

RF Test Report

For

Applicant Name:

TECNO MOBILE LIMITED

Address:

EUT Name:

Brand Name:

Model Number:

FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET FOTAN NT HONGKONG Laptop TECNO S15AM Series Model Number: Refer to Section 2

Issued By

Company Name:

BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Report Number: Test Standards:

Address:

BTF230612R00404 47 CFR Part 15E

Test Conclusion: FCC ID: Test Date: Date of Issue:

Pass 2ADYY-S15AM 2023-03-06 to 2023-05-29 2023-06-15

Prepared By:

Date:

Approved By:

Date:

Chr	
Chris Liu	Project Engineer
2023-06-	
+	* Co *
Ryan.CJ	/ EMC Manager

Note: All the test results in this report only related to the testing samples. Which can be duplicated completely for the legal use with approval of applicant; it shall not be reproduced except in full without the written approval of BTF Testing Lab (Shenzhen) Co., Ltd., All the objections should be raised within thirty days from the date of issue. To validate the report, you can contact us.

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

2023-06-15

Page 1 of 117

Revision History			
Version	Issue Date	Revisions Content	
R_V0	2023-06-15	Original	

Note: Once the revision has been made, then previous versions reports are invalid.

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 2 of 117BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Table of Contents

1	INTRODUCTION		
	1.1	Identification of Testing Laboratory	
	1.2	Identification of the Responsible Testing Location	
	1.3	Announcement	
2		DUCT INFORMATION	
	2.1	Application Information	
	2.2 2.3	Manufacturer Information	
	2.3	General Description of Equipment under Test (EUT)	
	2.5	Technical Information	.6
3	SUM	MARY OF TEST RESULTS	.7
	3.1	Test Standards	.7
	3.2	Uncertainty of Test	
	3.3	Summary of Test Result	.7
4	TEST	CONFIGURATION	. 8
	4.1	Test Equipment List	
	4.2	Test Auxiliary Equipment	
	4.3 4.4	Test Modes1 Table of Parameters of Text Software Setting1	
5		LUATION RESULTS (EVALUATION)	
5	5.1	Antenna requirement	
	5.1	5.1.1 Conclusion:	
•		O SPECTRUM MATTER TEST RESULTS (RF)	
6			
	6.1	Conducted Emission at AC power line	
		6.1.1 E.U.T. Operation:	
		6.1.3 Test Data:	
	6.2	Duty Cycle	
		6.2.1 E.U.T. Operation:	20
		6.2.2 Test Data:	
	6.3	Maximum conducted output power2	
		6.3.1 E.U.T. Operation:	
	6.4	6.3.2 Test Data:	
	0.4	Power spectral density 2 6.4.1 E.U.T. Operation: 2 2	
		6.4.1 E.U.T. Operation:	
	6.5	Emission bandwidth and occupied bandwidth2	
		6.5.1 E.U.T. Operation:	
		6.5.2 Test Data:	26
	6.6	Band edge emissions (Radiated)	27
		6.6.1 E.U.T. Operation:	
		6.6.2 Test Setup Diagram:	
	6.7	Undesirable emission limits (below 1GHz)	
		6.7.1 E.U.T. Operation:	
		6.7.2 Test Setup Diagram:	

Total or partial reproduction of this document without permission of the Laboratory is not allowed. Page 3 of 117 BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

6.8	Unde	sirable emission limits (above 1GHz)	
	6.8.1	E.U.T. Operation:	
		Test Data:	
APPENDIX			

Total or partial reproduction of this document without permission of the Laboratory is not allowed. Page 4 of 117 BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

1 Introduction

1.1 Identification of Testing Laboratory

Company Name:	BTF Testing Lab (Shenzhen) Co., Ltd.
Address:	F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China
Phone Number:	+86-0755-23146130
Fax Number:	+86-0755-23146130

1.2 Identification of the Responsible Testing Location

Company Name:	BTF Testing Lab (Shenzhen) Co., Ltd.
Address:	F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou
Address.	Community, Songgang Street, Bao'an District, Shenzhen, China
Phone Number:	+86-0755-23146130
Fax Number:	+86-0755-23146130
FCC Registration Number:	518915
Designation Number:	CN1330

1.3 Announcement

(1) The test report reference to the report template version v0.

(2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.

(3) The test report is invalid if there is any evidence and/or falsification.

(4) This document may not be altered or revised in any way unless done so by BTF and all revisions are duly noted in the revisions section.

(5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.

(6) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

2 **Product Information**

2.1 Application Information

Company Name:	TECNO MOBILE LIMITED
Address:	FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET FOTAN NT HONGKONG

2.2 Manufacturer Information

Company Name:	TECNO MOBILE LIMITED
Address:	FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET FOTAN NT HONGKONG

2.3 Factory Information

Company Name:	GUANGXI SHANCHAUN TECHNOLOGY CO LTD
Address:	2nd floor of building1 in zone 3、building2 in zone 3, 1st floor of building 2 in zone 4, Guangxi 3nod Smart Industrial Park, No. 3 Gaoke Road, Haicheng District, Beihai City, Guangxi Zhuang Autonomous Region

2.4 General Description of Equipment under Test (EUT)

EUT Name:	Laptop		
Test Model Number:	S15AM		
Series Model Number:	N/A		

2.5 Technical Information

Power Supply:	Li-ion Battery: S1 Nominal Voltage: 11.55V Rated Capacity: 6060mAh/70Wh Typical Capacity: 6160 mAh/71.14Wh Limited Charge Voltage: 13.2V	
Power Adaptor:	Adapter1: TCW-A 61S-65W Input: 100-240V~50/60Hz 1.5A Max Output: PD: 5V-3A 9V-3A 12V-3A 15V-3A 20V-3A 12V-3A PPS: 3.3-11V-5A Max Adapter2: DS65-2 Input: 100-240V~50/60Hz 1.5A Max Output: PD: 5V-3A 9V-3A 12V-3A 15V-3A 20V-3.25A 65W	
Operation Frequency:	Band 1: 5180-5250 MHz Band 2: 5250-5320 MHz Band 3: 5500-5700 MHz Band 4: 5745-5825 MHz	
Number of Channels:	Refer to Section 4.4	
Modulation Type:	IEEE 802.11a/n/ac/ax: OFDM/OFDMA (BPSK/QPSK/16QAM/64QAM/256QAM/1024QAM)	
Antenna Type:	Integral Antenna	
Antenna Gain [#] :	3.22dBi	

Note:

#: The antenna gain provided by the applicant, and the laboratory will not be responsible for the accumulated calculation results which covers the information provided by the applicant.

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. Page 6 of 117

3 Summary of Test Results

3.1 Test Standards

The tests were performed according to following standards: 47 CFR Part 15E: Unlicensed National Information Infrastructure Devices

3.2 Uncertainty of Test

Item	Measurement Uncertainty	
Conducted Emission (150 kHz-30 MHz)	±2.64dB	
The following measurement uncertainty levels have been estimated for tests performed on the EUT as		
specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately		

Item	Standard	Requirement	Result
Antenna requirement	47 CFR Part 15E	Part 15.203	Pass
Conducted Emission at AC power line	47 CFR Part 15E	47 CFR Part 15.207(a)	Pass
Maximum conducted output power	47 CFR Part 15E	47 CFR Part 15.407(a)(1)(i) 47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(2) 47 CFR Part 15.407(a)(3)(i)	Pass
Power spectral density	47 CFR Part 15E	47 CFR Part 15.407(a)(1)(i) 47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(2) 47 CFR Part 15.407(a)(3)(i)	Pass
Emission bandwidth and occupied bandwidth	47 CFR Part 15E	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use. 47 CFR Part 15.407(e)	Pass
Channel Availability Check Time	47 CFR Part 15E	47 CFR Part 15.407(h)(2)(ii)	Pass
U-NII Detection Bandwidth	47 CFR Part 15E	47 CFR Part 15.407(h)(2)	Pass
Statistical Performance Check	47 CFR Part 15E	KDB 935210 D02, Clause 5.1 Table 2	Pass
Channel Move Time, Channel Closing Transmission Time	47 CFR Part 15E	47 CFR Part 15.407(h)(2)(iii)	Pass
Non-Occupancy Period Test	47 CFR Part 15E	47 CFR Part 15.407(h)(2)(iv)	Pass
DFS Detection Thresholds	47 CFR Part 15E	KDB 905462 D02, Clause 5.2 Table 3	Pass
Band edge emissions (Radiated)	47 CFR Part 15E	47 CFR Part 15.407(b)(1) 47 CFR Part 15.407(b)(2) 47 CFR Part 15.407(b)(4) 47 CFR Part 15.407(b)(10)	Pass
Undesirable emission limits (below 1GHz)	47 CFR Part 15E	47 CFR Part 15.407(b)(9)	Pass
Undesirable emission limits (above 1GHz)	47 CFR Part 15E	47 CFR Part 15.407(b)(1) 47 CFR Part 15.407(b)(2) 47 CFR Part 15.407(b)(4) 47 CFR Part 15.407(b)(10)	Pass

3.3 Summary of Test Result

the 95% confidence level using a coverage factor of k=2.

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

Test Configuration 4

Test Equipment List 4.1

Conducted Emission at AC power line							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
Pulse Limiter	SCHWARZBECK	VTSD 9561-F	00953	2022-11-24	2023-11-23		
Coaxial Switcher	SCHWARZBECK	CX210	CX210	2022-11-24	2023-11-23		
V-LISN	SCHWARZBECK	NSLK 8127	01073	2022-11-24	2023-11-23		
LISN	AFJ	LS16/110VAC	16010020076	2023-02-23	2024-02-22		
EMI Receiver	ROHDE&SCHWA RZ	ESCI3	101422	2022-11-24	2023-11-23		

Duty Cycle						
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
RFTest software	/	V1.00	/	/	/	
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23	
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23	
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23	
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23	
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23	
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23	

Maximum conducted output power							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
RFTest software	/	V1.00	/	/	/		
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23		
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23		
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23		
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23		
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23		
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23		

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 8 of 11BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Power spectral density						
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
RFTest software	/	V1.00	/	/	/	
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23	
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23	
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23	
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23	
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23	
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23	

Emission bandwidth and occupied bandwidth							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
RFTest software	/	V1.00	/	/	/		
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23		
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23		
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23		
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23		
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23		
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23		

Channel Availability Check Time							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
RFTest software	/	V1.00	/	/	/		
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23		
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23		
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23		
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23		
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23		

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 9 of 11BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 9 of 117

MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23				
U-NII Detection Bandy	U-NII Detection Bandwidth								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date				
RFTest software	/	V1.00	/	/	/				
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23				
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23				
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23				
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23				
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23				
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23				

Statistical Performance Check							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
RFTest software	/	V1.00	/	/	/		
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23		
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23		
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23		
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23		
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23		
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23		

Channel Move Time, Channel Closing Transmission Time								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
RFTest software	/	V1.00	/	/	/			
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23			
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23			
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23			
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23			

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 10 of 11BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 10 of 117

WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23

Non-Occupancy Period Test							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
RFTest software	/	V1.00	/	/	/		
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23		
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23		
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23		
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23		
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23		
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23		

DFS Detection Thresholds								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
RFTest software	/	V1.00	/	/	/			
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23			
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23			
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23			
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23			
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23			
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23			

Band edge emissions (Radiated)							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	2023-03-24	2024-03-23		
Preamplifier	SCHWARZBECK	BBV9744	00246	2022-11-24	2023-11-23		
RE Cable	REBES Talent	UF1-SMASMAM-1 0m	21101566	2022-11-24	2023-11-23		
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2022-11-24	2023-11-23		
RE Cable	REBES Talent	UF1-SMASMAM-1 m	21101568	2022-11-24	2023-11-23		

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 11 of 11BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

REBES Talent	UF2-NMNM-1m	21101576	2022-11-24	2023-11-23
REBES Talent	UF2-NMNM-2.5m	21101573	2022-11-24	2023-11-23
SKET	PCI-GPIB	/	/	/
SCHWARZBECK	BBHA9170	01157	2021-11-28	2023-11-27
ROHDE&SCHWA RZ	ESCI7	101032	2022-11-24	2023-11-23
ROHDE&SCHWA RZ	FSQ40	100010	2022-11-24	2023-11-23
SKET	PCI-GPIB	/	/	/
SCHWARZBECK	BBV9718D	00008	2023-03-24	2024-03-23
SCHWARZBECK	BBHA9120D	2597	2022-05-22	2024-05-21
Frad	FA-03A2 RE+	/	/	/
SKET	PCI-GPIB	/	/	/
SCHWARZBECK	VULB 9168	01328	2021-11-28	2023-11-27
	REBES Talent SKET SCHWARZBECK ROHDE&SCHWA RZ ROHDE&SCHWA RZ SKET SCHWARZBECK SCHWARZBECK Frad SKET	REBES TalentUF2-NMNM-2.5mSKETPCI-GPIBSCHWARZBECKBBHA9170ROHDE&SCHWA RZESCI7ROHDE&SCHWA RZFSQ40SKETPCI-GPIBSCHWARZBECKBBHA9120DSCHWARZBECKBBHA9120DFradFA-03A2 RE+SKETPCI-GPIB	REBES TalentUF2-NMNM-2.5m21101573SKETPCI-GPIB/SCHWARZBECKBBHA917001157ROHDE&SCHWA RZESCI7101032ROHDE&SCHWA RZFSQ40100010SKETPCI-GPIB/SCHWARZBECKBBV9718D00008SCHWARZBECKBBHA9120D2597FradFA-03A2 RE+/SKETPCI-GPIB/	REBES Talent UF2-NMNM-2.5m 21101573 2022-11-24 SKET PCI-GPIB / / SCHWARZBECK BBHA9170 01157 2021-11-28 ROHDE&SCHWA RZ ESCI7 101032 2022-11-24 ROHDE&SCHWA RZ FSQ40 100010 2022-11-24 SKET PCI-GPIB / / SKET PCI-GPIB / / SCHWARZBECK BBV9718D 00008 2023-03-24 SCHWARZBECK BBHA9120D 2597 2022-05-22 Frad FA-03A2 RE+ / / SKET PCI-GPIB / /

Undesirable emission Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	2023-03-24	2024-03-23
Preamplifier	SCHWARZBECK	BBV9744	00246	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF1-SMASMAM-1 0m	21101566	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF1-SMASMAM-1 m	21101568	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF2-NMNM-1m	21101576	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF2-NMNM-2.5m	21101573	2022-11-24	2023-11-23
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/
Horn Antenna	SCHWARZBECK	BBHA9170	01157	2021-11-28	2023-11-27
EMI TEST RECEIVER	ROHDE&SCHWA RZ	ESCI7	101032	2022-11-24	2023-11-23
SIGNAL ANALYZER	ROHDE&SCHWA RZ	FSQ40	100010	2022-11-24	2023-11-23
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/
Broadband Preamplilifier	SCHWARZBECK	BBV9718D	00008	2023-03-24	2024-03-23
Horn Antenna	SCHWARZBECK	BBHA9120D	2597	2022-05-22	2024-05-21
EZ_EMC	Frad	FA-03A2 RE+	/	/	/
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/
Log periodic antenna	SCHWARZBECK	VULB 9168	01328	2021-11-28	2023-11-27

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 12 of 11BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	2023-03-24	2024-03-23
Preamplifier	SCHWARZBECK	BBV9744	00246	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF1-SMASMAM-1 0m	21101566	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF1-SMASMAM-1 m	21101568	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF2-NMNM-1m	21101576	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF2-NMNM-2.5m	21101573	2022-11-24	2023-11-23
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/
Horn Antenna	SCHWARZBECK	BBHA9170	01157	2021-11-28	2023-11-27
EMI TEST RECEIVER	ROHDE&SCHWA RZ	ESCI7	101032	2022-11-24	2023-11-23
SIGNAL ANALYZER	ROHDE&SCHWA RZ	FSQ40	100010	2022-11-24	2023-11-23
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/
Broadband Preamplilifier	SCHWARZBECK	BBV9718D	00008	2023-03-24	2024-03-23
Horn Antenna	SCHWARZBECK	BBHA9120D	2597	2022-05-22	2024-05-21
EZ_EMC	Frad	FA-03A2 RE+	/	/	/
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/
Log periodic antenna	SCHWARZBECK	VULB 9168	01328	2021-11-28	2023-11-27

4.2 Test Auxiliary Equipment

The EUT was tested as an independent device.

4.3 Test Modes

Temperature:	25.0 °C	
Humidity:	56 % RH	
Atmospheric Pressure:	1010 mbar	

Engineering mode:	Keep the EUT in continuous transmitting by select channel and modulations(The value of duty cycle is 95.70%)

The sample was placed (0.8m below 1GHz, 1.5m above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. For the full battery state and The output power to the maximum state.

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Test Mode	Description
Mode 1	802.11a
Mode 2	802.11n20
Mode 3	802.11n40
Mode 4	802.11ac20
Mode 5	802.11ac40
Mode 6	802.11ac80
Mode 7	802.11ax20
Mode 8	802.11ax40
Mode 9	802.11ax80

Note:

(1) The measurements are performed at the highest, lowest available channels.

(2) The EUT use new battery.

(3) Record the worst case of each test item in this report.

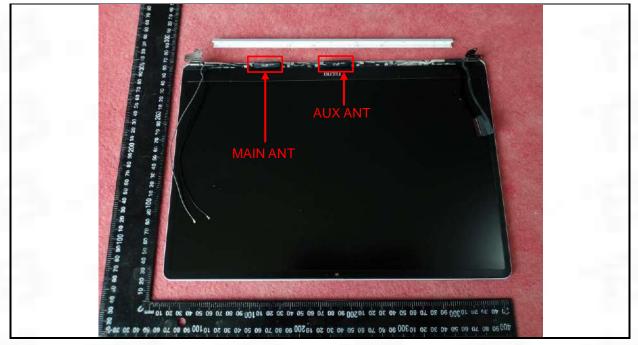
Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

DRTU Test program Test Frequency (MHz) Mode NCB: 20MHz 5180 5240 5260 5320 5500 5700 5745 5825 802.11a MHz MHz MHz MHz MHz MHz MHz MHz 5240 5180 5260 5320 5500 5700 5745 5825 802.11n MHz MHz MHz MHz MHz MHz MHz MHz 5180 5240 5260 5320 5500 5700 5745 5825 802.11ac MHz MHz MHz MHz MHz MHz MHz MHz 5320 5180 5240 5260 5500 5700 5745 5825 802.11ax MHz MHz MHz MHz MHz MHz MHz MHz NCB: 40MHz 5190 5230 5270 5310 5510 5670 5755 5795 802.11n MHz MHz MHz MHz MHz MHz MHz MHz 5795 5190 5230 5270 5310 5510 5670 5755 802.11ac MHz MHz MHz MHz MHz MHz MHz MHz 5190 5230 5270 5310 5510 5670 5795 5755 802.11ax MHz MHz MHz MHz MHz MHz MHz MHz NCB: 80MHz 5210 5290 5530 5610 5775 802.11ac MHz MHz MHz MHz MHz 5210 5290 5530 5610 5775 802.11ax MHz MHz MHz MHz MHz

4.4 Table of Parameters of Text Software Setting

During testing, Channel and Power Controlling Software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

Total or partial reproduction of this document without permission of the Laboratory is not allowed. Page 15 of 117 BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China


5 Evaluation Results (Evaluation)

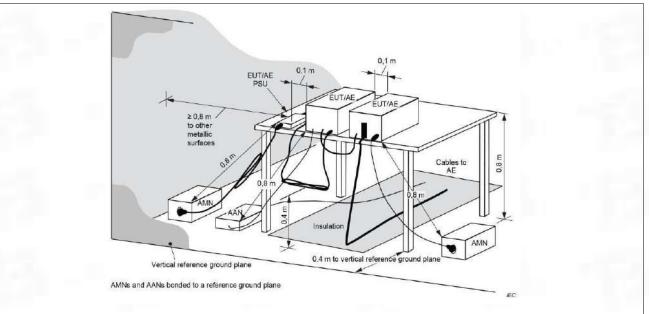
5.1 Antenna requirement

Test Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

5.1.1 Conclusion:

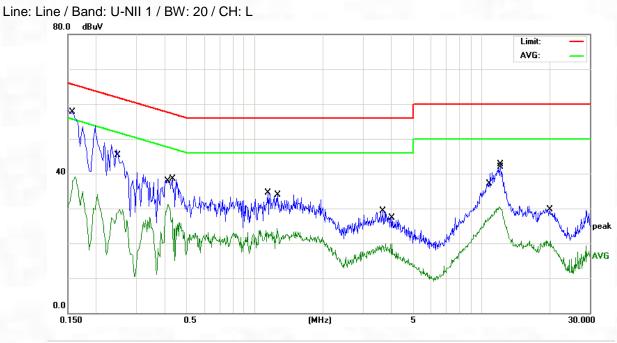
Radio Spectrum Matter Test Results (RF) 6


Conducted Emission at AC power line 6.1

Test Requirement:	47 CFR Part 15.207(a)				
Test Method:	Method: Refer to ANSI C63.10-2013 section 6.2, standard test method for ac p conducted emissions from unlicensed wireless devices				
Test Limit:	Frequency of emission (MHz)	Conducted limit (de	BμV)		
		Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
	*Decreases with the logarithm of t	he frequency.			

6.1.1 E.U.T. Operation:

Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar


6.1.2 Test Setup Diagram:

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

6.1.3 Test Data:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	*	0.1582	46.87	10.45	57.32	65.55	-8.23	QP
2		0.2521	33.39	10.46	43.85	61.68	-17.83	QP
3		0.4140	20.66	10.50	31.16	47.57	-16.41	AVG
4		0.4340	28.00	10.50	38.50	57.18	-18.68	QP
5		1.1460	23.86	10.57	34.43	56.00	-21.57	QP
6		1.2620	13.64	10.59	24.23	46.00	-21.77	AVG
7		3.6660	18.61	10.73	29.34	56.00	-26.66	QP
8		4.0380	9.21	10.73	19.94	46.00	-26.06	AVG
9		10.7140	16.39	10.88	27.27	50.00	-22.73	AVG
10		11.9740	19.53	10.98	30.51	50.00	-19.49	AVG
11		12.1700	31.64	10.99	42.63	60.00	-17.37	QP
12		20.2580	9.71	11.05	20.76	50.00	-29.24	AVG

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 18 of 11BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 18 of 117

12

12.2860

80.0 dBuV Limit: AVG: 40 AVG 0.0 0.150 0.5 (MHz) 5 30.000 Reading Correct Measure-Limit Over No. Mk. Freq. Level Factor ment MHz dBuV dB dBuV dBuV dB Detector -11.88 0.1580 33.23 10.45 55.56 1 43.68 AVG 2 0.1940 42.37 10.45 52.82 63.86 -11.04 QP 19.72 10.50 30.22 47.57 -17.35 3 0.4140 AVG 0.4620 27.66 10.51 38.17 56.66 -18.49 QP 4 5 0.7580 11.87 10.54 22.41 46.00 -23.59 AVG 1.5180 6 20.78 10.63 31.41 56.00 -24.59 QP 7 2.0820 23.11 10.71 33.82 56.00 -22.18 QP 2.1260 14.36 10.71 25.07 46.00 -20.93 AVG 8 9 2.2620 14.05 10.71 24.76 46.00 -21.24 AVG 3.5540 10 17.50 10.73 28.23 56.00 -27.77 QP 11 11.9540 24.18 10.97 35.15 60.00 -24.85 QP

Line: Neutral / Band: U-NII 1 / BW: 20 / CH: L

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

13.37

AVG

50.00 -25.63

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

11.00

24.37

6.2 Duty Cycle

Procedure:iii) Set VBW >= RBW.iv) Set detector = peak.v) The zero-span measurement method shall not be used unless both RBW and	Test Requirement:	All measurements are to be performed with the EUT transmitting at 100% duty cycle at its maximum power control level; however, if 100% duty cycle cannot be achieved, measurements of duty cycle, x, and maximum-power transmission duration, T, are required for each tested mode of operation.
i) Set the center frequency of the instrument to the center frequency of the transmission. ii) Set RBW >= EBW if possible; otherwise, set RBW to the largest available valiii) Set VBW >= RBW. iv) Set detector = peak. v) The zero-span measurement method shall not be used unless both RBW and	Test Method:	ANSI C63.10-2013 section 12.2 (b)
Procedure: transmission. ii) Set RBW >= EBW if possible; otherwise, set RBW to the largest available val iii) Set VBW >= RBW. iv) Set detector = peak. v) The zero-span measurement method shall not be used unless both RBW and	Test Limit:	No limits, only for report use.
points across duration T exceeds 100.	Procedure:	 transmission. ii) Set RBW >= EBW if possible; otherwise, set RBW to the largest available value. iii) Set VBW >= RBW. iv) Set detector = peak. v) The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T, where T is defined in item a1) of 12.2, and the number of sweep

6.2.1 E.U.T. Operation:

Operating Environment:	
Temperature:	25.5 ℃
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar

6.2.2 Test Result: (Meet requirements)

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 20 of 117BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

6.3 Maximum conducted output power

	47 CFR Part 15.407(a)(1)(i)
	47 CFR Part 15.407(a)(1)(ii)
Toot Doguirom onto	47 CFR Part 15.407(a)(1)(iii)
Test Requirement:	47 CFR Part 15.407(a)(1)(iv)
	47 CFR Part 15.407(a)(2)
	47 CFR Part 15.407(a)(3)(i)
Test Method:	ANSI C63.10-2013, section 12.3
	For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed
	125 mW (21 dBm). For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. Fixed point-to-point U-NII devices may employ antennas with directional gain up to
Test Limit:	23 dBi without any corresponding reduction in the maximum conducted output power. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power is required for
	each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is
	professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
	For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi.
	If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 21 of 11BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

	For the band 5 725 5 850 GHz, the maximum conducted output newer over the
	For the band 5.725-5.850 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W.
	If transmitting antennas of directional gain greater than 6 dBi are used, the
	maximum conducted output power shall be reduced by the amount in dB that the
	directional gain of the antenna exceeds 6 dBi.
	However, fixed point-to-point U-NII devices operating in this band may employ
	transmitting antennas with directional gain greater than 6 dBi without any
	corresponding reduction in transmitter conducted power. Fixed, point-to-point
	operations exclude the use of point-to-multipoint systems, omnidirectional
	applications, and multiple collocated transmitters transmitting the same
	information. The operator of the U-NII device, or if the equipment is professionally
	installed, the installer, is responsible for ensuring that systems employing high gain
	directional antennas are used exclusively for fixed, point-to-point operations.
	Method SA-1
	a) Set span to encompass the entire 26 dB EBW or 99% OBW of the signal.
	b) Set RBW = 1 MHz.
	c) Set VBW >= 3 MHz.
	d) Number of points in sweep >= [2 × span / RBW]. (This gives bin-to-bin spacing
	<= RBW / 2, so
	that narrowband signals are not lost between frequency bins.)
	e) Sweep time = auto.
	f) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample
	detector mode.
	g) If transmit duty cycle < 98%, use a video trigger with the trigger level set to enable triggering
	only on full power pulses. The transmitter shall operate at maximum power control
	level for the
Procedure:	entire duration of every sweep. If the EUT transmits continuously (i.e., with no OFF
1 100000010.	intervals) or
	at duty cycle \geq 98%, and if each transmission is entirely at the maximum power
	control level,
	then the trigger shall be set to "free run."
	h) Trace average at least 100 traces in power averaging (rms) mode.
	i) Compute power by integrating the spectrum across the 26 dB EBW or 99% OBW
	of the signal
	using the instrument's band power measurement function, with band limits set
	equal to the
	EBW or OBW band edges. If the instrument does not have a band power function,
	then sum the
	spectrum levels (in power units) at 1 MHz intervals extending across the 26 dB
	EBW or 99%
	OBW of the spectrum.
6.3.1 E.U.T. Operation	

6.3.1 E.U.T. Operation:

Operating Environment:		
Temperature:	25.5 °C	
Humidity:	50.6 %	
Atmospheric Pressure:	1010 mbar	

6.3.2 Test Data:

Please Refer to Appendix for Details.

6.4 Power spectral density

0.4 TOwer spectral	· · · · · · · · · · · · · · · · · · ·
	47 CFR Part 15.407(a)(1)(i)
	47 CFR Part 15.407(a)(1)(ii)
Test Requirement:	47 CFR Part 15.407(a)(1)(iii)
Test Requirement.	47 CFR Part 15.407(a)(1)(iv)
	47 CFR Part 15.407(a)(2)
	47 CFR Part 15.407(a)(3)(i)
Test Method:	ANSI C63.10-2013, section 12.5
	For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	For an indoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band.
	Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi.
Test Limit:	Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
	For client devices in the 5.15-5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band.
	If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band.
	If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	For the band 5.725-5.850 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, the
	maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 23 of 11BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 23 of 117

conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is	9
omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is	9
same information. The operator of the U-NII device, or if the equipment is	9
professionally installed, the installer, is responsible for ensuring that systems	
employing high gain directional antennas are used exclusively for fixed,	
point-to-point operations.	
a) Create an average power spectrum for the EUT operating mode being tested following the	by
instructions in 12.3.2 for measuring maximum conducted output power using a spectrum	
analyzer or EMI receiver; that is, select the appropriate test method (SA-1, SA-2 SA-3, or their	,
respective alternatives) and apply it up to, but not including, the step labeled, "Compute	
power" (This procedure is required even if the maximum conducted output power	
measurement was performed using the power meter method PM.)	
b) Use the peak search function on the instrument to find the peak of the spectru	~
c) Make the following adjustments to the peak value of the spectrum, if applicabl	
1) If method SA-2 or SA-2A was used, then add [10 log (1 / D)], where D is the de	лу
cycle, to the peak of the spectrum.	-
2) If method SA-3A was used and the linear mode was used in step h) of 12.3.2. add	7,
Dreadure 1 dB to the final result to compensate for the difference between linear averaging	
Procedure:	1
power averaging.	
d) The result is the PPSD.	
e) The procedure in item a) through item c) requires the use of 1 MHz resolution	
bandwidth to	
satisfy the 1 MHz measurement bandwidth specified by some regulatory authorities. This	
requirement also permits use of resolution bandwidths less than 1 MHz "provide	a
that the	
measured power is integrated to show the total power over the measurement	
bandwidth" (i.e.,	.
1 MHz). If measurements are performed using a reduced resolution bandwidth a	nd
integrated	
over 1 MHz bandwidth, the following adjustments to the procedures apply:	
1) Set RBW $\geq 1 / T$, where T is defined in 12.2 a).	
2) Set VBW >= $[3 \times RBW]$.	
3) Care shall be taken such that the measurements are performed during a period	d
of continuous transmission or are corrected upward for duty cycle.	

6.4.1 E.U.T. Operation:

Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar

6.4.2 Test Data:

Please Refer to Appendix for Details.

6.5 Emission bandwidth and occupied bandwidth

	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use.
Test Requirement:	U-NII 3, U-NII 4: 47 CFR Part 15.407(e)
	ANSI C63.10-2013, section 6.9.3 & 12.4
Test Method:	KDB 789033 D02, Clause C.2
	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use.
Test Limit:	U-NII 3, U-NII 4: Within the 5.725-5.850 GHz and 5.850-5.895 GHz bands, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.
	Emission bandwidth: a) Set RBW = approximately 1% of the emission bandwidth. b) Set the VBW > RBW. c) Detector = peak. d) Trace mode = max hold. e) Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the instrument. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.
	 Occupied bandwidth: a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW. b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement.
Procedure:	 c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2. d) Step a) through step c) might require iteration to adjust within the specified range. e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode
	shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used. f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth. g) If the instrument does not have a 99% power bandwidth function, then the trace
	data points are recovered and directly summed in linear power terms. The recovered amplitude data points,
	beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until
Total or partial representation of the	is document without permission of the Laboratory is not allowed. Page 25 of 117

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 25 of 11BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

 total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is the difference between these two frequencies. h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s). 6 dB emission bandwidth: a) Set RBW = 100 kHz.
 b) Set the video bandwidth (VBW) ≥ 3 >= RBW. c) Detector = Peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured

6.5.1 E.U.T. Operation:

Operating Environment:		
Temperature:	25.5 °C	
Humidity:	50.6 %	
Atmospheric Pressure:	1010 mbar	

6.5.2 Test Data:

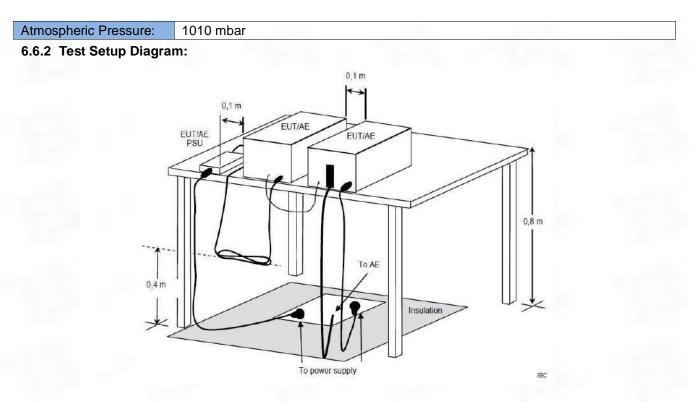
Please Refer to Appendix for Details.

6.6 Band edge emissions (Radiated)

0.0 Band edge el	missions (Radiated)					
	47 CFR Part 15.407(b)					
Test Requirement:	47 CFR Part 15.407(b)					
lest Requirement.	47 CFR Part 15.407(b)	47 CFR Part 15.407(b)(4)				
	47 CFR Part 15.407(b))(10)				
Test Method:	ANSI C63.10-2013, section 12.7.4, 12.7.5, 12.7.6					
		ting in the 5.15-5.25 GH		sions outside of the		
	5.15-5.35 GHz band s	hall not exceed an e.i.r.	o. of −27 dBm/N	IHz.		
		hall not exceed an e.i.r.				
	For transmitters operat	ting solely in the 5.725-	5.850 GHz band	1:		
	All emissions shall be	limited to a level of -27	dBm/MHz at 75	MHz or more above		
	or below the band edg	e increasing linearly to	10 dBm/MHz at	25 MHz above or		
		and from 25 MHz above				
		.6 dBm/MHz at 5 MHz a				
		elow the band edge inc				
	dBm/MHz at the band		icasing incarry			
		MHz	MLI-	CH-		
	MHz		MHz	GHz		
	0.090-0.110	16.42-16.423	399.9-410	4.5-5.15		
	¹ 0.495-0.505	16.69475-16.69525		5.35-5.46		
	2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75		
	4.125-4.128	25.5-25.67	1300-1427	8.025-8.5		
	4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2		
	4.20725-4.20775	73-74.6	1645.5-1646.	9.3-9.5		
			5			
	6.215-6.218	74.8-75.2	1660-1710	10.6-12.7		
	6.26775-6.26825	108-121.94	1718.8-1722.	13.25-13.4		
			2			
Test Limit:	6.31175-6.31225	123-138	2200-2300	14.47-14.5		
	8.291-8.294	149.9-150.05	2310-2390	15.35-16.2		
	8.362-8.366	156.52475-156.525	2483.5-2500	17.7-21.4		
	8.302-0.300	25	2403.3-2300	17.7-21.4		
	8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12		
	8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0		
	12.29-12.293	167.72-173.2		31.2-31.8		
			3332-3339			
	12.51975-12.52025	240-285	3345.8-3358	36.43-36.5		
	12.57675-12.57725	322-335.4	3600-4400	(²)		
	13.36-13.41					
	¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.					
	² Above 38.6	² Above 38.6				
	The field strength of emissions appearing within these frequency bands shall not					
	exceed the limits shown in § 15.209. At frequencies equal to or less than 1000					
	MHz, compliance with the limits in § 15.209 shall be demonstrated using					
		measurement instrumentation employing a CISPR quasi-peak detector. Above				
1000 MHz, compliance with the emission limits						
	based on the average value of the measured emissions. The provisions in §					
15.35apply to these measurements.				5. 5. 1010110 111 3		
	ro.couppiy to these m	ououromonto.				
	Except as provided els	ewhere in this subpart,	the emissions fr	om an intentional		
		ownere in this subpart,				

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 27 of 11BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China Page 27 of 117

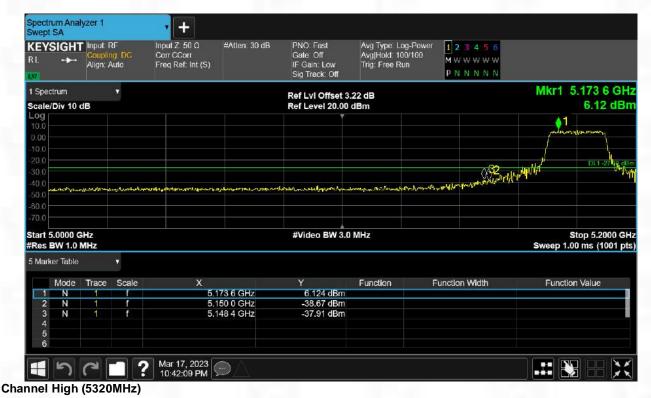
	radiator shall not exceed	the field strength levels spec	cified in the following table:	
	Frequency (MHz)	Field strength	Measurement	
		(microvolts/meter)	distance	
		(interestence)	(meters)	
	0.009-0.490	2400/F(kHz)	300	
	0.490-1.705			
		24000/F(kHz)	30	
	1.705-30.0	30	30	
	30-88	100 **	3	
	88-216	150 **	3	
	216-960	200 **	3	
	Above 960	500	3	
	Above 1GHz:			
	above the ground at a 3 degrees to determine the b. The EUT was set 3 m was mounted on the top	of a variable-height antenna	er. The table was rotated 360 tion. nce-receiving antenna, which	
	polarizations of the ante d. For each suspected e the antenna was tuned t of below 30MHz, the ant was turned from 0 degre e. The test-receiver syst Bandwidth with Maximum	o heights from 1 meter to 4 m enna was tuned to heights 1 ees to 360 degrees to find the em was set to Peak Detect F m Hold Mode.	surement. ed to its worst case and then neters (for the test frequency meter) and the rotatable table maximum reading. unction and Specified	
	specified, then testing correported. Otherwise the	the EUT in peak mode was fould be stopped and the peak emissions that did not have 1 no peak or average method a	values of the EUT would be	
Procedure:	in a data sheet.	ing peak of average method a	is specified and their reported	
	g. Test the EUT in the lo	g. Test the EUT in the lowest channel, the middle channel, the Highest channel. h. The radiation measurements are performed in X, Y, Z axis positioning for		
		found the X axis positioning v ires until all frequencies meas		
	1. Level= Read Level+ C	Cable Loss+ Antenna Factor-	Preamp Factor	
		40GHz, the disturbance above	•	
	points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious			
	emissions from the radiator which are attenuated more than 20dB below the limit			
	need not be reported.	on for fraguancias shave 40	Uz the field strength limits	
		on, for frequencies above 1G		
			strength of any emission shall	
			cified above by more than 20	
			ons whose peak level is lower	
		nly the peak measurement is		
		e 18GHz were very low and t		
			he harmonics were the above harmonics had been	

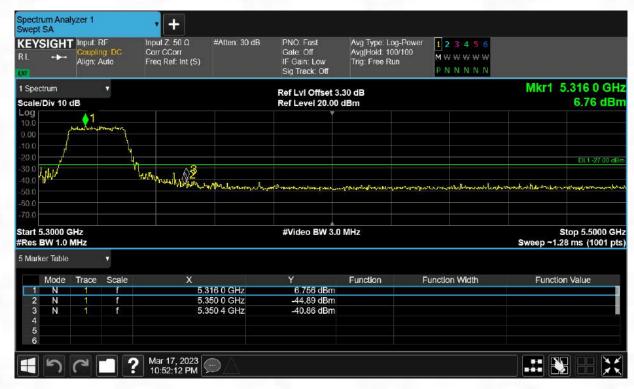

6.6.1 E.U.T. Operation:

Operating Environment:					
Temperature:	25.5 °C				
Humidity:	50.6 %				

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 28 of 11BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

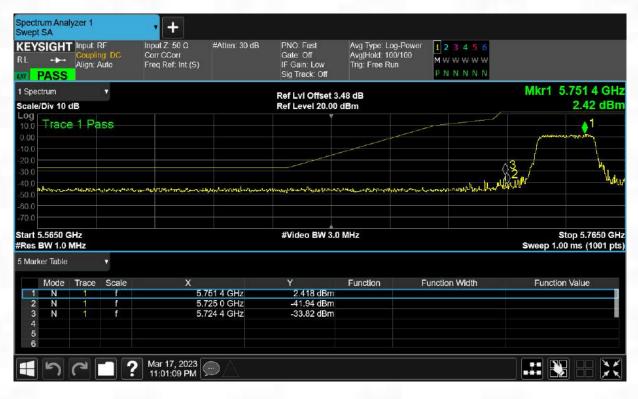
Page 28 of 117




Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 29 of 117BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

6.6.3 Test Data:

20MHz(IEEE 802.11a/n/ac/ax) Channel Low (5180MHz)



Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

Channel Low (5745MHz)

Channel High (5825MHz)

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

40MHzIEEE 802.11n/ac/ax Channel Low (5190MHz)

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

Channel Low (5755MHz)

Channel High (5795MHz)

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

80MHzIEEE 802.11ac/ax Channel Low (5210MHz)

1 Spectrum Scale/Div 10	dB	1		Ref LvI Offset Ref Level 20.0			Mkr1 5.28 0.	8 0 GH 52 dBn
Log 10.0 <mark>3</mark> 0.00 ← 10.0				for a lange of the second s	u:	Mapped & Twelde below the second state of the content of the		
-20.0				/				IL1-27.00 dB
	إفراد المحمد	lowe he galkheim	were and the second of the second of				W Million and	()//i-what
-60.0								
Start 5.1700 (Res BW 1.0				#Video BW 3	.0 MHz		Stop Sweep 1.00 ms	5.3700 GI (1001 pt
Marker Table Mode	Trace	Scale	x	Y	Function	Function Width	Function Val	10
1 N	1	f	5.288 0 GHz	0.5244 dBm		r chodon viladi	i dilotion vai	ae
2 N	1	f	5.150 0 GHz	dBm				
3 N 4	1	f	0 Hz	dBm				
5 6								
1	2]?	Mar 17, 2023					

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

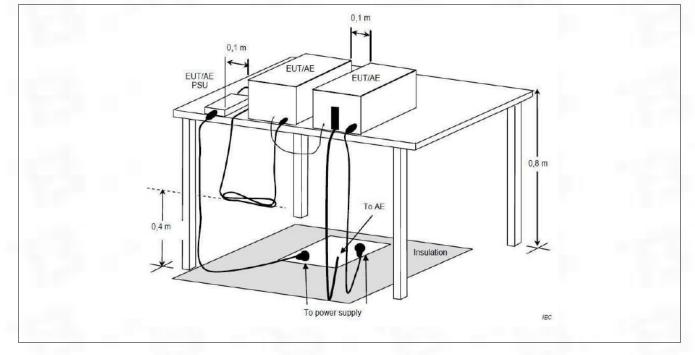
Channel Low (5775MHz)

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 35 of 117BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

6.7 Undesirable emission limits (below 1GHz)

Test Requirement:	47 CFR Part 15.407(b)(9)					
Test Method:	ANSI C63.10-2013, sect	ion 12.7.4, 12.7.5, 12.7.6					
	Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in § 15.209.						
Test Limit:		where in this subpart, the emi the field strength levels spect Field strength (microvolts/meter) 2400/F(kHz) 24000/F(kHz) 30 100 ** 150 ** 200 ** 500					
Procedure:	216-960 200 ** 3						

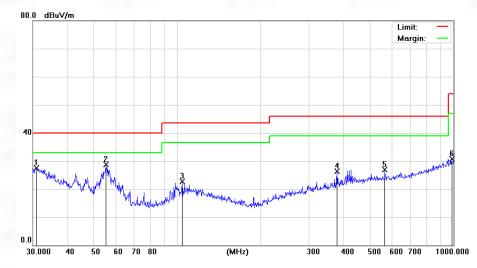
Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 36 of 11BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China


	Above 1GHz:
	a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters
	above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360
	degrees to determine the position of the highest radiation.
	b. The EUT was set 3 meters away from the interference-receiving antenna, which
	was mounted on the top of a variable-height antenna tower.
	c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical
	polarizations of the antenna are set to make the measurement.
	d. For each suspected emission, the EUT was arranged to its worst case and then
	the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency
	of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table
	was turned from 0 degrees to 360 degrees to find the maximum reading.
	e. The test-receiver system was set to Peak Detect Function and Specified
	Bandwidth with Maximum Hold Mode.
	f. If the emission level of the EUT in peak mode was 10dB lower than the limit
	specified, then testing could be stopped and the peak values of the EUT would be
	reported. Otherwise the emissions that did not have 10dB margin would be
	re-tested one by one using peak or average method as specified and then reported
	in a data sheet.
	g. Test the EUT in the lowest channel, the middle channel, the Highest channel.
	h. The radiation measurements are performed in X, Y, Z axis positioning for
	Transmitting mode, and found the X axis positioning which it is the worst case.
	i. Repeat above procedures until all frequencies measured was complete.
	Remark:
	1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
	2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The
	points marked on above plots are the highest emissions could be found when
	testing, so only above points had been displayed. The amplitude of spurious
	emissions from the radiator which are attenuated more than 20dB below the limit
	need not be reported.
	3. As shown in this section, for frequencies above 1GHz, the field strength limits
	are based on average limits. However, the peak field strength of any emission shall
	not exceed the maximum permitted average limits specified above by more than 20
	dB under any condition of modulation. For the emissions whose peak level is lower
	than the average limit, only the peak measurement is shown in the report.
	4. The disturbance above 18GHz were very low and the harmonics were the
	highest point could be found when testing, so only the above harmonics had been
	displayed.
	ບເວຍາແມ່ງວັນ.
6.7.1 E.U.T. Operation:	

Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar

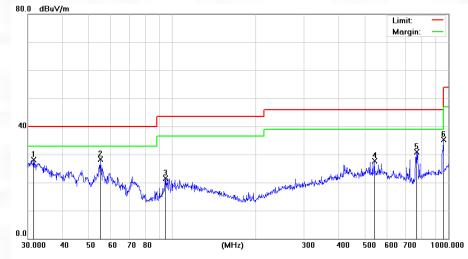
Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 37 of 11BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

6.7.2 Test Setup Diagram:



Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 38 of 117BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

6.7.3 Test Data:


Note: All the mode have been tested, and only the worst case mode are in the report Polarization: Horizontal / Band: U-NII 1 / BW: 20 / CH: L

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	,
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		30.8535	23.11	4.47	27.58	40.00	-12.42	QP
2	*	55.2207	34.40	-5.64	28.76	40.00	-11.24	QP
3		104.1701	25.80	-3.01	22.79	43.50	-20.71	QP
4		378.5843	27.47	-1.21	26.26	46.00	-19.74	QP
5		564.6389	25.75	1.13	26.88	46.00	-19.12	QP
6		986.0717	23.58	7.07	30.65	54.00	-23.35	QP

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

Polarization: Vertical / Band: U-NII 1 / BW: 20 / CH: L

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		31.5095	23.88	4.22	28.10	40.00	-11.90	QP
2		54.8348	33.83	-5.59	28.24	40.00	-11.76	QP
3		94.4284	26.57	-4.98	21.59	43.50	-21.91	QP
4		539.4775	26.96	0.84	27.80	46.00	-18.20	QP
5		766.0571	27.43	3.39	30.82	46.00	-15.18	QP
6	*	958.7943	28.81	6.57	35.38	46.00	-10.62	QP

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 40 of 11BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

6.8 Undesirable emission limits (above 1GHz)

	47 CFR Part 15.407(b)							
Test Requirement:	47 CFR Part 15.407(b)(2)							
lest requirement.	47 CFR Part 15.407(b)(4)							
	47 CFR Part 15.407(b)(10)							
Test Method:		ction 12.7.4, 12.7.5, 12						
		ting in the 5.15-5.25 GH						
		hall not exceed an e.i.r.						
		ting in the 5.25-5.35 GH						
	5.15-5.35 GHz band sl	hall not exceed an e.i.r.	p. of −27 dBm/N	1Hz.				
	For transmitters operat	ting solely in the 5.725-	5.850 GHz band	d:				
		limited to a level of -27						
		e increasing linearly to						
		and from 25 MHz above						
		.6 dBm/MHz at 5 MHz a						
		elow the band edge inc						
	dBm/MHz at the band		J					
	MHz	MHz	MHz	GHz				
	0.090-0.110	16.42-16.423	399.9-410	4.5-5.15				
	¹ 0.495-0.505	16.69475-16.69525		5.35-5.46				
	2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75				
	4.125-4.128	25.5-25.67	1300-1427					
	4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2				
	4.20725-4.20775	73-74.6	1645.5-1646.	9.3-9.5				
	4.20723-4.20773	75-74.0	5	9.0-9.0				
	6.215-6.218	74.8-75.2	1660-1710	10.6-12.7				
	6.26775-6.26825	108-121.94	1718.8-1722.	13.25-13.4				
	0.20110 0.20020	100 121.04	2	10.20 10.4				
	6.31175-6.31225	123-138	2200-2300	14.47-14.5				
Test Limit:	8.291-8.294	149.9-150.05	2310-2390	15.35-16.2				
	8.362-8.366	156.52475-156.525	2483.5-2500	17.7-21.4				
	0.302 0.300	25	2400.0 2000	11.1 21.4				
	8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12				
	8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0				
	12.29-12.293	167.72-173.2	3332-3339	31.2-31.8				
	12.51975-12.52025	240-285	3345.8-3358	36.43-36.5				
	12.57675-12.57725	322-335.4	3600-4400	$\binom{2}{2}$				
	13.36-13.41	322-335.4	3000-4400	()				
	1	IFC.						
	² Above 38.6	9, this restricted band sl	nall be 0.490-0.8	510 MHz.				
	Above 50.0							
	The field strength of er	nissions appearing with	in these frequer	ncv bands shall not				
		n in § 15.209. At freque						
		MHz, compliance with the limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above						
		with the emission limit						
		value of the measured						
	15.35apply to these me							
	Except as provided els	ewhere in this subpart,	the emissions f	rom an intentional				
		ed the field strength lev						
	Frequency (MHz)	Field strength		Measurement				

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 41 of 11BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Test Report Number: BTF230612R00404

		(microvolts/meter)	distance
			(meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	
			3
	216-960	200 **	3
	Above 960 Above 1GHz:	500	3
Procedure:	 above the ground at a degrees to determine to b. The EUT was set 3 was mounted on the to c. The antenna height determine the maximu polarizations of the and determine the antenna was turned from 0 degree. The test-receiver sy Bandwidth with Maxim f. If the emission level specified, then testing reported. Otherwise the re-tested one by one up in a data sheet. g. Test the EUT in the h. The radiation measu Transmitting mode, and i. Repeat above proceer Remark: 1. Level= Read Level+ 2. Scan from 18GHz to points marked on above testing, so only above emissions from the radian need not be reported. 3. As shown in this second are based on average not exceed the maximu dB under any condition than the average limit, 4. The disturbance above 	e EUT was placed on the top of 3 meter fully-anechoic chamber the position of the highest radiat meters away from the interferen op of a variable-height antenna t is varied from one meter to four m value of the field strength. Bo tenna are set to make the meas emission, the EUT was arrange d to heights from 1 meter to 4 me ntenna was tuned to heights 1 m prees to 360 degrees to find the stem was set to Peak Detect Fu um Hold Mode. of the EUT in peak mode was 10 could be stopped and the peak e emissions that did not have 10 sing peak or average method as lowest channel, the middle char urements are performed in X, Y, d found the X axis positioning w dures until all frequencies meas - Cable Loss+ Antenna Factor- Fo 40GHz, the disturbance above ve plots are the highest emissior points had been displayed. The diator which are attenuated more ction, for frequencies above 1GF limits. However, the peak field s um permitted average limits speen of modulation. For the emission only the peak measurement is sponted and the found when testing, so only the	 The table was rotated 360 ion. ice-receiving antenna, which cower. meters above the ground to oth horizontal and vertical urement. ed to its worst case and then eters (for the test frequency neter) and the rotatable table maximum reading. inction and Specified 0dB lower than the limit values of the EUT would be 50 margin would be 5 specified and then reported incline Highest channel. Z axis positioning for thich it is the worst case. ured was complete. Preamp Factor 18GHz was very low. The sould be found when amplitude of spurious e than 20dB below the limit Hz, the field strength limits trength of any emission shall cified above by more than 20 ns whose peak level is lower shown in the report.

6.8.1 E.U.T. Operation:

Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 42 of 11BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 42 of 117

6.8.2 Test Data:

Note: All the mode have been tested, and only the worst case mode are in the report

_	Low channel: 5180MHz									
Freq.	Ant.Pol	Emission L	Emission Level(dBuV)		Limit 3m(dBuV/m)		Over(dB)			
(MHz)	H/V	PK	AV	PK	AV	PK	AV			
10360	V	58.19	39.12	74	54	-15.81	-14.88			
15540	V	58.50	39.22	74	54	-15.50	-14.78			
10360	H	58.03	40.33	74	54	-15.97	-13.67			
15540	Н	59.18	40.18	74	54	-14.82	-13.82			

Free	Low channel: 5180MHz									
Freq.	Ant.Pol	Emission L	_evel(dBuV)	Limit 3m	Limit 3m(dBuV/m)		Over(dB)			
(MHz)	H/V	PK	AV	PK	AV	PK	AV			
10360	V	59.32	39.36	74	54	-14.68	-14.64			
15540	V	59.51	39.45	74	54	-14.49	-14.55			
10360	Н	59.68	39.35	74	54	-14.32	-14.65			
15540	Н	59.12	40.12	74	54	-14.88	-13.88			

F ace a	Low channel: 5180MHz									
Freq.	Ant.Pol	Emission Level(dBuV)		Limit 3m	Limit 3m(dBuV/m)		Over(dB)			
(MHz)	H/V	PK	AV	PK	AV	PK	AV			
10360	V	60.75	40.56	74	54	-13.25	-13.44			
15540	V	59.10	40.10	74	54	-14.90	-13.90			
10360	Н	58.51	40.14	74	54	-15.49	-13.86			
15540	Н	59.80	40.80	74	54	-14.20	-13.20			

Fred	Low channel: 5180MHz									
Freq.	Ant.Pol	Emission Level(dBuV)		Limit 3m(dBuV/m)		Over(dB)				
(MHz)	H/V	PK	AV	PK	AV	PK	AV			
10360	V	59.74	39.65	74	54	-14.26	-14.35			
15540	V	59.61	39.11	74	54	-14.39	-14.89			
10360	Н	58.89	39.25	74	54	-15.11	-14.75			
15540	Н	58.47	39.47	74	54	-15.53	-14.53			

Note:

1. All emissions not reported were more than 20dB below the specified limit or in the noise floor.

2. Freq. = Emission frequency in MHz

Reading level $(dB\mu V) = Receiver reading$

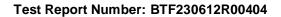
Corr. Factor (dB) = Attenuation factor + Cable loss

Level $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)

Limit $(dB\mu V) =$ Limit stated in standard

Margin (dB) = Level (dB μ V) – Limits (dB μ V)

3. Data of measurement within this frequency range shown "--" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.


Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. Page 43 of 117

Test Report Number: BTF230612R00404

Appendix

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 44 of 117BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

1. Bandwidth

1.1 OBW

1.1.1 Test Result

-26dB Bandwidth

Band	Channel	Frequency (MHz)	-26 dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)	Limit -26 dB Bandwidth (MHz)	Verdict
	_		20MHz(IEEE 802.11a/r	n/ac/ax)		
	Low	5180	21.698	19.025	0.5	Pass
1	High	5240	21.758	19.022	0.5	Pass
0	Low	5260	22.274	18.987	0.5	Pass
2	High	5320	21.654	18.012	0.5	Pass
0	Low	5500	21.773	18.994	0.5	Pass
3	High	5700	21.716	19.017	0.5	Pass
	Ŭ		40MHz(IEEE 802.11n	/ac/ax)		
	Low	5190	40.858	37.797	0.5	Pass
1	High	5230	40.681	37.723	0.5	Pass
•	Low	5270	41.031	37.772	0.5	Pass
2	High	5310	40.957	37.723	0.5	Pass
•	Low	5510	40.822	37.43	0.5	Pass
3	High	5670	40.768	37.761	0.5	Pass
	· · · ·		80MHz(IEEE 802.11a	ac/ax)		
1	Low	5210	80.648	77.244	0.5	Pass
2	Low	5290	81.761	77.200	0.5	Pass
0	Low	5530	80.798	77.173	0.5	Pass
3	High	5610	80.866	77.369	0.5	Pass

-6dB Bandwidth


Band	Channel	Frequency (MHz)	-6 dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
20MHz(IEEE 802.11a/n/ac/ax)						
4	Low	5745	19.048	18.920	> 0.5	Pass
4	High	5825	19.012	18.945	> 0.5	Pass
			40MHz(IEEE 802.11n/	ac/ax)		
4	Low	5755	38.112	37.747	> 0.5	Pass
4	High	5795	37.987	37.322	> 0.5	Pass
			80MHz(IEEE 802.11a	c/ax)		
4	Low	5775	77.866	77.202	> 0.5	Pass

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 45 of 11BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

1.1.2 Test Graph

20MHz(IEEE 802.11a/n/ac/ax) Band1

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

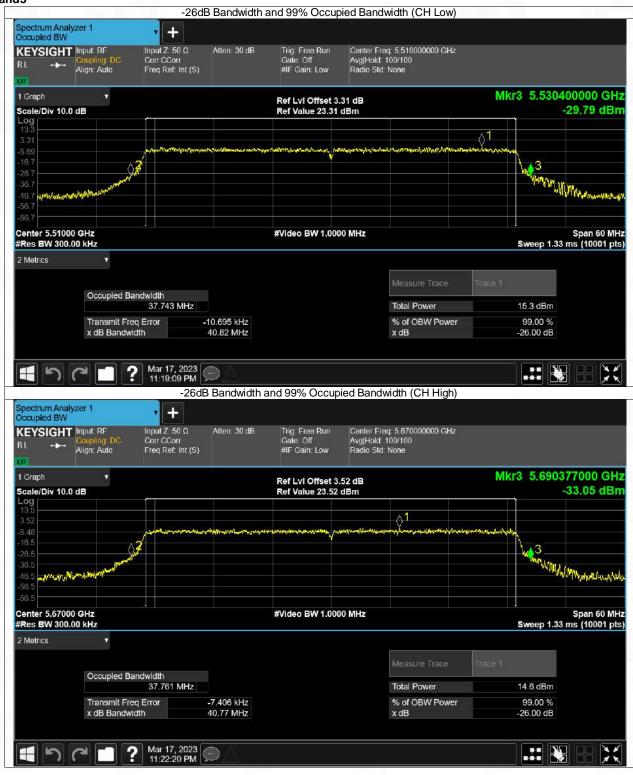
Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.



Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

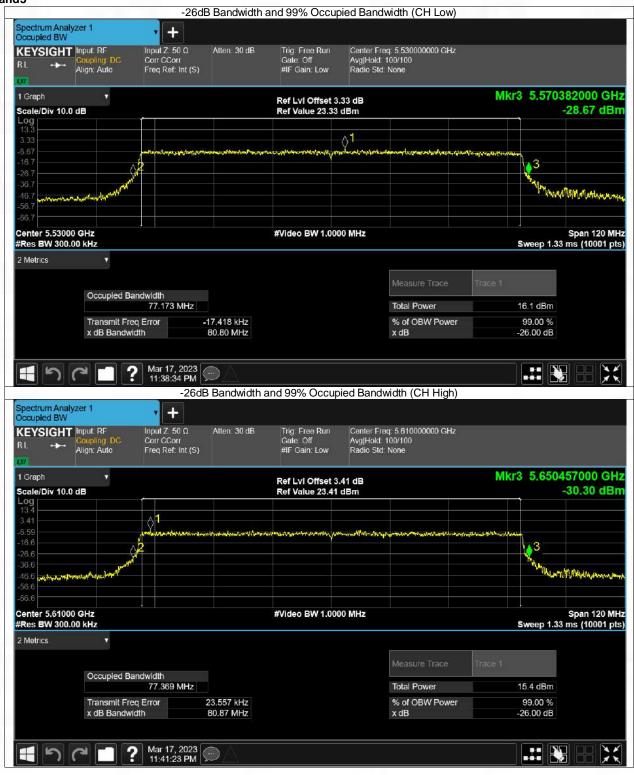
40MHz(IEEE 802.11n/ac/ax)

Band1


Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.



80MHz(IEEE 802.11ac/ax)

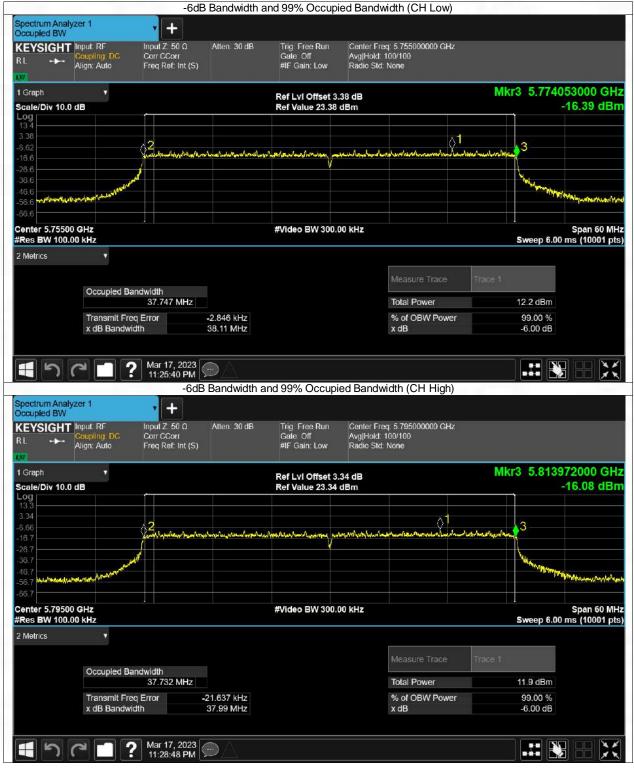
Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.



Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

-6dB Bandwidth

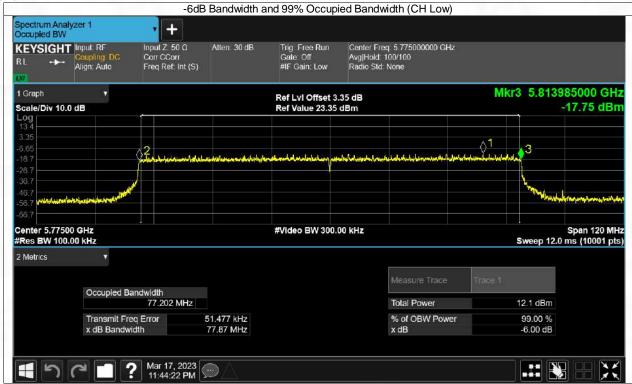
20MHz(IEEE 802.11a/n/ac/ax) Band4



Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

40MHz(IEEE 802.11n/ac/ax)

Band4



Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

80MHz(IEEE 802.11ac/ax)

