

JianYan Testing Group Shenzhen Co., Ltd.

Report No.: JYTSZ-R12-2201155

FCC RF Test Report

(Bluetooth)

Applicant: TECNO MOBILE LIMITED

Address of Applicant: FLAT 39 8/F BLOCK D WAH LOK INDUSTRIAL CENTRE 31-

35 SHAN MEI STREET FOTAN NT HONGKONG

Equipment Under Test (EUT)

Product Name: Mobile Phone

Model No.: LG6n

Trade Mark: TECNO

FCC ID: 2ADYY-LG6N

Applicable Standards: FCC CFR Title 47 Part 15C (§15.247)

Date of Sample Receipt: 06 Jun., 2022

Date of Test: 07 Jun., to 07 Jul., 2022

Date of Report Issued: 08 Jul., 2022

Test Result: PASS

Tested by: ______ Date: _____ 08 Jul., 2022

Reviewed by: Date: 08 Jul., 2022

Approved by: Date: 08 Jul., 2022

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in above the application standard version. Test results reported herein relate only to the item(s) tested.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Report No.: JYTSZ-R12-2201155

2 Version

Version No.	Date	Description
00	08 Jul., 2022	Original

3 Contents

			rage
1	Cov	ver Page	1
2	Ver	sion	2
3	Cor	ntents	3
4	Ger	neral Information	4
5	4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9	Client Information General Description of E.U.T. Test Mode and Test Environment Description of Test Auxiliary Equipment Measurement Uncertainty Additions to, Deviations, or Exclusions From the Method Laboratory Facility Laboratory Location Test Instruments List	4 5 5 5 5
6	5.1 5.2 5.3	Test Channel Test Setup Test Procedure t Results	7 7
	6.1 6.2 6.3 6.4 6.5	Summary Antenna Requirement	12 13 15

4 General Information

4.1 Client Information

Applicant:	TECNO MOBILE LIMITED
Address:	FLAT 39 8/F BLOCK D WAH LOK INDUSTRIAL CENTRE 31-35 SHAN MEI STREET FOTAN NT HONGKONG
Manufacturer:	TECNO MOBILE LIMITED
Address:	FLAT 39 8/F BLOCK D WAH LOK INDUSTRIAL CENTRE 31-35 SHAN MEI STREET FOTAN NT HONGKONG
Factory:	SHENZHEN TECNO TECHNOLOGY CO., LTD.
Address:	101, Building 24, Waijing Industrial Park, Fumin Community, Fucheng Street, Longhua District, Shenzhen City, P.R.China

4.2 General Description of E.U.T.

Product Name:	Mobile Phone
Model No.:	LG6n
Operation Frequency:	2402 MHz - 2480 MHz
Transfer Rate:	1/2/3 Mbits/s
Number of Channel:	79
Modulation Type:	GFSK, π/4-DQPSK, 8DPSK
Modulation Technology:	FHSS
Antenna Type:	Internal Antenna
Antenna Gain:	1.0 dBi (declare by applicant)
Antenna transmit mode:	SISO (1TX, 1RX)
Power Supply:	Rechargeable Li-ion Polymer Battery DC3.89V, 6850mAh
AC Adapter:	Model: U180TSA
	Input: AC100-240V, 50/60Hz, 0.6A
	Output: DC 5.0V, 2.4A or 7.5V, 2.4A 18.0W Max
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Report No.: JYTSZ-R12-2201155

4.3 Test Mode and Test Environment

Test Modes:						
Non-hopping mode:	on-hopping mode: Keep the EUT in continuous transmitting mode.					
Hopping mode:	Keep the EUT in hopping mode.					
Remark: For AC power line conducted emission and radiated spurious emission, pre-scan GFSK, π/4-DQPSK, 8DPSK modulation mode, found GFSK modulation was worse case mode. The report only reflects the test data of worst mode. Operating Environment:						
Temperature:						
Humidity: 20 % ~ 75 % RH						
Atmospheric Pressure:	1010 mbar					

4.4 Description of Test Auxiliary Equipment

The EUT has been tested as an independent unit.

4.5 Measurement Uncertainty

Parameter	Expanded Uncertainty (Confidence of 95%(U = 2Uc(y)))
Conducted Emission for LISN (9kHz ~ 150kHz)	±3.11 dB
Conducted Emission for LISN (150kHz ~ 30MHz)	±2.62 dB
Radiated Emission (30MHz ~ 1GHz) (3m SAC)	±4.45 dB
Radiated Emission (1GHz ~ 18GHz) (3m SAC)	±5.34 dB
Radiated Emission (18GHz ~ 40GHz) (3m SAC)	±5.34 dB

Note: All the measurement uncertainty value were shown with a coverage k=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

4.6 Additions to, Deviations, or Exclusions From the Method

Nο

4.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber and 10m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L15527

JianYan Testing Group Shenzhen Co., Ltd. is accredited to ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L15527.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

4.8 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xingiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info-JYTee@lets.com, Website: http://jyt.lets.com

JianYan Testing Group Shenzhen Co., Ltd. Report Template No.: JYTSZ4b-149-C1 No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366

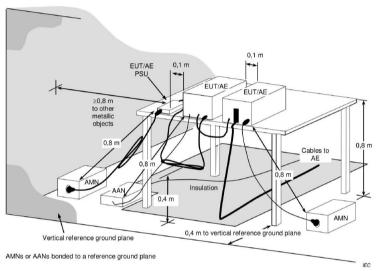
4.9 Test Instruments List

Radiated Emission(3m SAC):						
Test Equipment	Manufacturer	Model No.	Manage No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
3m SAC	ETS	9m*6m*6m	WXJ001-1	04-14-2021	04-13-2024	
Loop Antenna	Schwarzbeck	FMZB 1519 B	WXJ002-4	03-07-2022	03-06-2023	
BiConiLog Antenna	Schwarzbeck	VULB9163	WXJ002	03-08-2022	03-07-2023	
Horn Antenna	Schwarzbeck	BBHA9120D	WXJ002-2	03-08-2022	03-07-2023	
Horn Antenna	Schwarzbeck	BBHA9170	WXJ002-5	04-07-2022	04-06-2023	
Pre-amplifier (30MHz ~ 1GHz)	Schwarzbeck	BBV9743B	WXJ001-2	01-20-2022	01-19-2023	
Pre-amplifier (1GHz ~ 18GHz)	SKET	LNPA_0118G-50	WXJ001-3	01-20-2022	01-19-2023	
Pre-amplifier (18GHz ~ 40GHz)	RF System	TRLA-180400G45B	WXJ002-7	03-30-2022	03-29-2023	
EMI Test Receiver	Rohde & Schwarz	ESRP7	WXJ003-1	03-05-2022	03-04-2023	
Spectrum Analyzer	Rohde & Schwarz	FSP 30	WXJ004	01-20-2022	01-19-2023	
Spectrum Analyzer	KEYSIGHT	N9010B	WXJ004-2	10-27-2021	10-26-2022	
Coaxial Cable (30MHz ~ 1GHz)	JYTSZ	JYT3M-1G-NN-8M	WXG001-4	01-20-2022	01-19-2023	
Coaxial Cable (1GHz ~ 18GHz)	JYTSZ	JYT3M-18G-NN-8M	WXG001-5	01-20-2022	01-19-2023	
Coaxial Cable (18GHz ~ 40GHz)	JYTSZ	JYT3M-40G-SS-8M	WXG001-7	01-20-2022	01-19-2023	
Band Reject Filter Group	Tonscend	JS0806-F	WXJ089	N/A		
Test Software	Tonscend	TS+		Version: 3.0.0.1		

Conducted Emission:						
Test Equipment	Manufacturer	r Model No. Manage No.		Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
EMI Test Receiver	Rohde & Schwarz	ESR3	WXJ003-2	10-21-2021	10-20-2022	
LISN	LISN Schwarzbeck		QCJ001-13	02-24-2022	02-23-2023	
LISN	Rohde & Schwarz	ESH3-Z5	WXJ005-1	03-30-2022	03-29-2023	
LISN Coaxial Cable (9kHz ~ 30MHz)	JYTSZ	JYTCE-1G-NN-2M	WXG003-1	02-24-2022	02-23-2023	
RF Switch	TOP PRECISION	RSU0301	WXG003	N/A		
Test Software	AUDIX	E3	V	Version: 6.110919b		

Conducted Method:							
Test Equipment	Manufacturer	Model No.	Manage No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
Spectrum Analyzer	Keysight	N9010B	WXJ004-3	10-25-2021	10-24-2022		
Vector Signal Generator	Keysight	N5182B	WXJ006-6	10-25-2021	10-24-2022		
Signal Generator	Keysight	N5173B	WXJ006-4	10-25-2021	10-24-2022		
Wireless Connectivity Tester	Rohde & Schwarz	CMW270	WXJ008-7	10-25-2021	10-24-2022		
DC Power Supply	Keysight	E3642A	WXJ025-2	10-25-2021	10-24-2022		
Temperature Humidity Chamber	ZHONG ZHI	CZ-A-80D	WXJ032-3	03-19-2021	03-18-2023		
Power Detector Box	MWRFTEST	MW100-PSB	WXJ007-4	10-25-2021	10-24-2022		
RF Control Unit	MWRFTEST	MW100-RFCB	WXG006	N/A			
Test Software	MWRFTEST	MTS 8310		Version: 2.0.0.0			

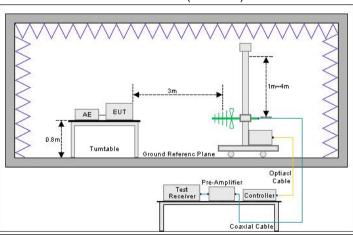
5 Measurement Setup and Procedure

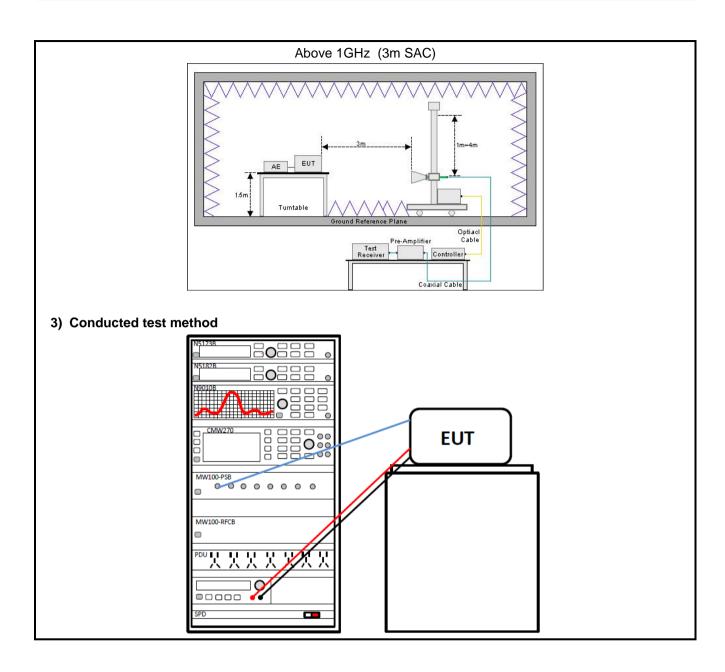

5.1 Test Channel

According to ANSI C63.10-2013 chapter 5.6.1 Table 4 requirement, select lowest channel, middle channel, and highest channel in the frequency range in which device operates for testing. The detailed frequency points are as follows:

Lowest channel		Midd	le channel	Highe	est channel
Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
0	2402	39	2441	78	2480

5.2 Test Setup


1) Conducted emission measurement:


Note: The 0.8 m distance specified between EUT/AE/PSU and AMN/AAN, is applicable only to the EUT being measured. If the device is AE then it shall be >0.8 m.

2) Radiated emission measurement:

Below 1GHz (3m SAC)

5.3 Test Procedure

Test method	Test step
Conducted emission	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.
Radiated emission	 For below 1GHz: The EUT was placed on the tabletop of a rotating table 0.8 m the ground at a 3 m semi anechoic chamber. The measurement distance from the EUT to the receiving antenna is 3 m. EUT works in each mode of operation that needs to be tested, and having the EUT continuously working, respectively on 3 axis (X, Y & Z) and considered typical configuration to obtain worst position. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations. Open the test software to control the test antenna and test turntable. Perform the test, save the test results, and export the test data.
	 For above 1GHz: The EUT was placed on the tabletop of a rotating table 1.5 m the ground at a 3 m fully anechoic room. The measurement distance from the EUT to the receiving antenna is 3 m. EUT works in each mode of operation that needs to be tested, and having the EUT continuously working, respectively on 3 axis (X, Y & Z) and considered typical configuration to obtain worst position. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations. Open the test software to control the test antenna and test turntable. Perform the test, save the test results, and export the test data.
Conducted test method	 The Bluetooth antenna port of EUT was connected to the test port of the test system through an RF cable. The EUT is keeping in continuous transmission mode and tested in all modulation modes. Open the test software, prepare a test plan, and control the system through the software. After the test is completed, the test report is exported through the test software.

6 Test Results

6.1 Summary

6.1.1 Clause and data summary

Test items	Standard clause	Test data	Result
Antenna Requirement	15.203 15.247 (b)(4)	See Section 6.2	Pass
AC Power Line Conducted Emission	15.207	See Section 6.3	Pass
Conducted Output Power	15.247 (b)(1)	Appendix – BT	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Appendix – BT	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Appendix – BT	Pass
Hopping Channel Number	5.247 (a)(1)(iii)	Appendix – BT	Pass
Dwell Time	15.247 (a)(1)(iii)	Appendix – BT	Pass
Band-edge Emission Conduction Spurious Emission	15.247 (d)	Appendix – BT	Pass
Emissions in Restricted Frequency Bands	15.205 15.247 (d)	See Section 6.4	Pass
Emissions in Non-restricted Frequency Bands	15.209 15.247(d)	See Section 6.5	Pass

Remark:

Test Method:

ANSI C63.10-2013

KDB 558074 D01 15.247 Meas Guidance v05r02

^{1.} Pass: The EUT complies with the essential requirements in the standard.

^{2.} The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

6.1.2 Test Limit

Band-edge Emission Conduction Spurious Emission Emission Conduction Spurious Emission Conduction Spurious Emission Conduction Spurious Emission Emission Conduction Spurious Emission Conduction Spurious Emission Conduction Spurious Emission Conduction Spurious Emission Swith the conductor of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.209(a) (see §15.205(c)). Conduction Spurious Emission Swith the conductor of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph (b)(3) of this section, the attenuation required under this paragraph (b)(3) of this section, the attenuation required under this paragraph (b)(3) of this section, the attenuation required under this paragraph (b)(3) of this section, the attenuation required under the peak of MS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under the peak of MS averaging over a time interval, as permitted under section, the attenuation required under the peak of MS averaging over a time interval, as permitted under section, the attenuation required under the peak of MS averaging over a time interval, as permitted under section, the conduction paragraph (b)(3) of t	Test items			Lin	nit			
AC Power Line Conducted Emission Discription Conducted Emission Conducted Emission Conducted Output Power Cond			Frequency		Limit (di	ΒμV)		
Emission Conducted Output Power			(MHz)	Quas	si-Peak	Average		
Emission S-30 60 50 Note 1: The limit level in dByV decreases linearly with the logarithm of frequency. Note 2: The more stringent this applies at transition frequencies. For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels: 1 watt. For all othe frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts. 20dB Occupied Bandwidth Within authorization band Carrier Frequencies Separation D.0.25MHz or the 20dB bandwidth (whichever is greater). Hopping Channel Number Dwell Time Not be greater than 0.4 seconds.	AC Power Line Conducted							
Conducted Output Power For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels: 1 watt. For all othe frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts. 20dB Occupied Bandwidth Carrier Frequencies Separation Within authorization band a) 0.025MHz or the 20dB bandwidth (whichever is greater). b) 0.025MHz or two-thirds of the 20dB bandwidth (whichever is greater). Hopping Channel Number At least 15 channels. Not be greater than 0.4 seconds. In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator is operating, the radio frequency power that is produced by the intentional radiator is operating, the radio frequency power that is produced by the intentional radiator is operating, the radio frequency power that is produced by the intentional radiator is operating, the radio frequency power that is produced the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conduct opower limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required und this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). Frequency Limit (dBµV/m) Emissions in Non-restricted Frequency Bands Frequency Limit (dBµV/m) @ 3m Limit (dBµV/m) @ 3m Limit (dBµV/m) @ 3m	Emission			_				
employing at least 75 non-overlapping hopping channels: 1 watt. For all othe frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts. 20dB Occupied Bandwidth Carrier Frequencies Separation a) 0.025MHz or the 20dB bandwidth (whichever is greater). b) 0.025MHz or two-thirds of the 20dB bandwidth (whichever is greater). Hopping Channel Number At least 15 channels. Not be greater than 0.4 seconds. In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conduct power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.209(a) (see §15.205(c)). Frequency (MHz) 30 − 88			Note 1: The limit level in dBµV decreases linearly with the logarithm of frequency.					
Carrier Frequencies Separation a) 0.025MHz or the 20dB bandwidth (whichever is greater). b) 0.025MHz or two-thirds of the 20dB bandwidth (whichever is greater). At least 15 channels. Dwell Time Not be greater than 0.4 seconds. In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with peak conducted power limits. If the transmitter complies with the conduct power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). Frequency Limit (dBpV/m) Detector	Conducted Output Power	em	ploying at least 75 non-	overlapping h	opping chanr	nels: 1 watt. For all otl	her	
Separation b) 0.025MHz or two-thirds of the 20dB bandwidth (whichever is greater).	20dB Occupied Bandwidth	Wit	hin authorization band					
Dwell Time Not be greater than 0.4 seconds. In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least all below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conduct power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required und this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.209(a) (see §15.205(c)). Frequency Limit (dBµV/m) Detector	-	,		•	_	,		
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conduct power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.209(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). Frequency Limit (dBµV/m) Detector	Hopping Channel Number	At I	east 15 channels.					
spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conduct power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). Frequency	Dwell Time	Not	be greater than 0.4 se	conds.				
Column	Conduction Spurious	spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply						
Comparison Co			Frequency	Limit (d	BμV/m)	Detector		
Emissions in Restricted Frequency Bands 88 - 216				@ 3m	@ 10m	Detector		
Frequency Bands 216 – 960 216 – 960 36.0 Quasi-peak 960 – 1000 54.0 44.0 Quasi-peak Note: The more stringent limit applies at transition frequencies. Frequency Frequency Limit (dΒμV/m) @ 3m			30 – 88	40.0	30.0	Quasi-peak		
960 – 1000 54.0 44.0 Quasi-peak Emissions in Non-restricted Frequency Bands 960 – 1000 54.0 44.0 Quasi-peak Note: The more stringent limit applies at transition frequencies. Limit (dΒμV/m) @ 3m						Quasi-peak	4	
Emissions in Non-restricted Frequency Bands Note: The more stringent limit applies at transition frequencies. Limit (dBµV/m) @ 3m	Frequency Bands						_	
Frequency Bands Frequency Frequency Frequency						Quasi-peak	_	
Frequency		Limit (dBµV/m) @ 3m						
Average Peake	Trequency Bands	Frequency						
Above 1 GHz 54.0 74.0								
Note: The measurement bandwidth shall be 1 MHz or greater.								

Report No.: JYTSZ-R12-2201155

6.2 Antenna Requirement

Standard requirement:

FCC Part 15 C Section 15.203 & 247(b)

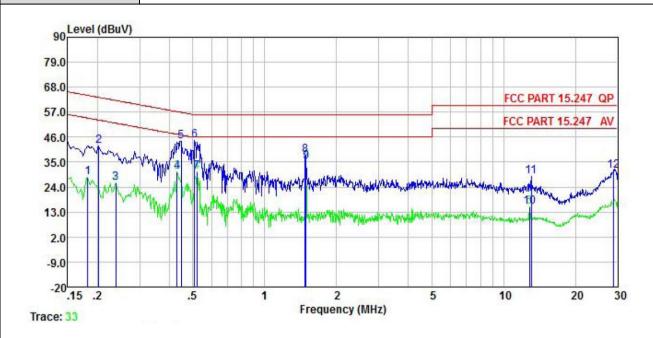
15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

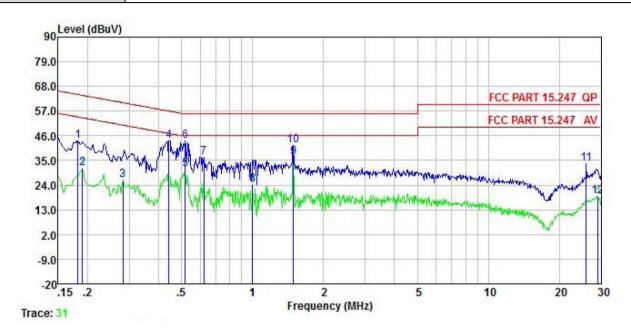
(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1). (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:


The Bluetooth antenna is an Internal antenna which permanently attached, and the best case gain of the antenna is 1.0 dBi. See product internal photos for details.

6.3 AC Power Line Conducted Emission

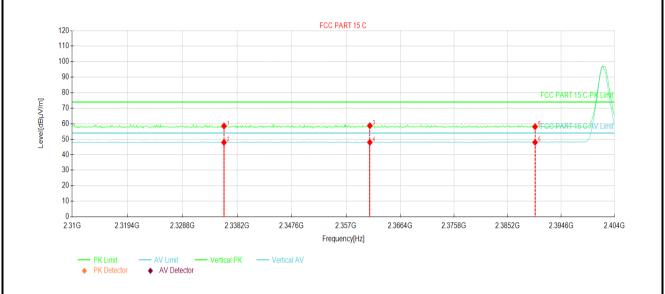
Product name:	Mobile Phone	Product model:	LG6n
Test by:	Mike	Test mode:	BT Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz		


	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
80	MHz	dBu∜	<u>dB</u>	dB	dBu₹	dBu∇	<u>dB</u>	
1 2 3	0.182 0.202	28.23 41.85	0.05 0.05	0.01 0.04	28.29 41.94		-26.13 -21.60	Average OP
3	0.238	25.85	0.05	0.02	25.92			Average
4 5	0.431	30.73	0.05	0.03	30.81			Average
5	0.447	44.03	0.05	0.03	44.11		-12.82	
6	0.510	44.33	0.05	0.03	44.41		-11.59	The state of the s
7	0.521	30.57	0.05	0.03	30.65	46.00	-15.35	Average
7	1.480	37.69	0.08	0.14	37.91	56.00	-18.09	QP
9	1.487	34.84	0.08	0.14	35.06	46.00	-10.94	Average
10	12.852	15.11	0.26	0.11	15.48			Average
11	13.057	28.48	0.26	0.11	28.85	60.00	-31.15	QP
12	28.908	30.37	0.40	0.20	30.97		-29.03	

Remark:

1. Level = Read level + LISN Factor + Cable Loss.

Product name:	Mobile Phone	Product model:	LG6n
Test by:	Mike	Test mode:	BT Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz		


	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu√	<u>dB</u>		dBu₹	dBu₹	<u>dB</u>	
1	0.182	43.69	0.05	0.01	43.75	64.42	-20.67	QP
2	0.190	31.31	0.05	0.03	31.39	54.02	-22.63	Average
3	0.282	26.13	0.05	0.02	26.20	50.76	-24.56	Average
1 2 3 4 5 6 7 8 9	0.442	43.83	0.04	0.03	43.90	57.02	-13.12	QP
5	0.518	31.24	0.04	0.03	31.31	46.00	-14.69	Average
6	0.518	43.53	0.04	0.03	43.60	56.00	-12.40	QP
7	0.621	36.27	0.05	0.02	36.34	56.00	-19.66	QP
8	1.000	23.98	0.06	0.05	24.09	46.00	-21.91	Average
9	1.487	36.30	0.07	0.14	36.51	46.00	-9.49	Average
10	1.487	41.43	0.07	0.14	41.64	56.00	-14.36	QP
11	26.001	33.14	0.41	0.21	33.76	60.00	-26.24	QP
12	29.061	18.31	0.45	0.21	18.97	50.00	-31.03	Average

1. Level = Read level + LISN Factor + Cable Loss.

6.4 Emissions in Restricted Frequency Bands

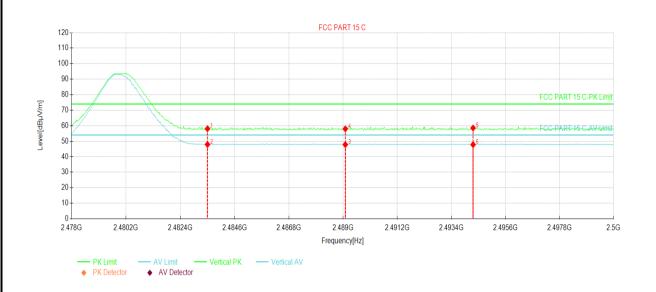
Product Name:	Mobile Phone	Product Model:	LG6n
Test By:	Mike	Test mode:	DH1 Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	DC 3.89V		

Suspe	Suspected Data List								
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Trans	Polarity	
NO.	[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	Trace	Polanty	
1	2335.94	23.31	58.50	35.19	74.00	15.50	PK	Vertical	
2	2335.94	12.78	47.97	35.19	54.00	6.03	AV	Vertical	
3	2361.13	23.30	58.68	35.38	74.00	15.32	PK	Vertical	
4	2361.13	12.61	47.99	35.38	54.00	6.01	AV	Vertical	
5	2390.00	22.46	58.06	35.60	74.00	15.94	PK	Vertical	
6	2390.00	12.39	47.99	35.60	54.00	6.01	AV	Vertical	

Remark:

1. Level = Read level + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

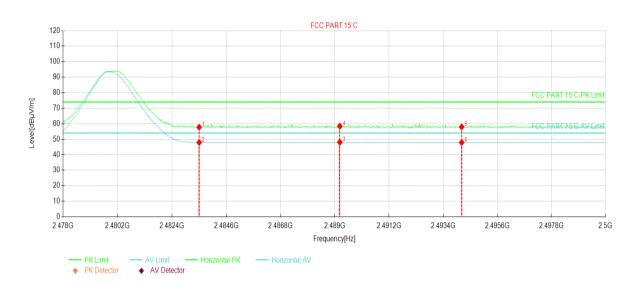
Product Name:	Mobile Phone	Product Model:	LG6n
Test By:	Mike	Test mode:	DH1 Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	DC 3.89V		



Suspe	Suspected Data List								
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Trace	Dolority	
NO.	[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	Trace	Polarity	
1	2333.78	23.55	58.72	35.17	74.00	15.28	PK	Horizontal	
2	2333.78	13.04	48.21	35.17	54.00	5.79	AV	Horizontal	
3	2361.60	23.58	58.96	35.38	74.00	15.04	PK	Horizontal	
4	2361.60	12.59	47.97	35.38	54.00	6.03	AV	Horizontal	
5	2390.00	12.54	48.14	35.60	54.00	5.86	AV	Horizontal	
6	2390.00	23.01	58.61	35.60	74.00	15.39	PK	Horizontal	

1. Level = Read level + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

Product Name:	Mobile Phone	Product Model:	LG6n
Test By:	Mike	Test mode:	DH1 Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	DC 3.80V	_	



Suspe	Suspected Data List								
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Trace	Polarity	
NO.	[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	Hace	Polarity	
1	2483.50	22.53	58.04	35.51	74.00	15.96	PK	Vertical	
2	2483.50	12.37	47.88	35.51	54.00	6.12	AV	Vertical	
3	2489.08	12.30	47.80	35.50	54.00	6.20	AV	Vertical	
4	2489.08	22.46	57.96	35.50	74.00	16.04	PK	Vertical	
5	2494.28	23.02	58.51	35.49	74.00	15.49	PK	Vertical	
6	2494.28	12.30	47.79	35.49	54.00	6.21	AV	Vertical	

1. Level = Read level + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

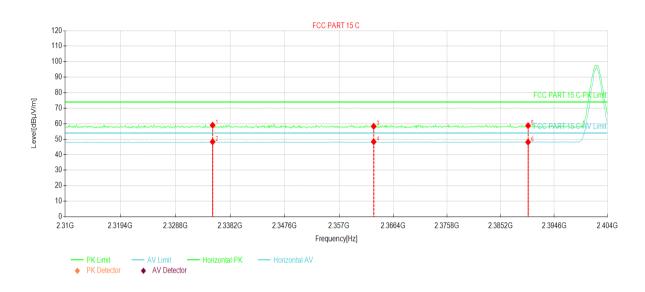
Product Name:	Mobile Phone	Product Model:	LG6n
Test By:	Mike	Test mode:	DH1 Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	DC 3.80V	_	

Suspe	Suspected Data List							
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Trace	Delerity
NO.	[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	Trace	Polarity
1	2483.50	22.24	57.75	35.51	74.00	16.25	PK	Horizontal
2	2483.50	12.40	47.91	35.51	54.00	6.09	AV	Horizontal
3	2489.19	12.54	48.04	35.50	54.00	5.96	AV	Horizontal
4	2489.19	22.93	58.43	35.50	74.00	15.57	PK	Horizontal
5	2494.14	22.47	57.96	35.49	74.00	16.04	PK	Horizontal
6	2494.14	12.39	47.88	35.49	54.00	6.12	AV	Horizontal

1. Level = Read level + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

π/4-DQPSK mode

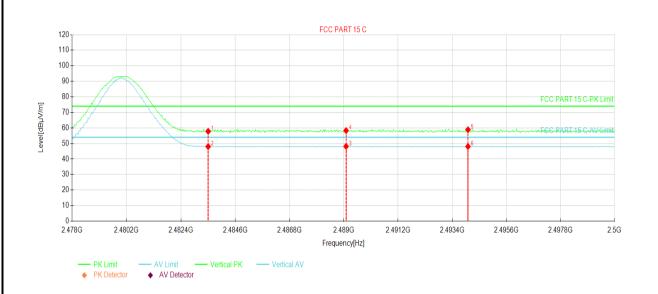
Product Name:	Mobile Phone	Product Model:	LG6n
Test By:	Mike	Test mode:	2DH1 Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	DC 3.89V		


Suspe	Suspected Data List							
NO	Freq.	Reading	Level	Factor	Limit	Margin	Trans	Dolority
NO.	[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	[dB] Trace	Polarity
1	2334.44	23.69	58.87	35.18	74.00	15.13	PK	Vertical
2	2334.44	12.75	47.93	35.18	54.00	6.07	AV	Vertical
3	2362.82	23.25	58.64	35.39	74.00	15.36	PK	Vertical
4	2362.82	12.58	47.97	35.39	54.00	6.03	AV	Vertical
5	2390.00	22.46	58.06	35.60	74.00	15.94	PK	Vertical
6	2390.00	12.42	48.02	35.60	54.00	5.98	AV	Vertical

Remark:

1. Level = Read level + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

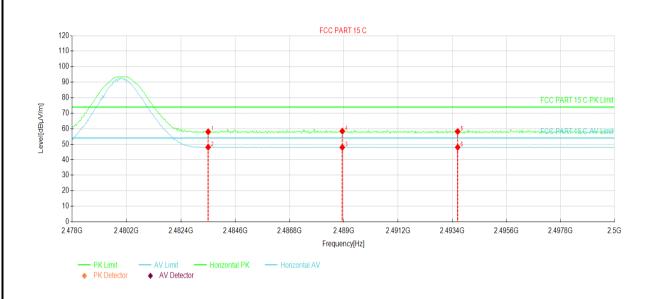
Product Name:	Mobile Phone	Product Model:	LG6n
Test By:	Mike	Test mode:	2DH1 Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	DC 3 89V		



Suspe	Suspected Data List								
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Trans	Dolority	
NO.	[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	Trace	Polarity	
1	2335.19	23.83	59.01	35.18	74.00	14.99	PK	Horizontal	
2	2335.19	13.18	48.36	35.18	54.00	5.64	AV	Horizontal	
3	2363.01	22.92	58.31	35.39	74.00	15.69	PK	Horizontal	
4	2363.01	12.97	48.36	35.39	54.00	5.64	AV	Horizontal	
5	2390.00	23.12	58.72	35.60	74.00	15.28	PK	Horizontal	
6	2390.00	12.53	48.13	35.60	54.00	5.87	AV	Horizontal	

1. Level = Read level + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

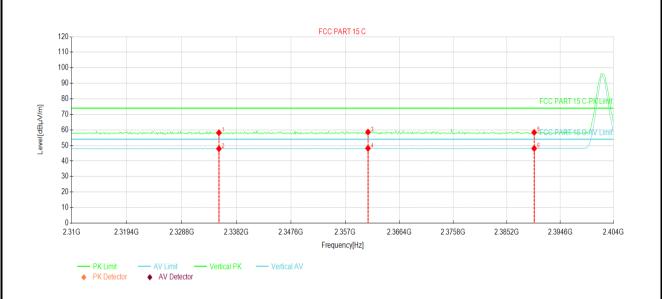
Product Name:	Mobile Phone	Product Model:	LG6n
Test By:	Mike	Test mode:	2DH1 Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	DC 3.89V		



Suspe	Suspected Data List							
NO	Freq.	Reading	Level	Factor	Limit	Margin	Trace	Polarity
NO.	[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	Trace	Polarity
1	2483.50	22.29	57.80	35.51	74.00	16.20	PK	Vertical
2	2483.50	12.49	48.00	35.51	54.00	6.00	AV	Vertical
3	2489.08	12.61	48.11	35.50	54.00	5.89	AV	Vertical
4	2489.08	22.80	58.30	35.50	74.00	15.70	PK	Vertical
5	2494.03	23.35	58.84	35.49	74.00	15.16	PK	Vertical
6	2494.03	12.55	48.04	35.49	54.00	5.96	AV	Vertical

1. Level = Read level + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

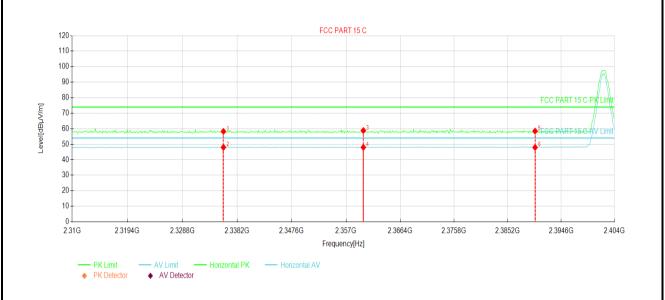
Product Name:	Mobile Phone	Product Model:	LG6n
Test By:	Mike	Test mode:	2DH1 Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	DC 3.89V		


Suspe	Suspected Data List							
NO	Freq.	Reading	Level	Factor	Limit	Margin	Tropo	Dolority
NO.	[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	Trace	Polarity
1	2483.50	22.54	58.05	35.51	74.00	15.95	PK	Horizontal
2	2483.50	12.57	48.08	35.51	54.00	5.92	AV	Horizontal
3	2488.93	12.48	47.98	35.50	54.00	6.02	AV	Horizontal
4	2488.93	22.95	58.45	35.50	74.00	15.55	PK	Horizontal
5	2493.62	22.72	58.21	35.49	74.00	15.79	PK	Horizontal
6	2493.62	12.55	48.04	35.49	54.00	5.96	AV	Horizontal

1. Level = Read level + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

8DPSK mode

Product Name:	Mobile Phone	Product Model:	LG6n
Test By:	Mike	Test mode:	3DH1 Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	DC 3.89V		


Suspe	Suspected Data List							
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Trace	Dolority
NO.	[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	Trace	Polarity
1	2335.19	23.03	58.21	35.18	74.00	15.79	PK	Vertical
2	2335.19	12.75	47.93	35.18	54.00	6.07	AV	Vertical
3	2360.94	23.22	58.60	35.38	74.00	15.40	PK	Vertical
4	2360.94	12.81	48.19	35.38	54.00	5.81	AV	Vertical
5	2390.00	22.78	58.38	35.60	74.00	15.62	PK	Vertical
6	2390.00	12.49	48.09	35.60	54.00	5.91	AV	Vertical

Remark:

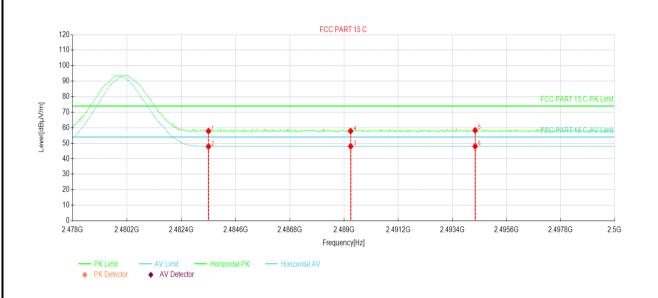
1. Level = Read level + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

Product Name:	Mobile Phone	Product Model:	LG6n
Test By:	Mike	Test mode:	3DH1 Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	DC 3.89V		

Suspe	Suspected Data List											
NO	Freq.	Reading	Level	Factor	Limit	Margin	Trans	Dolority				
NO.	[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	Trace	Polarity				
1	2335.85	23.07	58.26	35.19	74.00	15.74	PK	Horizontal				
2	2335.85	12.81	48.00	35.19	54.00	6.00	AV	Horizontal				
3	2360.00	23.45	58.82	35.37	74.00	15.18	PK	Horizontal				
4	2360.00	12.61	47.98	35.37	54.00	6.02	AV	Horizontal				
5	2390.00	22.86	58.46	35.60	74.00	15.54	PK	Horizontal				
6	2390.00	12.35	47.95	35.60	54.00	6.05	AV	Horizontal				

1. Level = Read level + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

Product Name:	Mobile Phone	Product Model:	LG6n
Test By:	Mike	Test mode:	3DH1 Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	DC 3.89V		

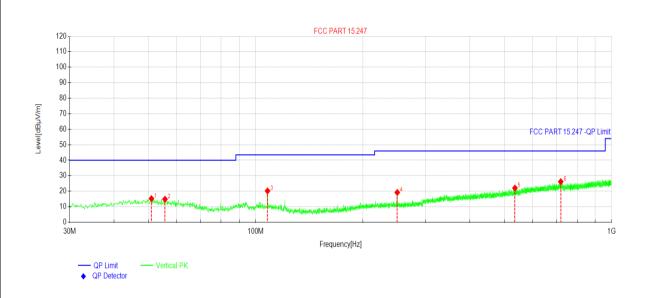


Suspe	Suspected Data List											
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Trace	Polarity				
NO.	[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dBµV/m]	[dB]		Polarity				
1	2483.50	22.09	57.60	35.51	74.00	16.40	PK	Vertical				
2	2483.50	12.47	47.98	35.51	54.00	6.02	AV	Vertical				
3	2489.15	12.56	48.06	35.50	54.00	5.94	AV	Vertical				
4	2489.15	23.15	58.65	35.50	74.00	15.35	PK	Vertical				
5	2493.88	22.63	58.12	35.49	74.00	15.88	PK	Vertical				
6	2493.88	12.87	48.36	35.49	54.00	5.64	AV	Vertical				

1. Level = Read level + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

Product Name:	Mobile Phone	Product Model:	LG6n
Test By:	Mike	Test mode:	3DH1 Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	DC 3.89V		

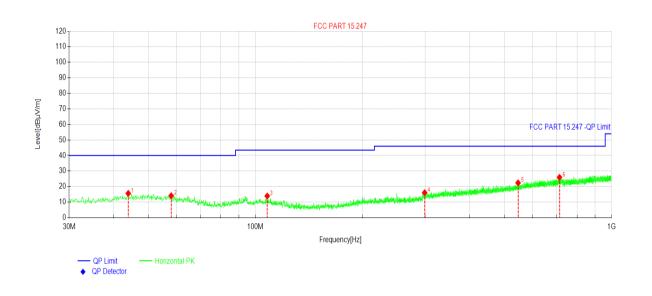
Suspe	Suspected Data List											
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Trace	Dolority				
NO.	[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	Trace	Polarity				
1	2483.50	22.32	57.83	35.51	74.00	16.17	PK	Horizontal				
2	2483.50	12.38	47.89	35.51	54.00	6.11	AV	Horizontal				
3	2489.26	12.51	48.01	35.50	54.00	5.99	AV	Horizontal				
4	2489.26	22.32	57.82	35.50	74.00	16.18	PK	Horizontal				
5	2494.32	22.82	58.31	35.49	74.00	15.69	PK	Horizontal				
6	2494.32	12.52	48.01	35.49	54.00	5.99	AV	Horizontal				


1. Level = Read level + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

6.5 Emissions in Non-restricted Frequency Bands

Below 1GHz:

Product Name:	Mobile Phone	Product Model:	LG6n
Test By:	Mike	Test mode:	BT Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	DC 3.89V		


Suspe	cted Data	List						
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Trace	Dolority
NO.	[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	Trace	Polarity
1	50.9541	28.09	15.24	-12.85	40.00	24.76	PK	Vertical
2	55.6106	28.22	14.88	-13.34	40.00	25.12	PK	Vertical
3	107.995	34.95	20.22	-14.73	43.50	23.28	PK	Vertical
4	250.018	33.23	19.23	-14.00	46.00	26.77	PK	Vertical
5	535.323	30.32	22.07	-8.25	46.00	23.93	PK	Vertical
6	720.030	31.26	26.20	-5.06	46.00	19.80	PK	Vertical

Remark

1. Level = Read level + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

Product Name:	Mobile Phone	Product Model:	LG6n
Test By:	Mike	Test mode:	BT Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	DC 3.89V		

Suspe	Suspected Data List											
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Trace	Polarity				
NO.	[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	Trace	Polarity				
1	43.9694	28.61	15.61	-13.00	40.00	24.39	PK	Horizontal				
2	58.0358	28.03	14.12	-13.91	40.00	25.88	PK	Horizontal				
3	107.995	28.63	13.90	-14.73	43.50	29.60	PK	Horizontal				
4	298.813	29.16	16.07	-13.09	46.00	29.93	PK	Horizontal				
5	546.673	30.47	22.39	-8.08	46.00	23.61	PK	Horizontal				
6	714.500	31.15	25.96	-5.19	46.00	20.04	PK	Horizontal				

1. Level = Read level + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

Above 1GHz:

		D	etector: Peak Valu	ue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Polarization
4804.00	54.25	-9.60	44.65	74.00	29.35	Vertical
4804.00	56.78	-9.60	47.18	74.00	26.82	Horizontal
		Det	tector: Average Va	alue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Polarization
4804.00	58.91	-9.60	49.31	54.00	4.69	Vertical
4804.00	60.79	-9.60	51.19	54.00	2.81	Horizontal
		Test	channel: Middle ch	nannel		
			channel: Middle ch			
Frequency (MHz)	Read Level (dBuV)				Margin (dB)	Polarization
		D	etector: Peak Value	ue Limit		Polarization Vertical
(MHz)	(dBuV)	D Factor(dB)	etector: Peak Valu Level (dBuV/m)	Limit (dBuV/m)	(dB)	
(MHz) 4882.00	(dBuV) 54.61	Pactor(dB) -9.05 -9.05	etector: Peak Val Level (dBuV/m) 45.56	Limit (dBuV/m) 74.00 74.00	(dB) 28.44	Vertical
(MHz) 4882.00	(dBuV) 54.61	Pactor(dB) -9.05 -9.05	etector: Peak Value Level (dBuV/m) 45.56 47.68	Limit (dBuV/m) 74.00 74.00	(dB) 28.44	Vertical
(MHz) 4882.00 4882.00 Frequency	(dBuV) 54.61 56.73 Read Level	-9.05 -9.05 Det	Level (dBuV/m) 45.56 47.68 tector: Average Value	Limit (dBuV/m) 74.00 74.00 alue Limit	(dB) 28.44 26.32 Margin	Vertical Horizontal

	Test channel: Highest channel											
Detector: Peak Value												
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Polarization						
4960.00	54.64	-8.45	46.19	74.00	27.81	Vertical						
4960.00	56.39	-8.45	47.94	74.00	26.06	Horizontal						
		Det	tector: Average V	alue								
Frequency (MHz)	Frequency Read Level Factor(dB) Level Limit Margin											
4960.00	59.16	-8.45	50.71	54.00	3.29	Vertical						
4960.00	60.58	-8.45	52.13	54.00	1.87	Horizontal						

Remark:

- 1. Level = Read level + Factor.
- 2. Test Frequency up to 25GHz, and the emission levels of other frequencies are lower than the limit 20dB, not show in test report.

-----End of report-----

JianYan Testing Group Shenzhen Co., Ltd. Report Template No.: JYTSZ4b-149-C1 No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366