

JianYan Testing Group Shenzhen Co., Ltd.

Report No.: JYTSZ-R12-2301608

FCC RF Test Report

Report No.: JYTSZ-R12-2301608

Applicant: TECNO MOBILE LIMITED

Address of Applicant: FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE

19-25 SHAN MEI STREET FOTAN NT HONGKONG

Equipment Under Test (EUT)

Product Name: Mobile Phone

Model No.: KJ7s

Trade Mark: TECNO

FCC ID: 2ADYY-KJ7S

Applicable Standards: FCC CFR Title 47 Part 15C (§15.247)

Date of Sample Receipt: 17 Nov., 2023

Date of Test: 18 Nov., to 28 Nov., 2023

Date of Report Issued: 29 Nov., 2023

Test Result: PASS

Project by: _____ Date: ____ 29 Nov., 2023

Reviewed by: 29 Nov., 2023

Approved by: Date: 29 Nov., 2023

Manager

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in above the application standard version. Test results reported herein relate only to the item(s) tested.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

1 Version

Version No.	Date	Description
00	29 Nov., 2023	Original

2 Contents

			Page
С	over Pa	age	1
1	Ver	sion	2
2	Cor	ntents	3
3	Ger	neral Information	4
	3.1	Client Information	4
	3.2	General Description of E.U.T.	4
	3.3	Test Mode and Test Environment	5
	3.4	Description of Test Auxiliary Equipment	5
	3.5	Measurement Uncertainty	5
	3.6	Additions to, Deviations, or Exclusions from the Method	5
	3.7	Laboratory Facility	5
	3.8	Laboratory Location	5
	3.9	Test Instruments List	5
4	Mea	asurement Setup and Procedure	6
	4.1	Test Channel	6
	4.2	Test Setup	6
	4.3	Test Procedure	8
5	Tes	st Results	9
	5.1	Summary	9
	5.1.		
	5.1.	.2 Test Limit	10
	5.2	Conducted Output Power Spot-check	11

3 General Information

3.1 Client Information

Applicant:	TECNO MOBILE LIMITED
Address:	FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET FOTAN NT HONGKONG
Manufacturer:	TECNO MOBILE LIMITED
Address:	FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET FOTAN NT HONGKONG
Factory:	SHENZHEN TECNO TECHNOLOGY CO., LTD.
Address:	101, Building 24, Waijing Industrial Park, Fumin Community, Fucheng Street, Longhua District, Shenzhen City, P.R.China

3.2 General Description of E.U.T.

OLE OCHICIAI DESCRIP	
Product Name:	Mobile Phone
Model No.:	KJ7s
Operation Frequency:	2402 MHz - 2480 MHz
Channel Numbers:	40
Channel Separation:	2MHz
Modulation Technology:	GFSK
Data Speed:	1 Mbps (LE 1M PHY), 2 Mbps (LE 2M PHY), 125 kbps (LE Coded PHY, S=8), 500 kbps (LE Coded PHY, S=2)
Antenna Type:	Internal Antenna
Antenna Gain:	ANT12: -4.12 dBi (declare by applicant)
	ANT14: -3.37 dBi (declare by applicant)
Antenna transmit mode:	SISO (1TX, 1RX) (with ANT 12 and ANT 14, and they stand alone to transmit)
Power Supply:	Rechargeable Li-ion Polymer Battery DC3.87V, 4900mAh
AC Adapter:	Model: U330TSB
	Input: AC100-240V, 50/60Hz, 1.5A
	Output: DC 5.0V, 3.0A 15.0W or 5.0-10.0V, 3.3A or 11.0V, 3.0A 33.0W MAX
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Report No.: JYTSZ-R12-2301608

3.3 Test Mode and Test Environment

Please refer to FCC ID: 2ADYY-KJ7, report No.: JYTSZ-R12-2301381.

3.4 Description of Test Auxiliary Equipment

Please refer to FCC ID: 2ADYY-KJ7, report No.: JYTSZ-R12-2301381.

3.5 Measurement Uncertainty

Please refer to FCC ID: 2ADYY-KJ7, report No.: JYTSZ-R12-2301381.

3.6 Additions to, Deviations, or Exclusions from the Method

No

3.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber and 10m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L15527

JianYan Testing Group Shenzhen Co., Ltd. is accredited to ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L15527.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

3.8 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xingiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info-JYTee@lets.com, Website: http://jyt.lets.com

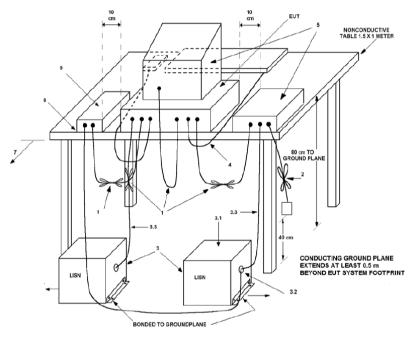
3.9 Test Instruments List

Please refer to FCC ID: 2ADYY-KJ7, report No.: JYTSZ-R12-2301381.

JianYan Testing Group Shenzhen Co., Ltd. Report Template No.: JYTSZ4b-148-C1 No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366

4 Measurement Setup and Procedure

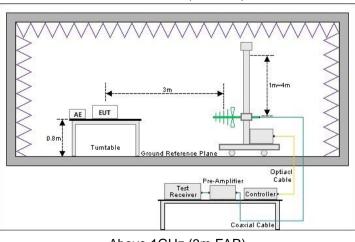
4.1 Test Channel


According to ANSI C63.10-2013 chapter 5.6.1 Table 4 requirement, select lowest channel, middle channel, and highest channel in the frequency range in which device operates for testing. The detailed frequency points are as follows:

Lowe	est channel	Midd	le channel	Highest channel		
Channel No.	Frequency (MHz)	Channel No.	Channel No. Frequency (MHz) Channel N		Frequency (MHz)	
0	2402	20	2442	39	2480	
1	2404	20	2442	38	2478	

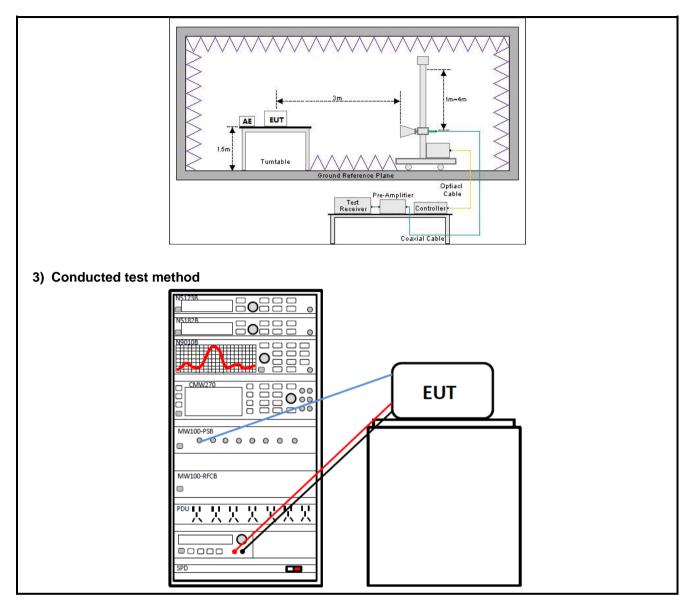
Note: For LE 2M PHY, channels 1, 12, 39 have been removed. Therefore, at LE 2M PHY, channels 1,20, and 38 were selected to correspond to the lowest, middle, and highest channels respectively for testing

4.2 Test Setup


1) Conducted emission measurement:

Note: The detailed descriptions please refer to Figure 8 of ANSI C63.4:2014.

2) Radiated emission measurement:


Below 1GHz (3m SAC)

Above 1GHz (3m FAR)

JianYan Testing Group Shenzhen Co., Ltd. Report Template No.: JYTSZ4b-148-C1 No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366

4.3 Test Procedure

F.3 Test Procedure					
Test method	Test step				
Conducted emission	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement. 				
Radiated emission	For below 1GHz:				
	1. The EUT was placed on the tabletop of a rotating table 0.8 m the ground at a 3 m semi anechoic chamber. The measurement distance from the EUT to the receiving antenna is 3 m.				
	2. EUT works in each mode of operation that needs to be tested, and having				
	the EUT continuously working, respectively on 3 axis (X, Y & Z) and considered typical configuration to obtain worst position. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations. 3. Open the test software to control the test antenna and test turntable. Perform the test, save the test results, and export the test data.				
	For above 1GHz:				
	1. The EUT was placed on the tabletop of a rotating table 1.5 m the ground at a 3 m fully anechoic room. The measurement distance from the EUT to the receiving antenna is 3 m.				
	2. EUT works in each mode of operation that needs to be tested, and having				
	the EUT continuously working, respectively on 3 axis (X, Y & Z) and considered typical configuration to obtain worst position. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations.				
	3. Open the test software to control the test antenna and test turntable. Perform the test, save the test results, and export the test data.				
Conducted test method	The BLE antenna port of EUT was connected to the test port of the test system through an RF cable.				
	The EUT is keeping in continuous transmission mode and tested in all modulation modes.				
	3. Open the test software, prepare a test plan, and control the system through the software. After the test is completed, the test report is exported through				
	the test software.				

Report No.: JYTSZ-R12-2301608

5 Test Results

5.1 Summary

5.1.1 Clause and Data Summary

This report is revised according to the JYTSZ-R12-2301381 report, FCC ID: 2ADYY-KJ7 issued by JianYan Testing Group Shenzhen Co., Ltd. Differences: Dual card to single card, change the SIM card seat, by replacing the software and card to achieve, PCBA has not changed. And model update, so need to spot-check Conducted Output Power.

Test items	Standard clause	Test data	Result
Antenna Requirement	15.203 15.247 (b)(4)	Please refer to report No.: JYTSZ-R12-2301381.	Please refer to report No.: JYTSZ-R12-2301381.
AC Power Line Conducted Emission	15.207	Please refer to report No.: JYTSZ-R12-2301381.	Please refer to report No.: JYTSZ-R12-2301381.
Conducted Output Power	15.247 (b)(3)	Please refer to report No.: JYTSZ-R12-2301381.	Please refer to report No.: JYTSZ-R12-2301381.
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Please refer to report No.: JYTSZ-R12-2301381.	Please refer to report No.: JYTSZ-R12-2301381.
Power Spectral Density	15.247 (e)	Please refer to report No.: JYTSZ-R12-2301381.	Please refer to report No.: JYTSZ-R12-2301381.
Band-edge Emission Conduction Spurious Emission	15.247 (d)	Please refer to report No.: JYTSZ-R12-2301381.	Please refer to report No.: JYTSZ-R12-2301381.
Emissions in Restricted Frequency Bands	15.205 15.247 (d)	Please refer to report No.: JYTSZ-R12-2301381.	Please refer to report No.: JYTSZ-R12-2301381.
Emissions in Non-restricted Frequency Bands	15.209 15.247(d)	Please refer to report No.: JYTSZ-R12-2301381.	Please refer to report No.: JYTSZ-R12-2301381.

Remark:

- 1. Please refer to FCC ID: 2ADYY-KJ7, report No.: JYTSZ-R12-2301381 issue by JianYan Testing Group Shenzhen Co., Ltd.
- 2. N/A: Not Applicable.
- 3. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

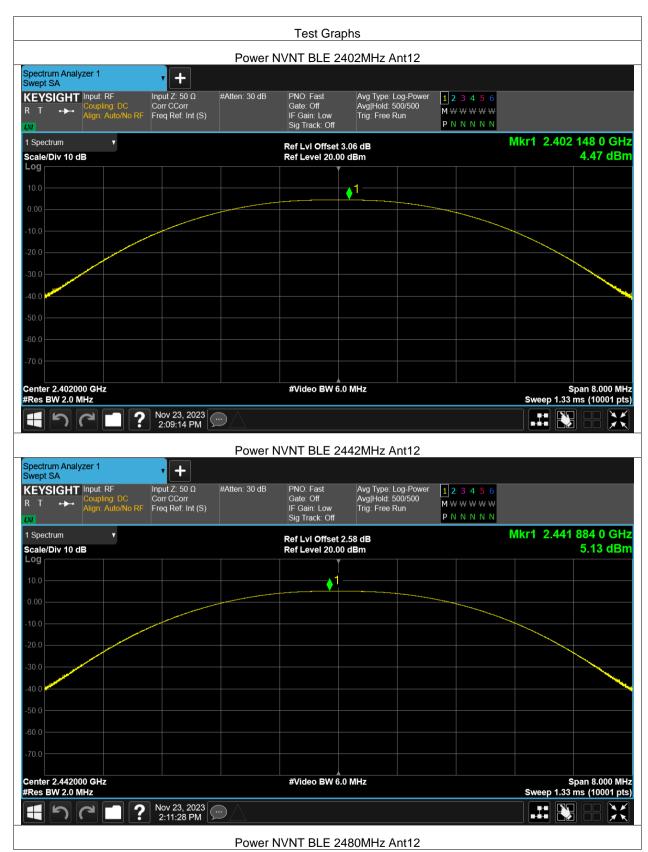
Test Method: ANSI C63.10-2013 KDB 558074 D01 15.247 Meas Guidance v05r02

JianYan Testing Group Shenzhen Co., Ltd. Report Template No.: JYTSZ4b-148-C1 No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366

5.1.2 Test Limit

Test items			Limit					
		Frequency		Limit (d	dBμV)			
		(MHz)	Quas	i-Peak	Average			
AC Power Line Conducted		0.15 – 0.5	66 to	56 Note 1	56 to 46 Note 1			
Emission		0.5 – 5	į.	56	46			
		5 – 30		60	50			
	Note 1: The limit level in dBµV decreases linearly with the logarithm of frequency. Note 2: The more stringent limit applies at transition frequencies. For exetoms using digital modulation in the 902-928 MHz, 2400-2483 5 MHz.							
Conducted Output Power	For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt.							
6dB Emission Bandwidth	The	e minimum 6 dB bandwid	lth shall be a	it least 500 k	Hz.			
99% Occupied Bandwidth	N/A							
Power Spectral Density	inte	digitally modulated syst ntional radiator to the ar d during any time interva	ntenna shall i	not be greate	er than 8 dBm in any 3			
Band-edge Emission Conduction Spurious Emission	frec dB high radi the pow per this	ctrum or digitally modula quency power that is pro- below that in the 100 kH nest level of the desired iated measurement, pro- peak conducted power later limits based on the u mitted under paragraph	duced by the z bandwidth power, base vided the traitington.	e intentional r within the ba d on either a nsmitter dem ransmitter co	radiator shall be at lea and that contains the in RF conducted or a nonstrates compliance			
	whi	ts specified in §15.209(a ch fall in the restricted ba the radiated emission li	IB instead of a) is not requ ands, as defi	section, the 20 dB. Atter ired. In addit ined in §15.2	er a time interval, as attenuation required unation below the gention, radiated emission (205(a), must also comp	icted nder eral s		
	whi	ts specified in §15.209(a ch fall in the restricted b	IB instead of a) is not requ ands, as defi	section, the 20 dB. Atter ired. In addit ined in §15.209 d in §15.209	er a time interval, as attenuation required unuation below the generation, radiated emission (205(a), must also compo(a) (see §15.205(c)).	icted nder eral s		
	whi	ts specified in §15.209(a ch fall in the restricted ba the radiated emission li	IB instead of a) is not reque ands, as defi mits specifie	section, the 20 dB. Atter ired. In addit ined in §15.209 d in §15.209	er a time interval, as attenuation required unation below the gention, radiated emission (205(a), must also comp	icted nder eral s		
	whi	ts specified in §15.209(a ch fall in the restricted ban the radiated emission life	IB instead of i) is not requands, as definits specifie	section, the 20 dB. Atterired. In additined in §15.209 BµV/m)	er a time interval, as attenuation required unuation below the generation, radiated emission (205(a), must also compo(a) (see §15.205(c)).	icted nder eral s		
Emissions in Restricted	whi	ts specified in §15.209(a ch fall in the restricted ba the radiated emission li Frequency (MHz)	IB instead of i) is not requands, as definits specifie Limit (d @ 3m	section, the 20 dB. Atter ired. In additined in §15.209 BµV/m) @ 10m	er a time interval, as attenuation required unuation below the gencion, radiated emission 205(a), must also compo(a) (see §15.205(c)).	icted nder eral s		
Emissions in Restricted Frequency Bands	whi	ts specified in §15.209(a ch fall in the restricted ban the radiated emission line frequency (MHz) 30 – 88 88 – 216 216 – 960	IB instead of i) is not requands, as definite specifie Limit (d @ 3m 40.0 43.5 46.0	section, the 20 dB. Atterired. In additined in §15.209 BµV/m) @ 10m 30.0	er a time interval, as attenuation required unuation below the generation, radiated emission (205(a), must also composa) (see §15.205(c)). Detector Quasi-peak	icted nder eral s		
	whi	ts specified in §15.209(a ch fall in the restricted bath the radiated emission life (MHz) 30 – 88 88 – 216	IB instead of i) is not requands, as definits specifie Limit (d @ 3m 40.0 43.5	section, the 20 dB. Atterired. In additined in §15.209 d in §15.209 BµV/m) @ 10m 30.0 33.5	er a time interval, as attenuation required unuation below the gencion, radiated emission 205(a), must also compo(a) (see §15.205(c)). Detector Quasi-peak Quasi-peak	icted nder eral s		
	whi	ts specified in §15.209(a ch fall in the restricted ban the radiated emission line frequency (MHz) 30 – 88 88 – 216 216 – 960	IB instead of i) is not requands, as definites specifie Limit (d @ 3m 40.0 43.5 46.0 54.0	section, the 20 dB. Atterired. In additined in §15.209 BµV/m) @ 10m 30.0 33.5 36.0 44.0 In frequencies.	er a time interval, as attenuation required unuation below the generation, radiated emission (205(a), must also compo(a) (see §15.205(c)). Detector Quasi-peak Quasi-peak Quasi-peak Quasi-peak Quasi-peak	icted nder eral s		
Frequency Bands	whi	ts specified in §15.209(a ch fall in the restricted bath the radiated emission limits and the radia	IB instead of i) is not requands, as definites specifie Limit (d @ 3m 40.0 43.5 46.0 54.0	section, the 20 dB. Atter ired. In additined in §15.209 BµV/m) @ 10m 30.0 33.5 36.0 44.0	er a time interval, as attenuation required unuation below the generation, radiated emission (205(a), must also compo(a) (see §15.205(c)). Detector Quasi-peak Quasi-peak Quasi-peak Quasi-peak Quasi-peak	icted nder eral s		
Frequency Bands Emissions in Non-restricted	whi	ts specified in §15.209(a ch fall in the restricted ban the radiated emission line Frequency (MHz) 30 – 88 88 – 216 216 – 960 960 – 1000	IB instead of i) is not requands, as definites specifie Limit (d @ 3m 40.0 43.5 46.0 54.0	section, the 20 dB. Atterired. In additined in §15.209 dd	er a time interval, as attenuation required unuation below the generation, radiated emission (205(a), must also compo(a) (see §15.205(c)). Detector Quasi-peak Quasi-peak Quasi-peak Quasi-peak Quasi-peak	icted nder eral s		
Frequency Bands Emissions in Non-restricted	whi	ts specified in §15.209(a ch fall in the restricted bath the radiated emission limits and the radia	IB instead of i) is not requands, as definites specific Limit (d @ 3m 40.0 43.5 46.0 54.0 pplies at transitio	section, the 20 dB. Atterired. In additined in §15.209 d	er a time interval, as attenuation required unuation below the gencion, radiated emission (205(a), must also compo(a) (see §15.205(c)). Detector Quasi-peak Quasi-peak Quasi-peak Quasi-peak Quasi-peak	icted nder eral s		

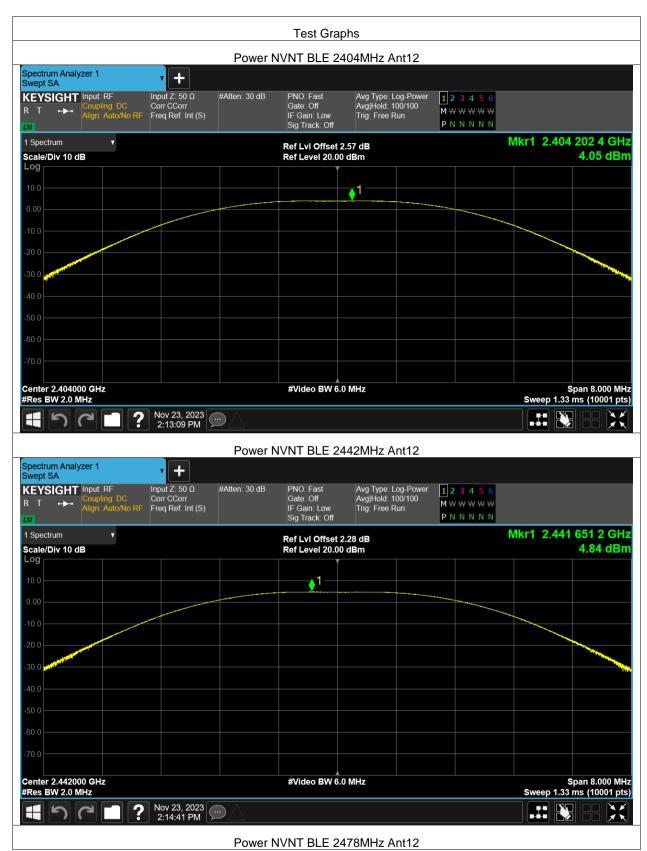
5.2 Conducted Output Power Spot-check


ANT12:

Appendix A - BLE-1M PHY

Maximum Conducted Output Power

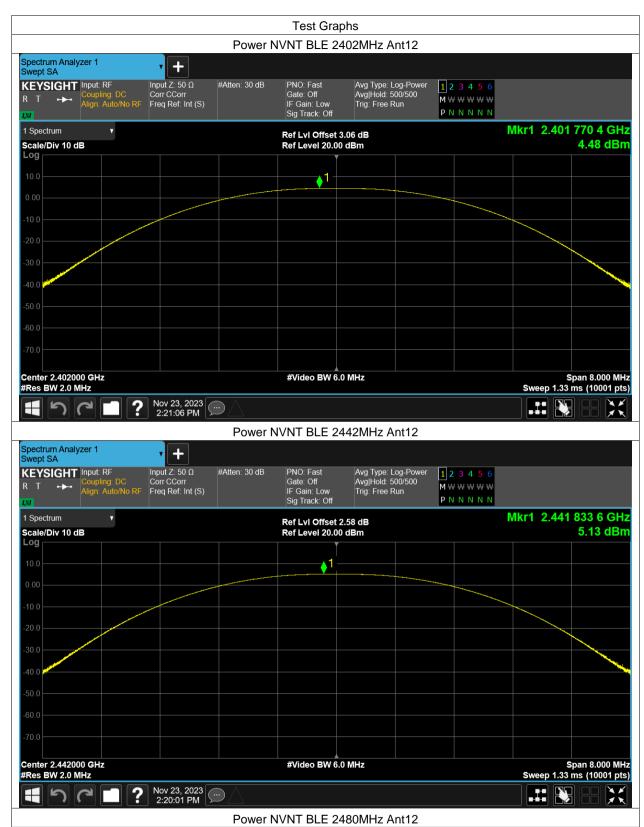
Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE	2402	Ant12	4.466	30	Pass
NVNT	BLE	2442	Ant12	5.128	30	Pass
NVNT	BLE	2480	Ant12	4.454	30	Pass



Appendix B - BLE-2M PHY

Maximum Conducted Output Power

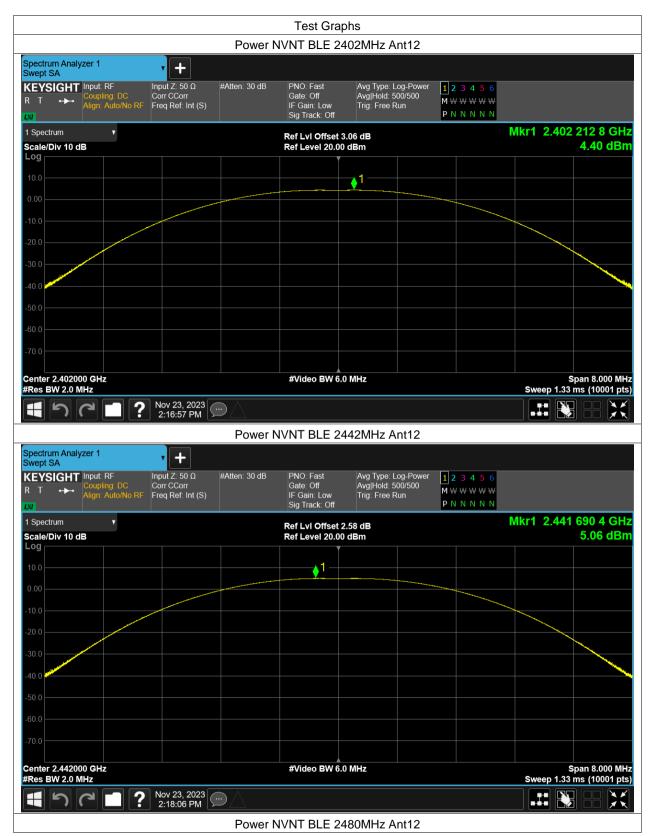
Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE	2404	Ant12	4.045	30	Pass
NVNT	BLE	2442	Ant12	4.836	30	Pass
NVNT	BLE	2478	Ant12	4.853	30	Pass



Appendix C - BLE-Coded PHY,S=2 PHY

Maximum Conducted Output Power

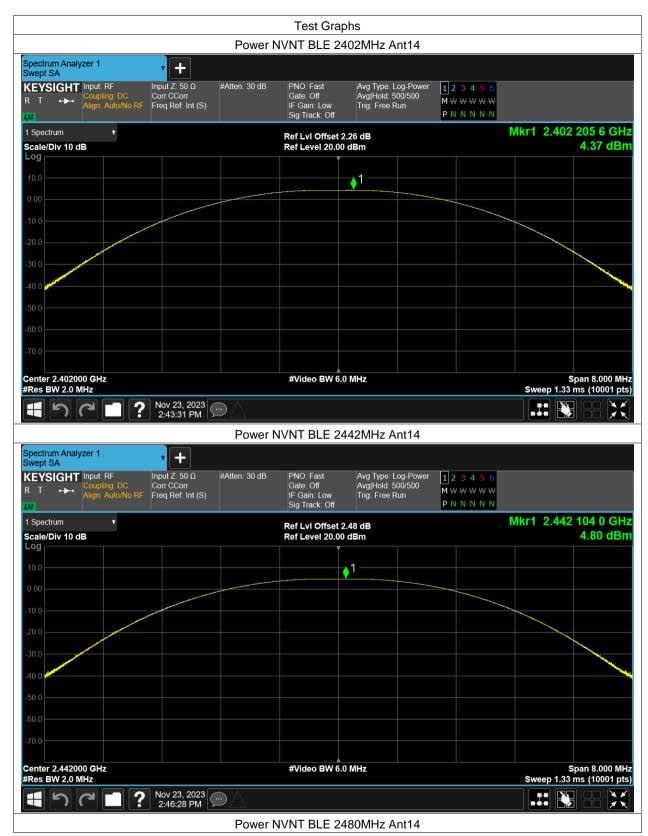
Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE	2402	Ant12	4.481	30	Pass
NVNT	BLE	2442	Ant12	5.126	30	Pass
NVNT	BLE	2480	Ant12	4.436	30	Pass



Appendix D - BLE-Coded PHY,S=8 PHY

Maximum Conducted Output Power

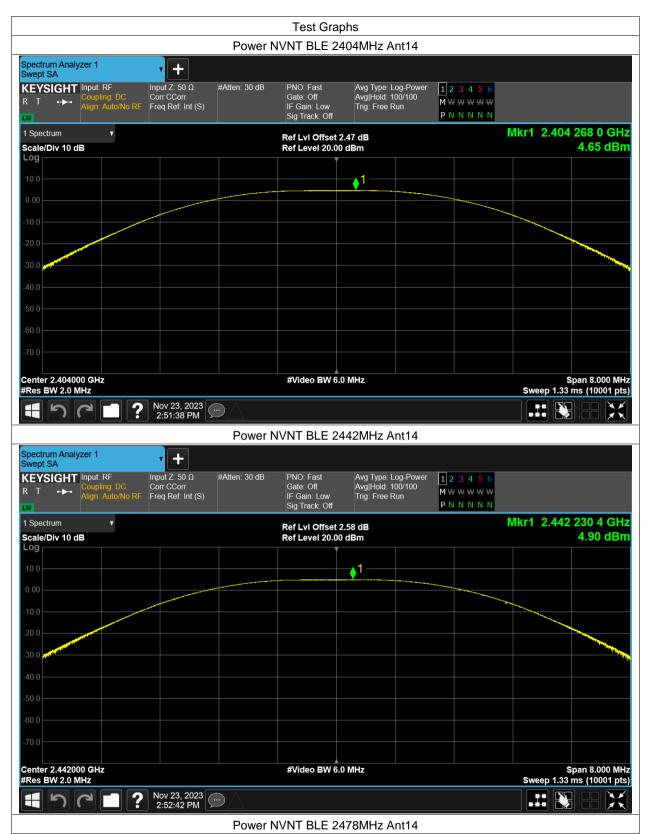
Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE	2402	Ant12	4.401	30	Pass
NVNT	BLE	2442	Ant12	5.06	30	Pass
NVNT	BLE	2480	Ant12	4.383	30	Pass


ANT 14:

Appendix A - BLE-1M PHY

Maximum Conducted Output Power

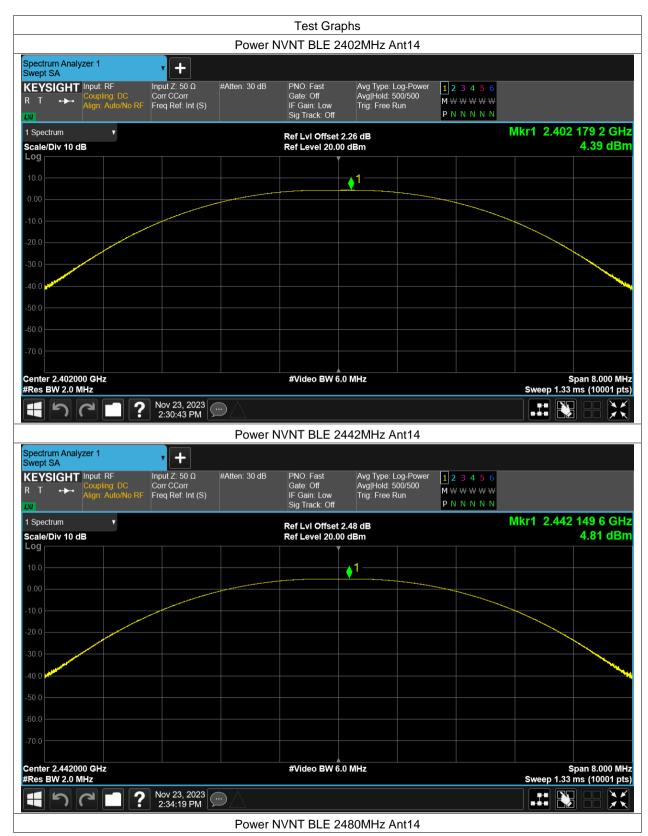
Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE	2402	Ant14	4.374	30	Pass
NVNT	BLE	2442	Ant14	4.804	30	Pass
NVNT	BLE	2480	Ant14	5.005	30	Pass



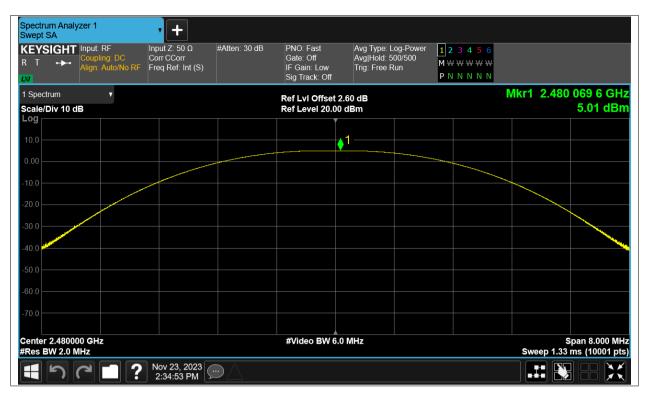
Appendix B - BLE-2M PHY

Maximum Conducted Output Power

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE	2404	Ant14	4.65	30	Pass
NVNT	BLE	2442	Ant14	4.896	30	Pass
NVNT	BLE	2478	Ant14	5.014	30	Pass



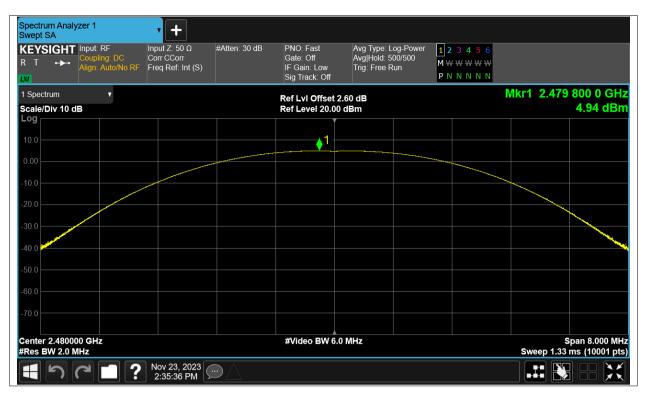
Appendix C - BLE-Coded PHY,S=2 PHY


Maximum Conducted Output Power

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE	2402	Ant14	4.387	30	Pass
NVNT	BLE	2442	Ant14	4.813	30	Pass
NVNT	BLE	2480	Ant14	5.01	30	Pass

Appendix D - BLE-Coded PHY,S=8 PHY

Maximum Conducted Output Power


Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE	2402	Ant14	4.302	30	Pass
NVNT	BLE	2442	Ant14	4.736	30	Pass
NVNT	BLE	2480	Ant14	4.942	30	Pass

-----End of report-----