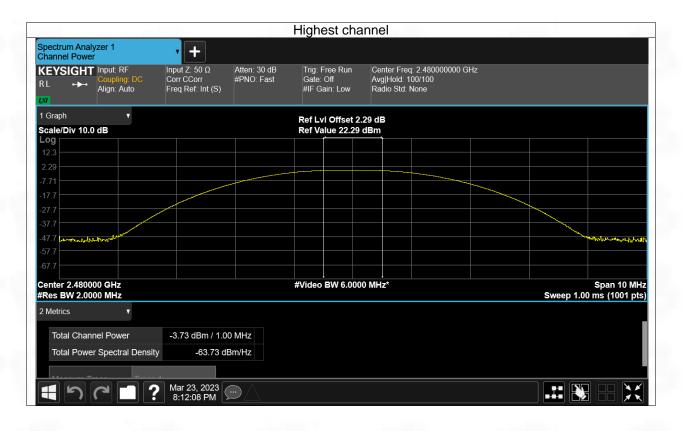
2. Maximum Conducted Output Power

2.1 Power

2.1.1 Test Result

BLE 1M							
Test channel	Maximum Conducted Output Power (dBm)	Limit (dBm)	Result				
Lowest	-5.29	30.00	PASS				
Middle	-4.62	30.00	PASS				
Highest	-3.73	30.00	PASS				

BLE 2M							
Test channel	Maximum Conducted Output Power (dBm) Limit (dBm) Result						
Lowest	-2.24	30.00	PASS				
Middle	-1.85	30.00	PASS				
Highest	-0.88	30.00	PASS				



2.1.2 Test Graph

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 38 of 57BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

BLE 2M						
	Lowest chan	nel				
Spectrum Analyzer 1						
KEYSIGHT Input: RF Input: Z: 50 Ω R L → Coupling: DC Corr CCorr Align: Auto Freq Ref: Int (S) Freq Ref: Int (S)	Atten: 30 dB Trig: Free Run #PNO: Fast Gate: Off #IF Gain: Low	Center Freq: 2.40200000 GHz Avg Hold: 100/100 Radio Std: None				
1 Graph v Scale/Div 10.0 dB	Ref Lvi Offset 2.1 Ref Value 22.19 d					
Log 12.2 2.19						
-7.81 -17.8						
-27.8						
-47.8			- and we do the for th			
Center 2.402000 GHz #Res BW 2.0000 MHz	#Video BW 6.0000	MHz*	Span 10 MHz Sweep 1.00 ms (1001 pts)			
2 Metrics v			_			
Total Channel Power -2.24 dBm / 2.00	MHz					
Total Power Spectral Density -65.25 dB	m/Hz					
Maanua Taana						
H つ C I ? Mar 23, 2023 8:13:57 PM	$\overline{\mathbb{O}}$					
	Middle chan	nel				
Spectrum Analyzer 1						
KEYSIGHT Input: RF Input Z: 50 Ω R L Coupling: DC Corr CCorr Align: Auto Freq Ref: Int (S)	Atten: 30 dB Trig: Free Run #PNO: Fast Gate: Off #IF Gain: Low	Center Freq: 2.44000000 GHz Avg Hold: 100/100 Radio Std: None				
1 Graph v Scale/Div 10.0 dB	Ref LvI Offset 2.2 Ref Value 22.22 d					
Log 12.2 2.22						
-7.78						
-27.8						
-37.8			March & March March &			
-57.8						
Center 2.440000 GHz #Res BW 2.0000 MHz	, #Video BW 6.0000	MHz*	Span 10 MHz Sweep 1.00 ms (1001 pts)			
2 Metrics v						
Total Channel Power -1.85 dBm / 2.00 Total Power Spectral Density -64.86 dB						
I Manager Tanan I Tanan A						

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 39 of 5BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

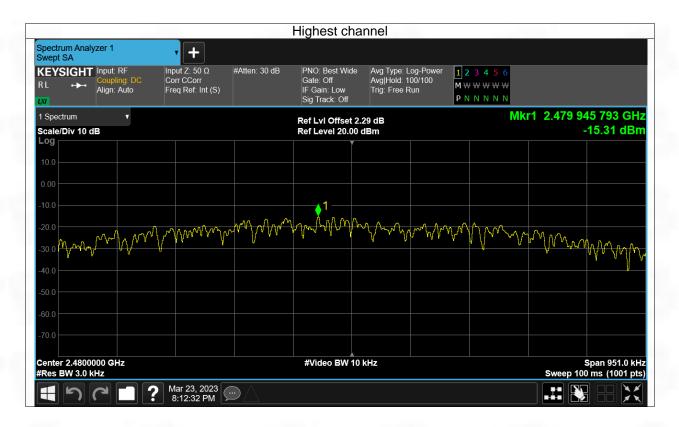
3. Maximum Power Spectral Density

3.1 PSD

3.1.1 Test Result

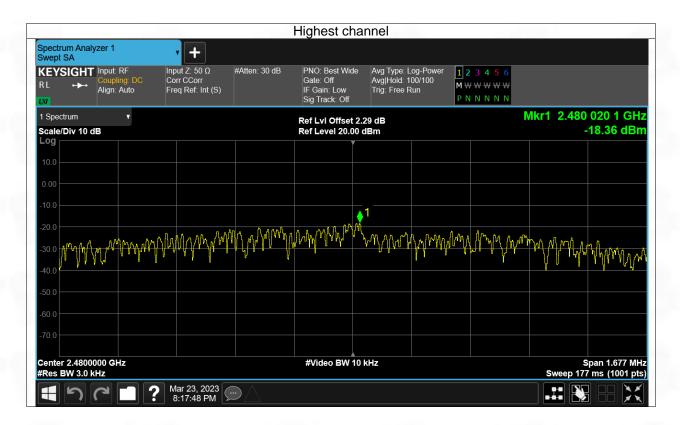
Test channel	Power Spectral Density (dBm/3kHz)		
	BLE 1M	Limit	Result
Lowest	-16.94	8 dBm/3kHz	
Middle	-16.06	8 dBm/3kHz	PASS
Highest	-15.31	8 dBm/3kHz	

Test channel	Power Spectral Density (dBm/3kHz)		
	BLE 2M	Limit	Result
Lowest	-19.72	8 dBm/3kHz	
Middle	-19.34	8 dBm/3kHz	PASS
Highest	-18.36	8 dBm/3kHz	



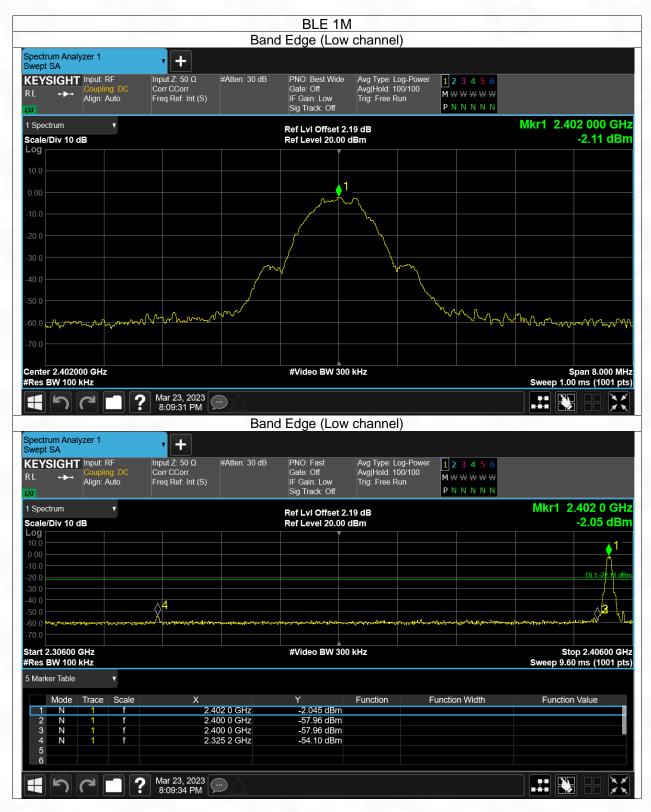
3.1.2 Test Graph

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.



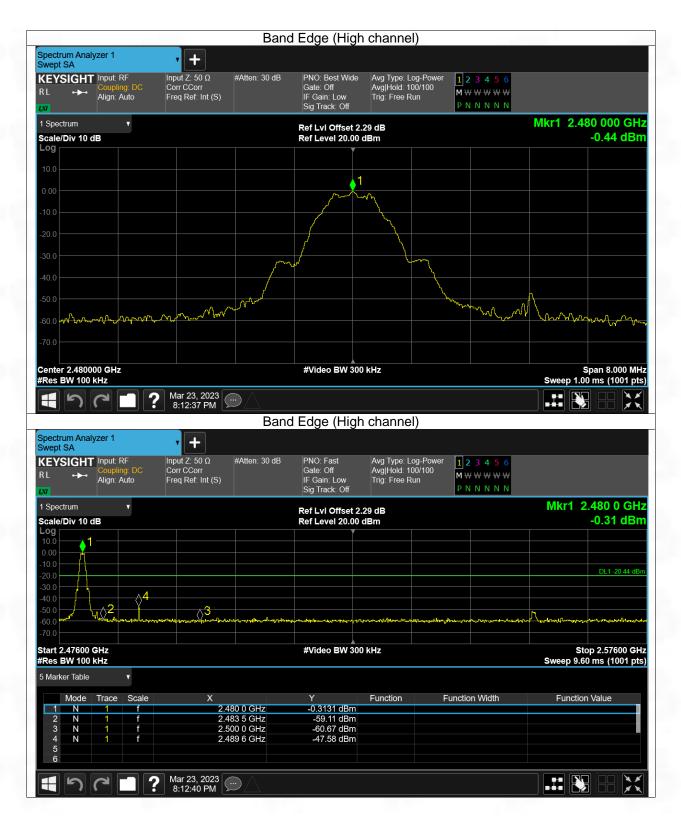
Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 43 of 57BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 45 of 57BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

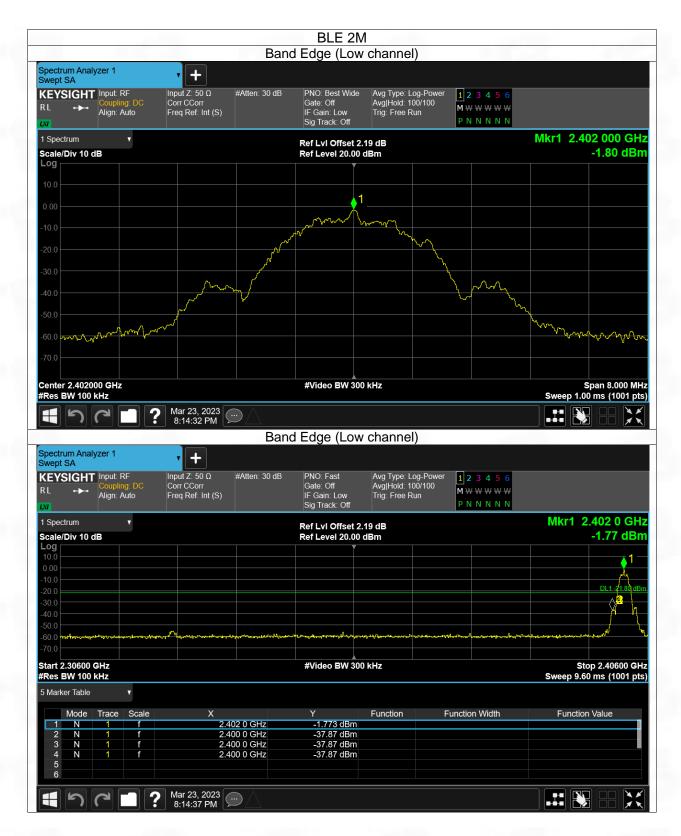


- 4. Unwanted Emissions In Non-restricted Frequency Bands
- 4.1.1Test Result(PASS)

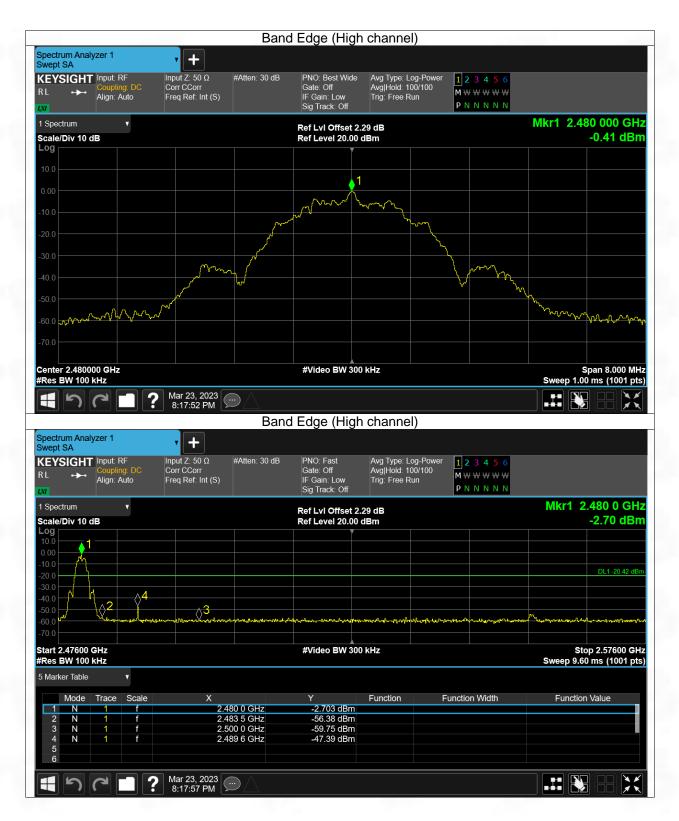
Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 46 of 57BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China



4.1.2 Test Graph

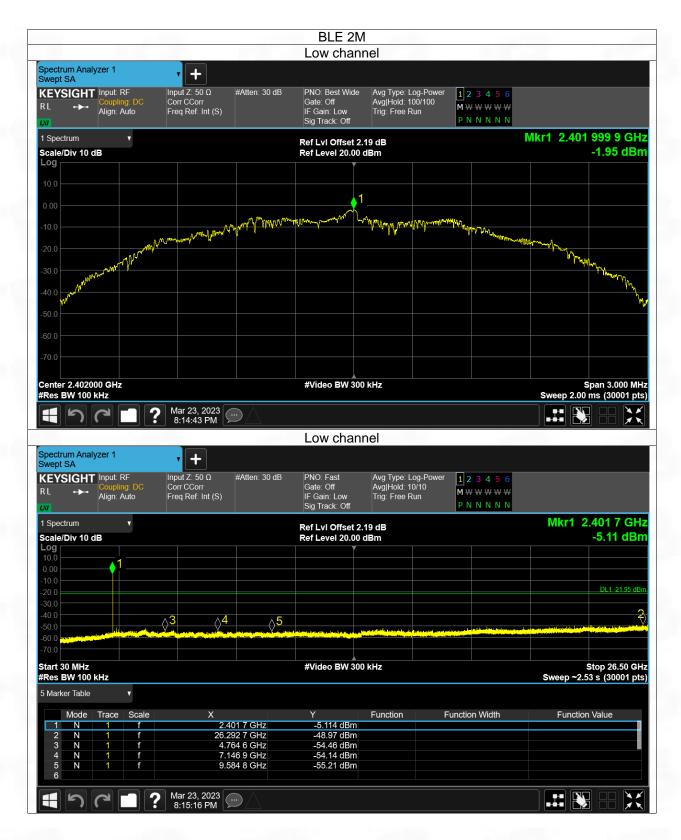


Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.



Conducted RF Spurious Emission

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.



Test Report Number: BTF230612R00501

BTF Testing Lab (Shenzhen) Co., Ltd.

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

www.btf-lab.com

-- END OF REPORT --

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 57 of 57BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China