

JianYan Testing Group Shenzhen Co., Ltd.

Report No: JYTSZB-R12-2101984

FCC REPORT (BLE)

Applicant: TECNO MOBILE LIMITED

Address of Applicant: FLAT 39 8/F BLOCK D WAH LOK INDUSTRIAL CENTRE 31-

35 SHAN MEI STREET FOTAN NT

Equipment Under Test (EUT)

Product Name: Mobile Phone

Model No.: LE8

Trade mark: TECNO

FCC ID: 2ADYY-LE8

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 14 Sep., 2021

Date of Test: 14 Sep., to 18 Oct., 2021

Date of report issued: 18 Oct., 2021

Test Result: PASS *

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the JYT product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	18 Oct., 2021	Original

Tested by:	Mike ou	Date:	18 Oct., 2021
	Test Engineer		

Reviewed by:

Date: 18 Oct., 2021

Project Engineer

Contents

		Page
1	1 COVER PAGE	1
2	2 VERSION	2
3		3
4		
5	5 GENERAL INFORMATION	5
	5.1 CLIENT INFORMATION	
	5.2 GENERAL DESCRIPTION OF E.U.T	
	5.3 TEST ENVIRONMENT AND MODE, AND TEST SAMPLES PLANS	
	5.4 DESCRIPTION OF SUPPORT UNITS	
	5.5 MEASUREMENT UNCERTAINTY	
	5.6 LABORATORY FACILITY	
	5.7 LABORATORY LOCATION	
	5.8 TEST INSTRUMENTS LIST	8
6	6 TEST RESULTS AND MEASUREMENT DATA	9
	6.1 ANTENNA REQUIREMENT:	9
	6.2 CONDUCTED EMISSION	10
	6.3 CONDUCTED OUTPUT POWER	13
	6.4 OCCUPY BANDWIDTH	
	6.5 Power Spectral Density	15
	6.6 BAND EDGE	
	6.6.1 Conducted Emission Method	
	6.6.2 Radiated Emission Method	
	6.7 Spurious Emission	
	6.7.1 Conducted Emission Method	
	6.7.2 Radiated Emission Method	
7	7 TEST SETUP PHOTO	43
0	O FUT CONSTRUCTIONAL DETAILS	4.4

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

4 Test Summary

Test Items	Section in CFR 47	Test Data	Result
Antenna requirement	15.203 & 15.247 (b)	See Section 6.1	Pass
AC Power Line Conducted Emission	15.207	See Section 6.2	Pass
Conducted Peak Output Power	15.247 (b)(3)	Appendix A - BLE	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Appendix A - BLE	Pass
Power Spectral Density	15.247 (e)	Appendix A - BLE	Pass
Conducted Band Edge	15 247 (d)	Appendix A - BLE	Pass
Radiated Band Edge	15.247 (d)	See Section 6.6.2	Pass
Conducted Spurious Emission	45 205 % 45 200	Appendix A - BLE	Pass
Radiated Spurious Emission	15.205 & 15.209	See Section 6.7.2	Pass

Remark:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: Not Applicable.
- 3. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

Test Method: ANSI C63.10-2013
KDB 558074 D01 15.247 Meas Guidance v05r02

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5 General Information

5.1 Client Information

Applicant:	TECNO MOBILE LIMITED
Address:	FLAT 39 8/F BLOCK D WAH LOK INDUSTRIAL CENTRE 31-35 SHAN MEI STREET FOTAN NT
Manufacturer:	TECNO MOBILE LIMITED
Address:	FLAT 39 8/F BLOCK D WAH LOK INDUSTRIAL CENTRE 31-35 SHAN MEI STREET FOTAN NT
Factory:	SHENZHEN TECNO TECHNOLOGY CO., LTD.
Address:	101, Building 24, Waijing Industrial Park, Fumin Community, Fucheng Street, Longhua District, Shenzhen City, P.R.China

5.2 General Description of E.U.T.

Product Name:	Mobile Phone
Model No.:	LE8
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps & 2Mbps
Antenna Type:	Internal Antenna
Antenna gain:	1.3 dBi
Power supply:	Rechargeable Li-ion Battery DC3.85V, 5850mAh
AC adapter:	Model: U180TSA
	Input: AC100-240V, 50/60Hz, 0.6A
	Output: DC 5.0V~9.0V, 2.0A
	DC 9.0V~12.0V, 1.5A
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test. Channel No. 0, 20 & 39 were selected as Lowest, Middle and Highest channel.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.3 Test environment and mode, and test samples plans

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Transmitting mode	Keep the EUT in continuous transmitting with modulation

Radiated Emission: The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

Test Samples Plans:

Samples Number	Used for Test Items		
2#& <i>4</i> #	Conducted measurements test method		
1#	Radiated measurements test method		
1#	EUT constructional details		

Remark: JianYan Testing Group Shenzhen Co., Ltd. is only responsible for the test project data of the above samples, and will keep the above samples for a month.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameter	Expanded Uncertainty (Confidence of 95%)
Conducted Emission (9kHz ~ 150KHz) for V-AMN	3.11 dB
Conducted Emission (150kHz ~ 30MHz) for V-AMN	2.62 dB
Conducted Emission (150kHz ~ 30MHz) for AAN	3.54 dB
Radiated Emission (9kHz ~ 30MHz electric field) for 3m SAC	3.13 dB
Radiated Emission (9kHz ~ 30MHz magnetic field) for 3m SAC	3.13 dB
Radiated Emission (30MHz ~ 1GHz) for 3m SAC	4.45 dB
Radiated Emission (1GHz ~ 18GHz) for 3m SAC	5.34 dB
Radiated Emission (18GHz ~ 40GHz) for 3m SAC	5.34 dB

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

● ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.7 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info-JYTee@lets.com, Website: http://www.ccis-cb.com

5.8 Test Instruments list

Radiated Emission:	Radiated Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
3m SAC	ETS	RFD-100	Q1984	04-14-2021	04-13-2024		
BiConiLog Antenna	SCHWARZBECK	VULB9163	9163-1246	03-07-2021	03-06-2022		
Biconical Antenna	SCHWARZBECK	VUBA 9117	9117#359	06-17-2021	06-17-2022		
Horn Antenna	SCHWARZBECK	BBHA9120D	912D-916	03-07-2021	03-06-2022		
Broad-Band Horn Antenna	SCHWARZBECK	BBHA9170	1067	04-02-2021	04-01-2022		
Broad-Band Horn Antenna	SCHWARZBECK	BBHA9170	1068	04-02-2021	04-01-2022		
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-03-2021	03-02-2022		
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-03-2021	03-02-2022		
Spectrum analyzer	Keysight	N9010B	MY60240202	11-27-2020	11-26-2021		
Low Pre-amplifier	SCHWARZBECK	BBV9743B	00305	03-07-2021	03-06-2022		
High Pre-amplifier	SKET	LNPA_0118G-50	MF280208233	03-07-2021	03-06-2022		
Cable	Qualwave	JYT3M-1G-NN-8M	JYT3M-1	03-07-2021	03-06-2022		
Cable	Qualwave	JYT3M-18G-NN-8M	JYT3M-2	03-07-2021	03-06-2022		
Cable	Qualwave	JYT3M-1G-BB-5M	JYT3M-3	03-07-2021	03-06-2022		
Cable	Bost	JYT3M-40G-SS-8M	JYT3M-4	04-02-2021	04-01-2022		
EMI Test Software	Tonscend	TS+		Version:3.0.0.1			

Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESCI 3	101189	03-03-2021	03-02-2022
LISN	Rohde & Schwarz	ENV432	101602	04-06-2021	04-05-2022
LISN	Rohde & Schwarz	ESH3-Z5	843862/010	06-18-2020	06-17-2022
ISN	Schwarzbeck	CAT3 8158	#96	03-03-2021	03-02-2022
ISN	Schwarzbeck	CAT5 8158	#166	03-03-2021	03-02-2022
ISN	Schwarzbeck	NTFM 8158	#126	03-03-2021	03-02-2022
RF Switch	TOP PRECISION	RSU0301	N/A	03-03-2021	03-02-2022
Cable	Bost	JYTCE-1G-NN-2M	JYTCE-1	03-03-2021	03-02-2022
Cable	Bost	JYTCE-1G-BN-3M	JYTCE-2	03-03-2021	03-02-2022
EMI Test Software	AUDIX	E3	Version: 6.110919b		

Conducted method:									
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)				
Spectrum Analyzer	Keysight	N9010B	MY60240202	11-27-2020	11-26-2021				
Vector Signal Generator	Keysight	N5182B	MY59101009	11-27-2020	11-26-2021				
Analog Signal Generator	Keysight	N5173B	MY59100765	11-27-2020	11-26-2021				
Power Detector Box	MWRF-test	MW100-PSB	MW201020JYT	11-27-2020	11-26-2021				
Simulated Station	Rohde & Schwarz	CMW270	102335	11-27-2020	11-26-2021				
RF Control Box	MWRF-test	MW100-RFCB	MW200927JYT	N/A	N/A				
PDU	MWRF-test	XY-G10	N/A	N/A	N/A				
DC Power Supply	Keysight	E3642A	MY60296194	11-27-2020	11-26-2021				
Temperature Humidity Chamber	ZhongZhi	CZ-C-150D	ZH16491	11-01-2020	10-31-2021				
Test Software	MWRF-tes	MTS 8310	Version: 2.0.0.0						

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Project No.: JYTSZE2109068

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(b)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

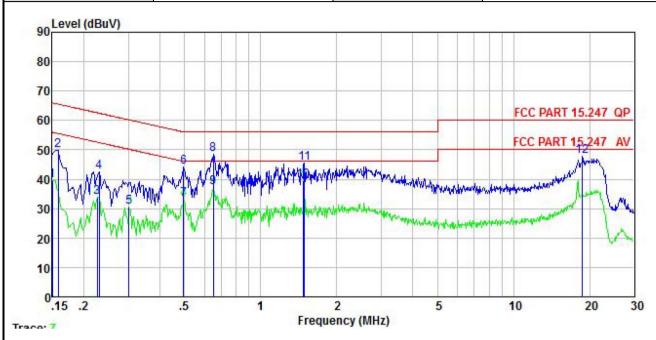
E.U.T Antenna:

The BLE antenna is an Internal antenna which cannot replace by end-user, the best-case gain of the antenna is 1.3dBi.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 9 of 44

Project No.: JYTSZE2109068

6.2 Conducted Emission

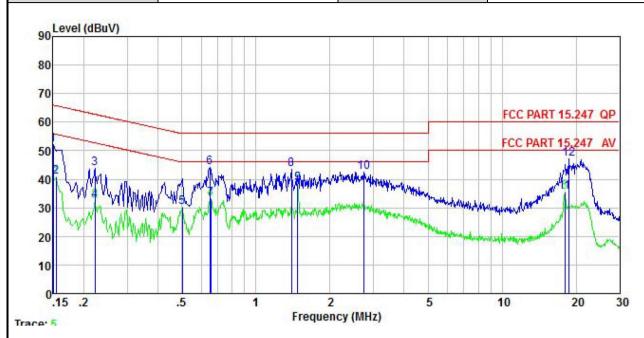

Test Requirement:	FCC Part 15 C Section 15.207	7						
Test Frequency Range:	150 kHz to 30 MHz							
Class / Severity:	Class B	Class B						
Receiver setup:	RBW=9kHz, VBW=30kHz							
Limit:		dBuV)						
-	Frequency range (MHz)	Quasi-peak	Average					
	0.15-0.5	66 to 56*	56 to 46*					
	0.5-5	56	46					
	5-30	60	50					
	* Decreases with the logarithn	n of the frequency.						
Test procedure:	 The E.U.T and simulators line impedance stabilizati 500hm/50uH coupling im The peripheral devices at LISN that provides a 500 termination. (Please refer photographs). Both sides of A.C. line are interference. In order to fi positions of equipment ar according to ANSI C63.1 	on network (L.I.S.N.), whe pedance for the measuring also connected to the hm/50uH coupling impedent to the block diagram of the checked for maximum and the maximum emission all of the interface cab	nich provides a ing equipment. main power through a lance with 500hm the test setup and conducted on, the relative les must be changed					
Test setup:	Reference	Plane						
	AUX Equipment E.U.T Test table/Insulation plane Remark: E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Ne	EMI Receiver	– AC power					
	Test table height=0.8m							
Test Instruments:	Refer to section 5.9 for details	3						
Test mode:	Refer to section 5.3 for details	i						
Test results:	Passed							

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 10 of 44

Measurement Data:

Product name:	Mobile Phone	Product model:	LE8
Test by:	Mike	Test mode:	BLE Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

	Freq	Read Level	LISN Factor	Aux Factor		Level	Limit Line	Over Limit	Remark
=	MHz	—dBu∜	<u>dB</u>	<u>dB</u>	<u>ap</u>	—dBu∜	—dBu∜	<u>ab</u>	
1	0.150	29.36	10.22	-0.05	0.01	39.54	56.00	-16.46	Average
2	0.158	39.61	10.22	-0.07	0.01	49.77	65.56	-15.79	QP
3	0.226	23.86	10.24	-0.19	0.02	33.93	52.61	-18.68	Average
4	0.230	32.44	10.24	-0.20	0.02	42.50	62.44	-19.94	QP
5	0.302	20.61	10.26	-0.24	0.03	30.66	50.19	-19.53	Average
1 2 3 4 5 6 7 8 9	0.497	34.23	10.29	-0.32	0.03	44.23	56.05	-11.82	QP
7	0.497	23.11	10.29	-0.32	0.03	33.11	46.05	-12.94	Average
8	0.651	38.50	10.30	-0.39	0.03	48.44	56.00	-7.56	QP
9	0.651	27.30	10.30	-0.39	0.03	37.24	46.00	-8.76	Average
10	1.480	28.98	10.33	0.02	0.14	39.47			Average
11	1.487	34.93	10.33		0.14	45.41		-10.59	
12	18.721	35.12	10.88	1.51	0.15	47.66		-12.34	


Notes:

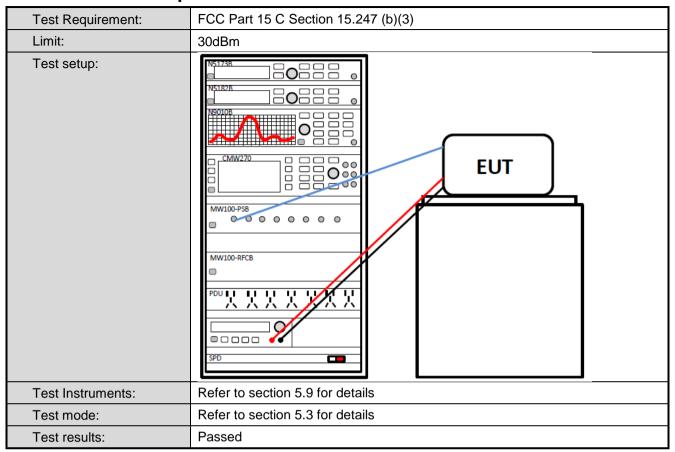
- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- Final Level =Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

Page 11 of 44

Product name:	Mobile Phone	Product model:	LE8
Test by:	Mike	Test mode:	BLE Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

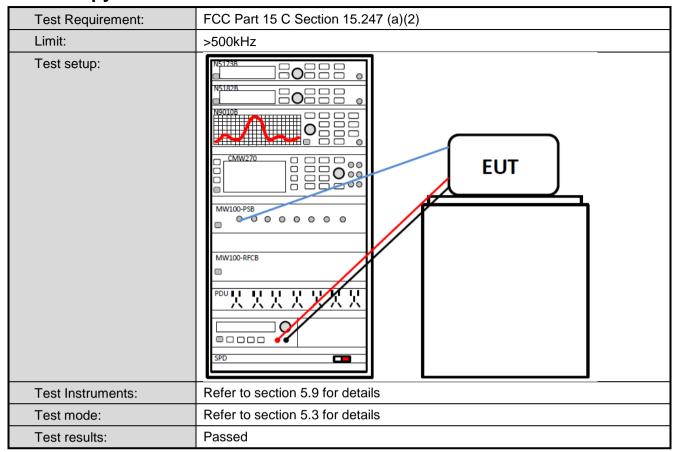
	Freq	Read Level		Aux Factor	Cable Loss	Level	Limit Line		Remark
=	MHz	—dBu∜	<u>db</u>	<u>d</u> B	<u>ap</u>	dBu₹	—dBu∜	<u>dB</u>	
1	0.150	42.08	10.19	0.01	0.01	52.29	66.00	-13.71	QP
2	0.154	30.62	10.19	0.01	0.01	40.83	55.78	-14.95	Average
3	0.222	33.70	10.23	0.00	0.03	43.96	62.74	-18.78	QP
4	0.222	22.21	10.23	0.00	0.03	32.47	52.74	-20.27	Average
5	0.502	19.82	10.28	0.03	0.03	30.16	46.00	-15.84	Average
6	0.651	33.90	10.30	0.04	0.03	44.27		-11.73	
7	0.654	22.84	10.30	0.04	0.03	33.21	46.00	-12.79	Average
8	1.396	32.91	10.31	0.12	0.13	43.47	56.00	-12.53	QP
1 2 3 4 5 6 7 8 9	1.480	27.85	10.32	0.13	0.14	38.44	46.00	-7.56	Average
10	2.736	31.95	10.34	0.28	0.10	42.67		-13.33	
11	17.944	23.30	10.82	1.30	0.15	35.57			Average
12	18.622	35.22	10.84	0.97	0.15	47.18		-12.82	

Notes


- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

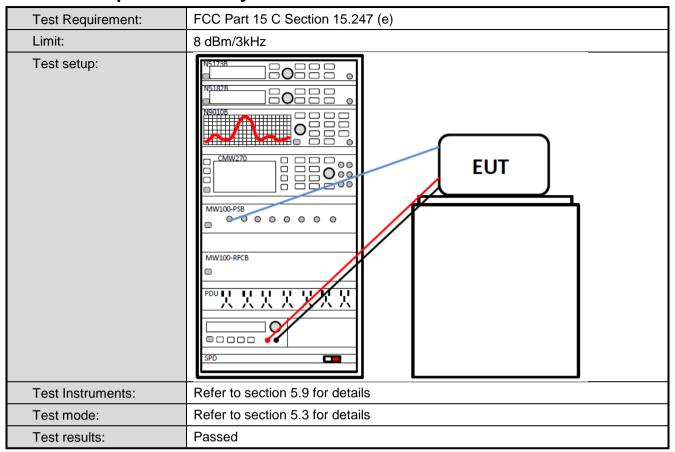
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 12

6.3 Conducted Output Power


Measurement Data: Refer to Appendix A - BLE

Page 13 of 44

6.4 Occupy Bandwidth


Measurement Data: Refer to Appendix A - BLE

Page 14 of 44

6.5 Power Spectral Density

Measurement Data: Refer to Appendix A - BLE

6.6 Band Edge

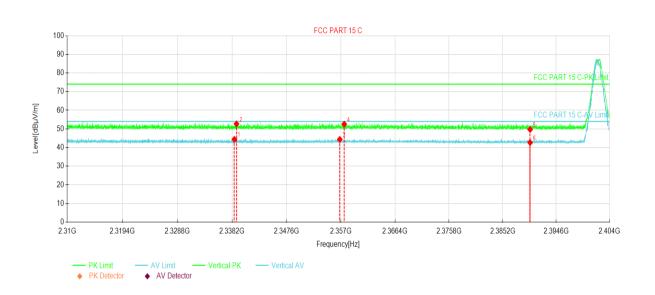
6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	NS11738. NS1182R NS1182R NS1182R NS100PSB NMW100-PSB NMW100-PSB NMW100-PSB NMW100-PSB NMW100-PSB NMW100-PSB					
Test Instruments:	Refer to section 5.9 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Measurement Data: Refer to Appendix A - BLE

Page 16 of 44

Radiated Emission Method 6.6.2

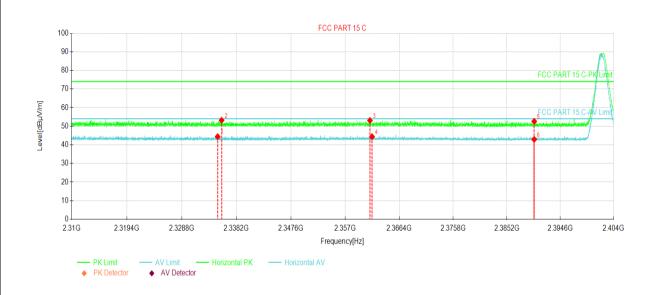

Test Requirement:	FCC Part 15 C	Section 15.20	05 and 15.209					
Test Frequency Range:	2310 MHz to 2	2310 MHz to 2390 MHz and 2483.5MHz to 2500 MHz						
Test Distance:	3m							
Receiver setup:	Frequency	Detector	RBW	VBW	Remark			
· ·	Above 1GHz	Peak	1MHz	3MHz	Peak Value			
		RMS	1MHz	3MHz	Average Value			
Limit:	Frequer	ncy Li	mit (dBuV/m @3		Remark			
	Above 10	GHz -	54.00 74.00		verage Value			
Test Procedure:	the groun to determ 2. The EUT antenna, tower. 3. The anter the groun Both horis make the 4. For each case and meters are to find the 5. The test-I Specified 6. If the emite the limits of the EU have 10 ce	ad at a 3 meter inne the position was set 3 met which was mound height is was an an height is was at the determined the rota table maximum reasurement as a maximum reasurement between the maximum reasurement of the rota table maximum reasurement as a maximum reasurement of the rota table maximum reasurement as a maximum reasurement of the rota table maximum reasurement of the rotation of the rot	a the top of a rot camber. The tan of the highest ers away from the unted on the top aried from one rethe maximum vical polarization. It is is is in the EUT in a was turned from was turned from was set to Peading. In was set to Peading.	ating table 1. ble was rotat radiation. he interference of a variable meter to four value of the fis of the ante was arrange to heights from 0 degrees ak Detect Fuld Mode. mode was 1 stopped and the emissione by one u	meters above field strength. Inna are set to do to its worst in 1 meter to 4 is to 360 degrees inction and do dB lower than if the peak values ons that did not sing peak, quasi-			
Test setup:	AE Waggi	Ground Test Receiver	Horn Antenna 3m Reference Plane	Antenna Tower				
Test Instruments:	Refer to section	on 5.9 for detai	ls					
Test mode:	Refer to section							
Test results:	Passed							

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

PHY: 1MHz

Product Name:	Mobile Phone	Product Model:	LE8
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

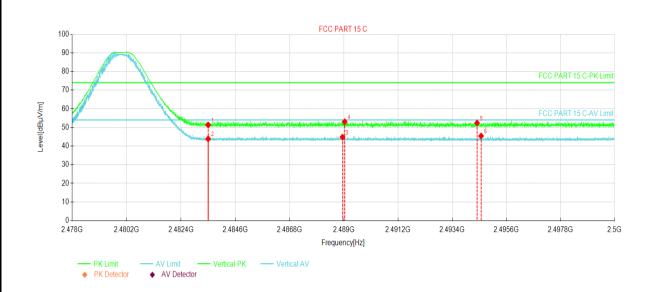
Susp	Suspected Data List										
NO.	Freq.⊬ [MHz]∂	Reading⊮ [dBµV/m]⊮	Level⊬ [dBµV/m]⊬	Factor⊬ [dB]⊬	Limit⊬ [dBµV/m]⊮	Margin⊬ [dB]⊬	Trace	Polarity。			
1₽	2338.58	37.50₽	44.41₽	6.91₽	54.00₽	9.59₽	AV₽	Vertical₽			
2₽	2338.95	45.80₽	52.71₽	6.91₽	74.00₽	21.29₽	PK₽	Vertical₽			
3₽	2356.78	37.39₽	44.36₽	6.97₽	54.00₽	9.64₽	AV₽	Vertical₽			
4.0	2357.55	45.56₽	52.53₽	6.97₽	74.00₽	21.47₽	PK₽	Vertical₽⊸			
5₽	2390.00	42.63₽	49.71₽	7.08₽	74.00₽	24.29₽	PK₽	Vertical₽			
6₽	2390.00	35.60₽	42.68₽	7.08₽	54.00₽	11.32₽	AV₽	Vertical₽			


Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 18 of 44

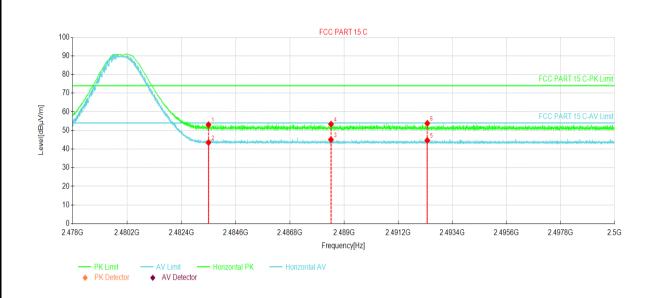
Product Name:	Mobile Phone	Product Model:	LE8
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%


Susp	Suspected Data List。										
NO.	Freq.√ [MHz]	Reading√ [dBµV/m]√	Level⊬ [dBµV/m]⊬	Factor⊬ [dB]⊬	Limit⊬ [dBµV/m]⊮	Margin⊬ [dB]⊬	Trace	Polarity∉			
1₽	2334.96	37.49₽	44.39	6.90₽	54.00₽	9.61₽	AV₽	Horizontalℯ			
2₽	2335.65	46.30₽	53.20₽	6.90₽	74.00₽	20.80₽	PK₽	Horizontalℯ			
3₽	2361.28	46.10₽	53.08₽	6.98₽	74.00₽	20.92₽	PK₽	Horizontalℯ			
4₽	2361.65	37.40₽	44.38	6.98₽	54.00₽	9.62₽	AV₽	Horizontal₽			
5₽	2390.00	45.51₽	52.59₽	7.08₽	74.00₽	21.41₽	PK₽	Horizontalℯ			
6₽	2390.00	35.84₽	42.92₽	7.08₽	54.00₽	11.08₽	AV₽	Horizontal₽			

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 19 of 44

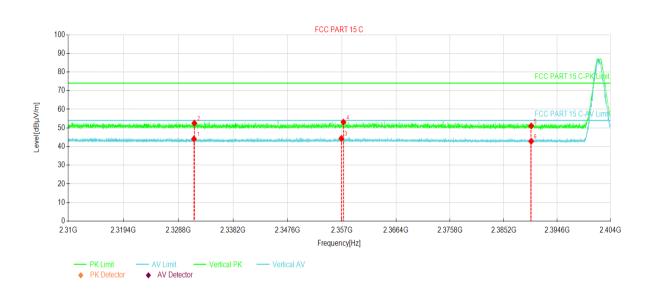
Product Name:	Mobile Phone	Product Model:	LE8
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%



Susp	Suspected Data List								
NO.∂	Freq [MHz]	Reading√ [dBµV/m]√	Level⊬ [dBµV/m]⊬	Factor⊬ [dB]⊬	Limit⊬ [dBµV/m]⊮	Margin⊬ [dB]⊬	Trace∂	Polarityℯ	
1₽	2483.50	43.64₽	51.33₽	7.69₽	74.00₽	22.67₽	PK₽	Vertical₽	
2₽	2483.50	36.19₽	43.88₽	7.69₽	54.00₽	10.12₽	AV₽	Vertical₽	
3₽	2488.94	37.08₽	44.80₽	7.72₽	54.00₽	9.20₽	AV₽	Vertical₄⊸	
4.0	2489.03	45.32₽	53.04₽	7.72₽	74.00₽	20.96₽	PK₽	Vertical₽	
5₽	2494.40	44.62₽	52.38₽	7.76₽	74.00₽	21.62₽	PK₽	Vertical₄⊸	
6₽	2494.57	37.65₽	45.41₽	7.76₽	54.00₽	8.59₽	AV₽	Vertical₽⊸	

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	Mobile Phone	Product Model:	LE8
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

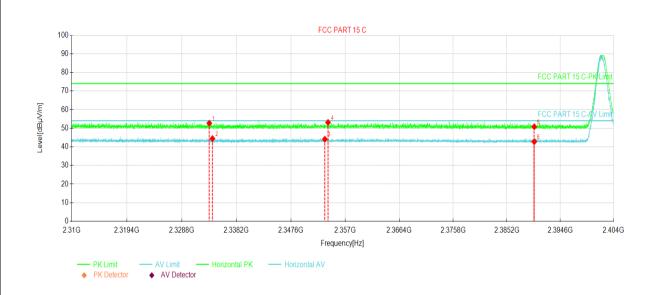

Susp	Suspected Data List								
NO.	Freq.⊬ [MHz]∂	Reading√ [dBµV/m]√	Level⊬ [dBµV/m]⊬	Factor⊮ [dB]⊮	Limit⊬ [dBµV/m]⊮	Margin⊬ [dB]⊬	Trace∂	Polarity⊬	
1₽	2483.50	45.33₽	53.02₽	7.69₽	74.00₽	20.98₽	PK₽	Horizontal₽	
2₽	2483.50	35.81₽	43.50₽	7.69₽	54.00₽	10.50₽	AV₽	Horizontal₽	
3₽	2488.46	37.33₽	45.05₽	7.72₽	54.00₽	8.95₽	AV₽	Horizontal₽	
4.₽	2488.46	45.64₽	53.36₽	7.72₽	74.00₽	20.64₽	PK₽	Horizontal₽	
5₽	2492.37	36.89₽	44.64	7.75₽	54.00₽	9.36₽	AV₽	Horizontal₽	
6₽	2492.37	46.03₽	53.78₽	7.75₽	74.00₽	20.22₽	PK₽	Horizontal₽	

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

PHY: 2MHz

Product Name:	Mobile Phone	Product Model:	LE8
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

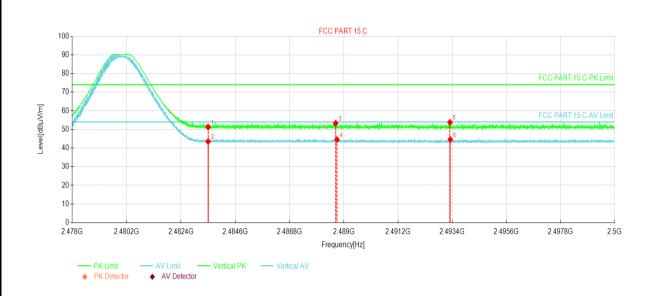
Suspected Data List								
NO.∂	Freq [MHz]	Reading√ [dBµV/m]√	Level⊬ [dBµV/m]⊬	Factor⊬ [dB]⊬	Limit⊬ [dBµV/m]⊮	Margin⊬ [dB]⊬	Trace	Polarity _*
1₽	2331.47	37.21₽	44.09₽	6.88₽	54.00₽	9.91₽	AV₽	Vertical₽
2₽	2331.54	45.67₽	52.55₽	6.88₽	74.00₽	21.45₽	PK₽	Vertical∂
3₽	2356.89	37.38₽	44.35₽	6.97₽	54.00₽	9.65₽	AV₽	Vertical∂
4₽	2357.24	46.15₽	53.12₽	6.97₽	74.00₽	20.88₽	PK₽	Verticalℯ
5₽	2390.00	44.00₽	51.08₽	7.08₽	74.00₽	22.92₽	PK₽	Vertical∂
6₽	2390.00	35.74₽	42.82₽	7.08₽	54.00₽	11.18₽	AV₽	Verticalℯ


Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 22 of 44

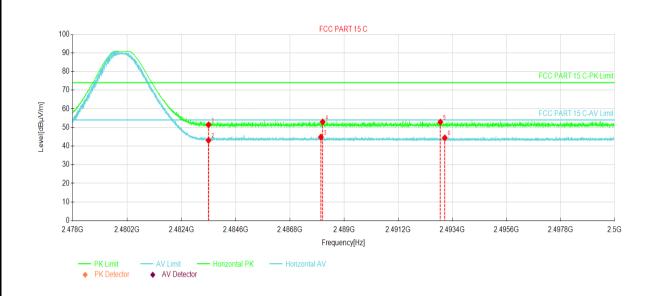
Product Name:	Mobile Phone	Product Model:	LE8		
Test By:	Mike	Test mode:	BLE Tx mode		
Test Channel:	Lowest channel	Polarization:	Horizontal		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%		



Susp	Suspected Data List								
NO.	Freq [MHz].	Reading√ [dBµV/m]√	Level⊬ [dBµV/m]⊬	Factor⊬ [dB]⊬	Limit⊬ [dBµV/m]₄	Margin⊬ [dB]⊬	Trace	Polarity∉	
1₽	2333.53	45.79₽	52.68₽	6.89₽	74.00₽	21.32₽	PK₽	Horizontal₽⊸	
2₽	2334.07	37.52₽	44.41₽	6.89₽	54.00₽	9.59₽	AV₽	Horizontal₽⊸	
3₽	2353.46	37.13₽	44.09₽	6.96₽	54.00₽	9.91₽	AV₽	Horizontal₽⊸	
4.0	2354.01	46.15₽	53.11₽	6.96₽	74.00₽	20.89₽	PK₽	Horizontal₽⊸	
5₽	2390.00	43.73₽	50.81₽	7.08₽	74.00₽	23.19₽	PK₽	Horizontal₽⊸	
6₽	2390.00	35.71₽	42.79₽	7.08₽	54.00₽	11.21₽	AV₽	Horizontal₽	

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	Mobile Phone	Product Model:	LE8
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

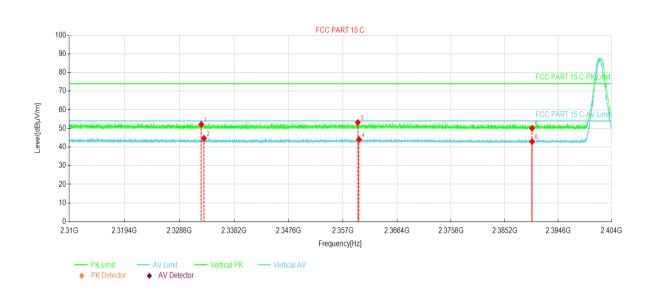

Susp	Suspected Data List								
NO.∂	Freq [MHz]	Reading√ [dBµV/m]√	Level [dBµV/m]	Factor⊮ [dB]⊮	Limit⊬ [dBµV/m]⊮	Margin⊬ [dB]⊬	Trace∂	Polarity⊬	
1₽	2483.50	43.57₽	51.26₽	7.69₽	74.00₽	22.74₽	PK₽	Vertical₄	
2₽	2483.50	35.87₽	43.56₽	7.69₽	54.00₽	10.44₽	AV₽	Vertical₽	
3₽	2488.66	45.60₽	53.32₽	7.72₽	74.00₽	20.68₽	PK₽	Vertical₄	
4₽	2488.71	36.81₽	44.53₽	7.72₽	54.00₽	9.47₽	AV₽	Vertical₽	
5₽	2493.30	46.06₽	53.81₽	7.75₽	74.00₽	20.19₽	PK₽	Vertical₄	
6₽	2493.32	36.85₽	44.60₽	7.75₽	54.00₽	9.40₽	AV₽	Vertical₽	

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 24 of 44

Product Name:	Mobile Phone	Product Model:	LE8
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

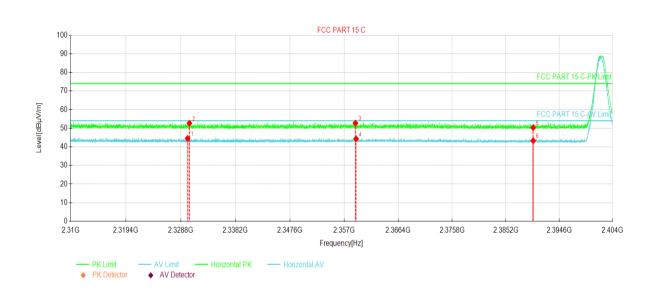
Susp	Suspected Data List							
NO.∂	Freq [MHz]	Reading√ [dBµV/m]√	Level⊬ [dBµV/m]⊬	Factor⊬ [dB]⊬	Limit⊬ [dBµV/m]⊮	Margin⊬ [dB]⊬	Trace	Polarity⊮
1₽	2483.50	43.69₽	51.38₽	7.69₽	74.00₽	22.62₽	PK₽	Horizontalℯ
2₽	2483.50	35.36₽	43.05₽	7.69₽	54.00₽	10.95₽	AV₽	Horizontal₽⊸
3₽	2488.05	37.11₽	44.83₽	7.72₽	54.00₽	9.17₽	AV₽	Horizontal₽⊸
4₽	2488.12	45.25₽	52.97₽	7.72₽	74.00₽	21.03₽	PK₽	Horizontal₽⊸
5₽	2492.91	45.14₽	52.89₽	7.75₽	74.00₽	21.11₽	PK₽	Horizontalℯ
6₽	2493.08	36.64₽	44.39₽	7.75₽	54.00₽	9.61₽	AV₽	Horizontal₽


- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 25 of 44

Coded PHY, S=2

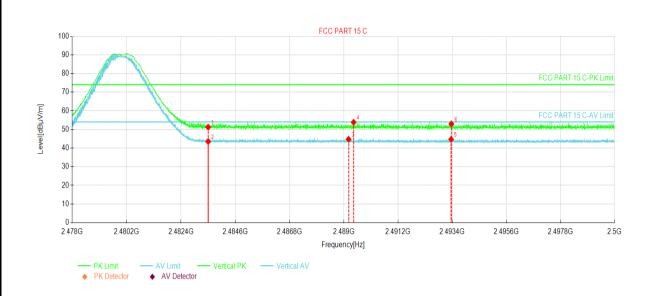
Product Name:	Mobile Phone	Product Model:	LE8
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%


Susp	Suspected Data List								
NO.∂	Freq [MHz].	Reading√ [dBµV/m]⊬	Level⊬ [dBµV/m]⊬	Factor⊬ [dB]⊬	Limit⊬ [dBµV/m]⊮	Margin⊬ [dB]⊬	Trace∉	Polarityℯ	
1₽	2332.56	45.27₽	52.16₽	6.89₽	74.00₽	21.84₽	PK₽	Vertical₽	
2₽	2333.03	37.75₽	44.64₽	6.89₽	54.00₽	9.36₽	AV₽	Vertical₽⊸	
3₽	2359.57	46.21₽	53.19₽	6.98₽	74.00₽	20.81₽	PK₽	Vertical₽⊸	
4₽	2359.77	37.09₽	44.07₽	6.98₽	54.00₽	9.93₽	AV₽	Verticalℯ⊸	
5₽	2390.00	43.01₽	50.09₽	7.08₽	74.00₽	23.91₽	PK₽	Vertical₽⊸	
6₽	2390.00	35.84₽	42.92₽	7.08₽	54.00₽	11.08₽	AV₽	Vertical₽	

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

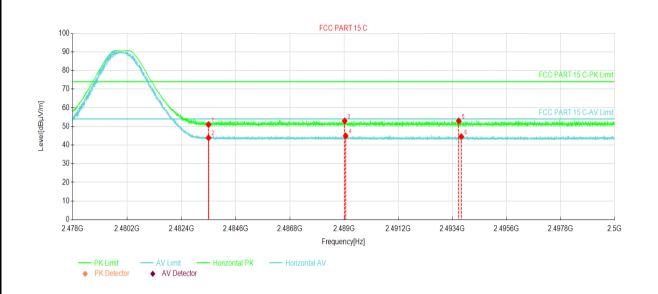
Product Name:	Mobile Phone	Product Model:	LE8
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%



Susp	Suspected Data List								
NO.∂	Freq [MHz]	Reading√ [dBµV/m]√	Level⊬ [dBµV/m]⊬	Factor⊬ [dB]⊬	Limit⊬ [dBµV/m]⊮	Margin⊬ [dB]⊬	Trace	Polarity∉	
1₽	2329.98	37.62₽	44.50₽	6.88₽	54.00₽	9.50₽	AV₽	Horizontal₽⊸	
2₽	2330.29	45.79₽	52.67₽	6.88₽	74.00₽	21.33₽	PK₽	Horizontal₽⊸	
3₽	2358.93	45.77₽	52.74₽	6.97₽	74.00₽	21.26₽	PK₽	Horizontal₽⊸	
4₽	2359.04	37.33₽	44.30₽	6.97₽	54.00₽	9.70₽	AV₽	Horizontal₽	
5₽	2390.00	43.25₽	50.33₽	7.08₽	74.00₽	23.67₽	PK₽	Horizontal₽	
6₽	2390.00	36.22₽	43.30₽	7.08₽	54.00₽	10.70₽	AV₽	Horizontal₽	

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	Mobile Phone	Product Model:	LE8
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

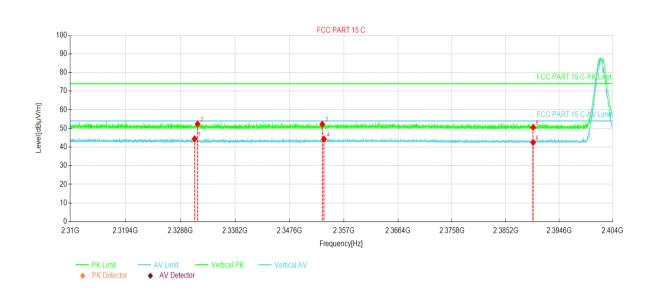


Susp	Suspected Data List								
NO.∂	Freq.√ [MHz]	Reading√ [dBµV/m]∞	Level⊬ [dBµV/m]⊬	Factor⊬ [dB]⊬	Limit⊬ [dBµV/m]₄	Margin⊬ [dB]⊬	Trace	Polarity	
1₽	2483.50	43.54₽	51.23₽	7.69₽	74.00₽	22.77₽	PK₽	Verticalℯ	
2₽	2483.50	35.86₽	43.55₽	7.69₽	54.00₽	10.45₽	AV₽	Verticalℯ	
3₽	2489.18	36.99₽	44.72₽	7.73₽	54.00₽	9.28₽	AV₽	Verticalℯ	
4.	2489.39	46.10₽	53.83₽	7.73₽	74.00₽	20.17₽	PK₽	Verticalℯ	
5₽	2493.35	36.95₽	44.70₽	7.75₽	54.00₽	9.30₽	AV₽	Verticalℯ	
6₽	2493.36	45.19₽	52.94₽	7.75₽	74.00₽	21.06₽	PK₽	Vertical₽	

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	Mobile Phone	Product Model:	LE8
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

Susp	Suspected Data List								
NO.∂	Freq [MHz]	Reading√ [dBµV/m]√	Level⊬ [dBµV/m]⊬	Factor⊬ [dB]⊬	Limit⊬ [dBµV/m]⊮	Margin⊬ [dB]⊬	Trace∂	Polarityℯ	
1₽	2483.50	43.30₽	50.99₽	7.69₽	74.00₽	23.01₽	PK₽	Horizontal₽	
2₽	2483.50	36.20₽	43.89₽	7.69₽	54.00₽	10.11₽	AV₽	Horizontal₽⊸	
3₽	2489.02	45.21₽	52.93₽	7.72₽	74.00₽	21.07₽	PK₽	Horizontal₽⊸	
4₽	2489.06	37.20₽	44.92₽	7.72₽	54.00₽	9.08₽	AV₽	Horizontal₽⊸	
5₽	2493.65	45.17₽	52.93₽	7.76₽	74.00₽	21.07₽	PK₽	Horizontal₽⊸	
6₽	2493.76	36.75₽	44.51₽	7.76₽	54.00₽	9.49₽	AV₽	Horizontal₽⊸	

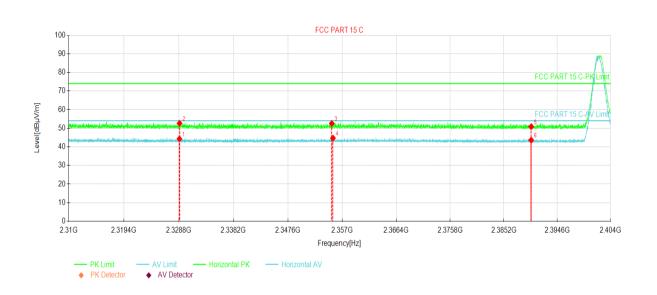

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 29 of 44

Coded PHY, S=8

Product Name:	Mobile Phone	Product Model:	LE8
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

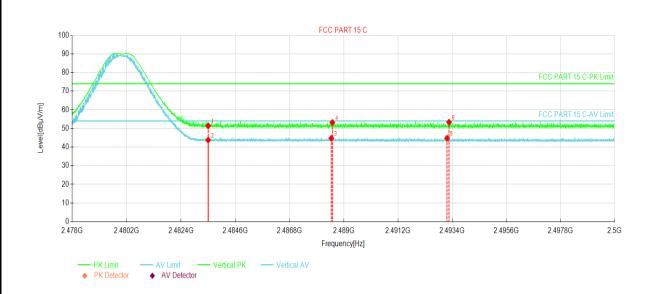
Susp	Suspected Data List								
NO.	Freq [MHz].	Reading√ [dBµV/m]∞	Level⊬ [dBµV/m]⊬	Factor⊬ [dB]⊬	Limit⊬ [dBµV/m]⊮	Margin⊬ [dB]⊬	Trace	Polarity∂	
1₽	2331.24	37.55₽	44.43	6.88₽	54.00₽	9.57₽	AV₽	Vertical₄	
2₽	2331.76	45.52₽	52.40₽	6.88₽	74.00₽	21.60₽	PK₽	Verticalℯ	
3₽	2353.24	45.32₽	52.28₽	6.96₽	74.00₽	21.72₽	PK₽	Verticalℯ	
4.	2353.52	37.34₽	44.30₽	6.96₽	54.00₽	9.70₽	AV₽	Verticalℯ	
5₽	2390.00	43.51₽	50.59₽	7.08₽	74.00₽	23.41₽	PK₽	Verticalℯ	
6₽	2390.00	35.38₽	42.46₽	7.08₽	54.00₽	11.54₽	AV₽	Vertical₽	


Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 30 of 44

Product Name:	Mobile Phone	Product Model:	LE8
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%



Susp	Suspected Data List								
NO	Freq.	Reading	Level	Factor⊬	Limit⊬	Margin⊬	Trace	Dolovity	
NO.₽	[MHz]∂	[dBµV/m]	[dBµV/m]∂	[dB]∂	[dBµV/m]∂	[dB]∂	Trace∂	Polarity∂	
1₽	2328.91	37.41₽	44.29₽	6.88₽	54.00₽	9.71∂	AV₽	Horizontal ₂	
2₽	2328.94	45.75₽	52.63₽	6.88₽	74.00₽	21.37₽	PK₽	Horizontal₽	
3₽	2355.17	45.61₽	52.57₽	6.96₽	74.00₽	21.43₽	PK₽	Horizontal₽	
4.₽	2355.39	37.72₽	44.68₽	6.96₽	54.00₽	9.32₽	AV₽	Horizontal₽	
5₽	2390.00	43.75₽	50.83₽	7.08₽	74.00₽	23.17₽	PK₽	Horizontal ₂	
6₽	2390.00	36.51₽	43.59₽	7.08₽	54.00₽	10.41₽	AV₽	Horizontalℯ	

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

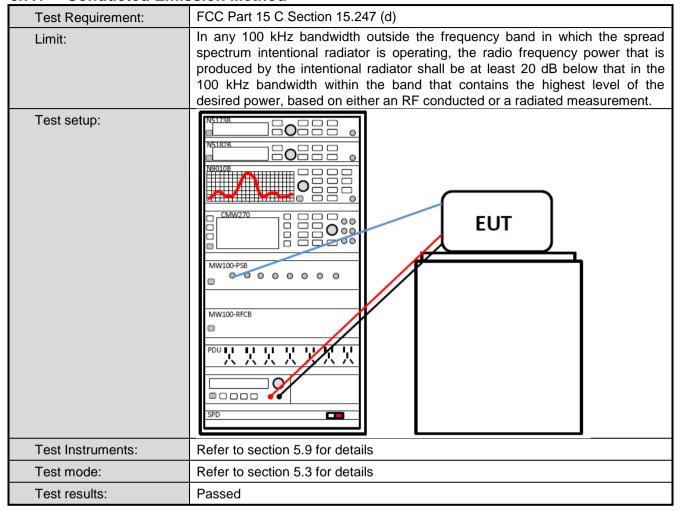
Product Name:	Mobile Phone	Product Model:	LE8
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

Susp	Suspected Data List									
NO.₽	Freq.↓ [MHz]₄	Reading√ [dBµV/m]√	Level⊬ [dBµV/m]⊬	Factor⊬ [dB]⊬	Limit⊬ [dBµV/m]⊮	Margin⊬ [dB]⊬	Trace	Polarity		
1₽	2483.50	43.67₽	51.36₽	7.69₽	74.00₽	22.64₽	PK₽	Vertical₽		
2₽	2483.50	36.06₽	43.75₽	7.69₽	54.00₽	10.25₽	AV₽	Verticalℯ		
3₽	2488.48	36.99₽	44.71₽	7.72₽	54.00₽	9.29₽	AV₽	Vertical₽		
4.₽	2488.52	45.46₽	53.18₽	7.72₽	74.00₽	20.82₽	PK₽	Vertical₽		
5₽	2493.18	36.99₽	44.74₽	7.75₽	54.00₽	9.26₽	AV₽	Verticalℯ		
6₽	2493.26	45.60₽	53.35₽	7.75₽	74.00₽	20.65₽	PK₽	Verticalℯ		

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	Mobile Phone	Product Model:	LE8
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

Susp	Suspected Data List										
NO.	Freq.⊬ [MHz]∂	Reading√ [dBµV/m]∞	Level⊬ [dBµV/m]⊬	Factor⊬ [dB]⊬	Limit⊬ [dBµV/m]⊮	Margin⊬ [dB]⊬	Trace	Polarity⊮			
1₽	2483.50	42.75₽	50.44₽	7.69₽	74.00₽	23.56₽	PK₽	Horizontalℯ			
2₽	2483.50	35.91₽	43.60₽	7.69₽	54.00₽	10.40₽	AV₽	Horizontal₽			
3₽	2488.37	37.21₽	44.93₽	7.72₽	54.00₽	9.07₽	AV₽	Horizontal₽			
4₽	2488.43	45.34₽	53.06₽	7.72₽	74.00₽	20.94₽	PK₽	Horizontal₽			
5₽	2493.36	45.62₽	53.37₽	7.75₽	74.00₽	20.63₽	PK₽	Horizontal₽			
6₽	2493.45	37.20₽	44.95₽	7.75₽	54.00₽	9.05₽	AV₽	Horizontal₽			


- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

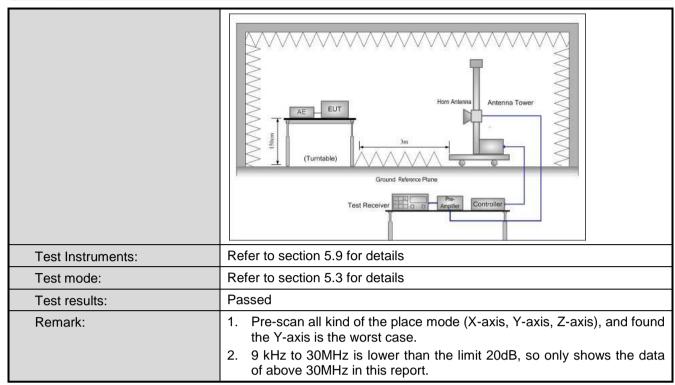
Page 33 of 44

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Measurement Data: Refer to Appendix A - BLE

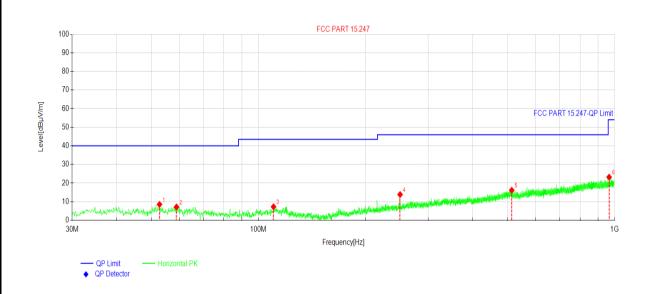
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366



Padiated Emission Method

Test Requirement:	FCC Part 15 C	Section 15.	.205	and 15.209			
Test Frequency Range:	9kHz to 25GHz						
Test Distance:	3m or 10m						
Receiver setup:	Frequency	Detector		RBW	VB	W	Remark
110001101 00144	30MHz-1GHz Quasi-p		ak	120KHz	3001	0KHz Quasi-peak Valu	
	Above 1GHz	Peak		1MHz	3M	Hz	Peak Value
	Above 1G112	RMS		1MHz	3M	Hz	Average Value
Limit:	Frequency	У	Limi	it (dBuV/m @	10m)		Remark
	30MHz-88M			30.0			Quasi-peak Value
	88MHz-216N			33.5			Quasi-peak Value
	216MHz-960I			36.0			Quasi-peak Value
	960MHz-1G		Lim	44.0	2m)	6	Quasi-peak Value
	Frequency	у	LIIII	nit (dBuV/m @ 54.0	3111)		Remark Average Value
	Above 1GF	łz 🗀		74.0			Peak Value
Test Procedure:	1. The EUT	was placed	d or		of a ro	tating	table 0.8m(below
rest Procedure.	1GHz)/1.5r chamber(a determine of the EUT was receiving a height anter the ground Both horizon make the make the make the interest and to find the interest the limit sport the EUT have 10 depeak or average and the second to the EUT have 10 depeak or average and the second to find the interest and the limit sport the EUT have 10 depeak or average and the second to find the EUT have 10 depeak or average and the second to find the EUT have 10 depeak or average and the second to find the	m(above 1 bove 1 GH; the position was set 3 meantenna, when a height is to determental and vertical and vertical and vertical and vertical and vertical and the rota tarrow maximum resceiver systems of the position of the p	IGH Iz). In of the term of the ont.	z) above The table the highest r s(above 1Gl a was moun aried from or the maximu cal polarizat ssion, the E na was tune was turned ing. n was set Maximum H e EUT in pe sting could b orted. Other be re-tested	the g was readiation Hz) aw inted or me met um valutions of to Pea old Moak mode estop wise the done by the metal of the metal mode.	round otated n. ay from the from the as arraceights degreed are emisy one	at a 3 meter 360 degrees to me the interference-top of a variable-four meters above the field strength. Antenna are set to anged to its worst from 1 meter to 4 tes to 360 degrees tect Function and as 10 dB lower than and the peak values assions that did not using peak, quasi-reported in a data
Test setup:	Sheet. Below 1GHz Turn Table Ground Plane Above 1GHz	4m 4m 0.8m 1m			S A RF	Antenna To search untenna Test ceiver	ower

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

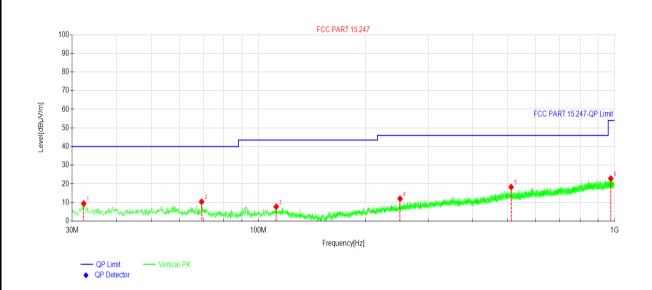


Measurement Data (worst case):

Below 1GHz:

Product Name:	Mobile Phone	Product Model:	LE8
Test By:	Mike	Test mode:	BLE Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

Suspe	Suspected Data List∂									
NO.₽	Freq.⊌	Reading[d	Level⊎	Factor⊍	Limit⊬	Margin∉	Tropod	Polarity∂		
NO.₽	[MHz]∂	BµV/m]₽	[dBµV/m]∂	[dB]∂	[dBµV/m]∂	[dB]∂	Trace₽	Polanty		
1₽	52.7973₽	25.53₽	8.51₽	-17.02₽	40.00₽	31.49₽	PK₽	Horizontal₽		
2 ₽	58.9089₽	24.30₽	7.14₽	-17.16₽	40.00₽	32.86₽	PK₽	Horizontal₽		
3₽	110.324	25.19₽	7.24₽	-17.95₽	43.50₽	36.26₽	PK₽	Horizontal₽		
4₽	250.018	29.12₽	13.83₽	-15.29₽	46.00₽	32.17₽	PK₽	Horizontal₽		
5₽	514.660	25.55₽	16.11₽	-9.44₽	46.00₽	29.89₽	PK₽	Horizontal₽		
6₽	965.755	26.50₽	23.18₽	-3.32₽	54.00₽	30.82₽	PK₽	Horizontal₽		


Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.
- 3. The Aux Factor is a notch filter switch box loss, this item is not used.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 37 of 44

Product Name:	Mobile Phone	Product Model:	LE8
Test By:	Mike	Test mode:	BLE Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

Suspe	Suspected Data List₽									
NO.	Freq.⊌	Reading[d	Level⊌	Factor⊌	Limit∉	Margin∉	T	Delevier -		
NO.₽	[MHz]∂	<u>BμV</u> /m]∂	[dBµV/m]∂	[dB]∂	[dBµV/m]∂	[dB]∂	Trace₽	Polarity₽		
1₽	32.3282₽	27.34₽	9.41₽	-17.93₽	40.00₽	30.59₽	PK₽	Vertical₽		
2₽	69.2889₽	29.25₽	10.39₽	-18.86₽	40.00₽	29.61₽	PK₽	Vertical₽		
3↩	112.264	25.54₽	7.73₽	-17.81₽	43.50₽	35.77₽	PK₽	Vertical₽		
4 42	250.018	27.34₽	12.05₽	-15.29₽	46.00₽	33.95₽	PK₽	Vertical₽		
54□	512.623	27.74₽	18.27₽	-9.47₽	46.00₽	27.73₽	PK₽	Vertical₽		
6₽	976.135	26.02₽	22.81₽	-3.21₽	54.00₽	31.19₽	PK₽	Vertical₽ ◀		

- 4. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 5. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.
- 6. The Aux Factor is a notch filter switch box loss, this item is not used.

Above 1GHz

PHY: 1MHz

		Test ch	annel: Lowest ch	nannel		
		De	tector: Peak Valu	ie		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4804.00	55.61	-9.60	46.01	74.00	27.99	Vertical
4804.00	54.73	-9.60	45.13	74.00	28.87	Horizontal
		Dete	ctor: Average Va	alue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4804.00	49.07	-9.60	39.47	54.00	14.53	Vertical
4804.00	47.25	-9.60	37.65	54.00	16.35	Horizontal
		Test ch	annel: Middle ch	nannel		
		Det	tector: Peak Valu	ıe		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4884.00	55.87	-9.04	46.83	74.00	27.17	Vertical
4884.00	54.89	-9.04	45.85	74.00	28.15	Horizontal
		Dete	ctor: Average Va	alue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4884.00	48.78	-9.04	39.74	54.00	14.26	Vertical
4884.00	47.34	-9.04	38.30	54.00	15.70	Horizontal
		Test ch	annel: Highest cl	nannel		
			tector: Peak Valu			
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4960.00	55.97	-8.45	47.52	74.00	26.48	Vertical
4960.00	54.53	-8.45	46.08	74.00	27.92	Horizontal
	•	Dete	ctor: Average Va	alue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization

(dBuV/m)

40.74

38.75

(dBuV/m)

54.00

54.00

(dB)

13.26

15.25

Remark:

(MHz)

4960.00

4960.00

(dBuV)

49.19

47.20

-8.45

-8.45

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 39 of 44

Project No.: JYTSZE2109068

Vertical

Horizontal

[.] Final Level =Receiver Read level + Factor.

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

PHY: 2MHz

PHI. ZIVINZ							
		Test ch	annel: Lowest ch	nannel			
		De	tector: Peak Valu	ie			
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization	
4804.00	54.81	-9.60	45.21	74.00	28.79	Vertical	
4804.00	55.82	-9.60	46.22	74.00	27.78	Horizontal	
Detector: Average Value							
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization	
4804.00	48.32	-9.60	38.72	54.00	15.28	Vertical	
4804.00	47.57	-9.60	37.97	54.00	16.03	Horizontal	
	Test channel: Middle channel						
_	1	De	tector: Peak Valu			T	
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization	
4884.00	54.34	-9.04	45.30	74.00	28.70	Vertical	
4884.00	55.64	-9.04	46.60	74.00	27.40	Horizontal	
		Dete	ctor: Average Va	alue			
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization	
4884.00	48.15	-9.04	39.11	54.00	14.89	Vertical	
4884.00	47.90	-9.04	38.86	54.00	15.14	Horizontal	
		Test ch	annel: Highest cl	nannel			
			tector: Peak Valu				
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization	
4960.00	54.17	-8.45	45.72	74.00	28.28	Vertical	

47.45

Detector: Average Value

Level

(dBuV/m)

39.49

38.99

74.00

Limit Line

(dBuV/m)

54.00

54.00

26.55

Margin

(dB)

14.51

15.01

4960.00 Remark:

4960.00

Frequency

(MHz)

4960.00

55.90

Read Level

(dBuV)

47.94

47.44

-8.45

Factor(dB)

-8.45

-8.45

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Project No.: JYTSZE2109068

Horizontal

Polarization

Vertical

Horizontal

^{1.} Final Level =Receiver Read level + Factor.

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Coded PHY, S=2

	Test channel: Lowest channel								
Detector: Peak Value									
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization			
4804.00	54.57	-9.60	44.97	74.00	29.03	Vertical			
4804.00	54.16	-9.60	44.56	74.00	29.44	Horizontal			
		Dete	ctor: Average Va	alue					
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization			
4804.00	47.52	-9.60	37.92	54.00	16.08	Vertical			
4804.00	48.14	-9.60	38.54	54.00	15.46	Horizontal			
						.			

		Test ch	annel: Middle ch	nannel			
		De	tector: Peak Valu	ıe			
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization	
4884.00	54.55	-9.04	45.51	74.00	28.49	Vertical	
4884.00	54.08	-9.04	45.04	74.00	28.96	Horizontal	
		Dete	ctor: Average Va	alue			
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization	
4884.00	47.95	-9.04	38.91	54.00	15.09	Vertical	
4884.00	47.98	-9.04	38.94	54.00	15.06	Horizontal	

Test channel: Highest channel Detector: Peak Value							
Detector: Peak Value							
Detector. I eak value							
Frequency (MHz) Read Level (dBuV) Factor(dB) Level Limit Line (dBuV/m) (dB)	Polarization						
4960.00 54.75 -8.45 46.30 74.00 27.70	Vertical						
4960.00 54.11 -8.45 45.66 74.00 28.34	Horizontal						
Detector: Average Value							
Frequency (MHz) Read Level (dBuV) Factor(dB) Level Limit Line (dBuV/m) (dB)	Polarization						
4960.00 47.60 -8.45 39.15 54.00 14.85	Vertical						
4960.00 48.32 -8.45 39.87 54.00 14.13	Horizontal						

Remark:

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

^{1.} Final Level =Receiver Read level + Factor.

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Coded PHY, S=8

Test channel: Lowest channel							
Detector: Peak Value							
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization	
4804.00	54.98	-9.60	45.38	74.00	28.62	Vertical	
4804.00	55.87	-9.60	46.27	74.00	27.73	Horizontal	
	Detector: Average Value						
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization	
4804.00	48.47	-9.60	38.87	54.00	15.13	Vertical	
4804.00	47.95	-9.60	38.35	54.00	15.65	Horizontal	
4004.00	47.93	-9.00	30.33	34.00	15.05	Tionzontai	

		Test ch	annel: Middle ch	nannel		
		De	tector: Peak Valu	ue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4884.00	55.22	-9.04	46.18	74.00	27.82	Vertical
4884.00	55.86	-9.04	46.82	74.00	27.18	Horizontal
		Dete	ctor: Average Va	alue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4884.00	48.90	-9.04	39.86	54.00	14.14	Vertical
4884.00	48.42	-9.04	39.38	54.00	14.62	Horizontal

	Test channel: Highest channel						
	Detector: Peak Value						
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization	
4960.00	55.07	-8.45	46.62	74.00	27.38	Vertical	
4960.00	55.56	-8.45	47.11	74.00	26.89	Horizontal	
	Detector: Average Value						
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization	
4960.00	48.52	-8.45	40.07	54.00	13.93	Vertical	
4960.00	48.42	-8.45	39.97	54.00	14.03	Horizontal	

Remark:

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

^{1.} Final Level =Receiver Read level + Factor.

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.