Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-held and Body-mounted Wireless Communication Devices- Part 1528: Human Models, Instrumentation and Procedures (Frequency range of 4 MHz to 10 GHz)", October 2020 - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** c) DASY4/5 System Handbook #### **Methods Applied and Interpretation of Parameters:** - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: 23J02Z80074 Page 2 of 6 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn Measurement Conditions DASY system configuration, as far as not given on page 1 | DASY Version | DASY52 | 52.10.4 | |------------------------------|--------------------------------|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, $dy = 4$ mm, $dz = 1.4$ mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 3700 MHz ± 1 MHz | | ## Head TSL parameters at 3700 MHz The following parameters and calculations were applied. | - | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 37.7 | 3.12 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 37.3 ± 6 % | 3.15 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | ### SAR result with Head TSL at 3700 MHz | SAR averaged over 1 ${\it cm}^3$ (1 g) of Head TSL | Condition | | |--|--------------------|-----------------------------------| | SAR measured | 100 mW input power | 6.70 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 66.7 W/kg ± 24.4 % (<i>k</i> =2) | | SAR averaged over 10 ${\it cm}^3$ (10 g) of Head TSL | Condition | | | SAR measured | 100 mW input power | 2.44 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.3 W/kg ± 24.2 % (k=2) | Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn # Appendix (Additional assessments outside the scope of CNAS L0570) ## Antenna Parameters with Head TSL at 3700 MHz | Impedance, transformed to feed point | 43.4Ω+ 2.34jΩ | |--------------------------------------|---------------| | Return Loss | - 22.5dB | #### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.043 ns | |----------------------------------|----------| |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feed-point can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feed-point may be damaged. ## **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| |-----------------|-------| Certificate No: 23J02Z80074 Page 4 of 6 Date: 2023-10-20 Report No.: 2401U81808E-SA Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn ## **DASY5 Validation Report for Head TSL** Test Laboratory: CTTL, Beijing, China DUT: Dipole 3700 MHz; Type: D3700V2; Serial: D3700V2 - SN: 1084 Communication System: UID 0, CW; Frequency: 3700 MHz; Medium parameters used: f = 3700 MHz; σ = 3.152 S/m; ϵ_r = 37.28; ρ = 1000 kg/m³ Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) **DASY5** Configuration: - Probe: EX3DV4 SN3617; ConvF(6.88, 6.88, 6.88) @ 3700 MHz; Calibrated: 2023-03-31 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1556; Calibrated: 2023-01-11 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) #### Dipole Calibration /Pin=100mW, d=10mm, f=3700 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.26 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 18.9 W/kg ### SAR(1 g) = 6.7 W/kg; SAR(10 g) = 2.44 W/kg Smallest distance from peaks to all points 3 dB below = 8 mm Ratio of SAR at M2 to SAR at M1 = 73.6% Maximum value of SAR (measured) = 13.0 W/kg Certificate No: 23J02Z80074 Page 5 of 6 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 http://www.caict.ac.cn E-mail: emf@caict.ac.cn ### Impedance Measurement Plot for Head TSL Certificate No: 23J02Z80074 Page 6 of 6 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191 Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn BACL Client **Certificate No:** 23J02Z80064 ## **CALIBRATION CERTIFICATE** Object D3900V2 - SN: 1058 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: September 26, 2023 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | |---|-------------------|---|--| | Power Meter NRP2 | 106276 | 15-May-23 (CTTL, No.J23X04183) | May-24 | | Power sensor NRP6A | 101369 | 15-May-23 (CTTL, No.J23X04183) | May-24 | | Reference Probe EX3DV4 | SN 3617 | 31-Mar-23(CTTL-SPEAG,No.Z23-60161) | Mar-24 | | DAE4 | SN 1556 | 11-Jan-23(CTTL-SPEAG,No.Z23-60034) | Jan-24 | | | | | | | | | | July 11 24 - 104 - 105 1 100 100 25 1 100 25 1 1100 25 1 | | Secondary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | | Secondary Standards Signal Generator E4438C | ID#
MY49071430 | Cal Date (Calibrated by, Certificate No.) 05-Jan-23 (CTTL, No. J23X00107) | Scheduled Calibration Jan-24 | | | | | | | Signal Generator E4438C | MY49071430 | 05-Jan-23 (CTTL, No. J23X00107) | Jan-24 | Name **Function** Calibrated by: Zhao Jing **SAR Test Engineer** Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: October 4, 2023 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: 23J02Z80064 Page 1 of 6 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-held and Body-mounted Wireless Communication Devices- Part 1528: Human Models, Instrumentation and Procedures (Frequency range of 4 MHz to 10 GHz)", October 2020 - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** c) DASY4/5 System Handbook ## Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: 23J02Z80064 Page 2 of 6 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 http://www.caict.ac.cn E-mail: emf@caict.ac.cn Measurement Conditions DASY system configuration, as far as not given on page 1 | | not given on page 1. | 50.40.4 | |------------------------------|----------------------------|----------------------------------| | DASY Version | DASY52 | 52.10.4 | | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 3900 MHz ± 1 MHz | | ## Head TSL parameters at 3900MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 37.5 | 3.32 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 36.8 ± 6 % | 3.31 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | ### SAR result with Head TSL at 3900MHz | t 100 dit titti 110 da 1 da di da | | | |---|--------------------|-----------------------------------| | SAR averaged over 1 cm^3 (1 g) of Head TSL | Condition | | | SAR measured | 100 mW input power | 6.88 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 68.6 W/kg ± 24.4 % (<i>k</i> =2) | | SAR averaged over 10 $$ cm^3 (10 g) of Head TSL | Condition | | | SAR measured | 100 mW input power | 2.41 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.0 W/kg ± 24.2 % (k=2) | Certificate No: 23J02Z80064 Page 3 of 6