

TEST REPORT

Applicant Name : Address : TECNO MOBILE LIMITED FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET FOTAN NT HONGKONG RA230417-19978E-RF-00B 2ADYY-SC01P

Report Number : FCC ID:

Test Standard (s)

FCC PART 15.247

Sample Description

Product Type: Model No.: Multiple Model(s) No.: Trade Mark: Date Received: Report Date: True Wireless Earbuds SC01P N/A TECNO 2023/04/17 2023/05/06

Test Result:

Pass*

* In the configuration tested, the EUT complied with the standards above.

Prepared and Checked By:

Dave Liang

Dave Liang EMC Engineer

Approved By:

Candry . Li

Candy Li EMC Engineer

Note: This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "* ".

Shenzhen Accurate Technology Co., Ltd. is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk ^{**}. Customer model name, addresses, names, trademarks etc. are not considered data. This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to

this report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

Shenzhen Accurate Technology Co., Ltd.

 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China

 Tel: +86 755-26503290
 Fax: +86 755-26503290
 Web: www.atc-lab.com

Version 8: 2023-01-30

Page 1 of 57

FCC-BLE

TABLE OF CONTENTS

DOCUMENT REVISION HISTORY	4
GENERAL INFORMATION	5
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
OBJECTIVE	
Test Methodology Measurement Uncertainty	
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION	
Equipment Modifications	
EUT EXERCISE SOFTWARE	
DUTY CYCLE Support Equipment List and Details	
External I/O Cable	8
BLOCK DIAGRAM OF TEST SETUP	9
SUMMARY OF TEST RESULTS	9
TEST EQUIPMENT LIST	
FCC§15.247 (I), §1.1307 (B) (3) &§2.1093 – RF EXPOSURE	
APPLICABLE STANDARD	
FCC §15.203 – ANTENNA REQUIREMENT	14
APPLICABLE STANDARD	
ANTENNA CONNECTOR CONSTRUCTION	
FCC §15.209, §15.205 & §15.247(D) - SPURIOUS EMISSIONS	
APPLICABLE STANDARD	
EUT SETUP EMI Test Receiver & Spectrum Analyzer Setup	
Test Procedure	
FACTOR & MARGIN CALCULATION	
TEST DATA	
FCC §15.247(A) (2) – 6 DB EMISSION BANDWIDTH & OCCUPIED BANDWIDTH	
Applicable Standard Test Procedure	
TEST PROCEDURE	
FCC §15.247(B) (3) - MAXIMUM CONDUCTED OUTPUT POWER	
Applicable Standard	
Test Procedure	
TEST DATA	
FCC §15.247(D) – 100 KHZ BANDWIDTH OF FREQUENCY BAND EDGE	
APPLICABLE STANDARD	
Test Procedure Test Data	
TEST DATA	

Version 8: 2023-01-30

FCC §15.247(E) - POWER SPECTRAL DENSITY	
APPLICABLE STANDARD	
Test Procedure	30
TEST DATA	30
APPENDIX-LEFT SIDE	31
APPENDIX A: DTS BANDWIDTH	
APPENDIX B: OCCUPIED CHANNEL BANDWIDTH	34
APPENDIX C: MAXIMUM CONDUCTED OUTPUT POWER	
APPENDIX D: MAXIMUM POWER SPECTRAL DENSITY	
Appendix E: Band edge measurements	42
Appendix F: Duty Cycle	43
APPENDIX-RIGHT SIDE	
APPENDIX A: DTS BANDWIDTH	44
APPENDIX B: OCCUPIED CHANNEL BANDWIDTH	47
APPENDIX C: MAXIMUM CONDUCTED OUTPUT POWER	
APPENDIX D: MAXIMUM POWER SPECTRAL DENSITY	53
APPENDIX E: BAND EDGE MEASUREMENTS	
Appendix F: Duty Cycle	

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision
0	RA230417-19978E-RF-00B	Original Report	2023/05/06

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

Frequency Range	BLE: 2402-2480MHz
Maximum Conducted Peak Output Power	BLE: 0.98dBm (Left Side Ear),1.80dBm(Right Side Ear)
Modulation Technique	BLE: GFSK
Antenna Specification*	Left: 3.26dBi Right: 3.59 dBi (provided by the applicant)
Voltage Range	DC 3.7V from battery
Sample serial number	24RO_4 for Radiated Emissions Test 24RO_3 for RF Conducted Test (Assigned by ATC)
Sample/EUT Status	Good condition

Objective

This test report is in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commission's rules.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

And KDB 558074 D01 15.247 Meas Guidance v05r02.

All emissions measurement was performed at Shenzhen Accurate Technology Co., Ltd. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Measurement Uncertainty

Parameter		Uncertainty	
Harmonic Current		0.512%, k=2	
Occupied Cha	nnel Bandwidth	5%	
RF Fre	equency	0.082*10 ⁻⁷	
RF output pov	wer, conducted	0.71dB	
Unwanted Emis	ssion, conducted	1.6dB	
AC Power Lines	9k-30MHz	2.74dB, k=2	
Conducted Emissions	150kHz-30MHz	2.92dB, k=2	
Audio Frequency Response		0.1dB	
Low Pass Fi	lter Response	1.2dB	
Modulatic	on Limiting	1%	
	9kHz - 30MHz	2.06dB	
.	30MHz - 1GHz	5.08dB	
Emissions, Radiated	1GHz - 18GHz	4.96dB	
Radiated	18GHz - 26.5GHz	5.16dB	
	26.5GHz - 40GHz	4.64dB	
Temp	erature	1°C	
Hun	nidity	6%	
Supply	voltages	0.4%	

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The test site used by Shenzhen Accurate Technology Co., Ltd. to collect test data is located on the Floor 1, KuMaKe Building, Dongzhou Community, Guangming Street, Guangming District, Shenzhen, Guangdong, China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 708358, the FCC Designation No.: CN1189. Accredited by American Association for Laboratory Accreditation (A2LA) The Certificate Number is 429 7.01.

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0016. The Registration Number is 30241.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

For BLE mode, 40 channels are provided to testing:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	20	2442
1	2404	21	2444
2	2406	22	2446
3	2408	23	2448
4	2410	24	2450
5	2412	25	2452
6	2414	26	2454
7	2416	27	2456
8	2418	28	2458
9	2420	29	2460
10	2422	30	2462
11	2424	31	2464
12	2426	32	2466
13	2428	33	2468
14	2430	34	2470
15	2432	35	2472
16	2434	36	2474
17	2436	37	2476
18	2438	38	2478
19	2440	39	2480

EUT was tested with Channel 0, 19 and 39.

Equipment Modifications

No modification was made to the EUT tested.

EUT Exercise Software

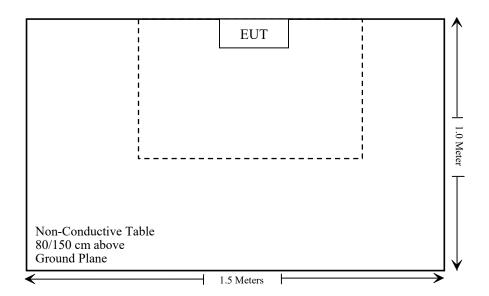
"BQB.exe *" software was used to test, the software and power level was provided by manufacturer and power level as below:

Mode	Data rate	Power Level*			
widue	Data rate	Low Channel Middle Channel High Channel			
BLE	1Mbps	default default default		default	

Duty cycle

Test Result: Compliant. Please refer to the Appendix

Support Equipment List and Details


Manufacturer	Description	Model	Serial Number
/	/	/	/

External I/O Cable

Cable Description	Length (m)	From Port	То
/	/	/	/

Block Diagram of Test Setup

For Radiated Emissions:

Note: The EUT is placed at the position directly above the center of the turntable.

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.247 (i), §1.1307 (b) (3) & §2.1093	RF Exposure	Compliant
§15.203	Antenna Requirement	Compliant
§15.207 (a)	AC Line Conducted Emissions	Not Applicable
§15.205, §15.209, §15.247(d)	Spurious Emissions	Compliant
§15.247 (a)(2)	6 dB Emission Bandwidth & Occupied Bandwidth	Compliant
§15.247(b)(3)	Maximum Conducted Output Power	Compliant
§15.247(d)	100 kHz Bandwidth of Frequency Band Edge	Compliant
§15.247(e)	Power Spectral Density	Compliant

Not Applicable: Bluetooth cannot work when charging

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date	
	Radiated emission test					
Rohde& Schwarz	Test Receiver	ESR	102725	2022/11/25	2023/11/24	
Rohde&Schwarz	Spectrum Analyzer	FSV40	101949	2022/11/25	2023/11/24	
SONOMA INSTRUMENT	Amplifier	310 N	186131	2022/11/08	2023/11/07	
A.H. Systems, inc.	Preamplifier	PAM-0118P	135	2022/11/08	2023/11/07	
Quinstar	Amplifier	QLW- 18405536-J0	15964001002	2022/11/08	2023/11/07	
Schwarzbeck	Bilog Antenna	VULB9163	9163-323	2021/07/06	2024/07/05	
Schwarzbeck	Horn Antenna	BBHA9120D	9120D-1067	2022/11/30	2025/11/29	
Schwarzbeck	HORN ANTENNA	BBHA9170	9170-359	2022/12/26	2025/12/25	
	Radiated En	nission Test Softw	ware: e3 19821b (V	/9)		
Unknown	RF Coaxial Cable	No.10	N050	2022/11/25	2023/11/24	
Unknown	RF Coaxial Cable	No.11	N1000	2022/11/25	2023/11/24	
Unknown	RF Coaxial Cable	No.12	N040	2022/11/25	2023/11/24	
Unknown	RF Coaxial Cable	No.13	N300	2022/11/25	2023/11/24	
Unknown	RF Coaxial Cable	No.14	N800	2022/11/25	2023/11/24	
Unknown	RF Coaxial Cable	No.15	N600	2022/11/25	2023/11/24	
Unknown	RF Coaxial Cable	No.16	N650	2022/11/25	2023/11/24	
Wainwright	High Pass Filter	WHKX3.6/18 G-10SS	5	2022/11/25	2023/11/24	

Report No.: RA230417-19978E-RF-00B

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date	
	RF conducted test					
Rohde&Schwarz	Spectrum Analyzer	FSV-40	101948	2022/11/25	2023/11/24	
Tonscend	RF Control Unit	JS0806-2	19G8060182	2022/10/24	2023/10/23	
WEINSCHEL	10dB Attenuator	5324	AU 3842	2022/11/25	2023/11/24	
Unknown	RF Coaxial Cable	No.31	RF-01	Each time		

* **Statement of Traceability:** Shenzhen Accurate Technology Co., Ltd. attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC§15.247 (i), §1.1307 (b) (3) &§2.1093 – RF EXPOSURE

Applicable Standard

According to FCC §2.1093 and §1.1307(b) (1), systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

According to KDB 447498 D01 General RF Exposure Guidance

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] \cdot [$\sqrt{f(GHz)}$] ≤ 3.0 for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where

1. f(GHz) is the RF channel transmit frequency in GHz.

2. Power and distance are rounded to the nearest mW and mm before calculation.

3. The result is rounded to one decimal place for comparison.

4. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test Exclusion.

Measurement Result

For worst case:

Mode	Frequency (MHz)	Max tune-up conducted power* (dBm)	Max tune-up conducted power* (mW)	Distance (mm)	Calculate d value	Threshold (1-g SAR)	SAR Test Exclusion
BLE(Left)	2402-2480	1.5	1.41	5	0.40	3.0	Yes
BLE(Right)	2402-2480	2.0	1.58	5	0.50	3.0	Yes

Result: Compliant.

FCC §15.203 – ANTENNA REQUIREMENT

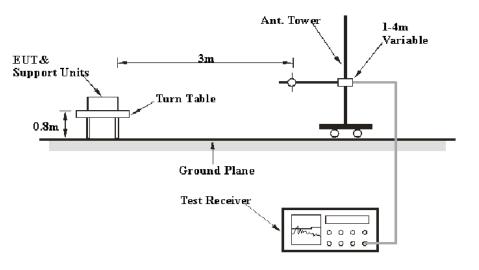
Applicable Standard

According to FCC § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

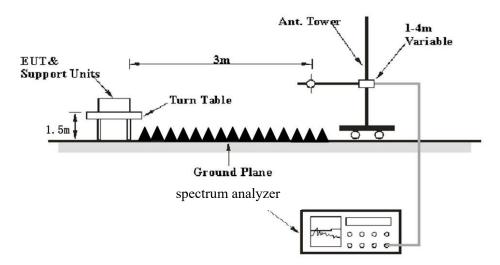
Antenna Connector Construction

The EUT has one internal antenna, which was permanently attached, and the maximum antenna gain is 3.26 dBi for left side ear part, and 3.59 dBi for right isde ear part, fulfill the requirement of this section. Please refer to the EUT photos.

Result: Compliant.


FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS

Applicable Standard


FCC §15.247 (d); §15.209; §15.205;

EUT Setup

Below 1 GHz:

Above 1GHz:

The radiated emission tests were performed in the 3 meters test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, and FCC 15.247 limits.

EMI Test Receiver & Spectrum Analyzer Setup

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Measurement
30 MHz – 1000 MHz	100 kHz	300 kHz	120 kHz	QP
	1MHz	3 MHz	/	РК
Above 1 GHz	1MHz	$10 \text{ Hz}^{\text{Note 1}}$	/	Average
	1MHz	$> 1/T^{Note 2}$	/	Average

Note 1: when duty cycle is no less than 98% Note 2: when duty cycle is less than 98%

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz-1 GHz, peak and Average detection modes for frequencies above 1 GHz.

Factor & Margin Calculation

The Factor is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain. The basic equation is as follows:

Factor = Antenna Factor + Cable Loss - Amplifier Gain

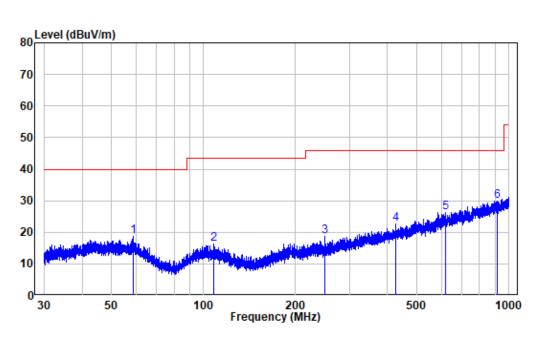
The "**Over Limit/Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over Limit/margin of -7dB means the emission is 7dB below the limit. The equation for calculation is as follows:

Over Limit/Margin = Corrected Amplitude / Absolute Level – Limit Absolute Level / Corrected Amplitude = Read Level + Factor

Test Data

Environmental Conditions

Temperature:	24~25.2 °C
Relative Humidity:	51~56 %
ATM Pressure:	101.0 kPa

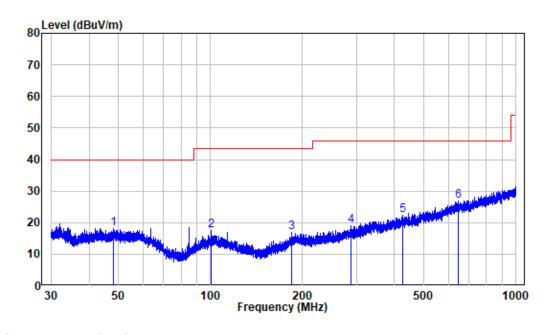

The testing was performed by Jimi Zheng on 2023-04-26 for below 1GHz and Jimi Zheng on 2023-05-04 for above 1GHz

EUT operation mode: Transmitting (Pre-scan in the X,Y and Z axes of orientation, the worst case X-axes of orientation was recorded)

Version 8: 2023-01-30

For Left side

30MHz-1GHz: (*Worst case is Low channel*) Note: When the test result of peak was less than the limit of QP more than 6dB, just peak value were recorded.


Horizontal:

Site :	chamber
Condition:	3m HORIZONTAL
Job No. :	RA230417-19978E-RF
Test Mode:	BLE 1M
Note :	L

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	58.819	-10.20	28.78	18.58	40.00	-21.42	Peak
2	108.172	-11.99	28.28	16.29	43.50	-27.21	Peak
3	249.534	-10.72	29.59	18.87	46.00	-27.13	Peak
4	425.961	-5.85	28.48	22.63	46.00	-23.37	Peak
5	618.808	-2.51	28.85	26.34	46.00	-19.66	Peak
6	914.865	1.51	28.36	29.87	46.00	-16.13	Peak

Report No.: RA230417-19978E-RF-00B

Site :	chamber
Condition:	3m VERTICAL
Job No. :	RA230417-19978E-RF
Test Mode:	BLE 1M
Note :	L

	Freq	Factor			Limit Line		Remark
-	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	48.036	-10.00	28.05	18.05	40.00	-21.95	Peak
2	100.669	-11.72	29.20	17.48	43.50	-26.02	Peak
3	184.652	-12.22	29.08	16.86	43.50	-26.64	Peak
4	288.875	-9.33	28.23	18.90	46.00	-27.10	Peak
5	425.774	-5.85	28.24	22.39	46.00	-23.61	Peak
6	647.669	-1.80	28.80	27.00	46.00	-19.00	Peak

1-25 GHz:

BLE 1M

E	Re	ceiver	Turntable	Rx Ar	itenna	Fastar	Absolute	T ::4	Manaia	
Frequency (MHz)	Reading (dBµV)	PK/Ave	Angle Degree	Height (m)	Polar (H/V)	Factor (dB/m)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	
Low Channel(2402MHz)										
2350.9	67.80	РК	265	2.3	Н	-10.79	57.01	74	-16.99	
2350.9	54.48	AV	265	2.3	Н	-10.79	43.69	54	-10.31	
2353.3	67.42	РК	322	2.3	V	-10.78	56.64	74	-17.36	
2353.3	54.35	AV	322	2.3	V	-10.78	43.57	54	-10.43	
2390	65.92	РК	45	2.4	Н	-10.70	55.22	74	-18.78	
2390	54.04	AV	45	2.4	Н	-10.70	43.34	54	-10.66	
2390	65.53	РК	194	1.3	V	-10.70	54.83	74	-19.17	
2390	53.74	AV	194	1.3	V	-10.70	43.04	54	-10.96	
4804	59.58	PK	257	1.7	Н	-6.11	53.47	74	-20.53	
4804	47.10	AV	257	1.7	Н	-6.11	40.99	54	-13.01	
4804	60.11	PK	281	2.3	V	-6.11	54.00	74	-20.00	
4804	47.79	AV	281	2.3	V	-6.11	41.68	54	-12.32	
			Middle (1		,				
4880	59.35	РК	154	1.3	Н	-5.91	53.44	74	-20.56	
4880	46.93	AV	154	1.3	Н	-5.91	41.02	54	-12.98	
4880	59.81	РК	99	1.5	V	-5.91	53.9	74	-20.10	
4880	47.22	AV	99	1.5	V	-5.91	41.31	54	-12.69	
			High C	hannel(2	2480 MF	łz)	-			
2483.5	71.43	РК	328	1	Н	-10.55	60.88	74	-13.12	
2483.5	57.15	AV	328	1	Н	-10.55	46.6	54	-7.40	
2483.5	65.92	РК	116	1.9	V	-10.55	55.37	74	-18.63	
2483.5	54.24	AV	116	1.9	V	-10.55	43.69	54	-10.31	
2483.77	71.50	РК	223	1.2	Н	-10.55	60.95	74	-13.05	
2483.77	57.40	AV	223	1.2	Н	-10.55	46.85	54	-7.15	
2487.43	67.92	РК	90	1.6	V	-10.52	57.4	74	-16.60	
2487.43	55.09	AV	90	1.6	V	-10.52	44.57	54	-9.43	
4960	58.49	РК	281	1.7	Н	-5.47	53.02	74	-20.98	
4960	45.56	AV	281	1.7	Н	-5.47	40.09	54	-13.91	
4960	58.77	РК	350	1.3	V	-5.47	53.30	74	-20.70	
4960	45.91	AV	350	1.3	V	-5.47	40.44	54	-13.56	

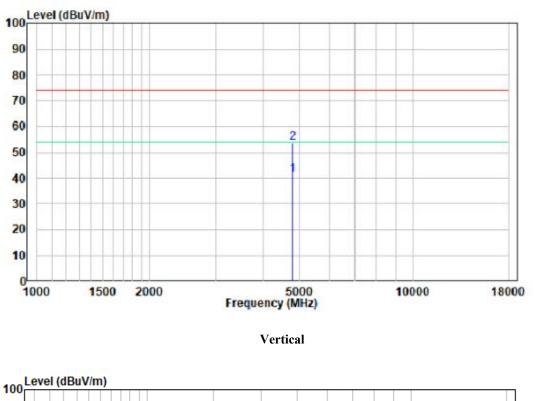
Note:

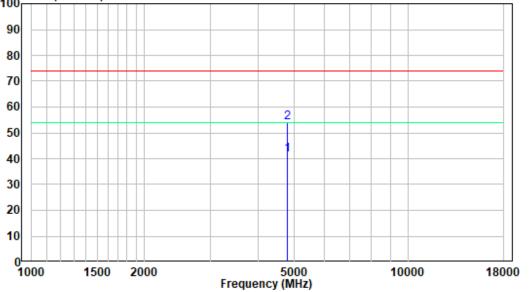
Corrected Factor = Antenna factor (RX) + Cable Loss – Amplifier Factor

Absolute Level = Corrected Factor + Reading

Margin = Absolute Level - Limit

The other spurious emission which is in the noise floor level was not recorded.

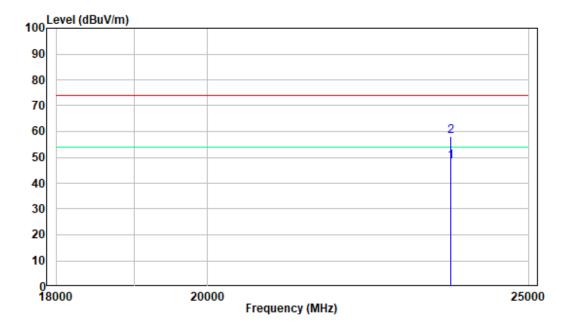

The test result of peak was more than 20dB below the limit, which was the average limit, so only the peak level was recorded.

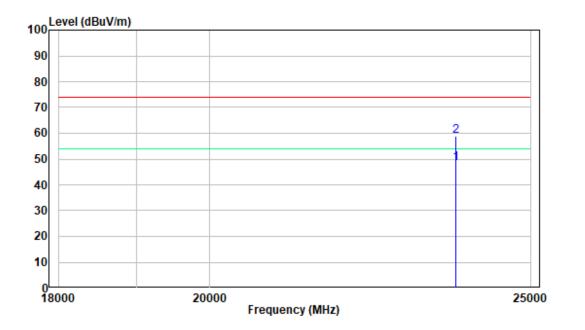

Version 8: 2023-01-30

1-18 GHz:

Pre-scan for BLE 1M, Low Channel

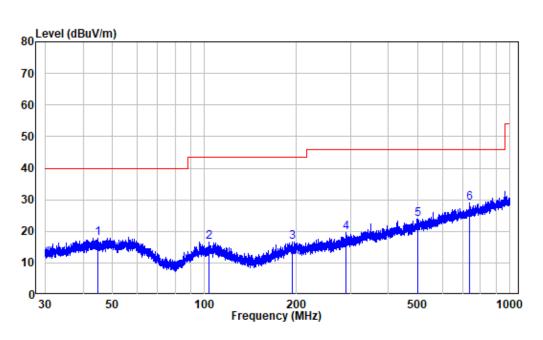
Horizontal




18 -25GHz:

Pre-scan for BLE 1M, Low Channel

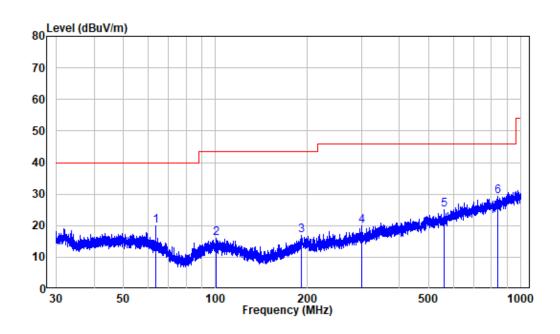
Horizontal


Vertical

For Right side

30MHz-1GHz: (Worst case is Low channel)

Note: When the test result of peak was less than the limit of QP more than 6dB, just peak value were recorded.


Horizontal:

Site :	chamber
Condition:	3m HORIZONTAL
Job No. :	RA230417-19978E-RF
Test Mode:	BLE 1M
Note :	R

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	44.802	-9.93	27.80	17.87	40.00	-22.13	Peak
2	103.352	-11.69	28.16	16.47	43.50	-27.03	Peak
3	193.264	-11.29	27.98	16.69	43.50	-26.81	Peak
4	291.164	-9.30	28.94	19.64	46.00	-26.36	Peak
5	498.987	-4.29	28.26	23.97	46.00	-22.03	Peak
6	738.689	-0.75	29.60	28.85	46.00	-17.15	Peak

Report No.: RA230417-19978E-RF-00B

Site :	chamber
Condition:	3m VERTICAL
Job No. :	RA230417-19978E-RF
Test Mode:	BLE 1M
Note :	R

	Freq	Factor			Limit Line		Remark
-	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	63.619	-12.02	31.80	19.78	40.00	-20.22	Peak
2	100.449	-11.75	27.71	15.96	43.50	-27.54	Peak
3	190.656	-11.47	28.45	16.98	43.50	-26.52	Peak
4	301.422	-9.18	29.06	19.88	46.00	-26.12	Peak
5	561.431	-3.99	28.91	24.92	46.00	-21.08	Peak
6	836.611	0.22	28.97	29.19	46.00	-16.81	Peak

1-25 GHz:

BLE 1M

F	Receiver		Turntable	Turntable Rx Antenna		Easter Absolute		T	Mangin
Frequency (MHz)	Reading (dBµV)	PK/Ave	Angle Degree	Height (m)	Polar (H/V)	Factor (dB/m)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)
Low Channel(2402MHz)									
2376.5	67.34	РК	16	2.5	Н	-10.73	56.61	74	-17.39
2376.5	54.50	AV	16	2.5	Н	-10.73	43.77	54	-10.23
2329.9	66.45	РК	258	2	V	-10.58	55.87	74	-18.13
2329.9	53.42	AV	258	2	V	-10.58	42.84	54	-11.16
2390	65.52	РК	35	2.2	Н	-10.70	54.82	74	-19.18
2390	54.30	AV	35	2.2	Н	-10.70	43.60	54	-10.40
2390	65.06	РК	60	1.7	V	-10.70	54.36	74	-19.64
2390	53.95	AV	60	1.7	V	-10.70	43.25	54	-10.75
4804	59.94	PK	268	2.4	Н	-6.11	53.83	74	-20.17
4804	46.60	AV	268	2.4	Н	-6.11	40.49	54	-13.51
4804	60.21	PK	156	1	V	-6.11	54.10	74	-19.90
4804	46.72	AV	156	1	V	-6.11	40.61	54	-13.39
			Middle (1		· ·			
4880	59.83	РК	313	1.1	Н	-5.91	53.92	74	-20.08
4880	46.49	AV	313	1.1	Н	-5.91	40.58	54	-13.42
4880	60.02	РК	60	2.2	V	-5.91	54.11	74	-19.89
4880	46.70	AV	60	2.2	V	-5.91	40.79	54	-13.21
			High Cl	hannel(2	2480 MF	łz)	•		
2483.5	67.35	РК	138	1.6	Н	-10.55	56.8	74	-17.20
2483.5	56.17	AV	138	1.6	Н	-10.55	45.62	54	-8.38
2483.5	66.22	РК	230	1.4	V	-10.55	55.67	74	-18.33
2483.5	55.19	AV	230	1.4	V	-10.55	44.64	54	-9.36
2483.74	69.69	РК	124	1.4	Н	-10.55	59.14	74	-14.86
2483.74	56.03	AV	124	1.4	Н	-10.55	45.48	54	-8.52
2496.58	67.58	РК	342	2.2	V	-10.45	57.13	74	-16.87
2496.58	55.18	AV	342	2.2	V	-10.45	44.73	54	-9.27
4960	58.77	РК	91	1	Н	-5.47	53.30	74	-20.70
4960	45.59	AV	91	1	Н	-5.47	40.12	54	-13.88
4960	59.46	РК	177	1.1	V	-5.47	53.99	74	-20.01
4960	45.90	AV	177	1.1	V	-5.47	40.43	54	-13.57

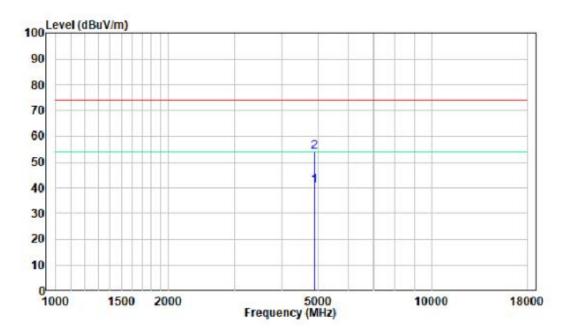
Note:

Corrected Factor = Antenna factor (RX) + Cable Loss – Amplifier Factor

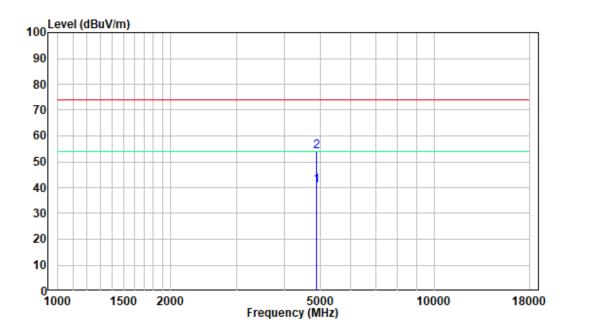
Absolute Level = Corrected Factor + Reading

Margin = Absolute Level - Limit

The other spurious emission which is in the noise floor level was not recorded.

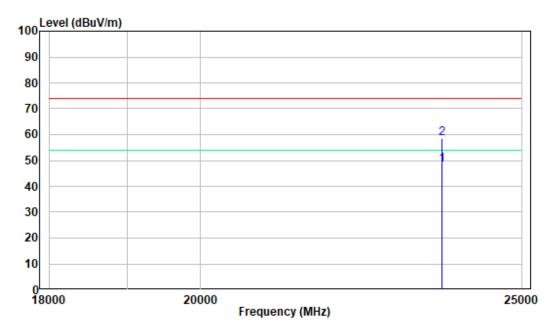

The test result of peak was more than 20dB below the limit, which was the average limit, so only the peak level was recorded.

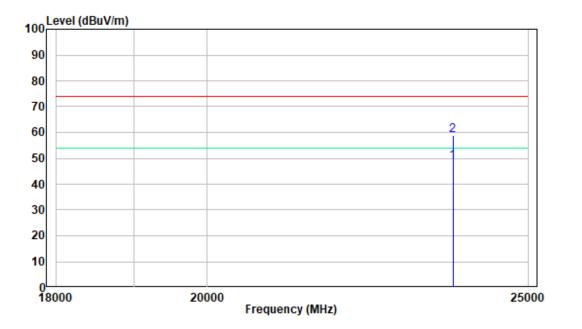
Version 8: 2023-01-30


1-18 GHz:

Pre-scan for BLE 1M, Low Channel

Horizontal




18 -25GHz:

Pre-scan for BLE 1M, Low Channel

Horizontal

FCC §15.247(a) (2) – 6 dB EMISSION BANDWIDTH & OCCUPIED BANDWIDTH

Applicable Standard

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

Test Procedure

Test Method: ANSI C63.10-2013 Clause 11.8.1 & Clause 6.9.3

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 6 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

Attenuator

Test Data

Environmental Conditions

Temperature:	23 °C
Relative Humidity:	60 %
ATM Pressure:	101.0 kPa

The testing was performed by Roger Ling on 2023-05-03.

EUT operation mode: Transmitting

FCC §15.247(b) (3) - MAXIMUM CONDUCTED OUTPUT POWER

Applicable Standard

According to FCC §15.247(b) (3), for systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

Test Procedure

Test Method: ANSI C63.10-2013 Clause 11.9.1.1

- 1. Place the EUT on a bench and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- 3. Add a correction factor to the display.

Attenuator

Test Data

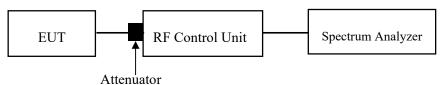
Environmental Conditions

Temperature:	23 °C		
Relative Humidity:	60 %		
ATM Pressure:	101.0 kPa		

The testing was performed by Roger Ling on 2023-05-03.

EUT operation mode: Transmitting

FCC §15.247(d) – 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE


Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Procedure

Test Method: ANSI C63.10-2013 Clause 11.11

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Test Data

Environmental Conditions

Temperature:	23 °C		
Relative Humidity:	60 %		
ATM Pressure:	101.0 kPa		

The testing was performed by Roger Ling on 2023-05-03.

EUT operation mode: Transmitting

FCC §15.247(e) - POWER SPECTRAL DENSITY

Applicable Standard

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

Test Procedure

Test Method: ANSI C63.10-2013 Clause 11.10.2

- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW to: $3kHz \le RBW \le 100 kHz$.
- 3. Set the VBW $\geq 3 \times RBW$.
- 4. Set the span to 1.5 times the DTS bandwidth.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

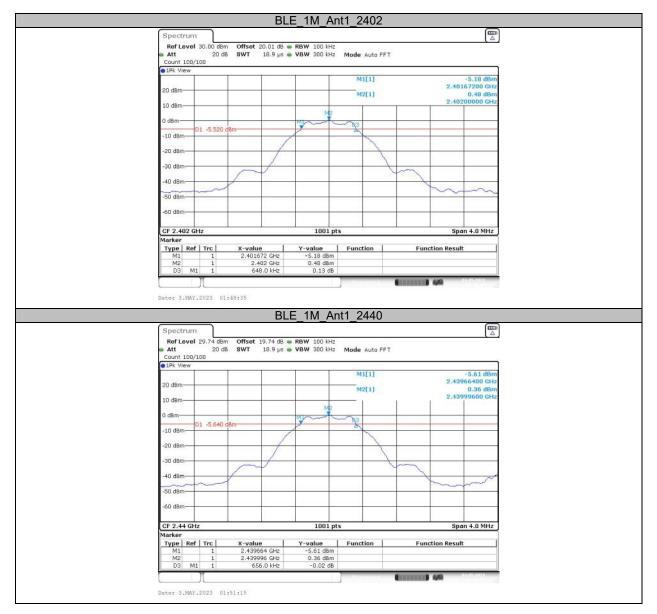
Attenuator

Test Data

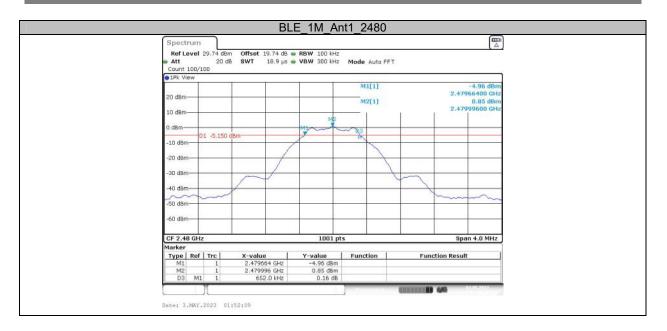
Environmental Conditions

Temperature:	23 °C
Relative Humidity:	60 %
ATM Pressure:	101.0 kPa

The testing was performed by Roger Ling on 2023-05-03.

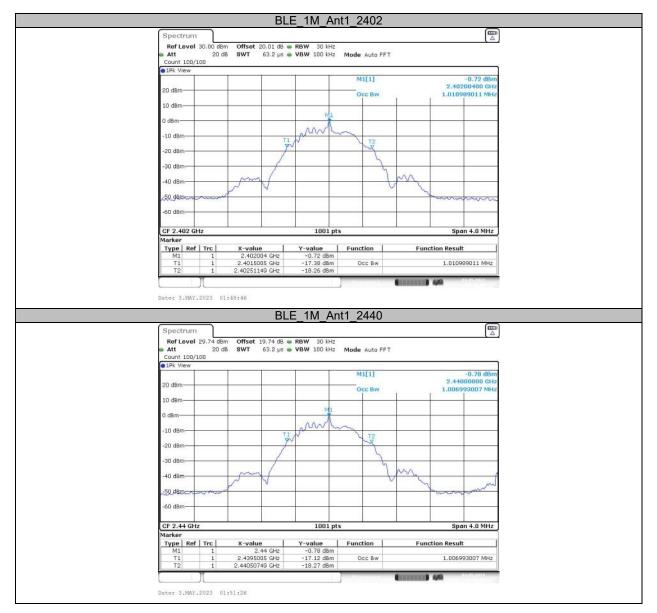

EUT operation mode: Transmitting

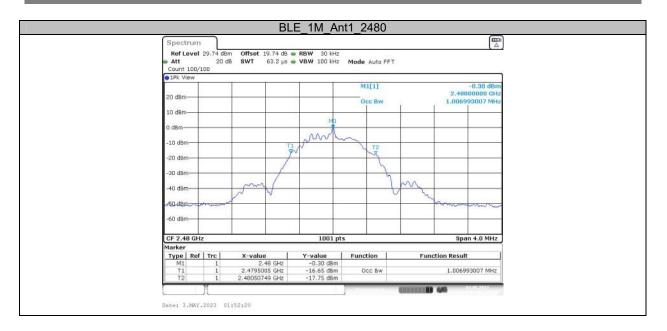
APPENDIX-Left side


Appendix A: DTS Bandwidth Test Result

Test Mode	Antenna	Frequency[MHz]	DTS BW [MHz]	Limit[MHz]	Verdict
BLE_1M Ant1	2402	0.65	0.5	PASS	
	Ant1	2440	0.66	0.5	PASS
		2480	0.65	0.5	PASS

Test Graphs


Report No.: RA230417-19978E-RF-00B


Appendix B: Occupied Channel Bandwidth Test Result

Test Mode	Antenna	Frequency[MHz]	OCB [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
BLE_1M Ant1		2402	1.011	2401.500	2402.511		
	Ant1	2440	1.007	2439.500	2440.507		
		2480	1.007	2479.500	2480.507		

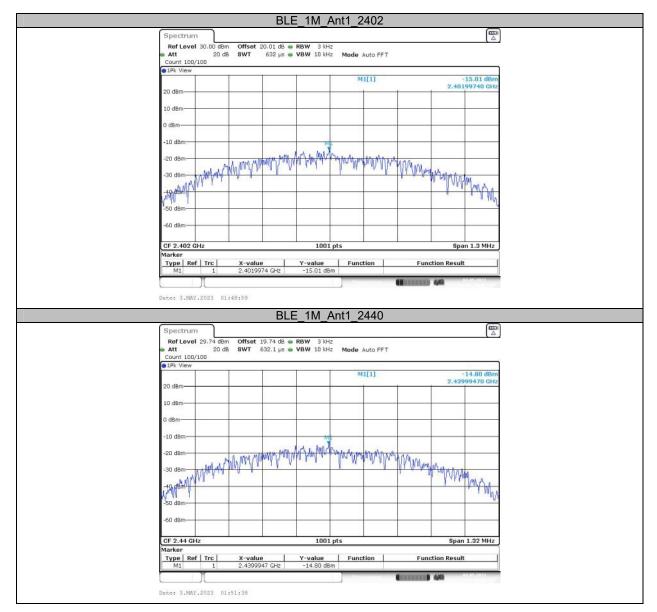
Test Graphs

Report No.: RA230417-19978E-RF-00B

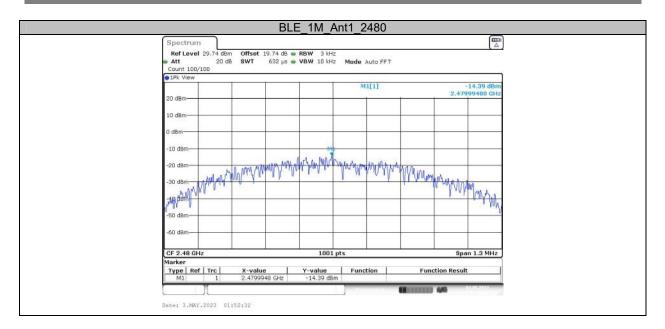
Appendix C: Maximum conducted output power Test Result Peak

Test Mode	Antenna	Frequency[MHz]	Conducted Peak Powert[dBm]	Conducted Limit[dBm]	Verdict
	Ant1	2402	0.4	≤30	PASS
BLE_1M		2440	0.48	≤30	PASS
		2480	0.98	≤30	PASS

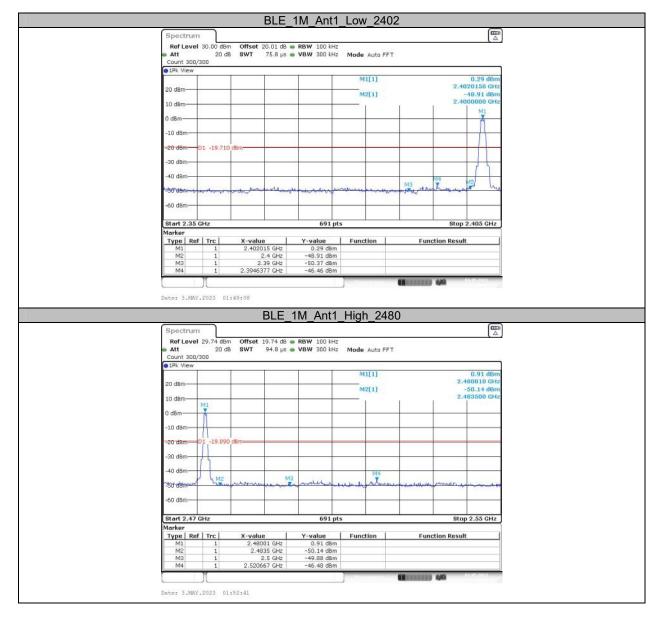
Test Graphs Peak


_			DLL		nt1_2402			(
Spectra								
Ref Let Att	/el 30.00 d8 20 d	m Offset 2 18 SWT		RBW 3 MHz VBW 10 MHz	Mode Auto FF1			
Count 1	00/100	Sec. 201013						
1Pk Vie	w.	1	1		M1[1]		0.4	40 dBm
20 dBm-					interest.		2.401744	
20 0011								
10 dBm-								
0 dBm-	_			M1	_			
	-						_	
-10 dBm-								
-20 dBm-	-	-	-			-		1
-30 dBm-	_							
-40 dBm-			8					
-50 dBm-			<u> </u>					
-60 dBm-			·					
CF 2.40	GHz			1001 pt	ts		Span 8.	0 MHz
Marker								
Type	Ref Trc 1	X-value 2.401744	2 CH4	Y-value 0.40 dBm	Function	Funct	ion Result	
M1								
MI	IAY.2023 0		BLE	E 1M Ar	nt1 2440		ua	8011
MI	NAY.2023 0		BLE	E_1M_Ar	nt1_2440	CHERNER (99	
Date: 3.1	IAY.2023 0	1:48:53 m Offset 1	9.74 dB 🖷	RBW 3 MHz	10 10 10 10 10 10 10 10 10 10 10 10 10 1			
Spectro Ref Lev Att	IAY.2023 0 JITT /el 29.74 dB 20 d	1:48:53 m Offset 1	9.74 dB 🖷	RBW 3 MHz	nt1_2440			∏⊥
Date: 3.1	INY.2023 0 INY.2023 0 INT 1 Vel 29.74 dB 20 c	1:48:53 m Offset 1	9.74 dB 🖷	RBW 3 MHz	Mode Auto FF1			
M1 Date: 3.1 Spectre Ref Les Att Count 11 P1Pk Vier	INY.2023 0 INY.2023 0 INT 1 Vel 29.74 dB 20 c	1:48:53 m Offset 1	9.74 dB 🖷	RBW 3 MHz	10 10 10 10 10 10 10 10 10 10 10 10 10 1		0.4	48 dBm
Spectra Ref Let Count 11	INY.2023 0 INY.2023 0 INT 1 Vel 29.74 dB 20 c	1:48:53 m Offset 1	9.74 dB 🖷	RBW 3 MHz	Mode Auto FF1			48 dBm
M1 Date: 3.1 Spectre Ref Les Att Count 11 P1Pk Vier	INY.2023 0 INY.2023 0 INT 1 Vel 29.74 dB 20 c	1:48:53 m Offset 1	9.74 dB 🖷	RBW 3 MHz VBW 10 MHz	Mode Auto FF1		0.4	48 dBm
M1 Date: 3.1 Spectro Ref Let Att Count 11 I Pk Vier 20 dBm- 10 dBm-	INY.2023 0 INY.2023 0 INT 1 Vel 29.74 dB 20 c	1:48:53 m Offset 1	9.74 dB 🖷	RBW 3 MHz	Mode Auto FF1		0.4	48 dBm
M1 Date: 3.1 Ref Le Att Count 11 1Pk Vie 20 dBm-	INY.2023 0 INY.2023 0 INT 1 Vel 29.74 dB 20 c	1:48:53 m Offset 1	9.74 dB 🖷	RBW 3 MHz VBW 10 MHz	Mode Auto FF1		0.4	48 dBm
M1 Date: 3.1 Spectro Ref Let Att Count 11 I Pk Vier 20 dBm- 10 dBm-	INY.2023 0 INY.2023 0 INT 1 Vel 29.74 dB 20 c	1:48:53 m Offset 1	9.74 dB 🖷	RBW 3 MHz VBW 10 MHz	Mode Auto FF1		0.4	48 dBm
M1 Dates 3.4 Ref Le Att Count 11 DBm 20 dBm -10 dBm -10 dBm	INY.2023 0 INY.2023 0 INT 1 Vel 29.74 dB 20 c	1:48:53 m Offset 1	9.74 dB 🖷	RBW 3 MHz VBW 10 MHz	Mode Auto FF1		0.4	48 dBm
M1 Date: 3.1 Spectr Ref Le Att Count I 10 HP Vie 20 dBm- 10 dBm- 0 dBm- -10 dBm- 20 dBm-	INY.2023 0 INY.2023 0 INT 1 Vel 29.74 dB 20 c	1:48:53 m Offset 1	9.74 dB 🖷	RBW 3 MHz VBW 10 MHz	Mode Auto FF1		0.4	48 dBm
M1 Dates 3.4 Ref Le Att Count 11 DBm 20 dBm -10 dBm -10 dBm	INY.2023 0 INY.2023 0 INT 1 Vel 29.74 dB 20 c	1:48:53 m Offset 1	9.74 dB 🖷	RBW 3 MHz VBW 10 MHz	Mode Auto FF1		0.4	48 dBm
M1 Date: 3.1 RefLow Att 20 dBm- 10 dBm- -10 dBm- -20 dBm- -30 dBm-	INY.2023 0 INY.2023 0 INT 1 Vel 29.74 dB 20 c	1:48:53 m Offset 1	9.74 dB 🖷	RBW 3 MHz VBW 10 MHz	Mode Auto FF1		0.4	48 dBm
M1 Date: 3,3 Ref Leg Att Count 11 10 dBm- 10 dBm- 10 dBm- -10 dBm- -30 dBm- -30 dBm-	INY.2023 0 INY.2023 0 INT 1 Vel 29.74 dB 20 c	1:48:53 m Offset 1	9.74 dB 🖷	RBW 3 MHz VBW 10 MHz	Mode Auto FF1		0.4	48 dBm
M1 Date: 3.1 RefLow Att 20 dBm- 10 dBm- -10 dBm- -20 dBm- -30 dBm-	INY.2023 0 INY.2023 0 INT 1 Vel 29.74 dB 20 c	1:48:53 m Offset 1	9.74 dB 🖷	RBW 3 MHz VBW 10 MHz	Mode Auto FF1		0.4	48 dBm
M1 Date: 3,3 Ref Leg Att Count 11 10 dBm- 10 dBm- 10 dBm- -10 dBm- -30 dBm- -30 dBm-	INY.2023 0 INY.2023 0 INT 1 Vel 29.74 dB 20 c	1:48:53 m Offset 1	9.74 dB 🖷	RBW 3 MHz VBW 10 MHz	Mode Auto FF1		0.4	48 dBm
M1 Date: 3.1 Reft@ Aft Count 11 1Pk Vie 20 dBm- 10 dBm- 10 dBm- -10 dBm- -30 dBm- -40 dBm- -50 dBm-	INY.2023 0 INY.2023 0 INT 1 Vel 29.74 dB 20 c	1:48:53 m Offset 1	9.74 dB 🖷	RBW 3 MHz VBW 10 MHz M1 VB	Mode Auto FF1		0.4	48 dBm
M1 Dates 3.1 Refte Att Count 11 DBm- 10 dBm- -10 dBm- -10 dBm- -50 dBm- -50 dBm- -50 dBm-	JIII JIII JIII JIII JIII JIII JIII JII	1:48:53 m Offset 1	9.74 dB 🖷	RBW 3 MHz VBW 10 MHz	Mode Auto FF1		0.4	49 dBm 30 GHz
M1 Date: 3,3 Ref Leg Att Count 11 D dBm- 10 dBm- 10 dBm- 10 dBm- -10 dBm- -30 dBm- -30 dBm- -50 dBm- -50 dBm- -50 dBm- -50 dBm-	JI J	m Offset 1 B SWT	9.74 dB • 1.3 µs •	RBW 3 MHz VBW 10 MHz	Mode Auto FF1 M1[1]		0,4 2,439672	49 dBm 30 GHz
M1 Date: 3,3 Ref Leg Att Count 11 D dBm- 10 dBm- 10 dBm- 10 dBm- -10 dBm- -30 dBm- -30 dBm- -50 dBm- -50 dBm- -50 dBm- -50 dBm-	JIII JIII JIII JIII JIII JIII JIII JII	1:48:53 m Offset 1	9.74 dB 1.3 µs	RBW 3 MHz VBW 10 MHz M1 VB	Mode Auto FF1		0.4	49 dBm 30 GHz
M1 Date: 3.1 Ref Let Att Count 11 Date: 3.1 Part of Let Att Count 11 Date: 3.1 Part of Let Att Count 11 Date: 3.1 Att Count 11 Date: 3.1 Att Count 11 Date: 40 dBm- -10 dBm- -10 dBm- -30 dBm- -50 dBm- -5	UTT 100000000000000000000000000000000000	m Offset 1 B SWT	9.74 dB 1.3 µs	RBW 3 MHz VBW 10 MHz	Mode Auto FF1		0,4 2,439672 2,43972 2,43	49 dBm 30 GHz

Report No.: RA230417-19978E-RF-00B


Spectrum			nt1_2480		
Ref Level 29.7	dBm Offset 19.74 dB	- 0099 - 2 480-			
		VBW 10 MHz	Mode Auto FET		
Count 100/100	to an and the pe		Mode Auto II I		
1Pk View					
			M1[1]		0.98 dBm
20 dBm-				2.	47966430 GHz
10 dBm					
		MI			
0 dBm				-	
-10 dBm					
-20 dBm					
-30 dBm-				-	
-40 dBm					
200					
-50 dBm					
-60 dBm-					
-oo dom					
CF 2.48 GHz		1001 pt	s		Span 8.0 MHz
Marker					-
Type Ref Tro	X-value	Y-value	Function	Function Res	sult
M1	2.4796643 GHz	0.98 dBm			
			A Mine and the second second	STRUCTURE 449	03.05-2071

Appendix D: Maximum power spectral density Test Result


Test Mode	Antenna	Frequency[MHz]	Result[dBm/3kHz]	Limit[dBm/3kHz]	Verdict
		2402	-15.01	≤8.00	PASS
BLE_1M	Ant1	2440	-14.8	≤8.00	PASS
-		2480	-14.39	≤8.00	PASS

Report No.: RA230417-19978E-RF-00B

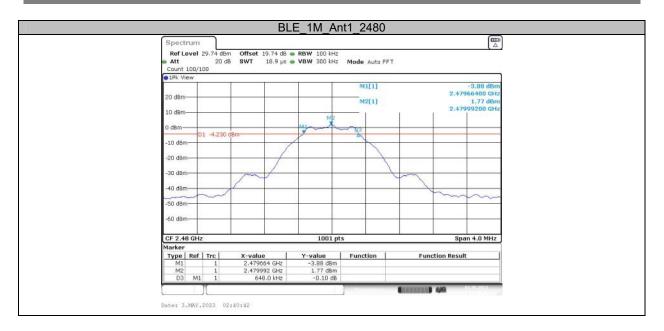
Appendix E: Band edge measurements

Report No.: RA230417-19978E-RF-00B

Appendix F: Duty Cycle Test Result

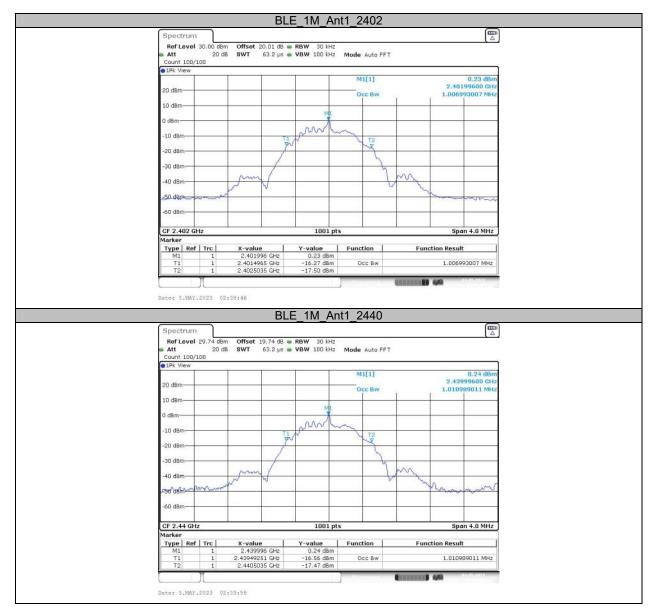
Test Mode	Antenna	Frequency[MHz]	ON Time [ms]	Period [ms]	Duty Cycle [%]	Duty Cycle Factor[dB]	1/T Minimum VBW (kHz)
BLE_1M	Ant1	2440	0.41	0.62	66.13	1.80	2.44

			BLE_1M	_Ant	1_244	0					_	
Spectr	um											
RefLe	vel 29.74 dBm	Offset 19.7	4 dB 🖷 RBW 1	0 MHz								
le Att) ms 🖷 VBW 1	0 MHz								
SGL Cou		TRG: VID									_	
EPR-CIT	w			- T	M1[1]					20.74	dBm	
00.45					willi					.8900		
20 dBm-					D1[1]					19.5		
10 dBm-	-			_		3		12	3	410.0)0 hz	
					1							
G dent	TRG 4 960	1Bm										
-10 dem	TRG -4.960	JOIN				_						
Ma												
#20 dBm											1.00	
30 dBm	440 440	as hi	Une yet	A.	and gat	14	te	104	and a	nu		
		100 Mar	and bit.	1	300 340		ad.	las	(held	-		
-40 dBm-				-	8			-				
-50 dBm-				-		-	-	-				
					1							
-60 dBm-				-		-		-				
CF 2.44	GHz		1	001 pts						1.0 r	ns/	
Marker	Ref Trc	X-value	Y-valu	- 1	Function	1	F	notion	Result			
M1	1	-1.89 n			runction	_	Fu	necton	Result			
D1	M1 1	410.0	JS 19.	56 dB								
D2	M1 1	620.0 j	us -3.	24 dB								
					1.11	1		0.00		10.00		
	AU 0000 01	11.00										
Date: 3.1	MAY.2023 01:	51:00										

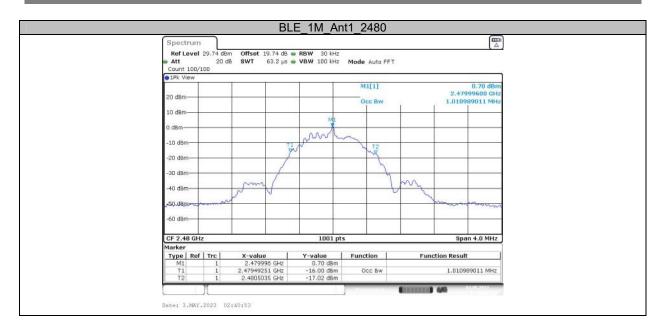

APPENDIX-Right side

Appendix A: DTS Bandwidth Test Result

Test Mode	Antenna	Frequency[MHz]	DTS BW [MHz]	Limit[MHz]	Verdict
		2402	0.65	0.5	PASS
BLE_1M	Ant1	2440	0.65	0.5	PASS
		2480	0.65	0.5	PASS

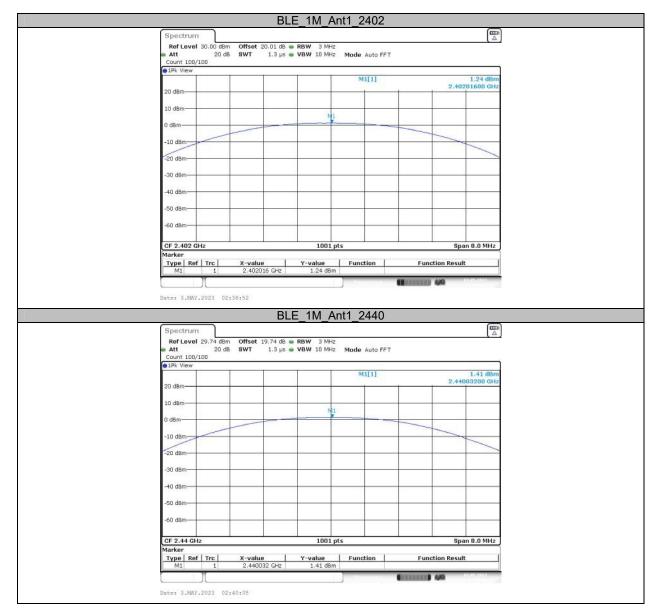


Report No.: RA230417-19978E-RF-00B



Appendix B: Occupied Channel Bandwidth Test Result

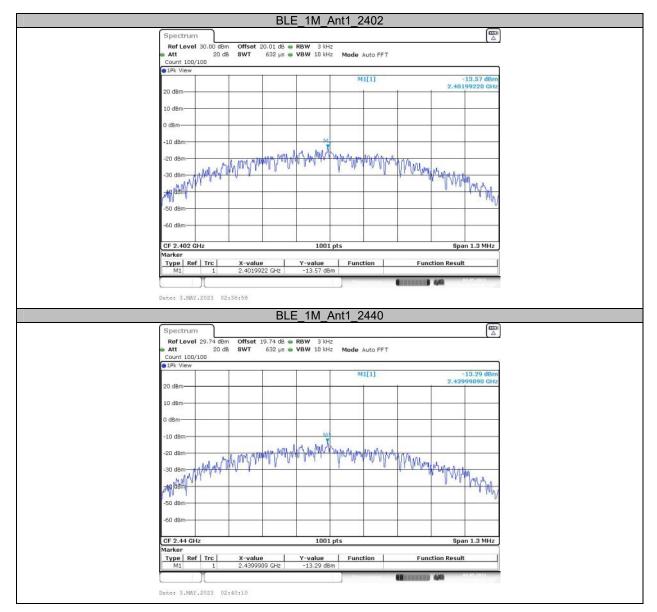
Test Mode	Antenna	Frequency[MHz]	OCB [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
		2402	1.007	2401.497	2402.503		
BLE_1M	Ant1	2440	1.011	2439.493	2440.503		
		2480	1.011	2479.493	2480.503		


Report No.: RA230417-19978E-RF-00B

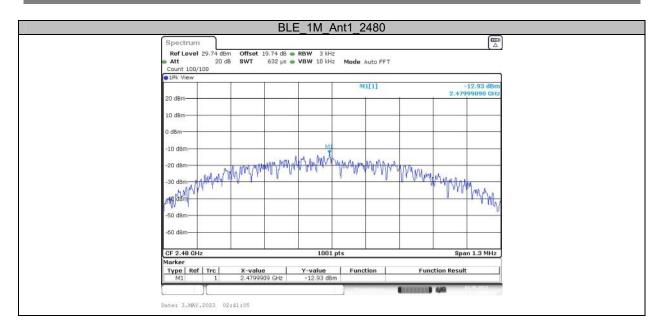
Appendix C: Maximum conducted output power Test Result Peak

Test Mode	Antenna	Frequency[MHz]	Conducted Peak Powert[dBm]	Conducted Limit[dBm]	Verdict
	Ant1	2402	1.24	≤30	PASS
BLE_1M		2440	1.41	≤30	PASS
		2480	1.8	≤30	PASS

Test Graphs Peak



Report No.: RA230417-19978E-RF-00B

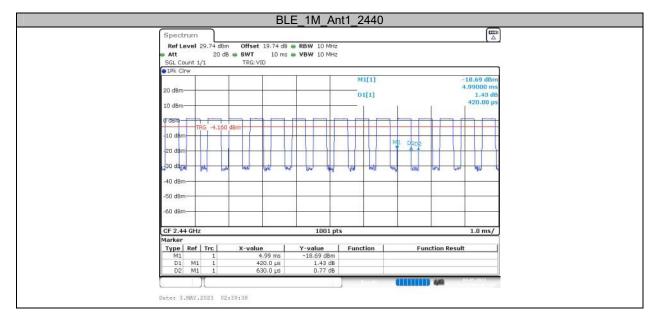

Spectrum				
Ref Level 29.74 Att 2 Count 100/100		Mode Auto FFT		
• 1Pk View				
20 dBm-		M1[1]	2.47	1.80 dBm 960040 GHz
20 0011				
10 dBm	 MI			
0 dBm				
-10 dBm				1
-20 dBm				
-30 dBm-				
-40 dBm				
-50 dBm				
-60 dBm	 -			
CF 2.48 GHz	1001 pt	s	Sp	an 8.0 MHz
Marker	 			
Type Ref Trc M1 1	Y-value 1.80 dBm	Function	Function Resu	IT.
1		. No contraction	ELLENDER 449	03.05.8971

Appendix D: Maximum power spectral density Test Result

Test Mode	Antenna	Frequency[MHz]	Result[dBm/3kHz]	Limit[dBm/3kHz]	Verdict
		2402	-13.57	≤8.00	PASS
BLE_1M	Ant1	2440	-13.29	≤8.00	PASS
—		2480	-12.93	≤8.00	PASS

Report No.: RA230417-19978E-RF-00B

Appendix E: Band edge measurements Test Graphs



Report No.: RA230417-19978E-RF-00B

Appendix F: Duty Cycle Test Result

Test Mode	Antenna	Frequency[MHz]	ON Time [ms]	Period [ms]	Duty Cycle [%]	Duty Cycle Factor[dB]	1/T Minimum VBW (kHz)
BLE_1M	Ant1	2440	0.42	0.63	66.67	1.76	2.38

Test Graphs

***** END OF REPORT *****